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Finite Complete Suites for CSP Refinement Testing

Jan Peleska, Wen-ling Huang1

Bremen, Germany

Ana Cavalcanti2

York, United Kingdom

Abstract

In this paper, new contributions for model-based testing using Communicating Sequential Processes (CSP) are pre-

sented. For a finite non-terminating CSP process representing the reference model, finite test suites for checking the

conformance relations traces and failures refinement are presented, and their completeness (that is, capability to un-

cover conformity violations) is proven. The fault domains for which complete failure detection can be guaranteed are

specified by means of normalised transition graphs representing the failures semantics of finite-state CSP processes.

While complete test suites for CSP processes have been previously investigated by several authors, a sufficient con-

dition for their finiteness is presented here for the first time. Moreover, it is shown that the test suites are optimal in

two aspects: (a) the maximal length of test traces cannot be further reduced, and (b) the nondeterministic behaviour

cannot be tested with smaller or fewer sets of events, without losing the test suite’s completeness property.

Keywords: Model-based testing, CSP, Traces Refinement, Failures Refinement, Complete Test Suites

1. Introduction

Motivation. Model-based testing (MBT) is an active research field; results are currently being evaluated and inte-

grated into industrial verification processes by many companies worldwide. This holds particularly for the embedded

and cyber-physical systems domains, where critical systems require rigorous testing [1, 2].

In the safety-critical domain, test suites with guaranteed fault coverage are of particular interest. For black-box

testing, guarantees can be given only if certain hypotheses are satisfied. These hypotheses are usually specified by

a fault domain: a set of models that may or may not conform to a given reference model. Complete test strategies

guarantee to accept every system under test (SUT) conforming to the reference model, and uncover every conformance

violation, provided that the SUT behaviour is captured by a member of the fault domain.

Generation techniques for complete test suites have been developed for various formalisms; we mention here

representative work for finite state machines [3, 4], timed automata [5], Circus [6], Timed CSP [7], general labelled

transition systems [8], symbolic state machines [9], and Kripke structures [10]. In this article, we tackle Communicat-

ing Sequential Processes (CSP) [11, 12]. This is a mature process algebra that has been shown to be well-suited for the

description of reactive control systems in many publications over almost five decades. Many of these applications are

described in [12] and in the references there. Industrial success has also been reported; see, for example, [13, 14, 15].

Main Contributions. This article presents complete black-box test suites for software and systems modelled using

CSP. They can be generated for non-terminating, divergence-free, finite-state CSP processes with finite alphabets,

interpreted both in the trace and the failures semantics. Divergence freedom is usually assumed in black-box testing,

since it cannot distinguish between divergence and deadlock using testing.

The main novel contributions in this article may be summarised as follows.
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1. It is shown that trace or failures conformance can be established with finitely many test cases, provided suitable

fault domains are chosen, so that the true behaviour of the SUT is reflected by members of these domains.

2. The definition of these fault domains is based on the well-known normalised transition graphs [16] representing

the trace and failures semantics of finite-state CSP processes. A fault domain contains all CSP processes over a

given alphabet, whose normalised transition graphs have at most q nodes for some q ∈ N.

3. Worst-case complexity bounds for the number of test executions to be performed are given.

4. It is shown that the maximal length of the test traces involved cannot be further reduced without losing the test

suite’s completeness property.

5. Likewise, is shown that the non-deterministic behaviour of the SUT cannot be checked for admissibility with

smaller or fewer sets of events.

Related Work. Our results complement and extend work previously published in [17, 18, 19, 20, 21]. None of these

provide sufficient conditions for constructing finite complete test suites. So, they also do not provide complexity

bounds on the number of test executions needed to establish conformance between an SUT and a reference process.

In [21], fault domains are used, but these contain all processes refining a “top” fault domain process. This concept is

orthogonal to the one investigated here: members of our fault domain need not be in refinement relation to any other

process in the domain. They just adhere to the same upper bound q of nodes in their normalised transition graphs.

The minimal sets of events used for checking nondeterministic behaviour of the SUT used in our article were

already suggested in [18, 19, 20]; in the present article, however, they have been identified for the first time as minimal

hitting sets [22] of minimal acceptances in a given process state, and we establish an upper bound stating how many

of these sets need to be checked for the “most extreme form of nondeterminism” that may be exhibited by the SUT.

In [17, 20, 21], the authors devised linear test cases: after running through a preset trace s, test cases for traces

refinement check for illegal acceptance of a specific event e, and test cases verifying nondeterministic behaviour

check for acceptance of events from some set A. In the present article, we follow the alternative approach proposed

in [18, 19] and use adaptive test cases. This means that each test case adapts its trace execution to the nondeterministic

behaviour of the SUT, checks for trace violations at any point during the test execution, and checks for the acceptance

of a given minimal hitting set of events after any legal trace of a test case-specific length.

