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A new model for the bouncing regime boundary in binary droplet 

collisions   

 

Karrar H. Al-Dirawi and Andrew E. Bayly 

School of Chemical and Process Engineering, University of Leeds, Leeds, LS2 9JT, United Kingdom  

This work experimentally investigates binary collisions of identical droplets over a range of liquid 

viscosities, using 2%, 4%, and 8% of hydroxypropyl methylcellulose (HPMC) solutions in water. The 

collisions were captured by a high-speed camera, and regime maps of collision outcomes derived. The 

performance of existing models of the boundary of the bouncing regime was assessed and found to 

give poor predictions.  This was attributed to assumptions and errors in the treatment of kinetic energy 

and the droplet shape factors used in these models. A new model was derived which addresses these 

issues: the definition of the kinetic energy that contributes to deformation was corrected; a new shape 

factor that accurately reflects the geometry of the droplet at maximum deformation was proposed 

and, importantly, an empirical approach was implemented to account for the effect of the impact 

parameter on this shape factor.  Moreover, the model includes an estimate of the viscous dissipation, 

which is calculated directly from experimentally observed difference between the impact and the 

rebound kinetic energies, and measurements of the post-collision droplet oscillations. The proposed 

model shows a striking improvement versus the existing models, reducing the mean absolute error by 

an order of magnitude. 

 

I. INTRODUCTION 

Droplet collisions are ubiquitous in natural phenomena and many industrial applications, such as 

atmospheric studies, combustion engines, and spray drying. Prediction of the collision outcome has a 

vital importance in these applications. For instance, spray drying is a process of converting slurries or 

solutions into dry powder. In this process the feed liquid is atomized in a drying chamber in which a 

turbulent hot air comes in contact with droplets. Consequently, droplet collisions occur and the 

outcomes of these collisions play an important role in the prediction of the tower performance and 

the product properties (Francia et al., 2017).  A good understanding and accurate models of collision 

behavior is therefore important for the prediction of both process performance and product 

properties. 
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In the past few decades, a substantial amount of research has been conducted to construct regime 

maps for binary droplet systems, and to understand the fundamental criteria that lead to different 

collision outcomes (Orme, 1997; Krishnan and Loth, 2015). Five distinct collision outcome regimes 

were reported: slow coalescence, bouncing, fast coalescence, reflexive separation (i.e., the droplets 

rebound after temporary coalescence caused by a head-on collision), and stretching separation (i.e., 

the droplets stretch and then separate due to the off-center collision), the reader is referred to FIG. 4 

to distinguish between the collisions outcomes. These regimes are mapped in the parameter space of 

the impact parameter (ܤ) and Weber number (ܹ݁), as shown in FIG. 1. The impact parameter is the 

normal distance (ܾ) from the center of one of the colliding droplets to the vector of the relative 

velocity that is plotted from the center of the other droplet, normalized by the sum of the two droplets 

radii, 

 

ܤ ൌ ʹܾ݀௦ ൅ ݀௟  ǡ (1) 

as sketched in FIG. 2. Where, ݀ ௦ and ݀ ௟ ĂƌĞ ƚŚĞ ĐŽůůŝĚŝŶŐ ĚƌŽƉůĞƚƐ͛ ĚŝĂŵĞƚĞƌƐ͘ Therefore, ܤ has a value 

between 1 and 0, where 1 indicates a grazing collision and 0 a head-on collision. The Weber number 

is the ratio of the kinetic energy, based on the relative velocity, to the droplet surface energy ,  

ܹ݁ ൌ ߪ௥ଶ݀௦ݑߩ Ǥ (2) ߩ and ߪ are the droplet fluid density and surface tension, respectively.  ݀௦ and ݑ௥ are the small droplet 

dimeter and the collision relative velocity.   
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FIG. 1. A schematic of a typical regime map.

 

FIG. 2. Schematic of the geometry of droplet collisions.    

In FIG. 1 there are four transitional boundaries separating the five regimes: slow coalescence (i.e., 

between slow coalescence and bouncing regimes) , bouncing (i.e., between bouncing and fast 

coalescence regimes below the triple point, and continues above the triple point between bouncing 

and stretching separation regimes), stretching separation (i.e., between fast coalescence and 

stretching separation regimes), and reflexive separation (i.e., between fast coalescence and reflexive 
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separation regimes).There were many attempts to model these different transitional boundaries. 

Ashgriz and Poo (1990)studied the effect of the size ratio on water droplet collisions and derived two 

models to evaluate the boundaries of stretching separation and of the reflexive separation. Although 

the models consider the effect of the size ratio, they were for inviscid droplets. Later on, Jiang et al. 

(1992) developed a model for the stretching separation boundary in which the viscosity effect was 

explicitly involved in a form of two parameters. To the best knowledge of the authors, there has not 

been a complete reflexive separation model considering the viscous dissipation. Nevertheless, Qian 

and Law (1997) reported that the onset of the reflexive separation at head-on collision can be 

correlated with Ohnesorge number (ܱ݄ ൌ  is the dynamic viscosity of the droplet. ܱ݄ number is the ratio of the viscous energy to the surface energy. Gotaas et al. (2007b) used the ߤ ,௦); where݀ߪߩȀඥߤ

approach of Qian and Law (1997) to correlate the onset of the reflexive separation with a wide range 

of viscosities (1-50 mPa s). Although Qian and Law (1997) and Gotaas et al. (2007b) were able to 

correlate the onset of the reflexive separation to Oh number which allows consideration of the 

viscosity effect, the size ratio of the colliding droplet was not considered.  Tang et al. (2012) provided 

a more detailed model for the onset of the reflexive separation taking into account both the effect of 

viscosity and size ratio. The modelling of the slow coalescence boundary has received less attention 

due to the difficulties of colliding droplets at very low  ܹ݁. Bouncing modelling was conducted by 

Estrade et al. (1999) who developed a model for the lower boundary of the bouncing regime based on 

ethanol droplet collisions data at different size ratios. The model includes, a shape factor that can be 

used as a parameter to fit the data. 

Kuschel and Sommerfeld (2013) conducted extensive experimental work for solutions with different 

solid content and thereby different viscosities to investigate the role of viscosity. The authors reported 

that the stretching separation and the reflexive separation regimes are shifted toward higher Weber 

Numbers by increasing the viscosity. Therefore, the inviscid models of Ashgriz and Poo (1990) are not 

adequate for high viscosity  droplet collisions, while the Jiang et al. (1992) model was able to predict 

the boundary of the stretching separation region by adapting the viscous loss parameters in the model 

to fit the experimental data. Sommerfeld and Kuschel (2016) further extended the study of  Kuschel 

and Sommerfeld (2013) by conducting more experiments on pure liquids. The authors were able to 

correlate the critical ܹ ݁ of the onset of the reflexive separation (atܤ ൌ Ͳ) for different viscosities with 

the Capillary number, which is the ratio of the viscous forces to the surface tension forces (ܽܥ ൌ ݑ௥  ሻ.The difference between the value of the onset of reflexive separation of water and thisߪȀߤ 

critical ܹ ݁ is then used to shift the boundary curve from the model of  Ashgriz and Poo (1990) toward 

higher ܹ݁. This approach successfully predicted the transitional boundary of reflexive separation 

region. Sommerfeld and Kuschel (2016)  also discussed the model of Jiang et al. (1992) for the 
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stretching separation boundary and mentioned that the adapted values of the two parameters in this 

model can be correlated with a normalized relaxation velocity (ݑ௥௘௟௔௫ ൌ  .( ߤȀߪ
On the other hand, the modelling of the lower boundary of the bouncing regime has received less 

attention in comparison with the modelling of the other boundaries. Sommerfeld and Kuschel (2016); 

Kuschel and Sommerfeld (2013); Sommerfeld and Lain (2017) reported that the model of Estrade et 

al. (1999) can reasonably predict the lower boundary of the bouncing regime above the triple point 

by adapting the  shape factor  to let the curve fit the experimental data.  However, the model fails to 

predict the boundaries below the triple point. The only attempt to modify this model was by  Hu et al. 

