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Resource Allocation and Power Control to

Maximize the Overall System Survival Time for

Mobile Cells with a D2D Underlay
Zitian Zhang, Yue Wu, Xiaoli Chu, Jie Zhang

Abstract—The limited battery life of user equipment (UE) is
always one of the key concerns of mobile users and a critical
factor that could limit device-to-device (D2D) communications.
In this work, considering that UEs may have different residual
battery energy levels, we define the overall system survival time as
the minimal expected battery lifetime of all transmitting UEs in
a cell. We then propose to maximize the overall system survival
time by jointly optimizing the resource allocation and power
control (RAPC) D2D links as well as conventional cellular (CC)
links. Subject to the transmission rate requirement of each link,
the joint optimization problem is formulated as a mixed integer
non-linear programming (MINLP) problem, which is solved by
a game theory based distributed approach. Simulation results
demonstrate that our game theory based RAPC approach can
enormously prolong the overall system survival time as compared
with existing RAPC approaches.

Index Terms—D2D communication, resource allocation, power
control, residual energy, overall system survival time.

I. INTRODUCTION

DEVICE-to-device (D2D) communications as an underlay

to cellular networks has been considered in 5G cellular

networks to enhance the spectral efficiency, offload traffic from

base stations (BSs), and reduce the transmission delay to user

equipment (UE) [1].

One of the critical problems of D2D underlaying cellular

networks is the mutual interference between D2D and conven-

tional cellular (CC) links, as they share radio resources. With-

out a proper resource allocation and power control (RAPC)

mechanism, such mutual interference may become so severe

that it will aggravate both D2D and CC links. In [2]-[4], the

authors proposed centralised, semi-distributed, and distributed

RAPC mechanisms for D2D underlaying CC communications,

respectively, to enhance the system performance in terms of

throughput or spectrum efficiency. However, none of these

works has considered the energy consumption of UEs, which

are typically with limited battery capacity and may be quickly

out of service if the energy consumption is not managed

properly.

Considering that UEs may have different values of residual

battery energy and power consumption, we define the overall

system survival time as the minimal expected battery lifetime
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of all transmitting UEs in a cell. There have been some

initial efforts in developing energy-efficient RAPC solutions

for D2D communication [5]-[8]. An RAPC scheme based on

non-cooperative game theory was proposed in [5], where each

D2D pair minimises its own transmission power according to

the strategies of other UEs. In [6]-[8], the RAPC schemes

aim to either minimize the sum transmission power of both

D2D and CC transmitters or maximize the system energy

efficiency. Nevertheless, none of these works has studied

energy saving for UEs with low residual energy to prolong the

overall survival time of the cellular network. The success of

D2D assisted or enabled applications, such as multihop D2D

communications, D2D content sharing, and personal hotspot,

relies on the sufficiently long survival of all cooperative

devices.

In this letter, we propose to maximize the overall system

survival time by jointly optimizing the RAPC for D2D com-

munications underlaying a cellular network. More specifically,

we formulate the RAPC problem subject to the available sub-

channels and transmission rate requirement of each link into

a mixed integer non-linear programming (MINLP) problem,

which is NP-hard. In view of this, we propose a game theory

based distributed approach to solve the RAPC problem, where

the D2D and CC links are considered as non-cooperative

players with the overall system survival time as their utility

function. We prove the existence of the Nash equilibrium and

propose a low complexity algorithm to calculate each player’s

best response. Performance of the proposed game theory based

RAPC approach is evaluated through simulation in comparison

with relevant existing schemes.

II. SYSTEM MODEL AND PROBLEM FORMULATION

We consider a single cell system with one BS located

at the center of the cell and multiple UEs distributed in

the cell coverage area randomly. The system supports D2D

communications underlaying CC communications, where the

interference from other cells is controlled via inter-cell in-

terference coordination and the D2D links can reuse both

the uplink (UL) and downlink (DL) radio resources [9]. The

system consists of K orthogonal frequency division multiple

access (OFDMA) subchannels, K/2 for UL CC links and K/2
for DL CC links, respectively. Each subchannel has the same

bandwidth of B. We assume that a D2D or CC link transmits

in only one subchannel. One or more D2D links may share

the same subchannel with a CC link, while each subchannel

can be allocated to at most one CC link.

