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Abstract—Mixed-criticality scheduling theory (MCSh) was de-
veloped to allow for more resource-efficient implementation of
systems comprising different components that need to have their
correctness validated at different levels of assurance. As originally
defined, MCSh deals exclusively with pre-runtime verification
of such systems; hence many mixed-criticality scheduling algo-
rithms that have been developed tend to exhibit rather poor
survivability characteristics during run-time. (E.g., MCSh allows
for less-important (“LO-criticality”) workloads to be completely
discarded in the event that run-time behavior is not compliant
with the assumptions under which the correctness of the LO-
criticality workload should be verified.) Here we seek to extend
MCSh to incorporate survivability considerations, by proposing
quantitative metrics for the robustness and resilience of mixed-
criticality scheduling algorithms. Such metrics allow us to make
quantitative assertions regarding the survivability characteristics
of mixed-criticality scheduling algorithms, and to compare dif-
ferent algorithms from the perspective of their survivability. We
propose that MCSh seek to develop scheduling algorithms that
possess superior survivability characteristics, thereby obtaining
algorithms with better survivability properties than current ones
(which, since they have been developed within a survivability-
agnostic framework, tend to focus exclusively on pre-runtime
verification and ignore survivability issues entirely).

I. INTRODUCTION

Many safety-critical systems are required to have their cor-

rectness validated (in some cases, formally verified) prior to

their deployment; in some application domains such as civilian

aviation, such a priori validation is mandated by statutory

certification requirements. For safety-critical systems in which

different functionalities need to have their correctness vali-

dated to different degrees of assurance, an approach towards

doing such validation that was first advocated by Vestal [1] has

garnered a lot of attention in the real-time scheduling theory

community.1 We consider here the preemptive uniprocessor

scheduling of systems of independent sporadic tasks that

are represented using the Vestal model [1]. Each task τi is

characterized by the parameters (Ti, C
L
i , C

H
i , χi), where T1

denotes its period, χi ∈ {LO, HI} its criticality with LO

denoting lower criticality than HI, and CL
i and CH

i its LO

and HI criticality worst-case execution time (WCET) estimates

(with CH
i ≥ CL

i ). The intuition behind this model is that

HI-criticality tasks need to have their correctness validated

at a higher level of assurance than LO-criticality tasks. The

CH
i and CL

i parameters represent different estimates, made at

1Some familiarity is assumed here on the part of the reader with the mixed-
criticality scheduling model introduced by Vestal [1] and reviewed in, e.g. [2].

levels of assurance consistent with the higher and lower levels

of assurance respectively, of the actual (unknown) WCET of

task τi. Since we only need to validate each task at a level of

assurance consistent with its own specified criticality level, the

correctness criterion in verification of this system translates to

the requirement that

a. if every job of every task τi completes execution within CL
i

units of execution then all jobs should meet their deadlines;

and

b. if a job of some task τi fails to complete execution despite

having executed for CL
i time units, then all jobs of each

HI-criticality task τi should receive up to CH
i units of

execution by their respective deadlines. (Since this situation

violates the assumptions under which LO-criticality verifi-

cation is required to be performed, no requirements are

placed upon the execution of jobs of LO-criticality tasks).

The original Vestal model proved very successful in iden-

tifying some of the core challenges that arise in resource-

efficient scheduling of mixed-criticality systems, and spawned

a large body of research that proposed solutions to some of

these challenges. However, this model has met with some

criticism (see, e.g, [3], [4]) that it does not match expectations

of systems developers in some important aspects — most of

these criticisms are with regards to the behavior of proposed

mixed-criticality scheduling algorithms in the event that some

jobs execute beyond their LO-criticality WCET estimates. Here

we seek to better understand some of these concerns, and

construct a formal framework within which to address these

concerns.

Organization. The remainder of this document is organized

in the following manner. The distinct concepts of pre-run-time

verification and run-time survivability are both foundational

to the analysis and evaluation of high-integrity safety-critical

systems; we seek to highlight the relationship (in particular,

emphasizing the difference) between these two concepts in

Section II. In Section III we formally present the Vestal

model for mixed-criticality workloads and briefly review some

related work that forms the basis of the remainder of this

paper. Our major technical contributions are to be found in

Section IV, where we explain our proposed approach for

extending the Vestal model to incorporate considerations of

run-time survivability. We conclude in Section V with a brief

summary, and a discussion on future research directions.