(2017) who altered the considered kinetic energy, which will be explained later in section IV,  and 

added a viscous loss term. However, the performance of this model was only validated against 

simulation data of alumina droplets  

In this paper, new experimental regime maps of binary droplet collisions of 2%, 4%, and 8% HPMC will 

be reported to examine the effect of the viscosity. The collisions are restricted to identical droplets 

size at room conditions. The three different concentrations have different viscosities, so this paper 

shows the effect of the viscosity on the regime maps. In addition, the modelling of bouncing regime 

will be discussed in detail. This will be through examining the performance of the existing models and 

defining the neglected physics that undermine the performance of the models. Finally, we propose a 

modified model to predict the boundary of the bouncing regime. It should be noted that, the models 

of the other regime boundaries are not considered in this study as the aim of this paper is to shed the 

light on the bouncing regime.   

II. THEORY OF BOUNCING  

In this section, the theory of bouncing will be explored based on what have been reported in the 

previous studies of binary droplets collisions. The theory provides a simple background, about 

bouncing phenomenon of binary droplets collisions, which helps to understand the logic behind the 

assumptions of bouncing modelling that will be explained in sections IV and V. 

The phenomenon of droplet bouncing has been widely studied experimentally and numerically. 

Bouncing occurs at a critical impact kinetic energy range, above and below which merging occurs (Qian 

and Law, 1997; Tang et al., 2012). This is widely attributed to the presence of an air layer between the 

two colliding droplets  (Orme, 1997). At low impact velocity the air has sufficient time to be discharged. 

However, if the velocity is increased the air will be trapped between the two droplets and hence the 

droplets deform. A flattened interface will be formed between the two droplets, which causes 

pressure to build up in the air layer that prevents droplets from merging. This leads to consumption 
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of the impact kinetic energy by the deformation of the droplets, as it will be converted into surface 

energy and internal flow that relaxes later by the effect of the viscous dissipation. Once the impact 

kinetic energy vanished, bouncing occurs by the action of the surface tension which tends to recover 

the spherical shape to minimize the surface energy.  Further increasing the impact velocity forces the 

air layer to be discharged and rupture the interface and therefore merging with large deformation 

would occur (fast coalescence).  

Apart from the impact velocity, the bouncing regime was found to depend on the material of the 

droplets and the surrounding gas. For example, at atmospheric pressure hydrocarbon droplets show 

bouncing at the entire range of the impact parameter, whilst water shows bouncing only at high values 

of impact parameter. In addition, milk droplets show no bouncing at the entire range of impact 

parameter (Finotello et al., 2018). The merging of two droplets was attributed to van der Waals forces 

(Zhang and Law, 2011; Pan et al., 2008). However, the thickness of the air layer between the colliding 

droplets should be small enough for the van der Walls forces to be effective.  Therefore, the difference 

in the bouncing observation could be more related to the difference in molecular dynamics at the 

surface of the droplets of different liquids. In addition, changing the conditions of the surrounding gas 

shows a noticeable effect on the collision outcome (Krishnan and Loth, 2015; Qian and Law, 1997). 

Increasing the gas pressure, density or molecular weight would promote the bouncing regime. 

However the presence of the droplet͛s liquid vapor in the surrounding gas would promote the 

coalescence regime (Qian and Law, 1997).  All that makes it difficult to define a bouncing criteria that 

is allows to distinguish between bouncing and coalescence based on the impact details such as ܹ݁ 

and ܤ.   

 

III. EXPERIMENTAL METHODS 

 The apparatus 

The experimental setup is illustrated in FIG. 3. It consists of two custom-made monodisperse nozzles, 

two high pressure syringe pumps, a high-speed camera (Photron mini AX100), a camera (acA1300-

200um - Basler ace), two strobe lights, two function generators, a pulse generator and two amplifiers. 

The fluid is driven by the syringe pumps to the nozzles to create a continuous jet. Two square  wave 

signals are programmed in the function generator and sent via 20X amplifier (PiezoDrive PDu150CL) 

to a piezo chip that is built into the nozzle. The piezo provides the required vibration to excite the jet 

and hence break it up into a reproducible droplet stream. By directing the nozzles towards each other 

in a given angle via micro rotation stages (a compact 360° rotation platform), the two droplet streams 
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collide. The bases of the nozzles posts have XYZR micro traversers, which all ow the alignment of the 

droplet streams to be collided in the same plane. The side industrial camera that is attached to a 

microscopic lens is used to make sure that droplet streams collide in the same plane. The maximum 

frame rate of this camera is 200 fps; therefore, it is used with a strobe illumination source in order to 

freeze the movement of the droplet streams. This is done by synchronizing the pulse generator, which 

controls the strobe light, with one of the nozzles via the function generator. The collision outcome is 

recorded using the high-speed camera at 30000 fps, which allows 256 x 384 pixel in the Field of View 

(FOV). The high-speed camera is synchronized with another strobe light via the other function 

generator. This puts more control on the exposure time as the strobe light can provide 10 ns pulse 

duration. However, images with less light reflection were obtained at 3 ʅƐ of light pulse duration.   

The high-speed camera was attached to a Navitar microscopic zoom lens by which magnification can 

be controlled. However, although we can decrease the number of microns per pixel by zooming in, 

this would reduce the FOV. A ϭϱ ʅŵͬpixel was selected as balance between resolution and FOV for 

the droplet size in this study. Based on this resolution, the measurement of the droplet size has an 

uncertainty of 4% ט. 

IŶ ƚŚŝƐ ǁŽƌŬ͕ ĚŝƐƉĞŶƐŝŶŐ ƚŝƉƐ ŽĨ ŐĂƵŐĞ ϯϬ ;IDсϭϱϮ ʅŵͿ ǁĞƌĞ ĂƚƚĂĐŚĞĚ ƚŽ ƚŚĞ ŶŽǌǌůĞƐ͘ This dispensing tip 

size produces droplets diameter of 360-ϯϵϬ ʅŵ ĚĞƉĞŶĚŝŶŐ ŽŶ ƚŚĞ ũĞƚ flow rate and the physical 

properties of the fluid; data on droplets size variation due to frequency change are provided in the 

Supplemental Material. The flow rate range used is 2.5-6 ml/min. The applied frequency in the nozzles 

ranged from 1.5-1.85 KHz depending on the jet flow rate and the physical properties. The impact 

parameter was controlled by using the aliasing method of Gotaas et al. (2007a). This was done by 

applying a frequency shift of 3 Hz, between the two nozzles, which leads to periodically sweeping the 

impact parameter between 1 and 0. The ܹ ݁ number is varied by changing the angle between the two 

streams as wider angle produces higher relative velocity ሺݑ௥) and hence higher ܹ݁. Four regimes 

were produced in this study, bouncing, fast coalescence, reflexive separation and stretching 

separation as shown in FIG. 4. The slow coalescence regime was not considered in this study due to 

the instability of the jet break-up at low values of ܹ݁. 



8 

 

 

FIG. 3. Droplet collisions rig.             

 

FIG. 4. Four different collisions outcomes of 2% HPMC droplets collisions,   bouncing (a), fast 

coalescence (b), reflexive separation (c) and stretching separation (d). 

 Droplet fluids  

Three different concentrations, 2%, 4%, and 8%, of Hydroxypropyl Methylcellulose grade 603 Shin-

Etsu Chemical's PHARMACOAT® (HPMC) solutions, in deionised water, were used for this study. The 

viscosities of the solutions were measured in a Rheometer (Bohlin Gemini) by using a cone and plate 

geometry and  shear rate range from 1 to 270 ିݏଵ. The solutions exhibit a Newtonian behaviour within 

the aforementioned shear rate. The surface tension was measured using a pendent drop in an optical 
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tensiometer (KSV CAM 200). The density was measured by weighting 50 ml of the solution using an 

analytical balance. Table I illustrates the physical properties of the three solutions. The measured 

values agree with the values that have been reported in the literature (Parker et al., 1991; Kokubo and 

Obara, 2008). All collisions experiments and measurements carried at atmospheric conditions and 

room temperature 20 °

  

 

 

TABLE I. Physical properties of the three HPMC systems that are used in this work.  