The adaptive test cases have the advantage that test executions only lead to an inconclusive result if the reference

process allows for a nondeterministic choice between deadlock and trace continuation in a certain state. In contrast

to this, the linear test cases may lead to many more futile executions with inconclusive results, if the SUT refuses to

engage into the next event e from the preset trace s, due to legal nondeterministic choices leading to a refusal of e.

Moreover, the preset traces s need to be executed twice according to the strategies devised in [17, 20, 21], because

traces refinement and correctness of nondeterministic behaviour are checked by two different sets of test cases.

The approach to specifying fault domains by means of normalised transition graphs has been inspired by the

typical method used in the construction of complete test suites for finite state machines (FSMs). There, fault domains

typically contain all FSMs over a given alphabet whose number of states does not exceed a given value q [23, 24, 25].

Overview. In Section 2, we present the background relevant to our work. In Section 3, finite complete test suites for

verifying failures refinement are presented. A sample test suite is presented in Section 4. Test suites checking traces

refinement are a simplified version of the former class; they are presented in Section 5. The optimality results are

presented in Section 6, together with further complexity considerations. Our results are discussed in Section 7, where

we also conclude. References to further related work are given throughout the paper where appropriate.

2. Preliminaries

We present CSP (Section 2.1) and the concept of minimal hitting sets (Section 2.2), which is central to our notion

of test for failures refinement. To study complexity, we also introduce the concept of Sperner families (Section 2.3).

2.1. CSP, Refinement, and Normalised Transition Graphs

Communicating Sequential Processes (CSP). This is a process algebra supporting system development by refinement.

Using CSP, we model both systems and their components using processes. They are characterised by their patterns of

interactions, modelled by synchronous, instantaneous, and atomic events.
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Throughout this paper, the alphabet of the processes, that is, the set of events in scope, is denoted by Σ and

supposed to be finite. The FDR tool [26] supports model checking and semantic analyses of finite-state CSP processes.

A prefixing operator e → P defines a process that is ready to engage in the event e, pending agreement of its

environment to synchronise. After e occurs, the process behaves as defined by P. The environment can be other

processes, in parallel, or the environment of a system as a whole.

Two forms of choice support branching behaviour. An external choice P ✷ Q between processes P and Q offers

to the environment the initial events of P and Q. Once a synchronisation takes place, the process that has offered the

event that has occurred is chosen and the other is discarded. In an internal choice P ⊓ Q, the environment does not

have an opportunity to interfere: the choice is made by the process.

Example 1. We consider the processes P, Q, and R defined below. P is initially ready to engage in the event a, and

then makes an internal choice to behave like either Q or R.

P = a→ (Q ⊓ R)

Q = a→ P ✷ c→ P

R = b→ P ✷ c→ R

Q, for instance, offers to the environment the choice to engage in a again or c. In both cases, afterwards, we have a

recursion back to P. In R, if b is chosen, we also have a recursion back to P. If c is chosen, the recursion is to R. ✷

Iterated forms ✷ i : I • P(i) and⊓ i : I • P(i) of the external and internal choice operators define a choice over a

collection of processes P(i). If the index set I is empty, the external choice is the process Stop, which deadlocks: does

not engage into any event or terminate. For an external choice ✷ e : A • e → P(e),A ⊆ Σ over a set A of events, we

use the abbreviation e : A→ P(e). An iterated internal choice is not defined for an empty index set.

The branches of an external choice can be protected by guards. The process

P(x1, . . . , xn) = bexpr1(x1, . . . , xn)&Q(x1, . . . , xn) ✷ bexpr2(x1, . . . , xn)&R(x1, . . . , xn)

parametrised over x1, . . . , xn branches according to Boolean expressions bexpr1(x1, . . . , xn) and bexpr2(x1, . . . , xn) over

variables from {x1, . . . , xn}: if bexpr1(x1, . . . , xn) evaluates to true and bexpr2(x1, . . . , xn) to false, P behaves like Q.

If bexpr1(x1, . . . , xn) evaluates to false and bexpr2(x1, . . . , xn) to true, P behaves like R. If both Boolean expressions

evaluate to true, P behaves as Q ✷ R. Finally, if both Boolean expressions evaluate to false, P behaves like Stop.

There are several parallelism operators. A widely used form of parallelism P |[ cs ]|Q defines a process in which

the behaviour is characterised by those of P and Q in parallel, synchronising on the events in the set cs. Other forms

of parallelism available in CSP can be defined using this parallelism operator.

Interactions that are not supposed to be visible to the environment can be hidden. The operator P \ H defines a

process that behaves as P, with the interactions modelled by events in the set H hidden. Frequently, hiding is used in

conjunction with parallelism: it is often desirable to make actions of each process in a network of parallel processes,

perhaps used for coordination of the network, invisible, while events happening at their interfaces remain observable.

A rich collection of process operators allows us to define networks of parallel processes in a concise and elegant

way, and reason about safety, liveness, and divergences. A comprehensive account of the notation is given in [12].