This work considers the RAPC for given sets of D2D links,

Γ, UL CC links, ΛUL (|ΛUL| ≤ K/2), and DL CC links, ΛDL
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(|ΛDL| ≤ K/2). D2D link i ∈ Γ consists of a transmitter UE

and a receiver UE, which are located close enough to each

other. CC link j in ΛUL (or ΛDL) has one CC UE acting as

the transmitter (or the receiver). Specially, any UE in the cell

belongs to at most one link. The mode selection and D2D peer

discovery are out of scope of this work.
Following [5], the energy consumption of each transmitting

UE includes two parts: the circuit power and the transmission
power. The expected battery lifetime of the ith transmitting
UE (i ∈ Γ ∪ ΛUL) is given by:

Li =
Qi

Pi,c + pi
, i ∈ Γ ∪ ΛUL (1)

where Qi, Pi,c, and pi are the residual energy, circuit power,
and transmission power of the ith transmitting UE, respec-
tively. For DL CC links in ΛDL, we assume that the BS has
sufficient amounts of energy and lifetime. Thus, the overall
system survival time, OSTsys, is defined by:

OSTsys = min
i

Li, i ∈ Γ ∪ ΛUL (2)

We use variable δi k =1 to indicate that link i is allocated

in subchannel k, δi k=0 otherwise. With the objective of

maximizing the overall system survival time, the optimization

problem is formulated as follows:

OPT:

arg
δi k, pi, i∈Γ∪ΛUL∪ΛDL, k=1,...,K

max OSTsys (3)

s.t.:

K∑

k=1

B · log2(1 +
δi k · pi · gii

N0 +
∑

(j∈Γ∪ΛUL∪ΛDL)∩(j 6=i)

δj k · pj · gji
)

≥ bi, ∀i ∈ Γ ∪ ΛUL ∪ ΛDL

(4)

K∑

k=1

δi k = 1, ∀i ∈ Γ∪ΛUL∪ΛDL (5)

δi k ∈ (0, 1), ∀k ∈ {1, 2, ..., K}, ∀i ∈ Γ∪ΛUL ∪ΛDL (6)

δi k + δj k ≤ 1,

∀k ∈ {1, 2, ..., K}, ∀i, j ∈ ΛUL ∪ ΛDL, i 6= j
(7)

pi ≥ 0, ∀i ∈ Γ∪ΛUL ∪ΛDL. (8)

where bi and gii are the transmission rate requirement and

channel power gain of link i, respectively, gji represents the

interference channel power gain from the transmitter of link

j to the receiver of link i, and N0 is the additive noise

power. We consider a slow fading channel model. In each

scheduling period, the channel power gain and interference

channel power gain for links in Γ ∪ ΛDL are calculated as

d−2 · |h|
2
. d is the distance between the transmitter and the

receiver, h is a complex Gaussian channel coefficient which

satisfies h ∼ CN(0, 1). While for links in ΛDL, the channel

power gain and interference channel power gain are calculated

as d−2 · |h|
2
· GBS , where GBS is a constant and represents

the signal receiving gain of the BS.

Constraint (4) is the transmission rate constraint. According

to Shannon’s theory, signal to interference plus noise ratio

(SINR) at the receiver in the allocated subchannel for each link

should exceed a certain value to guarantee the transmission

rate requirement. Constraints (5) and (6) imply that each link

will transmit in one and only one subchannel. Constraint (7)

represents different CC links must occupy different subchan-

nels. Finally, constraint (8) identifies the transmission power

of each link should be non-negative.