Fig. 1. Assume-Guarantee Specifications

II. VERIFICATION VERSUS SURVIVABILITY

The issue of ensuring correctness in high-integrity safety-

critical systems may be considered from two rather distinct

perspectives: (i) (pre-run-time) verification, and (ii) survivabil-

ity. Pre-run-time verification of a safety-critical system is the

process of ensuring, prior to deployment, that the run-time

behavior of the system will be consistent with expectations.

In one commonly used formal framework for pre-run-time

verification (see Figure 1), assumptions are made regarding

the kinds of circumstances that will be encountered by the

system during run-time, and guarantees specified that the run-

time behavior of the system is required to satisfy (provided

that the assumptions hold). In contrast, survivability addresses

expectations of system behavior in the event that the assump-

tions fail to fully hold (in which case a “fault” may be stated

to have occurred during run-time). Survivability may further

be considered to comprise two notions — robustness and

resilience. Informally, the robustness of a system is a measure

of the degree of fault it can tolerate without compromising on

the quality of service it offers; resilience, by contrast, refers

to the degree of fault for which it can provide degraded yet

acceptable quality of service.

The model proposed by Vestal [1], and much of the subse-

quent scheduling theory that has been developed based upon

this model, are designed to deal with verification, not surviv-

ability. Hence many mixed-criticality scheduling algorithms

that have been proposed (including the ones in [5], [6], [7],

[8], [9], [10], [11], [12]) drop all LO-criticality tasks upon the

event of any job executing beyond its LO-criticality WCET

estimate.

We would like to emphasize that from the verification

perspective such job-dropping has no adverse implications for

the LO-criticality workload: in verifying the correctness of

the LO-criticality workloads, we assume that the LO-criticality

WCET estimates are never exceeded (and hence such dropping

will never occur). Therefore, in considering verification of

mixed-criticality systems there is no particular benefit to-

wards incorporating survivability properties into the run-time

scheduling algorithms, whereas doing so tends to result in

algorithms with more complex descriptions and run-time se-

mantics. Consequently mixed-criticality scheduling algorithms

have tended to be designed without incorporating survivability,

and are emphatically not survivable from the perspective of

the LO-criticality workloads: even the smallest violation of

the assumption that LO-criticality WCET estimates will not

be exceeded results in the entire LO-criticality workload being

dropped. Much of the criticism that has been directed at

mixed-criticality scheduling theory that is based on the Vestal

model can be traced to these poor survivability properties

of the proposed algorithms. Some efforts have recently been

made at designing mixed-criticality scheduling algorithms that

exhibit some forms of survivability (see, for example [13],

[14], [15], [16]); however, these are all ad hoc approaches

towards incorporating some properties that are desirable from

the perspective of survivability and do not attempt to formally

define and quantify survivability — to our knowledge, Burns et

al. [17] represents a first effort at doing so. The focus in [17]

is on defining task models that allow for the representation

of robustness properties (in particular, HI-criticality tasks are

defined as being robust to the dropping of individual jobs in

the sense that the functionality of the task is not compromised

upon such dropping, and algorithms are derived in [17] for

scheduling systems comprising such tasks that judiciously

select jobs to be dropped in order to not need to discard

any LO-criticality tasks). We, in contrast, do not address

the modeling aspect at all but instead explore scheduling-

centric approaches for achieving survivability, by proposing

a framework for the development scheduling algorithms and

analyses that accommodate the concepts of robustness and

resilience in a model-agnostic manner. Specifically, we seek to

define quantitative metrics of robustness and resilience that are

applicable to the Vestal model [1] (which, as previously stated,

does not incorporate survivability in its current form), and to

correlate these metrics to the resulting run-time survivability

guarantees of the system.

III. SYSTEM MODEL

We consider the scheduling of systems of independent dual-

criticality implicit-deadline sporadic tasks upon a shared pre-

emptive processor. We assume that a dual-criticality implicit-

deadline sporadic task τi is characterized by the parameters

(Ti, C
L
i , C

H
i , χi), where χi ∈ {LO, HI} denotes its criticality,

CL
i and CH

i its LO and HI criticality WCETs, and Ti its period.