A distinctive feature of CSP is its treatment of refinement (as opposed to bisimulation), which is convenient for

reasoning about program correctness, due to its treatment of nondeterminism and divergence. A variety of semantic

models capture different notions of refinement. The simplest model characterises a process by its possible traces;

the set traces(P) denotes the sequences of (non-hidden) events in which P can engage. We say that a process P is

trace-refined by another process Q, written P ⊑T Q, if traces(Q) ⊆ traces(P).

In fact, in every semantic model, subset containment is used to define refinement. The model we focus on first is

the failures model, which captures both sequences of interactions and deadlock behaviour. A failure of a process P is

a pair (s,X) containing a trace s of P and a refusal: a set X of events in which P may refuse to engage, after having

performed the events of s. The failures model of a process P records all its failures in a set failures(P).

Semantic definitions specify, for each operator, how the traces or failures of the resulting process can be calculated

from those of each operand. For example, for internal choice, failures(P ⊓ Q) = failures(P) ∪ failures(Q); see [27,

p. 210] for a comprehensive list of these definitions covering traces(P) and failures(P).
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Using the notation P/s to denote the behaviour ot the process P after having engaged into the events in the trace s,

the set Ref(P/s) =̂ {X | (s,X) ∈ failures(P) } contains the refusals of P after s. Refusals are subset-closed [11, 12]: if

(s,X) is a failure of P and Y ⊆ X, then (s,Y) ∈ failures(P) and Y ∈ Ref(P/s) follows.

For divergence-free processes, failures refinement, P ⊑F Q, is defined by failures(Q) ⊆ failures(P). Since refusals

are subset-closed, P ⊑F Q implies (s,∅) ∈ failures(P) for all traces s ∈ traces(Q). So, for divergence-free processes,

failures refinement implies traces refinement. Therefore, using the conformance relation conf below

Q conf P =̂ ∀ s ∈ traces(P) ∩ traces(Q) : Ref(Q/s) ⊆ Ref(P/s), (1)

failures refinement can be expressed by ⊑T and conf as proven in [20].

(P ⊑F Q)⇔ (P ⊑T Q ∧ Q conf P) (2)

For finite processes, since refusals are subset-closed, Ref(P/s) can be constructed from the set of maximal refusals.

maxRef(P/s) = {R ∈ Ref(P/s) | ∀R′ ∈ Ref(P/s) − {R} : R * R′} (3)

Conversely, with the maximal refusals maxRef(P/s) at hand, we can reconstruct the refusals in the set Ref(P/s).

Ref(P/s) = {R′ ∈ 2Σ | ∃R ∈ maxRef(P/s) : R′ ⊆ R}. (4)

Deterministic process states P/s have exactly the one maximal refusal defined by Σ − [P/s]0, where [P/s]0 denotes

the initials of P/s, that is, the events that P/s may engage into. Nondeterministic behaviour in a given process state

is reflected by non-empty intersections between initials and maximal refusals. This is illustrated by the following

example.

Example 2. P = (Stop ⊓ Q) has maximal refusals maxRef(P) = {Σ}, because Stop refuses to engage in any event,

and this is carried over to P by the internal choice. However, P is distinguished from Stop by its initials, which are

defined by [P]0 = [Stop ⊓ Q]0 = [Q]0. So P may engage nondeterministically in any initial event of Q, but also refuse

everything, due to internal selection of Stop. Assuming an alphabet Σ = {a, b, c, d}, the process

Q = (e : {a, b} → Stop) ⊓ (e : {c, d} → Stop)

has maximal refusals maxRef(Q) = {{c, d}, {a, b}} and initials [Q]0 = Σ. In contrast to P, nondeterminism is reflected

here by two maximal refusals. ✷

Normalised Transition Graphs for CSP Processes. As shown in [16], the failures semantics of any finite-state CSP

process P can be represented by a normalised transition graph G(P) defined by a tuple

G(P) = (N, n,Σ, t : N × Σ 7→ N, r : N → PP(Σ)),

with nodes N, initial node n ∈ N, and process alphabet Σ. The partial transition function t maps a node n and an event

e ∈ Σ to its successor node t(n, e). If (n, e) is in the domain of t, then there is a transition, that is, an outgoing edge,

from n with label e, leading to node t(n, e). Normalisation of G(P) is reflected by the fact that t is a function.

The graph construction in [16] implies that all nodes n in N are reachable by sequences of edges labelled by

e1 . . . ek and connecting states n, n1, . . . , nk−1, n, such that

n1 = t(n, e1), ni = t(ni−1, ei), i = 2, . . . , k − 1, n = t(nk−1, ek).