Type of liquid  ʌ (kg m-3) ߪ (mN m-1) ʅ ;ŵPĂ ƐͿ ܱ݄ (-) 

2% HPMC 998 46 2.8 0.021 

4% HPMC 998 45.8 8.2 0.063 

8% HPMC 997 45.7 28.4 0.216 

 

 Tracking methodology  

A tracking algorithm was developed to obtain the impact details from the recorded videos. the 

tracking algorithm is implemented by using a MATLAB based tracking software, called Droplet 

Morphometry and Velocimetry (DMV) that was developed by Basu (2013),  to track droplets before 

the collision point. For each droplet, DMV provides the XY positions of droplet center, XY velocities, 

equivalent diameter, time, frame number, and droplet ID (as a number). Based on this data provided 

by DMV, the impact details are then extended with very small increments to the exact collision point 

using a MATLAB code that was developed by the author. The impact parameter and ܹ݁ are then 

evaluated at the collision point. The advantage of this method is to avoid cases when the exact 

collision point does not appear in the recording (i.e. occurred in an instance between two consequent 

frames), especially at high ܹ݁. It should be noted that the use of the MATLAB code alongside with 

DMV is essential, because the latter is not designed to estimate the impact parameter. More details 

on the tracking methodology can be found in Appendix A. 

IV. CURRENT MODELS FOR THE BOUNCING REGIME BOUNDARY  

Estrade et al. (1999) model for the bouncing regime boundary is based on an energy criterion. It states 

that bouncing occurs if the component of kinetic energy that contributes to the deformation  of the 

droplets is less than the increase in surface energy required to reach the limit of  maximum 

deformation. However, if this kinetic energy exceeds the maximum deformation limit, merging is 
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assumed to occur.  A number of assumptions are made to derive this criterion and the subsequent 

equation for the boundary, these are detailed in Table II. 

Applying the assumptions 1 and 2 in Table II an energy balance can be written between the system 

energy just prior to collision and at the point of maximum deformation ܧ஼೐ ൅ ஼೏ܧ ൅ ௌ೔ܧ ൌ ௌ೑ܧ ൅  ௥௢௧. (3)ܧ

Where, ܧ஼೐is the part of the droplet kinetic energy that does not contribute to the deformation, ܧ஼೏ 

is the kinetic energy that contributes to the deformation, ܧௌ೔ is surface energy of the droplets before 

the collision, ܧௌ೑ is surface energy of the droplets at the maximum deformation, and ܧ௥௢௧  is the 

rotational kinetic energy. 

TABLE II. Assumptions that Estrade et al. (1999) made to develop the bouncing model. 

Assumptions Justifications 

1- No viscous loss is considered; hence all the 

dissipated kinetic energy is converted into 

surface energy. 

The model was derived for inviscid droplet 

collisions. 

2- No work against air. No noticeable delay time was noticed before 

the threshold of the deformation. 

3- Shape factor is fixed for the entire impact 

parameter range. 

The regime maps of inviscid droplets exhibit 

bouncing boundary that fall in a narrow range 

of high impact parameter values. 

4- The deformation is caused by the kinetic 

energy of the interaction region only (see FIG. 

5). 

The non-interacted regions have less 

deformation. 

5- The rotational energy at the point of 

maximum deformation is equal to the initial 

energy of the non-interacting portion of the 

droplets, i.e. ܧ஼೐ ൌ  .௥௢௧ܧ

Rotational movement at the instant of 

collision was noticed. 

Applying assumption 4, the kinetic energy that contributes to the deformation is that of the interacting 

volumes shown in FIG. 5 and is given by 

஼೏ܧ ൌ ͳʹ ߩ ௟ܸሺݑ௥ cosߠሻଶǤ  (4) 

Where ܸ ௟  is the volume of the interaction region, which is given by  

௟ܸ ൌ ௟ܺ ௟ଷ͸݀ߨ  (5) 

Where ܺ ௟  is the ratio of the interaction region volume, of the large droplet, to the total droplet 

volume, and it can be given by 
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௟ܺ ൌ ൞   ͳ െ ͳͶ ሺʹ െ ߬ሻଶሺͳ ൅ ߬ሻ             for ݄ ൐ ݀௟ʹͳͶ ߬ଶሺ͵ െ ߬ሻ                                 for ݄ ൑ ݀௟ʹ Ǥ (6) 

߬ in Eq. (6) is defined by  ߬ ൌ ሺͳ െ ሻሺͳܤ ൅ οሻ. (7) 

Where, οൌ ݀௦Ȁ݀௟ is the size ratio, and   ݄ ൌ ଵଶ ሺ݀௟ ൅ ݀௦ሻሺͳ െ  ሻ. (8)ܤ

 

 

FIG. 5. A schematic representation of the interaction regions (in grey). 

The surface energy of a droplet is the production of the surface tension and the droplet surface area. 

Thus, the total surface energy of the droplets before the collision is given by ܧௌ೔ ൌ ൫݀௦ଶߪߨ ൅ ݀௟ଶ൯. (9) 

 

The droplets reach the maximum deformation limit just before bouncing separation, i.e. when the 

kinetic energy of the interaction regions (Eq. (4)) is completely converted into surface energy 

(assumptions 1 and 2). Estrade et al. (1999)  described the surface energy at the maximum 

deformation by ܧௌ೑ ൌ ௟ଶ߶ᇱሺͳ݀ߪߨ ൅ οଶሻǤ (10) 

 

Where, ߶ᇱ is a shape factor that is given by  

߶ᇱ ൌ ʹ͵ ൬߶͵ଶ ൅ ͳ൰ିଶଷ ൅ ͳ͵ ൬߶͵ଶ ൅ ͳ൰ଵଷǤ (11) 
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Estrade et al. (1999) reported that in case of collisions between unequal size droplets the shape 

factor can be either calculated based on the small droplets, ߶ ൌ ݄௦Ȁݎ௦  or it can be based on the 

large droplet, ߶ ൌ ݄௟Ȁݎ௟ , see FIG. 6. 

 

FIG. 6. Droplet shape at the instance of maximum deformation according to Estrade et al. (1999). 

Substituting Eq. (4), Eq. (9), and Eq. (10), in Eq. (3) and applying assumption 5 with rearrangement 

gives 

ܹ݁௖ ൌ ͳʹοሺͳ ൅ οଶሻሺ߶ᇱ െ ͳሻଵܺሺͳ െ ଶሻܤ ǡ (12) 

which is the critical ܹ ݁ that describe the boundary of the bouncing regime as a function of ܤ. 

Hu et al. (2017) extended the model of Estrade et al. (1999) to higher viscosity systems, by  considering 

the viscous dissipation within the droplet ܧ௩. Thus, the energy balance becomes ܧ஼೐ ൅ ஼೏ܧ ൅ ௌ೔ܧ ൌ ௌ೑ܧ ൅ ௥௢௧ܧ ൅  ௩Ǥ (13)ܧ

 

The viscous dissipation was considered a fixed percentage (independent of ܤ) of the kinetic energy 

that contributes to the deformation. Thus, Eq. (13) becomes ܧ஼೐ ൅ ஼೏ܧ ൅ ௌ೔ܧ ൌ ௌ೑ܧ ൅ ௥௢௧ܧ ൅  ஼೏. (14)ܧߙ

 

Moreover, Hu et al. (2017) used a different approach in defining the kinetic energy that contributes 

to the deformation, as given by 

஼೏ܧ ൌ ͳʹ ሺͳ͸ ߩ ௦ݑ௦ଷሺ݀ߨ cosߠሻଶ ൅ ͳ͸ ௟ݑ௟ଷሺ݀ߨ cosߠሻଶሻǤ (15) 

