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ABSTRACT

We use a computational modelling approach to explore whether it is possible to infer a tumour’s cell

proliferative hierarchy, under the assumptions of the cancer stem cell hypothesis and neutral evolution.

We focus on inferring the symmetric division probability for cancer stem cells in our model, as this is

believed to be a key driving parameter of tumour progression and therapeutic response. Given the

advent of multi-region sampling, and the opportunities offered by them to understand tumour evolutionary

history, we focus on a suite of statistical measures of the phylogenetic trees resulting from the tumour’s

evolution in different regions of parameter space and through time. We find strikingly different patterns

in these measures for changing symmetric division probability which hinge on the inclusion of spatial

constraints. These results give us a starting point to begin stratifying tumours by this biological parameter

and also generate a number of actionable clinical and biological hypotheses including changes during

therapy, and through tumour evolution.

Introduction1

The cancer stem cell hypothesis (CSCH) posits that tumours are composed of a hierarchy of cells with2

varying proliferative capacities. Under this hypothesis, a subpopulation of ‘cancer stem cells’, also termed3

tumour initiating cells (TICs), are able to self-renew through symmetric division and also to differentiate4

into tumour cells resembling transit amplifying cells (TACs) through asymmetric division (see Fig 1A),5

giving rise to the entire diversity of cells within a tumour1. The CSCH provides a conceptual framework by6

which to understand many different aspects of cancer progression, including: the occurrence of functional7

heterogeneity despite genetically identical states2–4; resistance to chemotherapy5, 6 and radiotherapy7–9;8

recurrence10; and metastasis11. Despite its popularity, the CSCH has been the subject of continual debate9

and modification in order to maintain compatibility with experimental observations12–14.10

While the specifics of the CSCH are still a matter of debate, the clinical relevance of those cells with11

traits ascribed to TICs is clear. Regardless of the accepted importance of this knowledge, our ability to12

measure their dynamics in a clinical setting is lacking. In vivo measurement efforts are limited to carefully13

conducted live imaging in genetically engineered mice15, or genetic labelling and subsequent lineage14
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tracing16; while in vitro systems are better suited to the extraction of these parameters, little has been done15

to quantify them, as technically demanding single-cell lineage tracing17 is required. These experimental16

difficulties speak to the need for more theoretical work in this area, especially to propose metrics for17

quantifying proliferative parameters such as TIC symmetric division probability (Fig 1A) from clinical18

data. This is of particular importance as there is mounting evidence for the relevance of a proliferative19

hierarchy in determining response to radiotherapy18 and chemotherapy5. Further, we now know that20

certain microenvironmental factors such as hypoxia19, 20, acidosis21, growth factors22, and even stromal21

cell co-operation or co-option23, 24, can perturb this system.22

Several published mathematical models, taking different forms and considering different aspects of23

heterogeneity, have predicted that the evolution of a solid tumour should depend strongly on whether24

or not it exhibits a proliferative hierarchy, and on the parameters of such a hierarchy. These models25

have included spatial proliferation constraints, microenvironmental heterogeneity and selective pressures,26

and the noted differences include shape, clonal heterogeneity, rate of evolution and growth dynamics.27

Werner at al. specifically studied the differences in bulk tumour behaviour between tumours arising from28

mutant TICs and TACs25 in a non-spatial context. In a spatial context, the work of Sottoriva et al.3, 26
29

and Enderling et al.27, 28 represent the first works in which it was shown that the parameters governing30

TAC dynamics can constrain tumour growth, and also to show that TIC-driven tumours have significantly31

different spatial growth patterns: specifically, that they exhibit ‘patchy’ growth. In none of these models,32

except Sproufsske et al.29, in which the main question centred on TAC numbers, were these differences33

studied across TIC symmetric division probabilities, which is a key parameter governing the hierarchy,34

and one that is exceedingly difficult to measure or perturb in vitro or in vivo.35

To describe the evolutionary relationship between members of a species, or larger groups of life36

forms, biologists often formulate tree diagrams that represent their specific hypotheses about relatedness.37

While tree diagrams have been in use since medieval times to describe genealogies, their use to describe38

animal species was not popularized until the early 1800s. These trees were originally made on the basis39

of gross morphological differences (or similarities) and were called phenograms or cladograms, but in40

the last few decades we have begun to define these differences based on genetic information. The field41

of phylogenetics, born in the 1980s, seeks to use objective, genetic information to build trees. When42

populations are sampled, a common method of understanding the clonal evolution is through phylogenetic43

reconstruction, a method of inferring, usually from genetic sequence similarity, the evolutionary life44

history of a given life form. This has classically been applied in scientific fields such as zoology, and it has45

become a branch of bioinformatics all of its own, even spawning a branch of discrete mathematics called46

T-theory30.47

Phylogenetics has, in the last decade, begun to be applied to cancers, giving rise to a subfield48

recently dubbed ‘PhyloOncology’ by Somarelli and colleagues31. Using phylogenies reconstructed from49

spatially separated biopsies and informatic algorithms, many aspects of tumour evolution have begun50

to be elucidated32, including the genetic heterogeneity present within a primary tumour33, the origin of51

individual metastatic tumours within the primary site34, 35, and the effect of chemotherapy on primary and52

metastatic sites36, 37.53

In addition to these sorts of questions, there are precedents in other fields for using phylogenetic54

information, integrated with population dynamics, a technique called phylodynamics38, to infer other55

underlying biological processes. For example, Leventhal et al.39 proposed that the phylogenetic tree56

contains a ‘fingerprint’ that can be used to determine the evolutionary process driving the population in57

question. Modelling the spread of HIV within a contact network, the authors investigated whether the58

network structure could be inferred from the resulting disease phylogenies. To address this question, the59

authors simulated a range of epidemics on several families of random graphs and measured the resulting60
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phylogenetic trees, finding that certain tree-based measures could discriminate between the qualitatively61

different families of random graph structures considered.62

We hypothesize that a similar approach could be used to discriminate between in silico tumours with63

different symmetric division rates. To test this hypothesis, here we study the effect of TIC symmetric64

division probability on tumour evolution using a computational modelling approach. We focus on65

observed patterns in reconstructed phylogenetic trees across a range of symmetric division probabilities.66