By construction, s ∈ Σ∗ is a trace of P, if, and only if, there is a path through G(P) starting at n whose edge labels

coincide with the events in s in the order they appear. In analogy to traces(P), we use the notation traces(G(P)) for

the set of finite, initialised paths through G(P), each path represented by its finite sequence of edge labels. We note

that traces(P) = traces(G(P)). Since G(P) is normalised, there is a unique node reached by following the events from

s one by one, starting in n. Therefore, G(P)/s is also well defined.
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By [n]0 we denote the initials of n: the set of events occurring as labels in any outgoing transitions.

[n]0 = {e ∈ Σ | (n, e) ∈ dom t}

The graph construction from [16] guarantees that [G(P)/s]0 = [P/s]0 for all traces s of P.

The total function r maps each node n to a non-empty set of (possibly empty) subsets of Σ. The graph construction

guarantees that r(G(P)/s) represents the maximal refusals of P/s for all s ∈ traces(P). As a consequence,

(s,X) ∈ failures(P)⇔ s ∈ traces(G(P)) ∧ ∃R ∈ r(G(P)/s) : X ⊆ R, (5)

so G(P) allows us to re-construct the failures semantics of P.

Acceptances. When investigating tests for failures refinement, the notion of acceptances, which is dual to refusals, is

useful. While the original introduction of acceptances presented in [17, pp. 75] was independent of refusals, we use

the definition from [27, pp. 278]. A minimal acceptance of a CSP process state P/s is the complement of a maximal

refusal of the same state. The set of minimal acceptances of P/s is denoted by minAcc(P/s) and formally defined as

minAcc(P/s) = {Σ − R | R ∈ maxRef(P/s)} (6)

With this definition, a (not necessarily minimal) acceptance of P/s is a superset of some minimal acceptance and a

subset of the initials [P/s]0. Denoting the acceptances of P/s by Acc(P/s), this leads to the formal definition

Acc(P/s) = {B ⊆ [P/s]0 | ∃A ∈ minAcc(P/s) : A ⊆ B} (7)

Acceptances have the following intuitive interpretation. If the behaviour of P/s is deterministic, its only acceptance

equals [P/s]0, because P/s never refuses any of the events in this set. If P/s is nondeterministic, it internally chooses

one of its minimal acceptance sets A and never refuses any event in A, while possibly refusing the events from the set

[P/s]0 − A and always refusing those in the set Σ − [P/s]0.

Exploiting (6), the nodes of a normalised transition graph can alternatively be labelled with minimal acceptances;

this captured the same information conveyed by maximal refusals. Since process states P/s are equivalently expressed

by states G(P)/s of P’s normalised transition graph, we also write minAcc(G(P)/s) and note that (5) and (6) imply

minAcc(G(P)/s) = {Σ − R | R ∈ r(G(P)/s)} = minAcc(P/s). (8)

Given any non-diverging, non-terminating, finite-state process P, it can be re-constructed from its graph G(P) with

initial state n and transition function t, using P’s normalised syntactic representation [27, pp. 277] specified as follows.

normalised(P) = PN(n)

PN(n) = ⊓A∈minAcc(n)∪{[n]0}
e : A→ PN(t(n, e))

With this definition, it is established that P is semantically equivalent to normalised(P) in the failures semantics.

Example 3. We consider the process P in Example 1; its transition graph G(P) is shown in Fig. 1. The process state

P/ε (where ε denotes the empty trace) is represented as node 0, with {a} as the only minimal acceptance, since a

is never refused and no other events are accepted. Having engaged in a, the transition from node 0 leads to node 1

representing the process state P/a = Q ⊓ R. The internal choice induces several minimal acceptances derived from

Q and R. Since these processes accept their initial events in external choice, Q ⊓ R induces minimal acceptance sets

{a, c} and {b, c}. We note that the event c can never be refused, since it is contained in each minimal acceptance set.

Having engaged in c, the next process state is represented by node 2. Due to normalisation, there is only a single

transition satisfying t(1, c) = 2. This transition, however, can have been caused by either Q or R engaging into c,

so node 2 corresponds to process state Q/c ⊓ R/c = P ⊓ R. This is reflected by the two minimal acceptance sets

labelling node 2. From node 2, event c leads to node 3. Since P does not engage into c, the R-component of P ⊓ R

must have processed c, so node 3 corresponds to R/c = R, and so it is labelled by R’s minimal acceptance {b, c}. ✷
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Figure 1: Normalised transition graph of CSP process P from Example 3.

Summarising, refinement between finite-state CSP processes P,Q can be expressed using their normalised graphs

G(P) = (NP, nP
,Σ, tP : NP × Σ 7→ NP, rP : NP → PP(Σ))

G(Q) = (NQ, nQ
,Σ, tQ : NQ × Σ 7→ NQ, rQ : NQ → PP(Σ))

as established by the results in the following lemma. There, result (9) reflects traces refinement in terms of graph

traces; result (2) expresses failures refinement in terms of traces refinement and conf ; result (10) states how conf can

be expressed by means of the maximal refusal functions of the graphs involved; and result (11) states the same in

terms of the minimal acceptances that can be derived from the maximal refusal functions by means of (8).

