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Abstract

The ultra-strong light-matter coupling regime has been demonstrated in a novel

three-dimensional inductor-capacitor (LC) circuit resonator, embedding a semiconduc-

tor two-dimensional electron gas in the capacitive part. The fundamental resonance of

the LC circuit interacts with the intersubband plasmon excitation of the electron gas

at ωc = 3.3 THz with a normalized coupling strength 2ΩR/ωc = 0.27. Light matter

interaction is driven by the quasi-static electric field in the capacitors, and takes place

in a highly subwavelength effective volume Veff = 10−6λ3
0 . This enables the observation

of the ultra-strong light-matter coupling with 2.4 × 103 electrons only. Notably, our

fabrication protocol can be applied to the integration of a semiconductor region into

arbitrary nano-engineered three dimensional meta-atoms. This circuit architecture can

be considered the building block of metamaterials for ultra-low dark current detectors.
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Metamaterials were introduced to enable new electromagnetic properties of matter which

are not naturally found in nature. Celebrated examples of such achievements are, for in-

stance, negative refraction1 and artificial magnetism.2 The unit cells of metamaterials are ar-

tificially designed meta-atoms that have dimensions ideally much smaller than the wavelength

of interest λ0.3 Such meta-atoms act as high frequency inductor-capacitor (LC) resonators

which sustain a resonance close to λ0 ∝
√
LC.3 The resonant behaviour, occurring into highly

subwavelength volumes, generates high electromagnetic field intensities which, as pointed out

by the seminal paper of Pendry et al.,2 are crucial to implement artificial electromagnetic

properties of a macroscopic ensemble of meta-atoms. Moreover, the ability to control and

enhance the electromagnetic field at the nanoscale is beneficial for optoelectronic devices,

such as nano-lasers4 electromagnetic sensors5–7 and detectors.8–12 For instance, metamate-

rial architectures have lead to a substantial decrease of the thermally excited dark current

in quantum infrared detectors, resulting in higher temperature operation.11,12

The LC circuit can be seen as a quantum harmonic oscillator sustaining vacuum electric

field fluctuations that scale as 1/V
1/2
eff , where Veff is the effective volume of the capacitive

parts.13 For an emitter/absorber inserted between the capacitor plates, the light-matter

interaction is proportional to 1/V
1/2
eff , and thus strongly enhanced. Fundamental electro-

dynamical phenomena, such as the Purcell effect14 and strong light-matter coupling regime15

can therefore be observed. In the strong coupling regime, energy is reversibly exchanged be-

tween the matter excitation and the electromagnetic resonator at the Rabi frequency ΩR.

This results in an energy splitting of the circuit resonance into two polaritons states sepa-

rated by 2~ΩR. The regime of strong coupling has been observed in many physical systems

which have been reviewed e.g. in Refs. 16–18, and some specific realizations with metama-

terial resonators were achieved in the sub-THz,19 THz20–22 and the Mid-IR23–25 part of the

spectrum. In these systems, the highly subwavelength interaction volumes combined with
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the collective effect of Ne identical electronic transitions result into high coupling constants

ΩR ∝ (Ne/Veff)
1/2, and allow reaching the ultra-strong coupling regime where the Rabi split-

ting becomes of the same order of magnitude as the frequency of the material excitation

ω̃, 2ΩR/ω̃ ≈ 1.26 Since there is virtually no lower limit for the interaction volume Veff in

LC resonators, the fascinating regime of ultra-strong coupling can be realized in structures

having few electrons only.27,28 In such limit, the effective bosonization procedure employed

to describe the properties of the two-dimensional electron gas breaks down, and one can in-

vestigate the unique regime where the few electrons in the system have to be exactly treated

as fermions.27

Recently, the ultra-strong coupling regime with a small number of electrons has been

experimentally observed by coupling transitions between Landau levels in a two dimensional

electron gas under a high magnetic field and nanogap complementary bow-tie antennas, with

a record low number of 80 electrons.28 Those studies were performed in the sub-THz part of

the spectrum (300GHz) using resonators based on a planar geometry. Here, we demonstrate

a three-dimensional metamaterial architecture that has the potential to go beyond this limit

in the THz range (3THz), without the need for a magnetic field. Our metamaterial allows

confining the electric field in all directions of space into nanoscale volumes, on the order of

Veff = 10−6λ3
0. The resonance of the structure is coupled to an intersubband (ISB) transition

of high density electron gas in the ground state of semiconductor quantum wells (QWs).