The estimation of this proliferative parameter from clinical data could help improve our understanding of67

the effect of therapies on tumour growth dynamics, and our ability to stratify tumours for consideration of68

different therapies. In this way, we seek to provide translatable measures to aid in understanding tumour69

biology: to use mathematical modelling to ‘see the invisible’.70

The remainder of this paper is structured as follows. We first present a spatial stochastic model71

of tumour growth under a proliferative hierarchy with neutral mutations, which we embed on a two-72

dimensional lattice to enable the study of the effect of spatial constraints. Next, we develop an algorithm73

to reconstruct the branched phylogenetic structure from each realization of our tumour growth model. We74

apply a range of statistical measures of phylogenetic tree shape to simulation outputs for comparison. We75

explore the temporal dynamics of these measures over the course of tumour growth to assess whether they76

are robust to tumour size changes, and then to changes in mutation frequency. Finally, we discuss the77

possible clinical utility of these measures.78

Materials and Methods79

Model development80

Here, we describe the development of a two-dimensional, lattice-embedded cellular automaton (CA) model81

of tumour growth with contact inhibition growing under neutral evolution and a proliferative hierarchy.82

Proliferative hierarchy83

We model a proliferative hierarchy comprising two cell types, TICs and TACs. We assume that each84

TIC divides symmetrically with probability α , creating two TICs, and asymmetrically with probability85

1−α , creating one TIC and one TAC. While there is evidence that microenvironmental parameters such86

as nutrient deprivation40, acidity21 and hypoxia41, 42 can change symmetric division probability, and that87

it is likely to vary from cell to cell, for simplicity we will assume it is constant. As it has been shown88

theoretically that the overall population dynamics of TIC-driven tumours is equivalent with or without89

TIC symmetric differentiation43 (when a TIC divides to create two TACs), and as the lineage extinction90

possible in this case would significantly complicate our phylogenetic analysis, we make the simplifying91

assumption that there is no symmetric differentiation. We do not rule out that the addition of symmetric92

differentiation could affect phylodynamics, but leave that question for further study.93

We assume that every TAC division is symmetric, creating two TACs, but only allow this to progress94

for β rounds of division, after which the TAC will die if chosen to divide again. Here β represents the95

replicative potential of TACs, and is posited to represent telomere length44. Previous theoretical work96

has shown that tumour growth kinetics in spatially constrained geometries are strongly affected by the97

value of β 28. In particular, if β > 5, then simulated tumours experience unrealistically lengthy growth98

delays. Therefore we follow a previously used assumption3, 29 and fix β = 4. This mode of growth and99

differentiation is illustrated in Fig 1A. For simplicity, we neglect cell death, though this could be added as100

a straightforward extension in future work.101
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Figure 1. Spatial stochastic model schematic with neutral mutation schema. (A) The proliferative

hierarchy. Each TIC can divide symmetrically with probability α to make two identical TIC progeny, or

asymmetrically with probability (1−α) to make one TIC and one TAC. TACs divide symmetrically until

they reach a specific divisional age (β = 4 for this work), after which they die upon division attempt. (B)

At each division event (branching) after the first (carcinogenesis, labelled with a 1), a random number of

mutations drawn from a Poisson distribution with expectation λ is conferred on each daughter

(subsequent starred events). Each mutation event is given a unique flag, which is inherited by its offspring

unless they too mutate. Each unique mutation can then be considered as a novel mutant allele (red)

appearing in the population. (C) Flowchart outlining cellular automaton rules governing TIC and TAC

growth, including spatial inhibition of growth and TAC age.

Neutral evolution102

To understand the effects of neutral evolution on tumours with differing proliferative hierarchies, we103

extend our model of tumour growth under a proliferative hierarchy to include random mutations. At104

each cell division, there is a possibility that one or more mutations occur. To determine the number of105

mutations accumulated by a given daughter cell, we independently draw a random number from a Poisson106

distribution with rate λ . We assume for simplicity that every mutation arising in our model is unique. This107

‘infinite sites’ assumption is usually ascribed to Kimura45.108

For simplicity, we assume that mutations confer no advantage, disadvantage or any other phenotypic109

change and therefore serve only as a method by which to track clonal lineages. This assumption could in110

principle be loosened to allow for positive selection46, a balance of positive and negative selection47, and111

neutral evolution48. A schematic of this model of evolution, and labelling scheme, is shown in Fig 1B.112

For computational efficiency, we record a unique flag only for the most recent mutation accumulated113

within a cell, which is passed down to its progeny, unless a mutation occurs, in which case a new flag is114

assigned. We also record each mutation event in the form of an ordered pair (parent flag, child flag), so115
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that the complete ‘genomes’ (bit strings) can be reconstructed for future use. As they are the only cells116

capable of forming tumours on their own, and infinite replication, we follow previous works in considering117

new mutations to accrue only in TICs3, 26, 29, 49.118

Spatial dynamics119

As we are interested in the effect of the proliferative hierarchy on the neutral evolutionary process in solid,120

spatially constrained tumours, we embed our cell-based model in a two-dimensional square lattice. While121

recent work has shown some qualitative differences in vascularised CA models between two and three122

dimensions, using a two-dimensional lattice for unvascularised tissue is a common simplification50–53 that123

allows spatial constraints to be studied in a computationally tractable manner. In addition to the above124

description of cell proliferation, we consider cell proliferation to be modulated by contact inhibition54.125