Lemma 1.

P ⊑T Q ⇔ traces(G(Q)) ⊆ traces(G(P)) (9)

Q conf P ⇔ ∀ s ∈ traces(G(Q)) ∩ traces(G(P)),RQ ∈ rQ(G(Q)/s) :

∃RP ∈ rP(G(P)/s) : RQ ⊆ RP (10)

⇔ ∀ s ∈ traces(G(Q)) ∩ traces(G(P)),AQ ∈ minAcc(G(Q)/s) :

∃AP ∈ minAcc(G(P)/s) : AP ⊆ AQ (11)

✷

Proof. To prove (9), we recall that P ⊑T Q is defined as traces(Q) ⊆ traces(P) and, moreover, traces(P) = traces(G(P))

and traces(Q) = traces(G(Q)). To prove (10), we derive

Q conf P

⇔ ∀ s ∈ traces(P) ∩ traces(Q) : Ref(Q/s) ⊆ Ref(P/s) [Definition of conf (1)]

⇔ ∀ s ∈ traces(G(P)) ∩ traces(G(Q)) : Ref(Q/s) ⊆ Ref(P/s)

[traces(P) = traces(G(P)), traces(Q) = traces(G(Q))]

⇔ ∀ s ∈ traces(G(P)) ∩ traces(G(Q)),RQ ∈ rQ(G(Q)/s) : ∃RP ∈ rP(G(P)/s) : RQ ⊆ RP

[Property of rP, rQ (subset closure) and (4)]

Finally, (11) follows from (10) using (6) and the fact that RQ ⊆ RP is equivalent to Σ − RP ⊆ Σ − RQ. ✷

Reachability Under Sets of Traces. Given a finite-state CSP process P and its normalised transition graph G(P) with

nodes in set N, we suppose that V ⊆ Σ∗ is a prefix-closed set of sequences of events. By t(n,V) we denote the set

t(n,V) = {n ∈ N | ∃ s ∈ V : s ∈ traces(P) ∧ G(P)/s = n}

of nodes in N that are reachable in G(P) by applying traces of V . The lemma below specifies a construction method

for such sets V reaching every node of N.
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Lemma 2. Let P be a CSP process with normalised transition graph G(P) = (N, n,Σ, t : N ×Σ 7→ N, r : N → PP(Σ)).

Let V ⊆ Σ∗ be a finite prefix-closed set of sequences of events. Suppose that G(P) reaches k < |N | nodes under V,

that is, | t(n,V) | = k. Let V .Σ denote the set of all sequences from V, extended by any event of Σ. Then G(P) reaches

at least (k + 1) nodes under V ∪ V .Σ.

Proof. Suppose that n′ ∈ (N − t(n,V)). Since all nodes in N are reachable, there exists a trace s such that G(P)/s = n′.

Decompose s = s1.e.s2 with si ∈ Σ
∗, e ∈ Σ, such that G(P)/s1 ∈ t(n,V) and G(P)/s1.e < t(n,V). Such a decom-

position always exists, because V is prefix-closed and therefore contains the empty trace ε. Note, however, that it

is not necessarily the case that s1 ∈ V . Since G(P) reaches G(P)/s1 under V , there exists a trace u ∈ V such that

G(P)/u = G(P)/s1 = n. Since s = s1.e.s2 is a trace of P and G(P)/s1 = n, then (n, e) is in the domain of t. So,

G(P)/u.e = G(P)/s1.e = n is a well-defined node of N not contained in t(n,V). Since u.e ∈ V ∪ V .Σ, G(P) reaches at

least the additional node n under V ∪ V .Σ. This completes the proof. ✷

Graph Products. For proving our main theorems, it is necessary to consider the product of normalised transition

graphs. We need this only for the investigation of corresponding traces in reference processes and processes for SUTs.

So, the labelling of nodes with maximal refusals or minimal acceptances is disregarded in the product construction.

We consider two normalised transition graphs

Gi = (Ni, ni
,Σ, ti : Ni × Σ 7→ Ni, ri : Ni → PP(Σ)), i = 1, 2,

over the same alphabet Σ. Their product is defined by

G1 × G2 = (N1 × N2, (n1
, n

2
), t : (N1 × N2) × Σ 7→ (N1 × N2)) (12)

dom t = {((n1, n2), e) ∈ (N1 × N2) × Σ | (n1, e) ∈ dom t1 ∧ (n2, e) ∈ dom t2} (13)

t((n1, n2), e) = (t1(n1, e), t2(n2, e)) for ((n1, n2), e) ∈ dom t (14)

The following lemma is used in the proof of our main theorem.

Lemma 3. If G1 has p states and G2 has q states, then every reachable state (n1, n2) of the product graph G1 × G2

can be reached by a trace of maximal length (pq − 1).