Where, ݑ௦ ൌ ௥Ȁሺͳݑ ൅ ௟ݑ ଷሻ and߂ ൌ ௥Ȁሺͳݑଷ߂ ൅  ଷሻǤ Importantly, Eq. (15) considers the entire߂

droplet volume, instead of just the interaction regions. 
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Substituting Eq. (15), Eq. (9),  and Eq. (10), in Eq. (14) , as well as applying assumption 5, gives the 

model of Hu et al. (2017), which predicts  the critical ܹ ݁ of the lower boundary of the bouncing 

regime as a function of ܤ: ܹ݁௖ ൌ ͳʹሺͳ ൅ οଷሻሺͳ ൅ οଶሻሺ߶ᇱ െ ͳሻ߂ଶሺͳ െ ሻሺͳߙ െ ଶሻܤ Ǥ (16) 

 

It should be noted that Estrade et al. (1999) and Hu et al. (2017) have different definition to the kinetic 

energy that contributes to the deformation at head-on collisions (i.e. where both models use the 

entire mass of the droplets in ܧ௖೏) Eq. (4) and Eq. (15), respectively. As Estrade et al. (1999) approach 

assumes one droplet is not moving while the other approaching at the relative velocity . Whereas, Hu 

et al. (2017) considers the movement of both droplets. This will be investigated in further details in 

section V.B.1.a. 

V. RESULTS AND DISCUSSION 

A. HPMC regime maps

The regime maps of 2% HPMC, 4% HPMC, and 8% HPMC are shown in FIG. 7.  The expect regimes were 

seen and their overall shapes are consistent with previous work, for instance (Qian and Law, 1997; 

Kuschel and Sommerfeld, 2013). The Figures clearly show that the reflexive separation boundary is 

shifted toward higher ܹ ݁ by increasing the viscosity. The reflexive separation regime disappeared at 

8% HPMC for the investigated range of ܹ݁. That qualitative trend of the viscosity effect agrees with 

the previous studies of Kuschel and Sommerfeld (2013); Sommerfeld and Kuschel (2016); Gotaas et 

al. (2007b); Finotello et al. (2018); Finotello et al. (2017), where more details about these trends can 

be found.  

The regime maps also show that as the viscosity increases the bouncing regime boundary shifts toward 

lower ܹ݁. This might be because at higher viscosity, more kinetic energy is viscously dissipated and 

hence less energy is converted into surface energy. This results in less deformation and consequently 

less trapped air between the droplets which can be easily discharged to promote the coalescence  

regime. 

In the following sections, the modelling of the bouncing boundary will be discussed by assessing the 

existing models and proposing a new model. In FIG. 7 the solid black curve is fitted manually to the 

bouncing boundaries of the three HPMC systems. This curve will be used as reference in the oncoming 

discussion to allow for removing the data points and reducing the noise in the Figures.    It should be 

noted that a detail analysis of the other regime boundaries is not within the scope of this paper. 
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FIG. 7. HPMC regime maps for the three concentrations 2%, 4%, and 8%. 

B.  Assessment of the existing bouncing models  

To assess the performance of the models of Estrade et al. (1999) and Hu et al. (2017) a line defining 

the boundary of the bouncing regime was manually fitted to the experimental data, see FIG. 7. This 

curve was digitized using Origin 2017 with a ܤ increment of 0.01. These data points were used to 

optimize the shape factor ߶ᇱ by minimizing the Mean Absolute Error: 

MAE ൌ ͳ݊ ෍ פ ܹ݁௠௢ௗ௘௟ െ ܹ݁௘௫௣Ǥ ௜פ Ǥ௡
௜ୀଵ  (17) 

The use of the MAE quantitatively characterizes the performance of the models. The viscous 

dissipation parameter in Hu et al. (2017) model was set as  0.5 for the three  HPMC solutions. This 

value was used as an approximation based on the numerical simulation of Xia and Hu (2014) who 

reported that the viscous loss of alumina droplets that has viscosity  14 mPa.s is approximately 50% 

of the kinetic energy. 

FIG. 8 clearly reveals that the models of Estrade et al. (1999) and Hu et al. (2017) are not adequate to 

predict the boundary of bouncing regime for all range of ܤ. However, plotting them with different 

viscosities would be helpful to theoretically analyzing their limitations, as will be shown in the 

following discussion.  
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FIG. 8. The performance of  Estrade et al. (1999) model in Eq. (12) and Hu et al. (2017) model in Eq. 

(16) on the HPMC regime mapes for the three concentrations that used in this work, 2%, 4%, and 

8%. 

 

TABLE III. A quantitative summery of the performace of the models of  Estrade et al. (1999) and Hu 

et al. (2017). 

 
Estrade et al. (1999) 

Eq. (12)  

 Hu et al. (2017) 

Eq. (16) 

 ߶ᇱ MAE  ߶ᇱ ߙ MAE 

2% HPMC 1.31 16.05  1.27 0.50 1.77 

4% HPMC 1.21 15.18  1.24 0.50 6.10 

8% HPMC 1.14 14.63  1.21 0.50 8.35 

 

Table III, shows an overall improvement in the prediction when Hu et al. (2017) model is used where 

the MAE remains in the range of 1.74 to 8.35 for the three systems, whereas, Estrade et al. (1999) 

model shows MAEs in the range of 14.63 to 16.05. It can also be noticed from Table III and FIG. 8 that 

Estrade et al. (1999) model shows an increasing accuracy as the viscosity increases, as the MAE was 

reduced from 16.05 in 2% HPMC to 14.63 in 8% HPMC. In contrast, Hu et al. (2017) model exhibits an 

opposite behavior, where the MAE increased from 1.74 in 2% HPMC to 8.35 in 8% HPMC, respectively. 

Moreover, qualitatively, for the three systems the model of Estrade et al. (1999) could not follow the 
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trend of the experimental boundary starting from under-prediction of  ܹ݁௖  at low ܤ and crosses the 

experimental curve above the triple point to over-prediction of ܹ ݁௖  at high ܤ. However, the boundary  

predicted by the model of Hu et al. (2017) crosses the experimentally observed boundary near the 

triple point, especially in the cases of 4% and 8% HPMC, by over-predicting ܹ ݁௖ at low ܤ and under-

predicting ܹ ݁௖  at high ܤ. The following paragraphs explain the reasons behind these observations.  

In both models it is assumed that the maximum deformation limit is independent of the impact 

parameter (i.e. constant shape factor, assumption 3 in Table II). However, the maximum deformation 

limit decreases significantly as the impact parameter increases, as can be seen in case of 2% HPMC in 

FIG. 9. Consequently, an over-prediction of ܹ݁௖ would be expected at high ܤ values if the model is 

fitted to the experimental ܹ݁௖  at 0=ܤ, as shown in FIG. 10. This explains the trend of the model of 

Estrade et al. (1999) in FIG. 8, as the minimum MAE fits the model at a ܤ value near the triple point 

(the cross point). This means the selected ߶ᇱ value produces less surface area at the maximum 

deformation limit than that at near head-on collisions and thereby under-prediction of ܹ ݁௖  below the 

cross point and higher than that at high ܤ values above the cross point which cause the over-

prediction of ܹ݁௖ .  

However, Hu et al. (2017)et al. (2017) shows an under-prediction of ܹ ݁௖  at high values of ܤ when the 

model fits the experimental boundary at 0=ܤ, as shown in FIG. 10. This trend is contrary to 

expectations due to the constant shape factor assumption. This can be explained by the 

overestimation of kinetic energy, at high ܤ values, that is considered by using of the entire droplet 

mass regardless the percentage of interaction regions. The excessive kinetic energy that is considered 

to contribute to the deformation has an opposite effect to the constant shape factor assumption. This 

opposite effect reduces the impact of these assumptions on the model, which explains the overall 

improvement in the prediction of the model of Hu et al. (2017) compared to the model of Estrade et 

al. (1999).  However, the excessive kinetic energy seems to have a larger impact on the curve than 

that of the constant shape factor assumption. This leads to an under prediction of ܹ݁௖ at high ܤ 

values when the model is fitted to the experiments at head-on collisions, as shown in FIG. 10. That 

explains the trend of the model of Hu et al. (2017) in FIG. 8, as the Minimum MAE selects ߶ᇱ value 

that fits the model at a cross point near the triple point and thereby an under-prediction of ܹ ݁௖ above 

this point and an over-prediction of ܹ݁௖  below it.  