Each cell is allowed to divide only if there is one or more free lattice sites within that cell’s Moore126

neighbourhood; if not, then we consider the cell to be in a quiescent state that may be exited when space127

becomes available. At each time step, each ‘cell’ has an opportunity to divide given that it has space to do128

so. Cells are chosen uniformly at random for updates from the entire population to avoid order bias.129

Cell-type specific rules130

If space is available, and the cell is a TIC, then the type of division is determined by choosing a uniform131

random number, r, from [0,1]. If r < α , then the TIC divides symmetrically, creating another TIC that is132

Figure 2. Temporal evolution of the spatial model reveals observable morphologic differences

between TIC-driven and non-TIC-driven tumours, as observed by others. We plot representative

results of simulations of two tumours, each simulated on a square lattice of size 400×400. Top: a tumour

simulated with α = 0.2 and β = 4. We notice, as have Enderling et al.27 and Sottoriva et al.3, a ‘patchy’

clonal architecture, and non-uniform edge. Bottom: a tumour simulated with α = 1.0, i.e. no proliferative

hierarchy. We note smooth edges, radial patterns of clonal architecture and relatively faster population

growth, reaching ≈ 70,000 cells in less than 200 time steps. To reach a similar size, the tumour with

symmetric division probability of 0.2 took 35,000 time steps. Colour bars denote number of mutations

present in a given clone, note that the top scale is about 1/3 of bottom scale.
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placed uniformly at random in one of the free neighbouring lattice sites. The parent and daughter TICs133

will independently acquire a random number of new mutations, as described above. If r ≥ α , then the TIC134

divides asymmetrically, creating a TAC that is placed uniformly at random in one of the free neighbouring135

lattice sites. The daughter TAC is created with the same mutation ID as the parent, and age = 0, while the136

parent TIC will independently acquire a random number of new mutations, as described above.137

If the chosen cell is instead a TAC, then the check after available space is a check of the cell’s138

proliferative age, which is the number of divisions as a TAC. If the TAC age is equal to the replicative139

potential, β , then the TAC dies, at which point it is removed from the simulation. If the TAC age is less140

than β , then we create a new TAC daughter and place it in an empty space in the Moore neighbourhood at141

random. The parent and daughter TACs share the same mutation ID and their age is updated to be one142

more than the age of the originally chosen TAC.143

Full implementation144

The full CA flow-chart, represented in Fig 1C, schematises the entire process of cell fate decisions that145

each cell undergoes at each time step in the spatial model. In the top panel, the rule set followed by the146

TICs is represented to include differentiation and mutation. In the bottom panel, the TAC rule set is defined147

to include death by terminal differentiation and TAC aging. An example simulation of tumor growth over148

time is shown in Fig 2, where the effect of lowering α can be seen on overall tumour growth kinetics,149

where the colour-bar represents the current clonal state (mutation ID) of a given clone.150

Recovering phylogenetic trees from simulation151

While experimentalists and clinicians can only infer phylogenies from incomplete data, reconstruction of152

the ‘true’ phylogeny is possible in our model as we can record the entire life history of the simulated tumour.153

Thus, we can test whether phylogenetic tree-based measures are able to discriminate TIC symmetric154

division probability in the case where the ‘ground truth’ is known. At each time step we record the spatial155

location of each individual cell with its mutation ID, which is our CA state vector. Additionally, we record156

the evolutionary ‘life history’ as a list of ordered pairs of every mutation event (parent mutational ID, child157

mutational ID). We then recursively construct the phylogenetic tree from this life history.158

Phylogenetic tree reconstruction algorithm159

To create the complete tree data structure required for our quantitative analyses we use the information160

encoding the mutation events from our stochastic simulation. To this end, we create a list of unique161

parent-child pairs using the life history of mutation events. We then apply an iterative process in which162

each child is added as a subnode below the parent (from the unique parent-child pair). This process is163

continued until all parent-child pairs are added to the structure, and the tree is complete. The simulation164

code and functions to create these trees and calculate the metrics is freely available on request.165

Qualitative comparison of reconstructed trees166

To compare phylogenies from simulations with different underlying parameter values, we first construct167

and visualize the phylogenies constructed from three example simulations with differing TIC symmetric168

division probabilities in Fig 3. It is clear by inspection that the number of mutations increases with169

symmetric division probability (more branches). However, the tree structure is not as easy to parse visually.170

For ease of visualization the trees depicted in Fig 3 have been pruned of all terminal nodes (also called171

leaves) with no children of their own. While this transformation does affect the quantitative results, it does172

not qualitatively affect the resultant phylogenetic tree statistic ranks (see Fig 8). All analyses shown will173

utilize the full trees.174
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Figure 3. Three example simulations with increasing symmetric division probability, α (0.2, 0.6

and 1.0 from top to bottom) and their associated phylogenetic trees. Each example plot is the result

of a single stochastic simulation of our spatial CA model. Each simulation is initiated with a single TIC

and complete when the domain is full, in this case 250,000 cells. Parameter values are β = 4 and

λ = 0.01. Visualized trees (right) have been pruned of all leaves for ease of visualisation, which does not

qualitatively affect measure rank (see Fig 8).