Proof. The product graph G1 × G2 has at most pq states. The empty trace ε reaches its initial state (n
1
, n

2
). Applying

Lemma 2 (pq − 1) times with V = {ε} implies that G1 × G2 reaches all of its reachable states (there are at most pq of

them) under V ′ = V ∪ V .Σ ∪ · · · ∪ V .Σ(pq−1). The maximal length of traces in V ′ is (pq − 1). ✷

This concludes our presentation of CSP and of results regarding its semantics that are used in the next section.

2.2. Minimal Hitting Sets

Definition. The main idea of the underlying test strategy for failures refinement is based on solving a hitting set

problem. Given a finite collection of finite sets C = {A1, . . . ,An}, such that each Ai is a subset of a universe Σ, a hitting

set H ⊆ Σ is a set satisfying the following property.

∀A ∈ C : H ∩ A , ∅. (15)

A minimal hitting set is a hitting set that cannot be further reduced without losing the characteristic property (15).

By minHit(C) we denote the collection of minimal hitting sets for a collection C. For the pathological case where C

contains an empty set, minHit(C) is also empty. The problem of determining minimal hitting sets is NP-hard [22]. We

see below, however, that using minimal hitting sets, we can reduce the effort of testing for failures refinement from a

factor of 2|Σ| to a factor that equals the number of minimal hitting sets.
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Minimal Hitting Sets of Minimal Acceptances. In this article, we are interested in the minimal hitting sets of minimal

acceptances; for these, the abbreviated notation minHit(P/s) = minHit(minAcc(P/s)) is used. The minimal hitting sets

of minimal acceptances may be alternatively characterised by means of the failures of a process as is done in [20]. To

this end, in [20], the authors define, for any collection C ⊆ 2Σ of subsets from Σ

min⊆(C) = {A ∈ C | ∀B ∈ C : B ⊆ A⇒ B = A}. (16)

The collection min⊆(C) contains all those sets of C that are not true supersets of other members of C. With this

definition, the relation between failures and minimal hitting sets of minimal acceptances is established in the following

lemma.

Lemma 4. For any trace s of CSP process P, defineAs = {A ⊆ Σ | (s,A) < failures(P)}. Then minHit(P/s) = min⊆(As)

for all traces s of P.

Proof. We derive

(s,A) < failures(P)

⇔ A < Ref (P/s)

⇔ ∀R ∈ maxRef (P/s) : A * R

⇔ ∀B ∈ minAcc(P/s) : A * (Σ − B) [this follows from (6)]

⇔ ∀B ∈ minAcc(P/s) : A ∩ B , ∅

⇔ A is a (not necessarily minimal) hitting set of minAcc(P/s)

This derivation is valid for arbitrary A satisfying (s,A) < failures(P). Specialising it to minimal sets A satisfying

(s,A) < failures(P) proves the statement of the lemma. ✷

Minimal Hitting Sets of Normalised Transition Graphs. Since, as previously explained, minimal acceptances can be

used to label the nodes of a normalised transition graph, and since minAcc(P/s) = minAcc(G(P)/s) by (8), the notation

of minimal hitting sets also carries over to graphs: we write minHit(n) for nodes n of G(P) and observe that

minHit(G(P)/s) = minHit(P/s) for all s ∈ traces(P). (17)

Characterisation of conf by Minimal Hitting Sets. The following lemma establishes that the conf relation specified

in (1) can be characterised by means of minimal acceptances and their minimal hitting sets.

Lemma 5. Let P,Q be two finite-state CSP processes. For each s ∈ traces(P), let minHit(P/s) denote the collection

of all minimal hitting sets of minAcc(P/s). Then the following statements are equivalent.

1. Q conf P

2. For all s ∈ traces(P) ∩ traces(Q) and H ∈ minHit(P/s), H is a (not necessarily minimal) hitting set of

minAcc(Q/s).

Proof. We apply (8) and (17), so that minAcc(P/s) and minAcc(G(P)/s), as well as minHit(P/s) and minHit(G(P)/s)

are used interchangeably. For showing “(1) ⇒ (2)”, we assume Q conf P and s ∈ traces(P) ∩ traces(Q). Lemma 1

(11), states that ∀AQ ∈ minAcc(G(Q)/s) : ∃AP ∈ minAcc(G(P)/s) : AP ⊆ AQ. Therefore, H ∈ minHit(P/s) not only

implies H ∩ AP , ∅ for all minimal acceptances AP, but also H ∩ AQ , ∅ for every minimal acceptance AQ, because

AP ⊆ AQ for at least one AP. So, each H ∈ minHit(P/s) is also a hitting set for minAcc(G(Q)/s) as required.