III. GAME THEORY BASED APPROACH

A. The RAPC Game

The optimization problem in (3) is an MINLP problem,
which is NP-hard. To solve it, we develop a game theory
based approach in this section. Considering the CC links
and D2D links as non-cooperative players, we define vector
si∗ = (δi∗ 1, δi∗ 2, ..., δi∗ K) as the strategy player i∗. Given
other players’ strategies, s

−i∗ , player i∗ tries to maximize
the OSTsys by adjusting its own strategy. Transparently,
(si∗ , s−i∗) should satisfy the constraints in (5)-(7). Thus,
player i∗’s utility function, ui∗(si∗ , s−i∗), is defined as the
optimal solution of the following optimization problem:

ui∗(si∗ , s−i∗) = max
pi, i∈Γ∪ΛUL∪ΛDL

OSTsys (9)

s.t.:

(4), (8) (10)
δi k is given by (si∗ , s−i∗), i ∈ Γ∪ΛUL∪ΛDL, k = 1, ..,K (11)

Definition 1: A set of strategies s for all the players
participating in the RAPC game is a Nash equilibrium if no
player can improve its utility function by unilaterally changing
its own strategy, i. e.,

ui(si, s−i) ≥ ui(s
′

i, s−i), for ∀s
′

i 6= si, ∀i ∈ Γ∪ΛUL∪ΛDL

(12)

The Nash equilibrium offers a stable outcome of a non-

cooperative game where multiple players adjust their own

strategies through self-optimization and reach a condition

from which no player wishes to deviate. Also, we can prove

Proposition 1:

Proposition 1: Nash equilibrium exists in the constructed

RAPC game. Moreover, the values of δi k, (i ∈ Γ ∪ ΛUL ∪
ΛDL, k = 1, ...,K) in the optimal solution of OPT in (3) is

a Nash equilibrium.

Proof. See Appendix A.

B. Best Response of Each Individual Player

From constraint (4), we can obtain that the transmission

power needed of each link is influenced by all the other links

allocated in the same subchannel. Assuming the links in set Ck

are transmitted in subchannel k (δi k = 1, δi k
′ = 0, ∀k

′

6=
k, ∀i ∈ Ck), we can prove the following Proposition.

Proposition 2: For an arbitrary link i# in Ck, under
the transmission rate constraint (4), its minimum feasible
transmission power, pi#,min, can be achieved only when all
the inequalities relevant to the links in Ck in constraint (4)
become equality at the same time, i. e.,

B · log2(1 +
pi · gii

N0 +
∑

(j∈Ck)∩(j 6=i)

pj · gji
) = bi, ∀i ∈ Ck (13)

Proof. See Appendix B.
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Algorithm 1 : Best response for a single player, i∗

1: input the strategies of other players, s
−i∗ ;

2: generate K sets, C1, ..., CK , to respectively record the

links allocated to the K subchannels based on s
−i∗ ;

3: for each k, calculate the minimum feasible transmission

power of all the links in Ck by solving (14);

4: generate a vector OST = zeros(1,K);
5: for k = 1, ...,K do

6: if i∗ ∈ ΛUL and k is a DL subchannel or i∗ ∈ ΛDL

and k is an UL subchannel or i∗ ∈ ΛUL ∪ ΛDL and

there is another CC link in Ck then

7: set OST (k) = 0;

8: else

9: put link i∗ into Ck, calculate the new minimum

feasible transmission power of the links in Ck by

solving (14);

10: with the results in lines 3 and 9, calculate the expect-

ed battery lifetime of each transmitting UE using (1),

and calculate the achieved OSTsys using (2);

11: put this OSTsys in OST (k);
12: end if

13: end for

14: assign link i∗ in subchannel k∗ which offers the maximum

OST (k) (if there are more than one, then randomly select

one), calculate pi∗,min;

Through equivalent transformation, (13) can be transformed
into the following linear equations:

gii · pi+
∑

(j∈Ck)∩(j 6=i)

(1− 2bi/B)gji · pj = (2bi/B − 1),

∀i ∈ Ck

(14)

According to Proposition 2, we conclude that when trans-

mission subchannels of the other links in Γ ∪ ΛUL ∪ ΛDL

are fixed (s
−i∗ are given), the minimum feasible transmission

power pi,min of each link i in Γ∪ΛUL ∪ΛDL is determined

by which links are transmitted in its subchannel, and then

determined by player i∗’s strategy, si∗ . In order to achieve

player i∗’s best response given s
−i∗ , the proposed algorith-

m will test every feasible strategy for player i∗. In each

testing, the algorithm first calculates the minimum feasible

transmission power pi,min of each link i in Γ∪ΛUL∪ΛDL if

player i∗ choose this strategy. Then the algorithm calculates

the expected battery lifetime of each transmitting UE and

the overall system survival time, OSTsys, using (1) and (2),

respectively. After all the testings, the proposed algorithm

will finally acquire the strategy for player i∗ with the largest

OSTsys. The proposed algorithm is given in Algorithm 1.