Candidate tree-based measures for model comparison175

Visual inspection of Fig 3 suggests that simulations with different TIC symmetric division probabilities176

generate distinct phylogenetic trees. However, to make meaningful conclusions we must perform a177

quantitative comparison. Here we present several measures useful in summarising and comparing178

phylogenetic trees. The most commonly studied property of a phylogenetic tree’s shape is its balance,179

defined as the degree to which internal nodes (branch points) have the same number of children as one180

another. Balance (or imbalance) indices depend only on the branching topology of trees, and not on181
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other factors like branch length or other features of the terminal branches (leaves). Since the first balance182

index by Sackin55, many others have been proposed with slightly differing properties56. One of the first183

papers to present a systematic comparison of a suite of balance indices (often denoted with the letter ‘B’)184

and indices of imbalance (denoted with ‘I’) was by Shao and Sokal57, who reported striking differences185

between the studies’ measures. Their central message was that different measures on trees can give186

insight into different aspects of the underlying processes governing the interactions, and one should thus187

consider several measures for any given tree or family of trees. In this study we will consider several tree188

topology-based measures.189

Before describing the measures, it is worthwhile to briefly define the terms which are used to describe190

trees, and the two basic underlying stochastic models which have been proposed to describe neutral191

evolution and the resulting topologies. Phylogenetic trees are mathematical objects which describe the192

evolutionary relationship between individuals with different physical traits from one another, or in the193

case of our model, different mutational combinations (genotypes). In our model, each simulation begins194

with a cell with mutation flag 1, or a genotype with the first allele mutated (1000...), termed the ‘root’, and195

evolution progresses stochastically, by adding individual mutations at subsequent alleles and increasing196

the mutation flag, as described in Fig 1B. At each mutation event, an evolutionary branch point is created,197

which is termed a node in phylogenetic tree terminology. If this node gives rise to no other children during198

the simulation, it is termed a terminal node, or leaf. There are two common, classically referenced models,199

which bear mention here as well, since many tree topology-measures are normalized against them. The200

first, described by Yule in 192458 and sometimes termed the ‘equal rate Markov’ model, begins with a201

single root and proceeds by replacing, uniformly at random, a given leaf with a node with two children of202

its own. The process continues until the desired number of leaves exist. The other main model, termed the203

‘Proportional to Distinguishable Arrangements’ or uniform model, was described by Rosen59. This model,204

which is truly a model of tree growth rather than an explicitly evolutionary process, begins as does the205

Yule model (and indeed ours) with a single node labelled 1. At each update step, a new leaf is added to the206

tree at any point, either internal node or leaf. These models will serve as normalisation factors in several207

of the measures we present below, which are summarised graphically in Fig 4.208

Sackin index209

The Sackin index was the first statistic used to understand the balance of a phylogenetic tree55, 57. To

compute this statistic, one sums the number of ancestors (Ni) for each of the n terminal nodes of the tree:

In
s =

n

∑
i=1

Ni. (1)

This index increases with tree size: under the Yule growth model, its expectation E[In
s ] grows as 2n logn58.210

One can therefore only perform a meaningful comparison of Sackin indices of trees generated from211

tumours if they are the same size.212

Normalized Sackin index213

To address this dependence on tree size, several normalisations to the Sackin index have been proposed,

two of which we explore here. In particular, one can normalise the Sackin index of a phylogenetic tree to

the expectation value of a similarly sized tree, under the Yule growth model:

IYule =
1

n

(

In
s −2n

n+1

∑
j=2

1

j

)

. (2)
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One can alternatively normalise using the Proportional to Distinguishable Arrangements (PDA) model59–61
214

which is simply the Sackin index scaled by n3/2.215

The B1 statistic216

The B1 statistic, originally described by Shao and Sokal57, considers the balance of a tree. To calculate

the measure, one uses all i internal nodes of the tree with the exception of the root (the founding cell). For

each non-root internal node j, the maximum number of nodes traversed along the longest possible path to

a terminal node, M j, is counted. The B1 statistic is then defined as

B1 = ∑
i

1

M j

∀i 6= root. (3)

N̄217

N̄ reports the average number of nodes above a terminal node. To compute this, we sum the path from218

each terminal node to the root, and divide by the number of terminal nodes. An alternative definition is the219

Sackin index ‘normalised’ by the number of terminal nodes. For a more complete review and comparison220

of the measures presented here, and others, see Blum et al.62 and Shao and Sokal57.221

Examples of how these measures change on several example trees with equal numbers of leaves (but222

different numbers of internal nodes) are presented in Fig 4. In these examples, we compute each of223

the presented measures for comparison. From left to right, the trees contain 4, 3 and 2 internal nodes224

respectively, but the same number (6) of leaves. We note that the measures do not all follow the same225

pattern. For an exhaustive description of all possible trees with 6 leaves, and the correlation of a larger226

family of associated measures, see Shao and Sokal57.227

Results228

Measuring trees from simulation229

As our primary goal is to identify whether tree-based measures allow discrimination of simulated tumours230

with different TIC symmetric division probabilities, we focus on changes in tree measures as we vary231

comparable simulations changing only this parameter. To compare the model tree measures, we first232

Figure 4. Example phylogenetic trees and their measures. From left to right the trees contain 4, 3

and 2 internal nodes (dots) respectively, but the same number (6) of terminal nodes.
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perform 50 stochastic simulations of our spatial CA using a range of TIC symmetric division probabilities233

(0.2,0.4,0.6,0.8 and 1.0), holding mutation rate and TAC lifetime constant (λ = 0.01 and β = 4). For234

each simulation, we construct the resulting phylogenetic tree at tumour size 250,000 cells, as described in235

the Materials and Methods section. We then measure the value of each summary index defined earlier for236

all 50 simulations at the final time point and plot the distribution in a box-whisker plot, which is shown237

in Fig 5 with each data point overlaid in a swarm. Differences between distributions were determined238

using the Wilcoxon rank sum test. While these statistics were performed post hoc, we should note that239

standard statistics can be misleading for simulation based studies with arbitrarily large sample sizes63 (see240