We require that CL
i ≤ CH

i . Some additional notation: we let

uLi
def

= (CL
i /Ti) and uHi

def

= (CH
i /Ti) denote the LO-criticality

and HI-criticality utilizations of task τi.

System behaviors. Since the period parameter of a sporadic

task denotes the minimum (rather than exact) separation

between successive jobs generated by the task, and WCET’s

merely denote estimated upper bounds on the actual execution

time needed to complete executing a job of the task, a single

sporadic task system may exhibit different behaviors during

different executions. The criticality level of a behavior is

determined by how much execution is needed by the jobs in

order to complete execution in that behavior:

• If every job completes upon executing for no more

than the LO-criticality WCET estimate of the task that

generated it, then the behavior is defined to be a LO-

criticality behavior.



1) Each τi initially executes at a constant rate θLi . That is,

at each time-instant it is executing upon θLi fraction of a

processor.

2) If a job of any task τi does not complete despite having

received CL
i units of execution (equivalently, having

executed for a duration (CL
i /θ

L
i )), then

• All LO-criticality tasks are immediately discarded,

and

• Each HI-criticality task henceforth executes at a con-

stant rate θHi .

Fig. 2. The run-time scheduling strategy used by Algorithm MC-Fluid

• Every behavior that is not a LO-criticality behavior in

which every job completes upon executing for no more

than the HI-criticality WCET estimate of the task that

generated it is defined to be a HI-criticality behavior.

• All other behaviors are erroneous.

Correctness criterion. We define an algorithm for scheduling

MC task systems to be correct if it is able to schedule any

system in such a manner that both the following properties are

satisfied:

• during all LO-criticality behaviors of the system, each job

receives enough execution between its release time and

deadline to complete execution, and

• during all HI-criticality behaviors of the system, all HI-

criticality jobs receive enough execution between their

release time and deadline to complete execution.

Some additional notation. We now describe some notation

that we will be using later in this document. We will let

τ denote a collection of n dual-criticality implicit-deadline

sporadic tasks that are to be scheduled upon a preemptive

unit-speed processor. As a general rule, τ with a subscript

(as in τi) denotes an individual task in τ ; however, τH ⊆ τ
(τL ⊆ τ , respectively) denotes the collection of all the HI-

criticality tasks (all the LO-criticality tasks, resp.) in τ .

Various system utilization parameters are defined for τ as

follows:

UL
L

def

=
∑

τi∈τL

uLi

UL
H

def

=
∑

τi∈τH

uLi

UH
H

def

=
∑

τi∈τH

uHi

A. Fluid scheduling of dual-criticality systems

The MC-Fluid scheduling algorithm [10], [12] was designed

for scheduling dual-criticality implicit-deadline sporadic task

systems upon identical multiprocessor platforms under the

fluid scheduling model, which allows for schedules in which

individual tasks may be assigned a fraction ≤ 1 of a processor

(rather than an entire processor, or none) at each instant in

time. (Although MC-Fluid was designed as a multiprocessor

scheduling algorithm, we will be applying it to scheduling

upon uniprocessor platforms; hence our use of the results

in [10], [12] initialize the number of processors to 1: m← 1.)

MC-Fluid operates in the following manner. Prior to run-

time, it computes LO-criticality and HI-criticality execution

rates θLi and θHi for each task τi ∈ τ such that the run-time

scheduling algorithm depicted in Figure 2 constitutes a correct

scheduling strategy for τ . An algorithm for computing suitable

values for the θLi and θHi parameters is presented in [10]. It

is shown in [10] that this approach has a speedup factor no

worse than (1 +
√
5)/2 ≈ 1.62: if a given task system τ can

be scheduled correctly by an optimal clairvoyant scheduler

upon an m-processor platform, then the run-time algorithm of

Figure 2, with values for the θLi and θHi parameters computed

in the manner defined in [10], will successfully schedule τ
upon an m-processor platform in which each processor is

faster by a factor of 1.62. A superior speedup bound was

subsequently proved in [12]: it was shown that if a task system

can be scheduled correctly by an optimal clairvoyant scheduler

upon an m-processor platform then the run-time algorithm of

Figure 2, with values for the θLi and θHi parameters computed

as in [10], will in fact successfully schedule τ upon an m-

processor platform in which each processor is faster by a factor

of 4

3
(since 4

3
< (1+

√
5)/2, this is a superior speedup bound).