To prove “(2) ⇒ (1)”, we assume that (2) holds, but that P conf Q does not hold. According to Lemma 1, (11),

there exists s ∈ traces(P) ∩ traces(Q) such that

∃AQ ∈ minAcc(G(Q)/s) : ∀AP ∈ minAcc(G(P)/s) : AP * AQ (∗)

Let A be such an acceptance set AQ fulfilling (*). Define H =
⋃
{AP \ A | AP ∈ minAcc(G(P)/s)}. Since AP \ A , ∅

for all AP because of (*), H is a hitting set of minAcc(G(P)/s) which has an empty intersection with A. Minimising
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H yields a minimal hitting set H ∈ minHit(P/s) which is not a hitting set of minAcc(G(Q)/s), a contradiction to

Assumption 2. This completes the proof of the lemma. ✷

We note that minAcc(P) = {∅} if P = Q ⊓ Stop. Since Stop accepts nothing, its minimal acceptance is ∅, and this

carries over to Q ⊓ Stop. From (11) we conclude that ∅ ∈ minAcc(P) implies minAcc(P) = {∅}. This clarifies

that minHit(P/s) is empty if, and only if, minAcc(P) = {∅}. The proof of Lemma 5 covers the situations where

minAcc(P/s) = {∅} and so minHit(P/s) = ∅. Trivially,

minAcc(P/s) = {∅} ⇔ minHit(P/s) = ∅ (18)

holds.

2.3. Sperner Families

In preparation for complexity results presented in Section 6, we consider how many minimal hitting sets can

maximally exist for a collection of minimal acceptances. To this end, the following definitions and results are useful.

A Sperner Family is a collection S ⊆ 2Σ of sets from a given finite universe Σ that do not contain each other,

that is, H1 * H2 ∧ H2 * H1 holds for each pair H1 , H2 ∈ S. Specialising antichains known from partial orders

to finite sets partially ordered by ⊆ results in Sperner families. Given an arbitrary collection of subsets C ⊂ 2Σ, the

sub-collection min⊆(C) defined in (16) is a Sperner Family contained in C.

We further observe that

• the maximal refusals of a CSP process state,

• the minimal acceptances of a CSP process state, and

• the minimal hitting sets of a given collection of sets

are Sperner families. Moreover, given any finite alphabet Σ with |Σ | = n, every collection S of subsets with identical

cardinality k 6 n is a Sperner family, because A1,A2 ∈ S∧A1 ⊆ A2∧ |A1 | = |A2 | implies A1 = A2. Given any Sperner

Family S of Σ, S represents the minimal acceptances in the initial state of the CSP process P =⊓A∈S

(
e : A→ P(e)

)
.

The cardinality of Sperner Families is determined by the following theorem.

Theorem 1 (Sperner’s Theorem [28]). Given a Sperner family S over an n-element universe Σ, its cardinality |S |

is bound by

|S | 6
(

n

⌊ n
2
⌋

)
.

The upper bound is reached if, and only if, one of the following cases apply:

1. For even n, if S consists of all subsets of Σ with cardinality n/2;

2. For odd n, if one of the following cases holds;

(a) S consists of all subsets of Σ with cardinality (n + 1)/2; or

(b) S consists of all subsets of Σ with cardinality (n − 1)/2.

✷

It is shown in Section 6 that this upper bound can actually be reached by the Sperner Family containing the hitting

sets associated with the minimal acceptances of a CSP process state.

3. Finite Complete Test Suites for CSP Failures Refinement

Here, we define our notion of tests for failures refinement, and then prove completeness of our suite. Finally, we

study to complexity of our approach by identifying a bound on the number of tests we need in a complete suite.
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3.1. Test Cases for Verifying CSP Failures Refinement

Test Definition and Basic Properties. In the domain of process algebras, test cases are typically represented by pro-

cesses interacting concurrently with the SUT [17]. Considering an (unknown) process that represents the behaviour

of the SUT, we say that tests synchronise with the process for the SUT over its visible events and use some additional

events outside the SUT process’s alphabet to express whether the test execution passed or failed.

For a given reference process P, its normalised transition graph

G(P) = (N, n,Σ, t : N × Σ 7→ N, r : N → PP(Σ)),

and each integer j > 0, we define a test for failures refinement as shown below.

UF(j) = UF(j, 0, n) (19)

UF(j, k, n) =
(
e : (Σ − [n]0)→ fail→ Stop

)
(20)

✷

(minHit(n) = ∅)&
(
pass→ Stop

)
(21)

✷

(k < j)&
(
e : [n]0 → UF(j, k + 1, t(n, e)

)
(22)

✷

(k = j ∧ minHit(n) , ∅)&
(
⊓H∈minHit(n)

(e : H → pass→ Stop)
)

(23)

Explanation of the Test Definition. A test is performed by running UF(j) concurrently with any SUT process Q,

synchronising over Σ. So, a test execution is a trace of the concurrent process Q |[Σ ]|UF(j).

It is assumed that the events fail and pass, indicating verdicts FAIL and PASS for the test execution, are not

included in Σ. Since we assume that Q is free of livelocks, it is guaranteed that events fail or pass always become

visible, if they are the only events UF(j)/s is ready to engage in: if UF(j)/s can only produce pass or fail, the occurrence

of these events can never be blocked due to a livelock, since the only process executing concurrently with UF(j) is

livelock-free Q.