A relative Rabi frequency of 2ΩR/ω̃ = 0.27 is attained with a record low overall number

of electrons Ne ≈ 103 for intersubband systems. Other reports on coupled LC resonators-

ISB transitions systems in the THz spectral range reached similar coupling constants of

2ΩR/ω̃ = 0.2 with a much greater mode volume and electron number (Veff ≈ 10−5λ3
0 and

Ne = 4.6× 104).29 Comparable number of coupled electrons have been reported in the MIR

spectral range30,31 using very small mode volume cavities with Veff ≈ 6 − 9 × 10−6λ3
0, but

at the expense of reducing the coupling constant (2ΩR/ω̃ = 0.1 in Ref. 30 and 2ΩR/ω̃ =

0.05 in Ref. 31). We use the dependence of the polariton splitting on the effective mode
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volume as a near field probe to estimate the highly subwavelength volume of our resonators

in comparison with reference microcavity systems.20,32 These results are obtained thanks

to a novel fabrication process that allows structuring metal patterns on both sides of a

very thin semiconductor layer, which opens many degrees of freedom in the design and

functionalization of 3D metamaterial architectures into optoelectronic devices.

20nm 
Al0.15Ga0.85As

Inductive loop

Ground plate

d

E

min

max

L

CC

SiN

Au mirror
GaAs substrate

(a)

(b) (c)

E2
0/2 B2/2µ0

32nm 
GaAs QWs

n++

n++

GaAs 

absorbing 
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x

y
z
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1µm

1µm

W
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1µm

500nm

Pint=9µm Pint=12µm

Figure 1: Sketch of the THz LC resonator and resonator mode. (a) The absorbing region
(GaAs/AlGaAs QWs, see the Supplementary Information for a detailed composition and
band structure) is embedded inside the resonator capacitors, defined by the overlap of two
metallic plates. The device effectively acts as a LC resonator, where the magnetic field
loops around the top wire, and the electric field is confined between the metallic plate and
normal to their surface. This is further evidenced by numerical simulations (b) showing
the electric (left) and magnetic (right) energy density. We can see that the electric field is
well confined in the capacitors, while the magnetic energy follows the inductive loop. The
two fields are spatially disentangled. The host substrate is coated with an Au mirror for
reflectivity experiments, and the SiN spacer thickness is kept large enough (3 µm) to prevent
any coupling between the resonator and the mirror. (c) Scanning electron microscope image
of two LC resonators with different internal perimeters. The blue squares on the left panel
mark the capacitor area (1µm×1µm), showing the 500 nm extensions ensuring an improved
coupling with free-space radiation (see text).

Our THz LC resonator is introduced in Fig. 1 (a), along with a sketch of the equivalent

circuit. The bottom metallic ground plate is formed by two square capacitor plates of

4
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width W , connected by a thin stripe. The top metallic part is composed of two rectangular

capacitor plates (W ×W + 0.5µm) connected by a bent wire. Two parallel plate capacitors

are thus formed at the overlap between the metallic pads, while the bent wire acts as an

inductive loop. Note that the top metal plates are 500 nm wider than the bottom one,

resulting in a 500 nm wide extension over the outer parts of the capacitor, as shown in

Fig. 1 (c). The capacitors area is shown by the blue squares on the left image of this panel.

The small extensions allow engineering the fringing fields between the two capacitor plates.