A somewhat simpler (and more efficient, in terms of run-time

computational complexity) algorithm than the one in [10] for

computing θLi and the θHi parameters was presented in [12]

– this simpler algorithm, called Algorithm MCF, is presented

in Figure 3 (specialized for uniprocessors – i.e., for m← 1).

It was also shown in [12] that the 4

3
’rds speedup bound holds

even when the θLi and the θHi parameters are computed using

Algorithm MCF.

IV. INCORPORATING SURVIVABILITY INTO MCF

In this section we describe how quantitative notions of

survivability — robustness and resilience — may be incorpo-

rated into the Vestal model, and how Algorithm MCF may be

modified in order to provided specified degrees of robustness

and resilience.2

From the perspective of survivability, it is perhaps helpful

to interpret the WCET parameters of HI-criticality and LO-

criticality tasks differently. We can look upon the WCET

parameters of HI-criticality tasks as assumptions, and the

2We would like to point out that we are using Algorithm MCF as an
examplar of our approach towards quantifying survivability primarily because
these concepts appear easier to highlight for fluid scheduling models. Although
these concepts can also be introduced in the context of other mixed-criticality
scheduling algorithms that have been proposed such as AMC [6], EDF-
VD [11], etc., that are not based on fluid-scheduling, discussing them with
respect to these other algorithms requires that many orthogonal concepts also
be dealt with; this obfuscates some of the survivability issues that we seek to
highlight in this document.



1) Define ρ as follows:

ρ← max
{

UL
L + UL

H , U
H
H

}

(1)

2) If ρ > 1 then declare failure; else assign values to the

execution-rate variables as follows:

θHi ← uHi /ρ for all τi ∈ τH (2)

θLi ←







uL

i
θH

i

θH

i
−

(

uH

i
−uL

i

) , if τi ∈ τH
uLi , else (i.e., if τi ∈ τL)

(3)

3) If
∑

τi∈τ

θLi ≤ 1 (4)

then declare success else declare failure

Fig. 3. Algorithm MCF

WCET parameters of LO-criticality tasks as the corresponding

guarantees: if each HI-criticality job completes upon executing

for no more than the LO-criticality WCET estimate of the task

that generated it, then each LO-criticality job is guaranteed an

execution of at least the LO-criticality WCET estimate of the

task that generated it. In other words, by assuming that each

job of each HI-criticality task completes upon executing for

no more than its LO-criticality WCET estimate, we are able

to guarantee each LO-criticality job an amount of execution

up to its LO-criticality WCET estimate.

For incorporating survivability into the Vestal model it is

equivalent, and perhaps more convenient, to think of a server

of bandwidth/ capacity uLi
def

= (CL
i /Ti) as being associated

with each LO-criticality task τi: all the jobs that are generated

by τi are executed by this server. (Hence if some such job has

a WCET > CL
i , the impact of this only falls upon future jobs

that are generated by this task τi.) This is the approach we will

take in this paper, associating a server with each LO-criticality

task. Under conventional mixed-criticality scheduling (e.g.,

the run-time algorithm of Figure 2), these servers that are

associated with the LO-criticality tasks are terminated if any

job of a HI-criticality task executes for more than its LO-

criticality WCET estimate. Survivability can now be defined in

terms of the capacities assigned to these servers in the event of

HI-criticality jobs executing beyond their LO-criticality WCET

estimates:

• A robust scheduler would not change the capacities of

these LO-criticality servers.

• A resilient scheduler would reduce the capacity of these

LO-criticality servers rather than terminating them en-

tirely; the quantitative metrics of resilience that we are

proposing seek to quantify the degree of such reduction.

A running example. For ease of explanation we will introduce

our ideas via illustration upon a simple task system that is

Ti CL

i
CH

i
χi uL

i
uH

i

τ1 10 2 − LO 0.2 −

τ2 20 6 − LO 0.3 −

τ3 30 3 18 HI 0.1 0.6

UL

L
= 0.2 + 0.3 = 0.5

UL

H
= 0.1

UH

H
= 0.6

TABLE I
EXAMPLE TASK SYSTEM

depicted in Table I. As can be seen from Table I, this example

task system comprises three tasks, of which two, τ1 and τ2, are

of LO criticality and the third, τ3, is a HI-criticality one. (The

example has only one HI-criticality task by design, to better

explain our proposals for quantitative measures of robustness

and resilience; in Section IV-A, we will explain how to apply

our concepts to task systems with > 1 HI-criticality task.)