Supplementary Fig 9 for effect size).241

Variation of tree-based measures with symmetric division probability242

The results of the model are presented in Fig 5. We find that all of the indices have monotone relationships243

with symmetric division probabilities except for N̄. Of the normalised indices, the B1 statistic has the244

least overlap in error between symmetric division probabilities. All measure distributions are significantly245

different by the Wilcoxon rank sum test (p < 0.05) except 0.4 and 0.6 in the Sackin index normalised by246

the Yule model (p = 0.08). While we recognize the dangers in reporting p-values in simulation based247

studies 63, we report them here for comparison, and report effect size as well, with full statistics reported248

in Figure 9. The strongest effect is seen in the Sackin index (R2 = 0.871), followed closely by the Yule249

normalised Sackin index (R2 = 0.743).250

Figure 5. A summary of four tree indices measured over a range of symmetric division

probability. We plot the distribution of each of four measures of tree balance for the final resultant trees

from 50 simulations against symmetric division probability. All simulations were run with β = 4 and

λ = 0.01 until a tumour size of 250,000 cells. In each plot we display a box-whisker plot as well as the

individual results as points. NS = non-significant by the Wilcoxon rank sum test.
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Dynamics of tree-based measures during tumour growth251

As discussed in Materials and Methods, the measures considered here are strongly dependent on the total252

number of nodes in the tree. With all other parameters held constant, simply allowing a tumour to grow253

larger would increase the number of total mutations, and therefore the number of total nodes, subsequently254

altering the value of the measure. To ensure that the differences we have noted are robust to changing255

tumour size, we next consider how these measures evolve during the growth of a tumour.256

Figure 6. Comparing phylogenetic tree measures across symmetric division probability through

tumour growth. We plot the average and standard deviation (error bars) of four phylogenetic tree

measures for each of the 50 simulations for a range of symmetric division probabilities over the course of

tumour growth. Rank is maintained across symmetric division probabilities for each of the 3 tree

measures with which we could discriminate between symmetric division probabilities. As before, N̄ is not

predictive and changes rank throughout tumour growth. All tumours are grown to eventual confluence at

250,000 cells. In all simulations β = 4 and λ = 0.01.

To determine how these measures vary over the life of a growing tumour, we measure the index257

over the course of each simulation at increasing tumour sizes. To accomplish this, we use the life258

history to reconstruct the tree at 20 equally spaced time points during the lifespan of each of the 50259

simulations for each symmetric division probability. The time to fill the domain for each of the symmetric260

division probabilities is quite different as the dynamics of tumours driven by differing symmetric division261

probabilities are different (see Fig 2). So, we break the life history into equally spaced time intervals, as262

the total times in each family of simulations are different. When we compare across symmetric division263

probabilities we need to consider this ‘time’ to be a surrogate for tumour size instead instead of explicitly264
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comparing times. Comparing across tumour size is of greater utility clinically, however, as the age of a265

given tumour is rarely known, while size can be readily approximated.266

After reconstruction, we then create a ‘time’ trace for each statistic. We plot these statistics over267

‘time’ in Fig 6, where each family of 50 simulations (for a given symmetric division probability) is268

represented by a single trace with the standard deviation represented by the coloured error bars. We find269

that for each of the statistics, except N̄, the relationships between the symmetric division probabilities are270

maintained over time, suggesting that, if we know the tumour size, and true phylogeny, we can estimate the271

relative symmetric division probability between two samples from these measures. This statement must272

be somewhat qualified by the fact that mutation probability was also held constant for these simulations.273

While estimating mutation probability is not trivial, significant advances have been made in measuring274

the speed of the ‘evolutionary clock’ of tumours: essentially a proxy for mutation probability64. Further,275

we found that the rank order of each discriminatory measure holds throughout tumour growth, indeed276

becoming more discriminatory as the tumours grow larger (with the exception of N̄). As the tumours277

simulated in this study are unrealistically small given the computational constraints, this information278

gives us hope that in tumours of realistic size, these measures would be even more useful. This becomes279

particularly important as the statistics that we have calculated come from the ‘true trees’, that is, trees280

comprised of all mutation events. In reality, trees would be inferred from the imperfect information281

gleaned from biopsies.282

Dependence of tree-based measures on mutation probability283

As the tree measures depend heavily on the number of mutations within a given tumour, and therefore the284

number of branches within a given tree, we next ask how these measures behave when we vary mutation285

probability (λ ) and symmetric division probability simultaneously. To answer this, we perform 10286

stochastic simulations for each combination of the symmetric division probabilites considered previously287

and 5 different values for λ varying over two orders of magnitude (0.001,0.005,0.01,0.05,0.1). We then288

use the previously described method to reconstruct the resulting phylogenies and calculate the measures289

previously discussed. In particular, we ask how the Sackin index, the B1 statistic and the normalized290

Sackin index perform over this range of λ to better understand the applicability of these measures in291

determining differences in symmetric division probability.292

We plot the results of this parameter investigation in Fig 7. In each heat map, we plot the mean of293

the 10 simulations for each parameter combination with symmetric division probability varied along the294

horizontal axis and mutation probability along the vertical. The indices which are not normalized by295

branch number, namely the Sackin index and B1 statistic, increase monotonically with mutation probability296

and symmetric division probability in all cases. The Sackin index normalised by the PDA model, however,297

varies somewhat unexpectedly and has a global minimum at symmetric division probability of 1.0 and298

mutation probability 0.01. This measure is monotonic in symmetric division probability except at the299

highest mutation probability where it becomes somewhat more difficult to determine the differences.300

As before, the B1 statistic appears to be the most stable, and only breaks down slightly in its ability to301

distinguish between the families of simulations at the lowest mutation probability (λ = 0.001) and the302

middle range of symmetric division probability (symmetric division probabilities = 0.4−0.8), as can be303

seen in Fig 7.304

Discussion305

While the use of phylogenetic trees is increasing in translational oncology laboratories, there has yet to be a306

method found by which we can utilise the information clinically. To address this shortcoming, we worked307
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Figure 7. Comparing phylogenetic tree measures across symmetric division probability and

mutation probability. We plot the average of each of four phylogenetic tree measures at the end of each

of 10 simulations for a range of symmetric division probabilities and mutation probabilities. We vary

mutational probability over two orders of magnitude (0.1−0.001), and simulate all tested symmetric

division probabilities. Rank is maintained across symmetric division probabilities for each of the three of

the four measures with which we could discriminate between symmetric division probabilities with

changing mutation probability, allowing for differentiation between parameters. As before, the N̄ statistic

is not predictive. As expected, for the non-normalized indices, Sackin and B1, the measures change

monotonically with both symmetric division and mutation probability. For the PDA normalized Sackin

index, however, there is a global minimum for λ = 0.01 and α = 1.