IV. SIMULATION RESULTS

We evaluate the performance of the proposed game theory

based approach through Monte Carlo simulations and all

results are averaged over 1000 random tests. We compare our

approach with another game theory based approach aiming

at minimizing the total transmission power of the links [5],

and a centralized random allocation RAPC algorithm, which

allocates subchannels to the links randomly. The cellular

UEs and D2D pairs are randomly distributed in the cell.
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Fig. 1. OSTsys versus α, α reflects how different the residual energy levels
of the transmitting UEs will be.
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Fig. 2. OSTsys versus the maximum possible transmission rate requirement
of the links, Rmax.

The residual energy of each transmitting UE is uniformly

distributed in [Qm · α, Qm], and the residual energy of the BS

is set to be infinite. α reflects how different the residual energy

of transmitting UEs will be. Transmission rate requirements of

the D2D and CC links are assumed to be randomly distributed

in [0, Rmax]. In the simulations, cell radius is set to be 300m,

subchannel number K is set to be 20, numbers of D2D, UL

CC, and DL CC links are set to be 20, 10, and 10, respectively,

Qm is set to be 0.8J , additive noise power and circuit power

of each transmitting UE are set to be 1e-5W and 0.01W,

respectively. BS’s signal receiving gain, GBS is set to be

1000. The game theory based approaches will keep running

until they reach a Nash equilibrium or their iteration numbers

exceed a threshold (10 in this work).

Fig. 1 shows the OSTsys achieved by the three approaches

under different values of α when Rmax = 1Gbps. From Fig.

1, we can find that the performance of the three algorithms

increase as α augments. The proposed game theory based

approach always achieves the longest OSTsys. This is because

our approach focuses on prolonging the battery lifetime for

transmitting UEs with little residual energy. As α is small,

transmitting UEs in the cell have greater residual energy

variance and the advantage of our approach becomes more

significant. When α = 0.1, our approach outperforms the

RAPC approach in [5] by 105% and the centralized random

allocation algorithm by 290%.

Fig. 2 plots OSTsys versus Rmax with α equals 0.2. From

Fig. 2, we can see the OSTsys achieved by the three approach-

es decreases rapidly when Rmax increases. This is because the

average transmission rate requirement of the links grows as

Rmax rises, and these links must adopt larger transmission

power to achieve higher SINR at their receivers according

to Shannon’s theory. This, in turn, will introduce greater

interference to other links and force them to increase their

transmission power. Similar with Fig. 1, results in Fig. 2 also

indicate that our approach always achieves the best OSTsys
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among the three approaches. When Rmax = 1.25Gbps,

our approach can prolong the OSTsys by 130% and 425%,

respectively, if it is compared with the RAPC approach in [5]

and the centralized random allocation algorithm.

V. CONCLUSION

This letter has investigated the RAPC problem for D2D

communications underlaying a cellular network with the goal

of optimizing the overall system survival time. For given D2D

and CC links, an MINLP formulation as well as a game theory

based approach are presented. We prove the existence of Nash

equilibrium in our RAPC game and propose a low complexity

algorithm to calculate each individual player’s best response

given the strategies of other players. We also demonstrate that,

if the transmitting UEs in a cell have quite different values of

residual battery energy, our approach can prolong the overall

system survival time by about 105%-425% with comparison

to existing RAPC approaches.