The three system-utilization parameters UL
L , U

H
L , and UH

H

for this example are also computed and presented in Table I.

Recall that we are associating a server with each LO-criticality

task: for this example, the servers associated with the LO-

criticality tasks τ1 and τ2 would have bandwidths of uL1
def

=

CL
1 /T1 and uL2

def

= CL
2 /T2 respectively; as can be seen from

the table, these are equal to 0.2 and 0.3 respectively.

Algorithm MCF on the example. Applying Algorithm MCF

(Figure 3) to the task system of Table I, we get

ρ← max{0.5 + 0.1, 0.6} = 0.6

Consequently, θH3 = 0.6/0.6 or 1.0, and

θL1 = uL1 = 0.2

θL2 = uL2 = 0.3

θL3 =
uL3 θ

H
3

θH3 −
(

uH3 − uL3
) =

0.1× 1

1− (0.6− 0.1)
=

0.1

0.5
= 0.2

Since

θL1 + θL2 + θL3 = 0.2 + 0.3 + 0.2

which is clearly ≤ 1, Algorithm MCF declares success: the

run-time algorithm of Figure 2 is able to successfully schedule

this system with these computed values for the θLi and θHi
parameters.

Incorporating Robustness. Although our example is correctly

scheduled by Algorithm MCF (as we have seen above), the

system is not at all robust during run-time: if any job of

task τ3 executes beyond CL
3 (i.e., 3) time units, the run-

time algorithm of Figure 2 immediately discards tasks τ1 and

τ2. To incorporate robustness, we ask the question: “What

is the largest value to which we can increase CL
3 such that

Algorithm MCF continues to declare success?” We determine



this value below; once this is computed, we can enhance the

robustness of the system by not discarding τ1 and τ2’s jobs so

long as jobs of τ3 do not execute beyond this computed value

(instead of doing so upon any of τ3’s jobs executing beyond

3 time units).

To compute the desired value, we first observe that Algo-

rithm MCF assigns θH3 the value

uH3 /max(UL
L + UL

H , U
H
H ) = 0.6/0.6 = 1

Next, we note that Algorithm MCF declares success as long

as

θL1 + θL2 + θL3 ≤ 1

⇔ uL1 + uL2 + θL3 ≤ 1

⇔ 0.2 + 0.3 + θL3 ≤ 1

⇔ θL3 ≤ 0.5

Hence it is not necessary to have θL3 = 0.2 (as had been

done by Algorithm MCF); we can in fact assign θL3 any value

not exceeding 0.5. Let us therefore choose θL3 ← 0.5; by

Equation 3 in Figure 3, we have

θL3 =
uL3 × θH3

θH3 − (uH3 − uL3 )
≤ 0.5

⇔ θL3 =
uL3 × 1.0

1.0− (0.6− uL3 )
≤ 0.5

⇔ uL3 ≤ 0.5× (0.4 + uL3 )

⇔ uL3 ≤ 0.4

The system would therefore remain correctly schedulable by

Algorithm MCF as long as uL3 ≤ 0.4; equivalently. CL
3 ≤

0.4 × T3 = 0.4 × 30 = 12. The system of Table I can

therefore be scheduled in a robust manner by only terminating

the servers associated with τ1 and τ2 only upon some job of

τ3 executing beyond 12 time units (rather than CL
3 = 3 time

units). A reasonable quantitative metric of the robustness of

this schedule is the ratio of these two quantities: 12/3, or 4.

Achieving Resilience. Robustness refers to the ability of the

system to provide full (i.e., non-degraded) service despite

violation of assumptions; resilience, to the ability to provide

some degraded level of service upon such violation.

Rather than providing robustness so long as τ3’s job’s do

not execute beyond 12 time units but no resilience upon their

doing so, we could instead have chosen to provide a degraded

level of service upon their execution time exceeding CL
3 = 3

(clearly this is only beneficial if we can continue to provide

such degraded service upon these jobs executing beyond 12
time units).