to leverage the growing interest in biomarker derivation from spatially distinct tumour biopsies65, and308

the recent success of Leventhal39 and others in teasing apart complex biological rules from phylogenetic309

information. We developed an individual based model of tumour growth under a TIC driven proliferative310

heterogeneity which undergoes neutral evolution. We then developed an algorithm to construct phyloge-311

netic trees from simulated tumours. The resultant trees were then analysed and compared using a suite312

of statistical measures of tree (im)balance. Through this method, we have generated a large dataset that313

includes the observed statistical measures of the ‘true’ phylogeny for tumours with a range of symmetric314

division probabilities.315

In particular, we compared the classical measures of tree topology – the Sackin index and the B1316

statistic – as well as normalized versions of each across several parameters of our spatial and non-spatial317

models as well as through the process of tumour growth. Not surprisingly, we found that the Sackin318

index was able to discriminate between the families of simulations as it is directly correlated with branch319

number (in this case correlating with total number of mutations in the TICs, which also is increased with320

increasing symmetric division probability). Encouragingly, we also found that the normalised version of321
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this metric was able to discriminate between the different symmetric division probabilities, suggesting322

a more meaningful (and measurable) topologic difference between the underlying phylogenetic trees323

resulting from these parameter changes (representing diverse biological traits).324

While we have shown that these measures differ significantly from one another, we have not yet325

provided a method by which we can use the metric of a given tree to directly predict the symmetric326

division probability of an unknown tumour. However, the present work at least allows us to understand327

the rank order of symmetric division rate for two tumours given their measured indices. This could be328

particularly useful in certain clinical settings. For example, this could allow us to determine how a given329

therapy affects symmetric division probability by using our calculated measures over serial biopsies, and330

subsequent phylogenetic reconstruction.331

Conclusions332

Aiming towards a translatable method by which to infer the symmetric division probability in solid333

tumours, we have identified several phylogenetic tree based measures that correlate with TIC symmetric334

division probability. We have found several measures which are able to discern differences in simulated335

tumours between symmetric division probabilities. These results are robust to changes in tumour size,336

specifically maintaining their rank throughout tumour growth. The rate of mutation does affect these337

results to some degree, but rank is maintained permitting comparison through time, or between tumours of338

similar size.339

While there is some overlap amongst the measures when more than one parameter is varied, with340

information on mutation probability and tumour size, relative symmetric division probability can be341

estimated. we have only restricted our focus to measures of (im)balance, a basic property of phylogenetic342

trees based only on their branching topology. With more information, such as evolutionary branch343

lengths66, 67 which are linked to the ‘speed’ of a tumour’s molecular clock64, some of these limitations could344

be obviated. Further, we have only considered neutral evolution. While most tumour evolution is likely345

neutral48, there is certainly evidence for non-neutrality in the form of driver and passenger mutations47, 68,346

which would drastically affect the resulting phylogenetic trees38 – especially with intervening treatment347

regimens. How non-neutral evolution and treatment affect our measures remain avenues for future work.348

Acknowledgements349

The authors thank Andrea Sottoriva, Trevor Graham and Helen Byrne for insightful comments and350

discussions. AGF is supported by a Vice-Chancellor’s Fellowship from the University of Sheffield.351

References352

1. Fialkow, P., Gartler, S. & Yoshida, A. Clonal origin of chronic myelocytic leukemia in man. Proc353

Natl Acad Sci USA 58, 1468–71 (1967).354

2. Magee, J., Piskounova, E. & Morrison, S. Cancer stem cells: impact, heterogeneity, and uncertainty.355

Cancer Cell 21, 283–296 (2012).356

3. Sottoriva, A. et al. Cancer stem cell tumor model reveals invasive morphology and increased357

phenotypical heterogeneity. Cancer Res 70, 46–56 (2010).358

4. Vlashi, E. et al. Metabolic state of glioma stem cells and nontumorigenic cells. Proc Natl Acad Sci359

USA 108, 16062–7 (2011).360

14/22

.CC-BY-NC 4.0 International licenseIt is made available under a 
(which was not peer-reviewed) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity.

The copyright holder for this preprint. http://dx.doi.org/10.1101/334946doi: bioRxiv preprint first posted online May. 30, 2018; 

http://dx.doi.org/10.1101/334946
http://creativecommons.org/licenses/by-nc/4.0/


5. Chen, J. et al. A restricted cell population propagates glioblastoma growth after chemotherapy. Nat.361

488, 522–6 (2012).362

6. Werner, B. et al. The cancer stem cell fraction in hierarchically organized tumors can be estimated363

using mathematical modeling and patient-specific treatment trajectories. Cancer Res 76, 1705–1713364