By breaking the symmetry of the in-plane component of the electric field, they allow efficient

coupling between the resonator mode and far-field radiation, as determined by previous

work on SiN-based resonators.33 The circuit-like mode of the structure which oscillates at

the lowest frequency confines the electric field in the capacitive areas while the magnetic

field loops around the inductive wire,33,34 as shown in Fig. 1 (b), calculated using finite-

elements method simulations. They represent the electric (left) and the magnetic (right)

energy density in the center xy plane of the resonator. The matter resonance is provided

by GaAs/AlGaAs QWs inserted inside the capacitive elements. Note that the z-component

of the electric field is the only active component for ISB absorption. The resonator mode

described above thus naturally fulfills the ISB polarization selection rule, which requires the

electric field to be oriented along the growth axis of the QWs.

To fabricate the LC resonator, the ground plate is first patterned using e-beam lithogra-

phy and used as a mask to etch the absorbing region with an inductively-coupled plasma.

The structure is then encapsulated in a 3 µm thick SiN layer, and the surface of the sample

is metalized with an optically thick Au layer. The latter serves as a mirror which blocks the

transmission into the substrate, such as the reflected beam contains only the spectral fea-

tures of the metamaterial array. The sample (grown on a GaAs substrate) is then flipped and

transferred to a host substrate using an epoxy, and the growth substrate is selectively etched

away, revealing the bottom of the patterned absorbing region. The top inductive loop and

rectangular capacitor plates are then defined using e-beam lithography. Figure 1 (c) shows
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scanning electron microscope images of typical LC resonators. In the following, we keep the

lateral size of the capacitor W = 1 µm. The internal perimeter Pint = 2Ly+Lx+4µm of the

inductive loop is varied from 9 to 14µm to tune the resonant frequency across the 2-6 THz

spectral region, as explained further. A single resonator fits in a square with a diagonal

of 4.2 µm (Pint=9 µm) to 7 µm (Pint=12 µm), much smaller than the vacuum wavelength

λ0=100 µm. The footprint of a single resonator ranges from 3× 3 to 5×5 µm2, e.g. 10−3λ2
0

to 2.5× 10−3λ2
0.

We first probe the optical properties of our system at room temperature, where the ISB

absorption can be neglected as the thermal energy is sufficiently high to equally populate

the first few energy levels of the QWs, and we can study the electromagnetic modes of

the resonator alone.35 We perform reflectivity experiments using a dry-air purged Fourier

Transform Spectrometer (FTIR) (Brucker Vertex 70v) and a globar source. The FTIR is

equipped with a custom made reflectivity setup, which allows focusing the globar beam

on the sample with the help of a pair of F1 parabolic mirrors, and the reflected beam is

measured with a He cooled Ge bolometer (QMC Instruments). Light is linearly polarized

and impinging at 45° on the sample, as sketched in Fig. 2 (f). To ensure good spatial overlap

with the globar beam, we fabricate dense arrays composed of ≈50 000 resonators separated

by 2 µm from each other, with a total area of 2×2 mm2. All spectra are normalized by the

reference from a Au mirror. In Fig. 2 (a)-(b) we show typical spectra obtained for resonators

with Pint = 10 µm, with light polarized respectively along the line formed by the capacitors

(Ex), and orthogonally to that line (Ey). By comparing the two spectra, we first note the

presence of a dip in the reflectivity spectrum for Ex-polarized light at 3.5 THz, which is

absent in the Ey-polarized spectrum. This corresponds to the LC mode of the resonator

represented in Fig.1. A broad resonance is observed in both polarizations at 6.5 THz, whose

origin will be discussed later. A strong dip is observed just above 8 THz in both polarizations.

This corresponds to the lower frequency edge of the GaAs reststrahlen band arising from the

optical phonons,36 confirming the very strong localization of the electric field in the semi-

6
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(f)

Figure 2: Reflectivity of a LC resonator array at 45° of angle of incidence in TM configuration
using light polarized (a) along the capacitor line (b) normal to the capacitor line (see (c)
and (d)) and reflectivity of the SiN-Au stack (black dashed line). (c) Ez component of the
electric field obtained from numerical simulations for the two modes with an incident light
polarized along the x direction in a x−y (top) and a x−z (bottom) cut plane at the center of
the capacitors. Note that for the planar mode, the magnitude of the Ez has been multiplied
by 2. (d) Ez same as (c) for an electric field polarized along the y direction. Note that the
magnitude of the Ez has been multiplied by 2. (e) Blue squares: Resonant frequencies of a
set of LC resonators with W=1 µm and d=290 nm, varying simultaneously Lx and Ly to
increase Pint while maintaining a square aspect ratio. Blue dashes: Resonant frequencies of
the equivalent circuit. (f) Sketch of the optical configuration, ensuring a TM-polarized light
excitation with respectively Ex and Ey in-plane electric field projection. The gray plane
represents the plane of incidence (x− z plane and y − z plane respectively).