The case of 8% HPMC in FIG. 9 shows that at high viscosity, the assumption of constant shape factor 

has less significance in comparison to the case of 2% HPMC. This because that the bouncing boundary 

occur at low ܹ ݁௖  and hence at low kinetic energy. Due to the high viscosity, significant amount of this 

kinetic energy would be dissipated. Consequently, less Kinetic energy will be transformed into surface 
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energy and hence low deformation occurs at low ܤ, which makes the shape factor more comparable 

with that at higher ܤ values in comparison to the bouncing of lower viscosity droplets. Therefore, the 

prediction accuracy increases with the increase of the viscosity by using the model of Estrade et al. 

(1999). However, the accuracy of  the model of Hu et al. (2017) decreases by increasing the viscosity 

as the opposite effect of the constant shape factor to the effect of the excessive kinetic energy is lower 

than that at low viscosity.   

Although Estrade et al. (1999) and  Hu et al. (2017) have different definition to the kinetic energy that 

contributes to the deformation at head-on collisions, this should not affect the above discussion as 

both models are optimized by fitting the shape factor for the minimum MAE. This means any 

difference due to the difference in the kinetic energy will be recovered by the fitted shape factor. 

Similarly, the existence of the viscos loss term in the model of Hu et al. (2017) should not affect the 

discussion. Ultimately, the difference in the shape of the two models is due that Estrade et al. (1999)  

consider the mass of the interaction regions in the kinetic energy that contributes to the deformation 

while Hu et al. (2017) consider the entire mass; this cannot be recovered by the fitted shape factor 

because X is a function of B while the shape factor is not.  

From the discussion in this section, an accurate model that can evaluate the boundary of the bouncing 

regime requires, a shape factor that accurately reflexes the geometry of the droplet at maximum 

deformation, correct definition of the kinetic energy that contribute s to the deformation, good 

estimation to the viscous losses, and implementing the effect of the impact parameter on the shape 

factor and the kinetic energy that contributes to the deformation. Therefore, in the next sections, 

these parameters will be assessed firstly at head-on collisions then the analysis will be extended to 

the entire range of ܤ.  
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FIG. 9. The maximum deformation of 2%and 8% HPMC at differenet values of impact parameter for 

Weber numbers that occur on the boundary of the bouncing regime. 

 

FIG. 10. The performance of the existing models when they are fitted to the onset of coalescence at 

head-on collisions, which show the over-prediction of the model of  Estrade et al. (1999), Eq. (12), 

and the under-prediction of the model of  Hu et al. (2017), Eq. (16) on 4% HPMC regime mape. ߶Ԣ is 

5.0 in the model of Estrade et al. (1999) while it is 3.5 in the model of Hu et al. (2017) and ߙ is 0.5. 
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a. Kinetic energy assessment 

10 20 30 40 50 60 70 80 90 100
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

  Bouncing
  Coalescence
  Reflexive Separation
  Stretching Separation
  Expermantal bouncing boundary
  Estrade et al. (1999)
  Hu et al. (2017)

B
 [ 

- 
]

We [ - ]



19 

 

As mentioned earlier, the two models have different definition to the kinetic energy that contributes 

to the deformation. To assess the validity of these two different approaches, they are examined for 

head-on collisions, where both approaches consider the kinetic energy of the total drop mass.  

The momentum of a moving droplet is given by  ܲ ൌ ݉ where ,ݑ݉  and ݑ are mass and velocity of the 

droplet respectively. Therefore, the kinetic energy of the droplet is given by: 

௞ܧ ൌ ͳʹ  Ǥ (18)ܲݑ

This relation will show if the two approaches of the kinetic energy are conserve the momentum in a 

zero-momentum frame.  

In head on bouncing collision of equal diameter (݀) droplets, if each droplet has a velocity equal to  ݑ ൌ ௥Ȁݑ ,ʹ the total momentum of the two colliding droplets is 

ܲ ൌ ͸ߨ  ௥ (19)ݑଷ݀ߩ

Substituting Eq. (19) in Eq. (18) gives the total kinetic energy of the droplets  

௞ܧ ൌ Ͷߨʹ  ௥ଶǤ (20)ݑଷ݀ߩ

At head on collisions, ௟ܺ  and cosଶ  are both equal one. Thus, the kinetic energy of the model of ߠ

Estrade et al. (1999), from the combination of Eqs. (4-6), is ܧ஼೏ ൌ ሺͳȀͳʹሻ݀ߩߨଷݑ௥ଶ. This reveals that 

Estrade et al. (1999) double the kinetic energy that contributes to the deformation by  compared to 

Eq. (20). However, the approach of Hu et al. (2017) more universal, as simplifying Eq. (15), for head-

on collisions of equal size droplets, gives ܧ஼೏ ൌ ሺͳȀʹͶሻ݀ߩଷݑ௥ଶ, which recovers Eq. (20). Thus, the 

approach of Hu et al. (2017) will be the considered in the rest of this paper. 

b. Shape factor assessment 

By looking at the both aforementioned models (Eq. (12) and Eq. (16)) it can be realized that the shape 

factor ߶Ԣ should always have a value >1, otherwise the models would produce zero or negative values 

of ܹ݁௖. This implies that ߶ must have a value that is always less than 0.40, according to Eq. (11), as 

shown in FIG. 11.  However, ߶ -and the direct measurement at head ,(1=ܤ) for grazing collisions 2 ؠ

on collision from the images of 2% HPMC in FIG. 9 at maximum deformation reveals that ߶ 0.648 ׽ 

for 2% HPMC. This range of ߶ (from 2 to 0.648) is above 0.4, which implies that the shape factor ߶Ԣ 
<1, as shown in FIG. 11. Thus, this shows that the commonly used shape factors of the existing models 

are not seen in reality, and hence the suggested equation for the maximum deformation seems to be 

invalid. To verify the validity of this equation, the shape factor of spherical  cup was rederived in this 

work, see Appendix B. The new derivation of the shape factor proved that Eq. (11) should be in the 

following form  
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߶௖ᇱ ൌ ʹ͵ ൬͸߶ െ ʹ൰ିଵଷ ൅ ͳ͵ ൬߶ʹ െ ʹ൰ଶଷǤ (21) 

and the form of Eq. (11) is might be due to a derivation mistake by Estrade et al. (1999). Eq. (21) shows 

that ߶௖ Ԣ >1 for the visible range of ߶ (from 0 to 2), as shown in FIG. 11.  

As the shape factor was corrected in Eq. (21), it would be interesting to use it, by measuring ߶ from 

the experimental images, to evaluate the critical ܹ݁௖ of the onset of coalescence at head-on 

collisions. This by using the model of Hu et al. (2017) as it implements the correct kinetic energy as 

justified in the previous section. The model firstly tested without considering the viscous losses (i.e.  ߙ ൌ Ͳ). The model slightly over-predicts the onset of coalescence in case of 2% HPMC and gives a 

reasonable agreement in 4% HPMC and 8% HPMC, as illustrated in Table IV. However, adding viscous 

losses would further over-estimates ܹ݁௖. This implies that the spherical cup geometry over-estimates 

the surface energy at the maximum deformation. Thus, there is a requirement for a shape factor that 

has a better agreement with the geometry of the droplets at the maximum deformation.  Thus, a new 

shape factor will be proposed, in the next sub-section. 

TABLE IV. Comparison between the experimental and the predicted ܹ݁௖  of the onset of coalescence 

using Eq. (16) using different shape factors (spherical cup and oblate spheroid) at ܤ ൌ Ͳ, and ߙ ൌ Ͳ.  