(2016).365

7. Bao, S. et al. Glioma stem cells promote radioresistance by preferential activation of the dna damage366

response. Nat. 444, 756–760 (2006).367

8. Dhawan, A., Kohandel, M., Hill, R. & Sivaloganathan, S. Tumour control probability in cancer stem368

cells hypothesis. PLOS ONE 9, e96093 (2014).369

9. Diehn, M. et al. Association of reactive oxygen species levels and radioresistance in cancer stem cells.370

Nat. 458, 780–783 (2009).371

10. Dingli, D. & Michor, F. Successful therapy must eradicate cancer stem cells. Stem Cells 24, 2603–2610372

(2006).373

11. Pang, R. et al. A subpopulation of CD26+ cancer stem cells with metastatic capacity in human374

colorectal cancer. Cell Stem Cell 6, 603–15 (2010).375

12. Gilbertson, R. & Graham, T. Cancer: Resolving the stem-cell debate. Nat. 488, 462–463 (2012).376

13. O’Connor, M. et al. Cancer stem cells: a contentious hypothesis now moving forward. Cancer Lett377

344, 180–187 (2014).378

14. Scott, J. G. et al. Recasting the cancer stem cell hypothesis: unification using a continuum model of379

microenvironmental forces. bioRxiv 169615 (2017).380

15. Ritsma, L. et al. Intestinal crypt homeostasis revealed at single-stem-cell level by in vivo live imaging.381

Nat. 507, 362–365 (2014).382

16. Driessens, G., Beck, B., Caauwe, A., Simons, B. & Blanpain, C. Defining the mode of tumour growth383

by clonal analysis. Nat. 488, 527–530 (2012).384

17. Lathia, J. et al. Distribution of CD133 reveals glioma stem cells self-renew through symmetric and385

asymmetric cell divisions. Cell Death Dis 2, e200 (2011).386

18. Tamura, K. et al. Accumulation of CD133-positive glioma cells after high-dose irradiation by Gamma387

Knife surgery plus external beam radiation. J Neurosurg 113, 310–318 (2010).388

19. Conley, S. et al. Antiangiogenic agents increase breast cancer stem cells via the generation of tumor389

hypoxia. Proc Natl Acad Sci USA 109, 2784–2789 (2012).390

20. Dhawan, A. et al. Mathematical modelling of phenotypic plasticity and conversion to a stem-cell state391

under hypoxia. Sci Rep 6 (2016).392

21. Hjelmeland, A. et al. Acidic stress promotes a glioma stem cell phenotype. Cell Death Differ 18,393

829–840 (2011).394

22. Doetsch, F., Petreanu, L., Caille, I., Garcia-Verdugo, J. & Alvarez-Buylla, A. EGF converts transit-395

amplifying neurogenic precursors in the adult brain into multipotent stem cells. Neuron 36, 1021–1034396

(2002).397

23. Liu, S. et al. Breast cancer stem cells are regulated by mesenchymal stem cells through cytokine398

networks. Cancer Res 71, 614–24 (2011).399

15/22

.CC-BY-NC 4.0 International licenseIt is made available under a 
(which was not peer-reviewed) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity.

The copyright holder for this preprint. http://dx.doi.org/10.1101/334946doi: bioRxiv preprint first posted online May. 30, 2018; 

http://dx.doi.org/10.1101/334946
http://creativecommons.org/licenses/by-nc/4.0/


24. Vermeulen, L. et al. Wnt activity defines colon cancer stem cells and is regulated by the microenvi-400

ronment. Nat Cell Biol 12, 468–76 (2010).401

25. Werner, B., Dingli, D., Lenaerts, T., Pacheco, J. & Traulsen, A. Dynamics of mutant cells in402

hierarchical organized tissues. PLoS Comput. Biol 7, e1002290 (2011).403

26. Sottoriva, L., Aand Vermeulen & Tavaré, S. Modeling evolutionary dynamics of epigenetic mutations404

in hierarchically organized tumors. PLoS Comput. Biol 7, e1001132 (2011).405

27. Enderling, H. et al. Paradoxical dependencies of tumor dormancy and progression on basic cell406

kinetics. Cancer Res 69, 8814–8821 (2009).407

28. Morton, C., Hlatky, L., Hahnfeldt, P. & Enderling, H. Non-stem cancer cell kinetics modulate solid408

tumor progression. Theor Biol Med Mod 8, 48 (2011).409

29. Sprouffske, K. et al. An evolutionary explanation for the presence of cancer nonstem cells in410

neoplasms. Evol Appl 6, 92–101 (2013).411

30. Dress, A., Moulton, V. & Terhalle, W. T-theory: An overview. Eur. J Comb. 17, 161–175 (1996).412

31. Somarelli, J. et al. Phylooncology: Understanding cancer through phylogenetic analysis. Biochim413

Biophys Acta (2016).414

32. Gerlinger, M. et al. Genomic architecture and evolution of clear cell renal cell carcinomas defined by415

multiregion sequencing. Nat Genet. 46, 225–233 (2014).416

33. Sottoriva, A. et al. Intratumor heterogeneity in human glioblastoma reflects cancer evolutionary417

dynamics. Proc Natl Acad Sci USA 110, 4009–4014 (2013).418

34. Gerlinger, M. et al. Intratumor heterogeneity and branched evolution revealed by multiregion419

sequencing. N Engl J Med 366, 883–92 (2012).420

35. Naxerova, K. & Jain, R. Using tumour phylogenetics to identify the roots of metastasis in humans.421

Nat Rev Clin Oncol 12, 258–272 (2015).422

36. Faltas, B. et al. Clonal evolution of chemotherapy-resistant urothelial carcinoma. Nat Genet. 48,423

1490–1499 (2016).424

37. Murugaesu, N. et al. Tracking the genomic evolution of esophageal adenocarcinoma through neoadju-425

vant chemotherapy. Cancer Discov 5, 821–831 (2015).426

38. Grenfell, B. et al. Unifying the epidemiological and evolutionary dynamics of pathogens. Sci. 303,427

327–332 (2004).428

39. Leventhal, G. et al. Inferring epidemic contact structure from phylogenetic trees. PLoS Comput. Biol429

8, e1002413 (2012).430

40. Flavahan, W. A. et al. Brain tumor initiating cells adapt to restricted nutrition through preferential431

glucose uptake. Nat. neuroscience 16, 1373–1382 (2013).432

41. Heddleston, J. M., Li, Z., McLendon, R. E., Hjelmeland, A. B. & Rich, J. N. The hypoxic microenvi-433

ronment maintains glioblastoma stem cells and promotes reprogramming towards a cancer stem cell434

phenotype. Cell Cycle 8, 3274–84 (2009).435

42. Li, Z. et al. Hypoxia-inducible factors regulate tumorigenic capacity of glioma stem cells. Cancer436

Cell 15, 501–13 (2009).437

43. Rodriguez-Brenes, I., Komarova, N. & Wodarz, D. Evolutionary dynamics of feedback escape and438

the development of stem-cell-driven cancers. Proc Natl Acad Sci USA 108, 18983–18988 (2011).439

16/22

.CC-BY-NC 4.0 International licenseIt is made available under a 
(which was not peer-reviewed) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity.