conductor layer enabled by our device, as the GaAs only constitutes 3.5% of the surface

probed by the THz beam. The baseline in all spectra arises from the 3 µm thick SiN layer,

as confirmed by the reflectivity spectra from an area without any patterns (dashed curves in

Fig. 2 (a)-(b)). Indeed the SiN layer has a residual absorption in this spectral region.37

To clarify the origin of the various resonances observed in the experiments we simulated

the reflectivity of the structure using a commercial finite element method software (Comsol

7
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v.5.3a). Maps of the Ez component of the electric field for the three modes are shown in

Figs. 2 (c)-(d) in two cut planes located at the center of the capacitors. Note that in the right

panel of Fig. 2 (c) and in Fig. 2 (d) the magnitude of the electric field Ez has been multiplied

by two for clarity. The xy-plane color maps show the expected electric field distribution for

the LC mode, and reveal that the resonance at 6.5 THz actually corresponds to two different

modes (P1 and P2) excited with different polarizations (Ex and Ey respectively). Comparing

the xz-plane maps, we see that only the LC mode efficiently confines the electric field inside

the capacitors. P1 and P2 are modes where the electric field lies mainly in the plane of

the inductive loop, reminiscent of the modes observed in planar metamaterial resonators.38

Notably, simulations including the top loop alone (and not the ground plate) show the same

P1 and P2 modes but not the three-dimensional LC resonance. These two modes couple to

the isotropic phonon absorption in the GaAs regions below the Au pads, as they still have a

spectral overlap with the GaAs reststrahlen band. A detailed survey of the different modes

sustained by the structure is beyond the scope of this paper, and from now on we will restrict

the analysis to the LC mode, which is the only one providing electric field almost exclusively

localized in the capacitive parts and satisfying the selection rule for the QW ISB absorption.

The LC resonance is tuned by changing the internal perimeter Pint of the inductive loop,

while keeping the capacitance parts fixed. The resonant frequencies as a function of Pint

are reported in Fig. 2 (e) (symbols). We compare the experimental results with those of

a lumped element model which corresponds to the equivalent circuit sketched in Fig. 1(a)

(see Supplementary Materials for more information). The resonant frequencies of the model,

provided by ωLC =
√

2/LC are plotted in dashed lines in Fig. 2 (c), and are in good

agreement with those extracted from the measurements. The calculated inductance varies

from L = 11 pH to L = 6 pH. The calculated capacitance is C = 480 aF, which compares

well with the value for an ideal parallel plate capacitor C = εε0W
2/d = 374 aF, with ε

and ε0 the material and vacuum permittivities. The difference between these two values

can be explained by the contribution of the fringing fields and of the in-plane parasitic gap

8

Page 8 of 25

ACS Paragon Plus Environment

ACS Photonics

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60



capacitance between the two metal pads. This evidences that the fundamental mode of our

resonators operates in the near quasi-static limit.

To explore the ultra-strong light-matter coupling regime, we have inserted in our res-

onators an absorbing region consisting of 5 repetitions of 32nm GaAs quantum wells sep-

arated by 20nm Al0.15Ga0.85As barriers, similar to the design described in Ref. 20,35. The

QWs are modulation-doped by Si δ-doped regions placed 5 nm away from the QW, with a

nominal sheet carrier density of 4 × 1011 cm−2. In such thin double-metal structures the

presence of the two metal-semiconductor interfaces creates a depletion layer on each side

of the semiconductor region, bending the conduction band profile and usually depleting 2-3