 Spherical cap geometry Oblate spheroid geometry  

 
ܹ݁௖  

Experimental  

߶௖ᇱ  

Eq. (21) 

ܹ݁௖ 

 Eq. (16) 

߶௢Ǥ௦Ǥᇱ  

Eq. (26) 

ܹ݁௖  

 Eq. (16) 

2% HPMC 26 ±1 1.59 28.51 1.46 22.01 

4% HPMC 16 ±3 1.33 16.05 1.24 11.45 

8% HPMC 12 ±2 1.21 10.32 1.14 6.67 
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FIG. 11. The shape factor ߶Ԣ in Eq. (11) and Eq. (21) as a function of the shape parameter ߶. 

c. The proposed shape factors  

The images in FIG. 9 reveals that the maximum deformation of the droplets at head-on collisions have 

a shape that approximates an oblate spheroid more than spherical cup. The surface area of an oblate 

spheroid is given by 

௢௕௟௔௧௘ܣܵ ൌ ଶܽߨʹ ൅ ߨ ܿଶ݁ ln ൬ͳ ൅ ݁ͳ െ ݁൰Ǥ 
 

(22) 

Where, ܽ  and ܿ  are shown in FIG. 12, and   ݁ଶ ൌ ͳ െ ௖మ௔మ . Thus, the surface energy equation at the 

maximum deformation can be given by 

ௌ௙ܧ ൌ ௟ଶܽߪߨʹ ൅ ߪߨ ܿ௟ଶ݁௟ ln ൬ͳ ൅ ݁௟ͳ െ ݁௟൰ ൅ ௦ଶܽߪߨʹ ൅ ߪߨ ܿ௦ଶ݁௦ ln ൬ͳ ൅ ݁௦ͳ െ ݁௦ ൰ǡ (23) 

which considers the effect of size ratio by implementing ݁௟  and ݁௦. Where, ݁௟ଶ ൌ ͳ െ ሺܿ௟ଶȀܽ௟ଶሻ  
and ݁௦ଶ ൌ ͳ െ ሺܿ௦ଶȀܽ௦ଶሻ. It should be noted that ݁௟ଶ and ݁௦ଶ are expected to be unequal in case of 

collisions between droplets that have non-identical size. This is due to the difference in the capillary 

pressure (ͶߪȀ݀) between the droplets, as the small droplet has higher capillary pressure and hence 

higher resistance to the deformation. This is in contrary to the assumption of Estrade et al. (1999) 

that ߶ ൌ ݄௟Ȁܴ௟ ൌ ݄௦Ȁܴ௦. 
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FIG. 12. The oblate spheroid shape that proposed for the maximum deformation at head-on 

collisions. 

From mass conservation before the collision and at the maximum deformation, the volume of the 

oblate spheroid, given by ௢ܸ௕௟௔௧௘ ൌ ሺͶȀ͵ሻܽߨଶ ,ܿ is equal to a volume of a sphere, given by ௦ܸ௣௛௘௥௘ ൌሺͳȀ͸ሻ݀ߨଷ, that has a diameter ݀  equal to the droplet diameter before the collision.  

Ͷܽଶ ܿ ൌ ͳʹ ݀ଷǤ (24) 

 

Solving Eq. (24) for ܽ, ܿ , and ݀ and substituting it in Eq. (23) gives  

ௌ௙ܧ ൌ ͳʹ ௟ଶ݀ߪߨ ൮ቌ൬ ͳͳ െ ݁௟൰ଵଷ ൅ ͳʹ ቌሺͳ െ ݁௟ሻଶଷ݁௟ ቍ ln ൬ͳ ൅ ݁௟ͳ െ ݁௟൰ቍ
൅ ଶ߂ ቌ൬ ͳͳ െ ݁௦ ൰ଵଷ ൅ ͳʹ ቌሺͳ െ ݁௦ሻଶଷ݁௦ ቍ ln ൬ͳ ൅ ݁௦ͳ െ ݁௦ ൰ቍ൲ Ǥ (25) 

From the analogy between Eq. (25) and Eq. (10), the shape factor of an oblate spheroid geometry 

(߶௢ Ǥ௦Ǥᇱ ) is given by  

߶௢ Ǥ௦Ǥᇱ ൌ ͳሺʹ ൅ ଶሻ߂ʹ ൮ቌ൬ ͳͳ െ ݁௟൰ଵଷ ൅ ͳʹ ቌሺͳ െ ݁௟ሻଶଷ݁௟ ቍ ln ൬ͳ ൅ ݁௟ͳ െ ݁௟൰ቍ
൅ ଶ߂ ቌ൬ ͳͳ െ ݁௦൰ଵଷ ൅ ͳʹ ቌሺͳ െ ݁௦ሻଶଷ݁௦ ቍln ൬ͳ ൅ ݁௦ͳ െ ݁௦൰ቍ൲Ǥ (26) 
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Using the new shape factor of the oblate spheroid, Eq. (26), rather than the shape factor of the 

spherical cap, Eq. (21), with keeping ߙ ൌ Ͳ, results in an under-prediction of ܹ ݁௖ for the three HPMC 

solutions, as shown in Table IV, which is the expected scenario due to the neglect of the viscous losses. 

This reveals that the oblate spheroid geometry is better in describing the geometry of the droplet at 

the maximum deformation, since its produce shape factor that have less value than the spherical cup, 

as illustrated in Table IV, and hence lower surface energy at the maximum deformation.  

d. Viscous losses estimation  

The process of bouncing can be divided into two stages: the initial deformation from the time of 

contact, ݐ௢ , to the point of maximum deformation, ݐ௠ଵ , and a period of oscillating  relaxation where 

the droplets return to their original spherical shape at ݐ௥௡, as shown in FIG. 13. The total viscous 

dissipation in the bouncing collision process takes place during both these periods due to the induced 

internal flow. Assuming viscous losses are the only sources of energy loss, then the viscous energy 

loss, ܧ௩௧, is equal to the difference in the system kinetic energy before and after the head on collision, 

i.e.   ܧ௩௧ ൌ ஼ܧ ௗ െ ݉ ௞௙ is the kinetic energy of the droplets a post collision is given byܧ ,௞௙. Whereܧ  ௙ଶݑ

and where ݑ௙ is the velocity of each of the rebounding droplets. This velocity can be measured by 

tracking the separating droplets. 

The viscous loss in the bouncing model, ܧ௩ is that due to the deformation in the period from ݐ௢ to ݐ௠ଵ. 

Therefore, to estimate ܧ௩ it is necessary to estimate the ratio of the viscous losses during period of ݐ଴ 

 ௩௧. If the droplets are viscous and recovered their spherical shapeܧ ,௠ଵ to the total viscous lossesݐ -

without oscillation, this fraction will be 50% ׽ and hence ߙ ׽ ͲǤͷܧ௩௧Ȁܧ஼ௗ. This is based on the 

assumption that the losses during the compression period from ݐ௢ to ݐ௠ଵ, is equal relaxation period 

when the droplet returns to its spherical shape at ݐ௥ଵ. In the more general case when the droplets 

show oscillations during the relaxation period, see FIG. 14, estimating ߙ requires an estimate of the 

viscous losses in this period. 
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FIG. 13. The stages of bouncing process. 

 

FIG. 14. The radial oscillation of the droplets during the bouncing collision. 