APPENDIX A

PROOF OF PROPOSITION 1

Assume the optimal solution of OPT in (3) is

(δi k,opt, pi,opt) for ∀i ∈ Γ ∪ΛUL ∪ΛDL and k = 1, ..., K,

the optimal value of OPT is OSTsys,opt. We first prove the

set of strategies, si,opt = (δi 1,opt, ..., δi K,opt, ) (∀i ∈
Γ ∪ ΛUL ∪ ΛDL), is a Nash equilibrium of the constructed

RAPC game.
We adopt the method of reduction to absurdity. If each

player i in Γ ∪ ΛUL ∪ ΛDL has the strategy of si,opt and
there is a player i∗ wanting to unilaterally adjust its strategy
from si∗,opt to si∗,opt

′ , then we have:

s
i∗,opt

′ 6= si∗,opt (A–1)

ui∗(si∗,opt
′ , s

−i∗,opt) > ui∗(ri∗,opt, r−i∗,opt) 6= OSTsys,opt,

(A–2)

according to the definition of a player’s utility function in (9).

Also, when players i∗’s strategy equals si∗,opt
′ , we assume

the solution of (9) which achieves ui∗(si∗,opt′ , s−i∗,opt)
is pi,opt′ for ∀i ∈ Γ ∪ ΛUL ∪ ΛDL. Obviously,

(pi,opt′ , si∗,opt
′ , s

−i∗,opt) is a feasible solution of OPT

in (3) and its corresponding value of the objective function is

larger than OSTsys,opt. This contradicts the assumption that

(δi k,opt, pi,opt) is the optimal solution of OPT.

Moreover, as each variable of pi for ∀i ∈ Γ ∪ ΛUL ∪ ΛDL

has lower limit, OPT in (3) at least has one optimal solution.

Thus, we can arrive at Proposition 1.

APPENDIX B

PROOF OF PROPOSITION 2

We also adopt the method of reduction to absurdity. We
note the total number of links belonging to set Ck as N . For
an arbitrary link i# in Ck, we assume the optimal solution of
the following optimization problem:

min pi# (B–1)

s.t.:

B · log2(1 +
pi · gii

N0 +
∑

(j∈Ck)∩(j 6=i)

pj · gji
) ≥ bi, ∀i ∈ Ck (B–2)

pi ≥ 0, ∀i ∈ Ck (B–3)

is pi#,min. When pi# achieves pi#,min, amounts
of the variables, pi, ∀i ∈ Ck, are expressed as
(p1,min, ..., pi#,min, ..., pN,min). If:

B · log2(1 +
pi#,min · gi#i#

N0 +
∑

(j∈Ck)∩(j 6=i#)

pj,min · gji#
) > bi# , (B–4)

we set pi#,min
′ = (2bi#/B−1)·(N0+

∑
(j∈Ck)∩(j 6=i#)

gji# · pj,min)

/gi#i# . Obviously, pi#,min
′ < pi#,min and (p1,min, ...,

pi#,min
′ , ..., pN,min) is also a feasible solution of the

optimization problem in (B–1). This contradicts with the
assumption that pi#,min is the optimal solution. If:

B · log2(1 +
pi#,min · gi#i#

N0 +
∑

(j∈Ck)∩(j 6=i#)

pj,min · gji#
) = bi# , (B–5)

and there is a link i† 6= i# in set Ck that satisfies the following
inequality:

B · log2(1 +
pi†,min · gi†i†

N0 +
∑

(j∈Ck)∩(j 6=i†)

pj,min · gji†
) > bi† , (B–6)

we set pi†,min
′ = (2bi†/B − 1) · (N0 +

∑
(j∈Ck)∩(j 6=i†)

gji† · pj,min)

/gi†i† and pi#,min
′ = (2bi#/B − 1) · (N0 + gi†i# ·

pi†,min
′ +

∑
(j∈Ck)∩(j 6=i#)∩(j 6=i†)

gji# · pj,min)/gi#i# . Similarly,

we can get pi#,min
′ < pi#,min and (p1,min, ..., pi†,min

′ ,

..., pi#,min
′ , ..., pN,min) is also a feasible solution of the

optimization problem in (B–1). This contradicts with the

assumption that pi#,min is the optimal solution.

Thus, we arrive at Proposition 2.
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