QWs.35,39 To compensate for this effect, we introduced a doped AlGaAs spacing layer and a

doped GaAs external layer (both doped at 2×1018 cm−3) on each side of the absorbing region,

which is of total thickness d = 290 nm. Additional details on the band structure and sample

design are provided in the Supplementary materials. The matter excitation coupled to the

LC resonator is an intersubband plasmon of frequency ω̃ =
√

ω2
12 + ω2

P , where ω12 is the bare

ISB transition frequency and ωP is the plasma frequency of the two-dimensional electron gas

in the QWs.40 The latter is provided by the expression ωP =
√

(n1 − n2)e2/(εε0m∗LQW,eff),

where e is the electron charge, m∗ is the electron effective mass in the QW, n1 (resp. n2) is

the surface electron density in the first (second) subband, and LQW,eff is an effective length

of the quantum well as defined in Ref. 41.42 The quantity LQW,eff can be seen as an effective

thickness of the quantum confined electron plasma and depends on the wave functions of the

first and second subbands (see Ref. 41). We find LQW,eff ≈ 25 nm, smaller than the physical

thickness of the QW (32 nm). For the following discussion, it is important to note that ωP

and hence ω̃ depend on the charge density in a single quantum well only. The characteristic

equation of the coupled intersubband plasmon-resonator system is written in the general

case:
(

ω2 − ω̃2
) (

ω2 − ω2
c

)

= Ψ2fwf12ω
2
Pω

2
c (1)

where ωc is the resonator frequency, f12 is the 1 → 2 transition oscillator strength (f12 = 0.96

9
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for an infinite QW), fw = NQWLQW,eff/d describes the filling factor of the QWs inside the

absorbing region with NQW charged quantum wells, and Ψ2 describes the optical overlap of

the resonator mode with the absorbing region, which is related to the effective mode volume

Veff as explained further. Note that the coefficient fw quantifies the filling factor of the

QWs inside the absorbing region that takes into account the fact that the active dipoles

are not homogeneously distributed in the semiconductor, but are only localized inside the

QWs. Instead, the dimensionless overlap factor Ψ2 represents the fraction of electromagnetic

energy coupled into the z-component of the electric field and spatially overlapping with the

semiconductor layers inside the capacitor. It is defined by:43

Ψ2 =

∫

AR
εε0
2
|Ez|2

Ue

(2)

where the energy stored in the vertical component of the electric field Ez (the sole component

of the field to couple to ISB transitions) is integrated over the absorbing region (AR) volume

VAR = 2W 2d and normalized by the total electric energy Ue of the mode. The effective

mode volume is then determined by the relation Veff = VAR/Ψ
2. Since Ψ2 ≤ 1 this definition

accounts for field leakage outside the capacitive parts of the resonator. Eq. 1 provides the

upper (UP) and lower (LP) polariton frequencies as a function of ωc. The minimum splitting

between UP and LP is exactly the vacuum Rabi splitting 2ΩR:

2ΩR =
√

Ψ2fwf12ωP =

√

Ψ2f12e2NQW (n1 − n2)

εε0m∗d
(3)

The Rabi splitting can also be expressed as 2ΩR =
√

f12e2/εε0m∗×
√

NQW (N1 −N2)/Veff ,

where N1,2 is the total number of electrons populating the subband 1, 2. The Rabi split-

ting that is experimentally determined from spectroscopic studies, as described further, is

thus directly linked to the effective mode volume Veff which is an important quantity in

nano-photonic systems.44 However, the analysis of our experimental data is easier to per-

form with the help of Eq. (3). Ultimately, two parameters govern the maximum coupling

10

Page 10 of 25

ACS Paragon Plus Environment

ACS Photonics

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60



strength: the overlap factor Ψ2 and the number of available dipoles in the microcavity volume

NQW (n1−n2). The strength of the coupling can thus be controlled by tuning the population

difference through the change of the temperature of the sample.