If the assumption is made that the viscous energy loss in each overshoot is proportional to the 

elongation of the droplet, ฬ݀௥ല௧೘೔ െ ݀ല௧೚ฬ, then the contribution of deformation of the period ݐ௥ଵ- ݐ௢ to the total viscous losses can be approximated by  

ாೡല ೟ೝభష೟೚  ாೡ ೟ ׽ ௗೝല ೟೘భ ିௗല೟೚σ  ೙೔సభ ௗೝല೟೘೔פ ିௗല೟೚  (27)  . פ

Where, ݀ ௥ is the length of the droplet measure along it principal axis. However, the viscous loss that 

considered in the bouncing model is roughly half the viscous loss in the period ݐ௥ଵ െ  ௢. Thus, theݐ

viscous losses factor is in the order of 
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ߙ ׽ ͲǤͷ ாೡല೟ೝభ ష೟೚ ݀ܿܧ    . (28) 

8% HPMC shows that 88% of ܧ௖೏ is dissipated by the total viscous losses, and no oscillation after ݐ௥ଵ, 

which means ߙ  ௖೏ is dissipated by theܧ as shown in Table V. While, 4% HPMC shows 70% of ,44% ׽

total viscous losses, and of one cycle after ݐ௥ଵ (i.e. reaches its final relaxation state at ݐ௥ଶ). More 

oscillations were noticed in 2% HPMC, which shows six cycles after ݐ௥ଵ; and 75% of ܧ௖೏ is dissipated 

by the total viscous losses. Applying Eq. (28) to 2% HPMC and 4% HPMC gives that the viscous 

dissipation factor is approximately 0.11 and 0.33, respectively, as shown in Table V. Using these 

approximated values of  ߙ in the model of Hu et al. (2017) with the measured values of the proposed 

shape factor Eq. (26), shows good agreement of the predicted ܹ݁௖ with the experiments, as shown 

in Table V.  

TABLE V. Comparison, at head-on collisions, between the experimental and the predicted ܹ݁௖ of the 

onset of coalescence using Eq. (16) with the oblate spheroid shape factor, Eq. (26), and Eq. (28) for 

the viscous dissipation factor. 

 ߙ 

Eq. (28) 

߶௢Ǥ௦ᇱ  

Eq. (26) 

ܹ݁௖  

experimental 

ܹ݁௖  

Eq. (16) 

2% HPMC 0.11 1.46 26 ±1 24.72 

4% HPMC 0.23 1.24 16 ±3 15.8 

8% HPMC 0.44 1.14 12 ±2 11.90 

 

  The effect of the impact parameter 

a. Kinetic energy assessment 

As mentioned early, considering the total mass of the droplet in ܧ௖೏ leads to under-predict  ܹ݁௖  at 

high values of  ܤ. Therefore, the mass of the interaction regions should be considered in the approach 

of Hu et al. (2017) in evaluating the kinetic energy that contributes to the deformation. This should be 

considered for both small and large droplet, in case of collisions of unequal size droplets. Therefore, 

the equation of the kinetic energy that contributes to the deformation will be  

஼೏ܧ ൌ ͳʹ ߩ ቌܺl ͳ͸߂͵ ͵s݀ߨ ൭ ͳݎܷ͵߂ ൅ ͵߂ cos ʹ൱ߠ ൅ ܺs ͳ͸ ͵s݀ߨ ቆ ͳݎܷ ൅ ͵߂ cos  ቇʹ ቍ Ǥ (29)ߠ

Where, ௟ܺ  is given by Eq. (6) and  

ܺ௦ ൌ ۔ۖەۖ
ቆͳۓ െ ͳͶ߂͵ ሺʹ߂ െ ߬ሻଶሺ߂ ൅ ߬ሻቇ         for ݄ ൐ ݀௦ʹ

    ͳͶ߂͵ ߬ଶሺ͵߂ െ ߬ሻ                              for ݄ ൑ ݀௦ʹ  Ǥ (30) 
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Where, ߬ and  ݄ are defined in Eq. (7) and Eq. (8), respectively.  

b. Shape factor assessment  

As mentioned before the degree of deformation decreases with the impact parameter (i.e. decrease 

in the surface area at the maximum deformation), see FIG. 9. Therefore, to predict the lower boundary 

of the bouncing regime, for the entire range of B, the decrease in the surface area of the droplet at 

the maximum deformation needs to be considered. In FIG. 9, it can be noticed that the deformation 

has less dependency on the impact parameter at the range from 0 to 0.3 than at the range from 0.3 

to 0.7, especially in case of 2% HPMC. Thus, we need to account for the non-linear decrease in shape 

factor see with increasing ܤ.  As the factor e is an indicator of deformation, the surface area can be 

correlated with ܤ via ݁ଶ and the following power law correlation is proposed 

݁ᇱ ൌ ට ௘మଵାఅ஻ഁ . (31) 

Where, ᅾ, and ᆂ are positive constants that can be optimized to fit the data.  Therefore, ߶௢Ǥ௦Ǥᇱᇱ   is the 

new shape factor that account for the effect of ܤǡ which is similar to that in Eq. (26) but using ݁ᇱ 
instead of ݁. Eq. (31) allows for that at ܤ ൌ Ͳ, ݁ᇱ ൌ ݁ and hence ߶௢Ǥ௦Ǥᇱᇱ ൌ ߶௢Ǥ௦Ǥᇱ . 

c. The performance of the new model 

Using Eq. (29) and the proposed shape factor ߶௢Ǥ௦Ǥᇱᇱ , the bouncing boundary model will be 

ܹ݁௖ ൌ ͳʹ߂ଶሺͳ ൅ ଶሻሺͳ߂ ൅ ଷሻଶሺ߶௢Ǥ௦Ǥᇱᇱ߂ െ ͳሻሺܺݏ ൅ ଷܺ௟ሻሺͳ߂ െ ଶሻሺͳܤ െ ሻߙ Ǥ (32) 

Using this model, Eq. (32), with the approximated values of ߙ in section V.B.1.d., and the measured 

values of ߶௢Ǥ௦Ǥᇱᇱ  at head-on collisions, in Table VI, and then Optimizing ᅾ, and ᆂ instantaneously for the 

minimum MAE, show significant improvement in the prediction of the bouncing boundary, as shown 

qualitatively in FIG. 15. The proposed model shows excellent agreement with experimental data 

whether above or below the triple point for the three HPMC solutions. Quantitatively, Table VI shows 

that the MAE of the proposed model is significantly reduced compare to that of the models of Estrade 

et al. (1999) and Hu et al. (2017) in Table III. Compare to the model of Estrade et al. (1999), the MAE 

was reduced by 99%, 97%, and 87% for 2% HPMC, 4% HPMC, and 8% HPMC, respectively. And 

compare to the model of Hu et al. (2017), it was reduced by 87%, 93%, and 77% for 2% HPMC, 4% 

HPMC, and 8% HPMC, respectively.  
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TABLE VI. The performance of the proposed model in Eq. (32) in predicting the bouncing boundary of 

2%. 4%, and 8% HPMC. 

 ߙ 

Eq. (28) 
߶௢Ǥ௦Ǥᇱᇱ  (at ܤ ൌ Ͳ) ߚ ߖ MAE 

2% HPMC 0.11 1.46 0.86 2.75 0.23 

4% HPMC 0.23 1.24 1.05 3.93 0.40 

8% HPMC 0.44 1.14 1.11 4.70 1.91 

 

 

FIG. 15. The performance of the proposed model Eq. (32) compare to bouncing boundaries on the 

HPMC regime mapes for the three concentrations, 2%, 4%, and 8% . 

VI. CONCLUSION  

In this work, three novel regime maps of binary droplet collisions outcomes for three different 

concentrations of HPMC aqueous solution, 2%, 4%, and 8% were developed experimentally. Increasing 

the concentration of HPMC, increases the solution viscosity, and shifts the boundary of the separation 

regimes toward higher ܹ݁ due to the higher viscous dissipation. In, contrast the bouncing regime 

boundary shifted toward lower ܹ݁; because, the higher viscous dissipation reduces the deformation 

and hence faster air discharge between the colliding droplets.   
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The performance of the existing models predictions of the boundary of bouncing regime was assessed 

against the experimental data using the mean absolute error as a quantitative measure.  Generally, 

the model of Hu et al. (2017) shows better accuracy than the model of Estrade et al. (1999). The poor 

performance of the model of Estrade et al. (1999) is primarily attributed to the assumption that the 

surface energy at the maximum deformation is independent of the impact parameter, i.e. constant 

shape factor.  However, for the more viscous system studied here the experimental images clearly 

show that the deformation reduces significantly with the impact parameter and consequently a 

constant shape factor cannot be assumed.  HƵ͛Ɛ ĂƉƉƌŽĂĐŚ also assumes a constant shape factor 

however the inclusion of the entire droplet kinetic energy in the energy balance, in contrast to Estrade 

et al. (1999)who only include the interacting regions, counteracts this assumption and reduces the 

deviation of the model from the experimental data.  (The ĂĚĚŝƚŝŽŶ ŽĨ ƚŚĞ ůŽƐƐ ĨĂĐƚŽƌ ŝŶ HƵ͛Ɛ ŵŽĚĞů 

does not help improve the fit as it does not change the shape of the curve.)  