The copyright holder for this preprint. http://dx.doi.org/10.1101/334946doi: bioRxiv preprint first posted online May. 30, 2018; 

http://dx.doi.org/10.1101/334946
http://creativecommons.org/licenses/by-nc/4.0/


44. Poleszczuk, J., Hahnfeldt, P. & Enderling, H. Biphasic modulation of cancer stem cell-driven solid440

tumour dynamics in response to reactivated replicative senescence. Cell Prolif 47, 267–276 (2014).441

45. Kimura, M. The number of heterozygous nucleotide sites maintained in a finite population due to442

steady flux of mutations. Genet. 61, 893 (1969).443

46. Bignell, G. R. et al. Signatures of mutation and selection in the cancer genome. Nat. 463, 893–898444

(2010).445

47. McFarland, C., Korolev, K., Kryukov, G., Sunyaev, S. & Mirny, L. Impact of deleterious passenger446

mutations on cancer progression. Proc Natl Acad Sci USA 110, 2910–2915 (2013).447

48. Williams, M., Werner, B., Barnes, C., Graham, T. & Sottoriva, A. Identification of neutral tumor448

evolution across cancer types. Nat Genet. 48, 238–244 (2016).449

49. Poleszczuk, J., Hahnfeldt, P. & Enderling, H. Evolution and phenotypic selection of cancer stem cells.450

PLoS Comput. Biol 11, e1004025 (2015).451

50. Anderson, A. & Chaplain, M. Continuous and discrete mathematical models of tumor-induced452

angiogenesis. Bull Math Biol 60, 857–899 (1998).453

51. Alarcón, T., Owen, M., Byrne, H. & Maini, P. Multiscale modelling of tumour growth and therapy:454

the influence of vessel normalisation on chemotherapy. Comp Math Methods Med 7, 85–119 (2006).455

52. Gerlee, P. & Anderson, A. A hybrid cellular automaton model of clonal evolution in cancer: The456

emergence of the glycolytic phenotype. J Theor Biol 250, 705–722 (2008).457

53. Scott, J., Fletcher, A., Anderson, A. & Maini, P. Spatial metrics of tumour vascular organisation458

predict radiation efficacy in a computational model. PLoS Comput. Biol 12, e1004712 (2016).459

54. Anderson, A. A hybrid mathematical model of solid tumour invasion: the importance of cell adhesion.460

Math Med Biol 22, 163 (2005).461

55. Sackin, M. “Good” and “bad” phenograms. Syst Biol 21, 225–226 (1972).462
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Supplemental Material487

Pruning trees does not affect rank of statistics488

To visualize the trees more easily in Fig 3, we prune the leaves from each full tree. While this changes the489

absolute value of each of the tree-based measures, it does not affect their relative ranking. This suggests490

that each measure is capturing something fundamental about the biology as it appears invariant with tree491

size. This is corroborated by the results shown in Fig 6, indicating that the rank of each measure is stable492

over tumour growth.493
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Figure 8. Raw and pruned trees give rise to qualitatively similar summary measures with rank preserved. For each tree-based

measure considered in the main text, we plot the measure based on the full (upper) and pruned (lower) tree. For each pair, we plot the results

from 10 simulations for each of the tested symmetric division probabilities. From left to right, we plot the B1 statistic, N̄, the Sackin index,

the PDA normalised Sackin index and finally the Yule normalised Sackin index.
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Effect size of symmetric division probability494

To better understand the impact of the symmetric division probability on changes in results tree topology,495

rather than just use differences between families of simulations, we compute the regression slope, R2
496

and p-value of the regression line for each case. For the B1 statistic we find a regression slope of497

142.64, R2 = 0.72, p = 1.74× 10−71. For the Sackin index we find a regression slope of 5178.61,498

R2 = 0.871, p≈ 0. For the Yule normalised Sackin index we find a regression slope of −2.380, R2 = 0.743,499

p = 3.25× 10−75. For the N̄ statistic we find a regression slope of −0.111, R2 = 0.0075, p = 0.172.500

These values are plotted in Fig 9.501

Figure 9. Effect size of symmetric division for four tree-based measures. We plot the effect size for

the data shown in Fig 5.
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Algorithm for generating individual cell ‘genomes’ from mutational flag and life history502

Here we describe the algorithm we created to develop the individual cells ‘genomes’ from the mutational503

flag and the life history. Using this reconstruction algorithm allows for significant increase in speed of our504

tumour growth model and reduced memory requirements by several orders of magnitude.505

Algorithm 1: Pseudo-code describing algorithm to reconstruct genomes from unique mutation flags

and family history.

Data: Dictionary of unique Parent:Child pairs and spatial array of unique mutation flags at time

point of interest.

Result: Array of bitstrings representing ‘genomes’ of cells in array.

for All cells in array do

if mutation ID = 0 then
break

end

set bitstring to ’1’ + maxval(mutation ID) ’0’;

final-parent = 2;

if mutation ID = 1 then
finalize bitstring

end

while final-parent > 1 do

final-parent = lookup parent(cell of interest) in dictionary;

flip bitstring at position(cell of interest) to ’1’;

end

finalize bitstring;

end
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