We will see below that if we were to reduce the sum of the

capacities of the servers associated with the LO-criticality tasks

τ1 and τ2 to 3/8 (i.e., 0.375) from 0.5 — a reduction to 3

4
of

the desired level of service — upon some job of τ3 executing

for beyond 3 time units, we would not need to degrade service

to τ1 and τ2 any further as long as τ3’s jobs do not exceed their

HI-criticality WCET estimate of 18 time units. This factor of

3

4
may be considered a quantitative metric of the resilience of

this schedule.

We now justify the claim in the paragraph above. First,

we observe (as we had done previously, whilst incorporating

robustness into our example) that since θL1 +θL2 = uL1 +uL2 =
0.2 + 0.3 = 0.5, we may assign the remaining processor

capacity to θL3 (i.e., we may choose θL3 ← 0.5). Suppose

that a job of τ3 does not complete execution despite having

executed for its LO-criticality WCET estimate of 3 time units.

Since θ3L = 0.5, this implies that this job has been executing

for 3/0.5 or 6 time units, which in turn implies that there is

an interval of duration (T3 − 6) = (30 − 6) = 24 time units

remaining until its deadline. Assigning it a fraction θH3 ← 5

8
of

the processor over this duration, we see that the total number

of units of computation this job receives by its deadline is

6× θL3 + 24× θH3 = 6× 0.5 + 24× 5

8
= 3 + 15 = 18,

which is equal to its HI-criticality WCET estimate. Upon

τ3 being assigned θH3 = 5

8
of the processor, the remaining

(1− 5

8
) = 3

8
of the processor capacity is assigned to the LO-

criticality servers.

Both Robustness and Resilience. We now discuss how both

robustness and resilience can be achieved simultaneously (in

contrast to the two schemes described above, in each of which

we had achieved one but not the other). Specifically, suppose

that we are given a desired value for the robustness metric:

what degree of resilience can be achieved? We present an

illustrative example below.

Suppose we wish to ensure a robustness of 2: i.e., we seek

robust behavior so long as jobs of τ3 complete upon receiving

no more than 2 × CL
3 = 2 × 3 = 6 units of execution, and

resilience thereafter.

As before, we choose θL3 ← 0.5. That is, we start out

assigning τ3 half the processor capacity (and serving τ1 and

τ2 with servers that have capacities 0.2 and 0.3 respectively).

If a job of τ3 does not complete despite having received 6
units of execution,

• It must be the case that this job has executed for 6/0.5
or 12 time units.

• Hence, there is an interval of duration (T3−12) = (30−
12) = 18 before this job’s deadline.

• We assign τ3’s job a 2

3
’rds share of the processor over

this interval, thereby enabling it to get 18× 2

3
or 12 units

of execution by its deadline. (Note that this is enough to

meet its HI-criticality WCET estimate CH
3 of 18 by its

deadline.)

• The remaining 1

3
of the processor is apportioned between

the servers serving τ1 and τ2, with their processor shares

reduced to 2/15 and 1/5 respectively (i.e., to 2

3
’rds of

their desired levels of service). The resilience of this

schedule is therefore 2

3
.

This analysis is easily extended to arbitrary values of the

desired robustness. Suppose we desire a robustness of ρo. A

job of τ3 will execute for a duration (CL
3 × ρo)/0.5 or 6ρ in

order to have completed CL
3 × ρo = 3ρo units of execution.



In order to obtain the remaining (CH
3 − 3ρo) or (18 − 3ρo)

units of execution by the deadline, we must have

θH3 × (30− 6ρ) = (18− 3ρo)

⇔ θH3 =
18− 3ρo
30− 6ρo

=
6− ρo
10− 2ρo

The remaining (1 − θH3 ) processor share is apportioned be-

tween the two LO-criticality servers; since they receive a

(1 − θH3 ) processor share rather than their desired share of

0.2 + 0.3 = 0.5, the degradation in their service (and hence

the resilience) is given by
(

1− θH3
)

÷ 1

2

≡
(

1− 6− ρo
10− 2ρo

)

× 2

≡
( 4− ρo
10− 2ρo

)

× 2

≡
(4− ρo
5− ρo

)

Hence for any selected value of ρo ≥ 1, we are able to

guarantee a resilience

ψ(ρo) =
(4− ρo
5− ρo

)

(5)

Since resilience can only take on non-negative values, it

follows that ρo must be ≤ 4 — for ρo = 5, we have ψo = 0 —

i.e., a non-resilient implementation with robustness factor 4,

which was exactly the first implementation we had evaluated.