Several errors in the derivation of the models were also identified.  The derivation of the spherical cap 

shape factor of Estrade et al. (1999), which was reapplied by Hu et al. (2017), was shown to contain 

an error.  However, an oblate spheroid geometry was found to give a better fit to the droplet shape 

at maximum deformation for head-on collisions than the spherical cap. Therefore, the oblate spheroid 

surface area was applied to derive a new shape factor.  Additionally, it was found that, the definition 

of the collisional kinetic energy in the model of Estrade et al. (1999) was not general and led to errors, 

for example it doubles the kinetic energy in the case of head on collisions. The definition of Hu et al. 

(2017) is universally applicable and conserves momentum  

Using the proposed oblate spheroid shape factor, the kinetic energy definition of Hu et al. (2017) but 

accounting only for the mass of the interaction regions, a modified model for the bouncing regime 

boundary was proposed.  The shape factor for head-on collisions was taken directly from 

measurements, and the reduction in shape factor with increasing B fitted empirically using a power 

law model.     Viscous dissipation was also taken into account in the proposed model and for each 

HPMC concentration, a viscous dissipation factor was estimated directly from the experimental 

observations by analyzing the decay in the oscillations of bubble shape which occurs after each 

collision. 

The proposed model shows a great fit to the experimental results.  For all three HPMC concentrations 

the critical We number for head on collisions is well predicted and the fit to the boundary of the 

bouncing regime is excellent for across the range of We numbers tested,  whether above or below the 

triple point. Quantitatively, the MAE was reduced an order of magnitude compare to the literature 

models.  
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TŚĞ ƉƌŽƉŽƐĞĚ ŵŽĚĞů ŝƐ ĐŽŶƐŝĚĞƌĞĚ ĂƐ ĂŶ ŝŵƉŽƌƚĂŶƚ ĂĚǀĂŶĐĞŵĞŶƚ ŝŶ ƉƌĞĚŝĐƚŝŶŐ ƚŚĞ ĐŽůůŝƐŝŽŶƐ͛ 

outcomes, which is very important for many applications such as spray drying. To make a better use 

from the model, more investigation is required to quantify the maximum deformation limit and to 

avoid the need for the direct measurements of the shape factor. This might need a deep 

understanding of the role of the intervening gas layer.  

VII. Supplemental material  

Data on the droplet sphericity prior to the collisions, and about the droplet size variation due to the 

change of the frequency is provided. 
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APPENDIX A: DROPLETS TRACKING METHODOLOGY  

The tracking starts by uploading the high frame rate video into DMV. In DMV, the frames are cut for 

the region before collision point, as shown in FIG. 16. From each frame, DMV evaluates time (ݐ), 

diameter (݀), and position (x, y) for each droplet. Every droplet is given ID number to enable the 

tracking of each droplet through different frames. From every two successive frames, DMV evaluates 

the velocity in x and y direction for each droplet, details on DMV can be found in Basu (2013). These 

data are saved in excel sheet, which is then loaded into MATLAB to extend the position of the droplets 

to the collision point.  The extension procedure is as follow: 

1. The (x, y) position of the tracked droplets in frame 4 in FIG. 16 is extended with very small 

increment of time (ݐ߂ሻ to become (x + ݑሬԦ௫ݐ߂,  y + ݑሬԦ௬ݐ߂). The increment of the time that 

selected in this study is ݐ߂ ൌ ݀௔ȀͷͲͲ ݑ௔  Ǥ 
2. The time will be updated by adding ݐ߂ to the time of the last frame that the tracked droplet 

appeared in, frame 4 in the example in FIG. 16.   

3. When the newly calculated (x, y) positions of droplets ܽ  and ܾ  

satisfy ඥሺݔ௕ െ ௔ሻଶݔ ൅ ሺݕ௔ െ ௕ݕ ሻଶ െ ሺሺ݀௔ ൅ ݀௕ሻȀʹሻ ൏ ͲǤͲͲͲͳ݀௔  at ݐ ൌ ௔ݐ ൌ ௕ݐ , the impact 

parameter will be estimated using ܤ ൌ sin    .ߠ
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The angle ߠ is a function of (x, y) positions of droplets ܽ  and ܾ  and can be estimated using the 

following procedure considering that the frame of reference on the center of the droplet ܾ in FIG. 

16: 

1. Estimating the angle between the two streams of droplets (ܽ and ܾ) by using ߠଵ ൌtanିଵሺݑሬԦ௫௔ȀݑሬԦ௬௔ሻ ൅ tanିଵሺݑሬԦ௫௕ȀݑሬԦ௬௕ሻ. 
2. Estimating the angle between the x axis and the line that cross the centers of the colliding 

droplets ܽ  and ܾ  at the collision point using ߠଶ ൌ tanିଵሺሺݕ௔ െ ௔ݔ௕ሻȀሺݕ െ  .௕ሻሻݔ

3. Estimating the relative velocity using ݑ௥ ൌ ටݑ௔ଶ ൅ ௕ଶݑ െ ሺʹݑ௔ݑ௕ cosߠଵ ሻ. 

4. Estimating the angle between the relative velocity vector and stream ܾ  using ߠଷ ൌsinିଵԡݑሬԦ௫௔ȀݑሬԦ௥ԡ sin ଵߠ  

5. The angle ߠ is estimated using ߠ ൌ ͻͲ െ tanିଵሺݑሬԦ௫௔ȀݑሬԦ௬௔ሻ ൅ െߠଷ െ  .ଶߠ

 

FIG. 16. Tracking methodology to estimate the collision point and hence the impact parameter. 

APPENDIX B: SPHERICAL CUP SHAPE FACTOR DERIVATION 

The volume of a spherical cup is  

௖ܸ௨௣ ͵ଶ݄ߨ ሺ͵ݎௗ െ ݄ሻǡ (B1) 
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Where, ݎௗ is the radius of the deformed droplet (spherical cup), and ݄ is defined in FIG. 16. From the 

mass conservation, Eq. (B1) will be equal to sphere volume, hence 

ௗݎ ൌ ݀ଷ͸݄ଶ ൅ ݄͵ǡ (B2) 

where, ݀  is the diameter of the non-deformed droplet. The surface area of the spherical cup is given 

by ܵǤ ௖௨௣ܣ ൌ ௗ݄ݎሺͶߨ ൅ ݄ଶሻ. (B3) 

Substituting Eq. (B2) in Eq. (B3) and evaluating for the surface energy of colliding droplets at maximum 

deformation give   

 

௦೑ܧ ൌ ߪߨ ቆʹ͵ ݀௟௢ଷ݄௟ ൅ ͳ͵ ݄௟ଶቇ ൅ ߪߨ ቆʹ͵ ݀௦௢ଷ݄
௦ ൅ ͳ͵ ݄௦ଶ ቇǤ (B4) 

From mass conservation and substituting ߶ ൌ ௛௥೏, 

݄ ൌ ݀௢ ൬͸߶ െ ʹ൰ଵଷǤ (B5) 

Sub (B5) in (B4) gives 

௦೎ܧ ൌ ௟௢ଶ݀ߪߨ  ቆଶଷ ቀ଺థ െ ʹቁିభయ ൅ ଵଷ ቀ଺థ െ ʹቁమయ ቇሺͳ ൅  ଶሻ. (B6)߂

From the analogy between Eq. (B6) and Eq. (10), the correct shape factor of spherical cup is  

 ߶௖ᇱ ൌ ଶଷ ቀ଺థ െ ʹቁିభయ ൅ ଵଷ ቀ଺థ െ ʹቁమయ
. (B7) 
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