In order to asses the parameters NQW and Ψ2 in our LC resonators, we compare the spec-

troscopic features of the ultra-strong coupling regime in the LC resonators with square patch

double-metal microcavities. Such double-metal cavities sustain a resonance at λ = 2neffs,

where s is the size of the patch, and neff = 3.9 the effective index of the confined mode.45

They have been shown to reach the ultra-strong coupling regime with similar absorbing re-

gions with Ψ2 ≈ 1, however with a much larger effective mode volume.20,35 They will serve

as a reference to our current LC samples.32

s= /2n
(11µm)

3.5µm

2.25µm

(a) (b) (c)

0.75THz

7K

300K

LP
UP

0.92THz
7K

300K

LP UP

Patch LC

Figure 3: (a) Optical microscope image of a patch microcavity (top) and a LC resonator
(bottom) to scale. The patch acts as a double-metal Fabry-Perot cavity for TM0 guided
modes, where the first resonant frequency is given by λ = 2ns. In the LC resonator, we
have highlighted in dashed squares the capacitor area, evidencing the dramatic reduction of
the electric mode volume. (b) Reflectivity of the patch microcavity array as a function of
temperature. The resonator mode visible at room temperature splits into upper (UP) and
lower (LP) polariton modes, with a separation of 0.92 THz. (c) Same experiment for the LC
metamaterial, resulting in a separation of 0.75 THz. The SiN baseline has been removed for
clarity. The dashed lines are guides for the eye.

A comparison between a LC resonator and a patch cavity with the same absorbing region

is shown in Fig. 3. Optical microscope images of the two types of resonators, which have
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identical resonant frequencies (3.5 THz) are shown in Fig. 3 (a) (to scale). While the size of

the patch cavity is set by the diffraction limit, clearly the lateral confinement of the electric

field in the capacitors of the LC resonator is well below that limit. For spectroscopic studies

at cryogenic temperatures, the samples are mounted on the cold finger of a liquid helium

continuous flow cryostat, and probed in a reflectivity experiment. We report in Fig. 3 (b)

(resp. (c)) the reflectivity of the patch cavities array (resp. LC resonator) tuned near the

intersubband plasmon resonance as a function of temperature, ranging from 300 K to 7 K. In

the case of the LC resonator, the baseline induced by the SiN has been removed for clarity.

In both cases the room temperature spectra show a single resonance around 3.5 THz as the

population difference between the first two subbands is zero (n1 ≈ n2), owing to the thermal

electron distribution. The matter excitation thus vanishes, and one only sees the LC and

the patch cavity resonances. This single resonance splits when decreasing the temperature

as the population difference n1 − n2 increases, and the maximum separation is obtained at

low temperature (7K), reaching 0.92 THz for the patch cavities and 0.75 THz for the LC

resonators.

Tuning the LC and patch resonant frequencies allows us to more precisely map the

dispersion relation given in equation (1). In Fig. 4 the position of the UP and LP modes

at T=7 K are plotted as a function of the cavity frequency, obtained by modifying either

the size s of the patch cavities, or the inductance of the LC resonators through the internal

perimeter Pint. We observe a clear anticrossing and the opening of a polaritonic gap between

the two polariton branches. By fitting the data with equation (1), we can extract the Rabi

splittings 2ΩR−LC = 0.72 THz and 2ΩR−patchs = 0.85 THz, representing respectively 21%

and 24% of the intersubband plasmon frequency ω̃ determined from the fit of the dispersion

relation. The slight reduction of the Rabi splitting for LC resonators can be due to both

lateral depletion of the QW, as well as to the overlap factor Ψ2 that is less than unity.

We now want to determine separately the total charge and the overlap factor in our

systems. We start by deducing the total charge left in the 5 QW patch cavity sample, by

12

Page 12 of 25

ACS Paragon Plus Environment

ACS Photonics

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60



(a) (b)

NQ�=3

NQ�=1

NQ�=2

Figure 4: Dispersion of the LP and UP modes as a function of cavity frequency for patch
microcavities (a) or LC resonators (b). Dotted lines show the polariton dispersion relation
obtained from eq. (1). A polaritonic gap appears between the UP and LP branches (dashes
and filled area). Stars on panel (b) indicate the calculated intersubband plasmon frequency
in the case where NQW = 1, 2, 3 (see main text and Supplementary Information).