Similarly choosing ρ = 1 yields a resilience of 3

4
, which is

the second implementation — resilient but with no robustness

— that we had considered.

More general formulations of resilience.. Let us continue

with the example above: suppose that (as above) we continue

to seek robustness so long as jobs of τ3 complete upon receiv-

ing no more than 6 units of execution, but desire resilience

only if these jobs complete upon receiving between 6 and 15
units of execution. If their execution exceeds 15 units, then no

resilience is expected.

As before, start out with θL3 ← 0.5. Upon executing for 12
time units, a job of τ3 will have received 6 units of execution.

If it does not complete,

• Assign it a 0.6 share of the processor. Over the next

15 time units (i.e., by 12 + 15 = 27 time units of

the job’s arrival), it will have received 15 × 0.6 = 9
units of execution. Hence, it will have received a total of

6 + 9 = 15 units of execution within 27 time units of its

arrival.

Since τ3 receives a 0.6 share of the processor capacity,

this leaves a 0.4 share to be apportioned between the

servers that are servicing the LO-criticality tasks τ1 and

τ2. The capacities assigned to these servers are therefore

reduced to 0.8 of their desired capacities; hence this

schedule has resilience 0.8.

• If the job of τ3 has still not completed execution, assign it

exclusive access to the processor for the remaining 3 time

units, thereby ensuring that it receives 15+3 = 18 units of

execution by its deadline, thereby ensuring that it receives

an amount of execution equal to its HI-criticality WCET

estimate, CH
3 , by its deadline). The LO-criticality servers

are suspended/ terminated if this happens; equivalently,

the resilience is zero.

The situation described above may be quantified according to

our robustness and resilience metrics by stating that with a

robustness of 2 we guarantee a resilience of 0.8, while with

a robustness of 5 we guarantee a resilience of 0 (i.e., no

resilience).

A. Generalizing from the example

The running example that we have considered thus far has

served to illustrate how we propose to incorporate quantitative

metrics of robustness and resilience into the Vestal model; in

this section, our proposed approaches are generalized to be

applicable to systems with more than one HI-criticality task.

As previously stated, we are seeking to incorporate surviv-

ability into the mixed-criticality scheduling algorithm MCF,

which is based on the fluid-scheduling paradigm. We modify

Algorithm MCF for this purpose, incorporating servers for the

execution of jobs from LO-criticality tasks.

Let us define an implementation of a system to comprise a

given mixed-criticality task system τ , along with the particular

algorithm that is used to schedule it during run-time. The

correctness criterion for mixed-criticality scheduling requires

that in any correct implementation the bandwidth of the server

for each LO-criticality task τj is ≥ uLj as long as all jobs

of each HI-criticality task τi completes upon executing for at

most CL
i units of execution. We now define robustness and

resilience for correct implementations of the task system τ .

Robustness. A correct implementation of τ is said to have

robustness ρ, where ρ is a real number ≥ 1, if the bandwidth

of the server for each LO-criticality task τj remains at least

uLj as long as no job of any HI-criticality task τi executes for

more than ρ× CL
i without signaling completion.3

For our example, we have shown that an implementation

that chooses θL3 ← 0.5 and only suspends/ terminates the LO-

criticality servers upon some job of τ3 executing for more than

4× CL
3 or 12 units of execution, has a robustness of 4.

Resilience. A correct implementation of τ is said to have

resilience ψ, where ψ is a non-negative real number ≤ 1, if the

bandwidth of the server for each LO-criticality task τj remains

at least ψ × uLj as long as no job of any HI-criticality task τi
executes for more than CH

i without signaling completion.

For our example, we have shown that an implementation

that chooses θL3 ← 0.5 and θH3 ← 5

8
, and reduces the

bandwidth of each LO-criticality server by a factor 3

4
upon

3Alternatively, it is reasonable to bound the execution of jobs of HI-
criticality task τi at min(ρ×CL

i
, CH

i
) — i.e., to assume that the HI-criticality

WCET estimates represent truly safe upper bounds on the actual WCET
values. With this interpretation, a fully robust implementation is defined as
an implementation with the robustness parameter equal to infinity: ρ = ∞.



some job of τ3 executing for more than CL
3 = 3 units of

execution, has a resilience of 3

4
.