comparing it to a reference sample having exactly the same QWs, but repeated 25 times. The

25 QWs sample is also processed into patch cavities (Refs. 20,35), and we can safely assume

that Ψ2
ref = Ψ2 = 1. The data for that sample are provided in the Supplementary Materials,

along with a detailed derivation of the method to extract the electronic population. We

deduce that 21 QWs are populated, with an equivalent doping of 1.37 × 1011cm−2. Using

equation (3), (see also Ref. 20,35) a proportionality rule yields the total surface charge

density at low temperature:

(

ΩR

ΩR−ref

)2

=
Ψ2f12NQWn1

Ψ2
reff12−refNQW−refn1−ref

dref
d

(4)

In that case Ψ2 = Ψ2
ref = 1, and we find an equivalent total charge density of NQWn1 = 2n1,

meaning that only 2/5 of the total charge is left is the QWs, confirming the importance of the

depletion effects at the metal-semiconductor interfaces. Furthermore, for both samples we

observe the same matter excitation frequency ω̃, which means the surface charge density per
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quantum well is the same. We therefore conclude that we have NQW =2 charged quantum

wells in the 5QW absorbing region. A more detailed analysis is given in the Supplementary

Information.

Having determined the total charge in the case of the patch cavities, we use the same

proportionality rule to compare the 5QW patch and LC resonators. We first assume that we

have the same total charge in both samples. Then, according to equation (4) we can derive

the geometric overlap factor Ψ2. Comparing the data from Fig. 4 we derive a confinement

factor Ψ2 = 0.7. A more careful comparison of Fig. 4 (a) and (b) shows that the fits of

the dispersion relations yields a plasmon frequency ω̃ at a slightly lower frequency for the

LC resonators (ω̃ =3.55 THz) than the one of the patch cavities (ω̃ =3.65 THz). Since the

plasmon frequency is related to the plasma frequency through the formula ω̃ =
√

ω2
12 + ω2

P ,

we conclude that the red shift is due to a lower plasma frequency of the LC as compared

to the patch cavity. This is due to a further lateral depletion of the QWs originating from

surface traps at the etched surface of the absorbing region, as already reported in the case

of etched pillar or nanowire structures.22,46,47 From our data, we infer a plasma frequency

for the LC resonators that is 7.6% lower than the one for the patch cavities. Correcting

for this effect yields an overlap factor Ψ2 = 0.79. This value is slightly larger than the

one predicted in numerical simulations, Ψ2
LC = 0.64. The effective mode volume of the LC

resonators is thus determined to be Veff = 1.2 × 10−6λ3
0, almost two orders of magnitude

smaller than the patch cavities. The low value of the effective mode volume is a striking

feature of our resonator, since achieving an effective volume very close to the physical volume

of the semiconductor absorbing region (9.2×10−7λ3
0) represents a critical trade-off in double-

metal geometries, owing to the leakage of the electric energy in fringing fields. Square or

wire patch cavities indeed lead to Ψ2 factors close to unity at the expense of a large mode

volume, while other systems report very small mode volume, sacrificing the overlap factor

down to a few percents.29,31 We can also estimate the intersubband plasmon frequency ω̃ in

the case where one or three QWs would be populated. The detail of the calculation is given
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in Supplementary Information, and the results are shown in stars in Fig. 4 (b). We can see

that the intersubband plasmon frequencies obtained in the two cases strongly differ from our

measurement, confirming the analysis presented above.

From the knowledge of the equivalent surface charge density we can deduce the total

number of electrons participating in the coupling with the cavity and resonator modes. The

calculation yields Ne−patchs = 3.3× 105 e−/patch and Ne−LC = 2.4× 103 e−/capacitor. Our

newly developed LC resonators thus allow us to greatly decrease the number of electrons

involved in the coupling while maintaining a large vacuum Rabi splitting, making a step

towards the few electrons regime beyond previous results on double-metal cavities.29,31,32

1�cm-� 1�cm-�
(a) (b)

�c

L�

UP

�c
L�

UP

Figure 5: Polariton dispersion relations for sample with different doping densities on each
side of the absorbing region. (a) Reproduction of the dispersion relation in Fig. 4 (b). The
outer layers are doped at 2 × 1018cm−3 over 10 nm. (b) Polariton dispersion relation for
LC resonators with outer layers doped at 6× 1018cm−3 over 30 nm. The top of each panels
sketches the conduction band profile, evidencing the depletion due to the band bending at
the metal-semiconductor interfaces. Insets: reflectivity spectra at room temperature and
7 K for both samples, evidencing the cavity frequency, and the LP and UP resonances.
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In order to improve further the strength of the light-matter coupling, we designed a second

sample with an identical absorbing region, but with an increased thickness of the cavity

(320 nm) and and increased doping density in the outermost GaAs layers (6 × 1018 cm−3).

After processing into patch cavities and LC metamaterials, we perform the same experiments

as described above (see Supplementary materials for details). Our results show that in the

present sample, all 5 QWs are populated. This means that thanks to the increased charge

density in the interface layers, the populated QWs participating in the optical absorption

occupy a larger fraction of the total cavity volume, increasing the filling factor fw. However,

we deduce a lower value of the optical overlap factor, Ψ2=0.56, meaning a slightly higher

effective volume than that of the previous LC sample. This could be explained by a partial

screening of the penetration of the electric field inside the capacitors, owing to the higher

number of free carriers in the contact layers. Nevertheless, as shown in Fig. 5, the Rabi

splitting 2ΩR is increased to 0.89 THz in the new LC sample, reaching values of 0.27 of the

ISB plasmon frequency. The total electron number is Ne = 6×103e−/capacitor. Remarkably,

this value is one of the lowest achieved so far using ISB transitions coupled to metamaterials,

while retaining a large ΩR/ωc ratio.

In conclusion, we demonstrate a deeply subwavelength confinement of electromagnetic

energy with an effective mode volume Veff = 10−6λ3
0 and a reduction of the number of

interacting electrons, down to a few thousands while keeping 2ΩR/ω̃ = 0.27. The electron

number is an order of magnitude larger than that recently reported in systems exploring

the coupling between Landau level transitions and planar metamaterials.28 However, our

structures will allow further reduction of the number of electrons while maintaining a large

ratio ΩR/ω̃. This can be achieved by reducing the size of the capacitive elements to a

few hundreds of nanometers in our LC resonators. For instance, by maintaining a surface

equivalent doping of ≈ 2 × 1011cm−2 and working with a single quantum well, we could

achieve ultra-strong light-matter coupling with only 10 electrons in 100 nm wide capacitors.

Devices with such small capacitive elements have already been fabricated in SiN-based LC
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resonators.33

An important asset of our device architectures is that they naturally provide the possibil-

ity to implement DC current input/output from the semiconductor region. Indeed, the top

and bottom metallic parts are direct current uncoupled, and contacts can be taken directly

on the inductive parts without hindering the sub-wavelength confinement in the capaci-

tors. Such device architectures will allow us to study new effects related to the ultra-strong

coupling, beyond the spectroscopic studies performed so far,28 such as polariton-assisted

fermionic transport.48–53 The reduced number of electrons leads to a reduced number of

dark states, optimizing the coupling between the collective electronic excitation and the

electronic current.54 Furthermore, in the weak coupling regime, these device architectures

can be very beneficial for ultra-low dark current ISB detectors.11
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Graphical TOC Entry

300K
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Ultra-Strong Light-Matter Coupling in Deeply Subwavelength THz LC
resonators.
Mathieu Jeannin, Giacomo Mariotti Nesurini, Stéphan Suffit, Djamal
Gacemi, Angela Vasanelli, Lianhe Li, Alexander Giles Davies, Edmund
Linfield, Carlo Sirtori, Yanko Todorov.
The figure represents a sketch of the LC device, an electron microscope
picture of a resonator and the electronic band structure of the semicon-
ductor absorbing region. The last panel is the spectral signature of the
ultra-strong coupling between the two-dimensional electron gas and the
resonator as a function of the temperature.
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