Both Robustness and Resilience. A correct implementation

of τ is said to have both robustness φ and resilience ψ, if the

bandwidth of the server for each LO-criticality task τj remains

at least ψ × uLj as long as no job of any HI-criticality task τi
executes for more than ρ×CL

i without signaling completion.

We showed an implementation of our example system with

robustness 2 and resilience 2

3
. We also derived a relationship

– Expression 5 – between the robustness and resilience pa-

rameter values that are achievable for our example system.

Multiple (ρ, ψ) specifications. A natural generalization is

to specify multiple ordered pairs (ρ1, ψ1), (ρ2, ψ2), . . . with

ρk+1 > ρk and ψk+1 ≤ ψk. The interpretation is that for each

k, we require that the server for each LO-criticality job τj have

bandwidth ≥ ψk × uLk as long as no job of any HI-criticality

task τi executes for more than ρk × CH
i without signaling

completion.

We showed an implementation of our example system with

(ρ1, ψ1) = (2, 0.8) and (ρ2, ψ2) = (5, 0). That is, this

implementation

• guarantees full service to the LO-criticality workload as

long as no HI-criticality job executes for more than twice

its LO-criticality WCET estimate;

• guarantees 0.8 of the desired level of service to the

LO-criticality workload as long as each HI-criticality

job executes for between twice and five times its LO-

criticality WCET estimate; and

• makes no guarantees to the LO-criticality workload if any

HI-criticality job executes for more than its LO-criticality

WCET estimate.

(Correct execution of all HI-criticality jobs is assured, provided

each completes upon executing for up to its HI-criti ality

WCET estimate.)

We have seen above that multiple different implementations

of a single system are possible, with the different implemen-

tations characterized by different robustness and resilience pa-

rameters. Many pairs of such implementations are incompara-

ble in the sense that one offers greater robustness and the other,

greater resilience. There is in general a potentially infinite

design space of possible such incomparable implementations

— choosing the most appropriate implementation for a specific

system is a design choice that should be guided by the intended

use of the system.

V. CONCLUSIONS AND FUTURE WORK

Pre-runtime verification and run-time survivability are two dis-

tinct aspects of correctness in safety-critical systems. Mixed-

criticality scheduling theory (MCSh) has, thus far, focused

almost exclusively on the verification aspect; in this document

we have described some of our ongoing efforts at extending

MCSh to incorporate survivability considerations. We have

proposed quantitative metrics of both aspects of survivability

– robustness and resilience – for mixed-critical task systems

that are represented using the Vestal model [1]. While we have

illustrated the applicability of our proposed metrics by using

them as the basis for the development of survivable implemen-

tations of a simple mixed-critical system under a particular

mixed-criticality scheduling algorithm (Algorithm MCF), we

are not claiming that our quantitative metrics are the only ones

(or even the best ones) that can be defined. We believe the

choice of metrics is an inherently social process in that buy-

in from a larger research community is needed if the metrics

are to see much use – we hope that this document will spur

some discussion on the choice of metrics for robustness and

resilience, and perhaps yield alternative proposals for metrics.

As stated in Section IV (footnote 2), we have chosen

to illustrate the applicability of our quantitative metrics on

the mixed-criticality scheduling algorithmMCF primarily for

reasons of simplicity: we are by no means suggesting that

we believe it to be the definitive mixed-criticality scheduling

algorithm. As future work we plan to subject other mixed-

critical scheduling algorithms that have been proposed (such as

AMC [6], EDF-VD [11], etc.) to the same form of analysis as

we have done here with Algorithm MCF, and thereby develop

survivable implementations of systems that are based upon

these non-fluid mixed-criticality scheduling algorithms.

Also as future work, we plan to revisit some mixed-

criticality scheduling algorithms such as the ones in [13], [14],

[15], [16] that have previously been proposed for addressing

the non-survivability of traditional mixed-criticality scheduling

algorithms. We will seek to characterize the robustness and

resilience properties of these algorithms on the basis of the

metrics that we have proposed in this paper.
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