The test is passed by the SUT (written Q pass UF(j)) if, and only if, every execution of Q |[Σ ]|UF(j) terminates

with the event pass. This can also be expressed by means of a failures refinement as defined below.

Q pass UF(j) =̂ (pass→ Stop) ⊑F (Q |[Σ ]|UF(j)) \ Σ (24)

This type of pass relation is often called must test, because every test execution must end with the pass event [17].

It is necessary to use failures refinement in the definition above, and not just traces refinement: (Q |[Σ ]|UF(j)) \ Σ

may have the same visible traces ε and pass as the “Test Passed Process” (pass → Stop). However, the former may

nondeterministically refuse pass, due to a deadlock occurring when a faulty SUT process executes concurrently with

UF(j, k, n) executing branch (23), when the guard condition (k = j ∧ minHit(n) , ∅) evaluates to true. This is

explained further in the next paragraphs. Alternatively, a faulty SUT Q might internally deadlock after a trace s whose

length #s satisfies #s < j, such that minHit(G(P)/s) , ∅, so that the process (Q |[Σ ]|UF(j))/s deadlocks as well.

Intuitively, UF(j) is able to perform any trace s of P, up to a length j. If, after having already run through s with

#s 6 j, the SUT accepts an event outside the initials of P/s (recall from Lemma 6 that [n]0 = [P/s]0 for UF(j)/s), the

test immediately terminates with FAIL-event fail. This is handled by the branch (20) of the external choice.

If P/s is the Stop process or has Stop as an internal choice, this is revealed by minHit(G(P)/s) = ∅ (recall (18) and

Lemma 6). In this case, the test may terminate successfully (branch (21) of the choice in UF(j, #s,G(P)/s)). If P/s

may also nondeterministically engage into events, branch (22) is simultaneously enabled. If Q/s is able to engage into

an event in Σ − [P/s]0, a test execution exists where UF(j, #s,G(P)/s) branches into (20) and produces the fail event.

If the length of s is still less than j, the test accepts any event e from the initials [P/s]0 = [G(P)/s]0 and continues

recursively as UF(j, #s + 1,G(P)/s.e) in branch (22); this follows from Lemma 6 (note that G(P)/s.e = t(G(P)/s, e)).

A test of this type is called adaptive, because it accepts any legal behaviour of the SUT, here any event from [P/s]0,

and adapts its consecutive behaviour to the event selected by the SUT, here UF(j, #s + 1,G(P)/s.e).

Now suppose that a test execution has run through a trace s ∈ traces(P) of length j, so that UF(j)/s = UF(j, j, n)

with n = G(P)/s. If minHit(n) , ∅, the test changes its behaviour: instead of offering all legal events from [n]0 to
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the SUT, it nondeterministically chooses a minimal hitting set H ∈ minHit(n) and only offers the events contained in

H. If the SUT refuses to engage into some event of H, this reveals a violation of failures refinement: according to

Lemma 5, a conforming SUT should accept at least one event of each minimal hitting set in minHit(n). Therefore, the

test execution terminates with pass, only if such an event is accepted. Otherwise, it deadlocks, and the test fails.

The specification of UF(j, k, n) implies that the test always stops after having engaged into a trace s ∈ traces(Q)

of maximal length j or j + 1. If branch (20) is the last to be entered, the maximal length of s is j + 1, and the test

execution stops with fail. If branch (21) is the last to be entered, the maximal length of s is j, and the execution stops

with pass. If branch (23) is the last to be entered, then there are two possibilities. The first is that the process accepts

another event e of some minimal hitting set H ∈ minHit(n) with n = G(P)/s according to Lemma 6. In this case, the

final length of s is j + 1, and the execution terminates with pass. Alternatively, the test execution (Q |[Σ ]|UF(j))/s

deadlocks, the final length of s is j, and the execution stops without a PASS or FAIL event. Such an execution is also

interpreted as FAIL, because it reveals that (pass→ Stop) 6⊑F (Q |[Σ ]|UF(j)) \ Σ.

We observe that the number of possible executions of Q |[Σ ]|UF(j) is finite, because the number of traces s with

maximal length (j + 1) is finite and the sets [n]0, (Σ − [n]0), and minHit(n) are finite. Moreover, we further recall that

minHit(n) may be empty, in which case the indexed internal choice in (23) would be undefined. The guard in that

branch, however, requires minHit(n) , ∅, and branches (20) or (21) can be taken in this situation.

The following lemma establishes relationships between UF(j) and the reference process P from which it is derived.

Lemma 6. If s ∈ traces(P) satisfies #s 6 j, then s, s.e ∈ traces(UF(j)) for all e ∈ Σ, and the following properties hold.

UF(j)/s = UF(j, #s,G(P)/s) (25)

e < [P/s]0 ⇒ UF(j)/s.e = (fail→ Stop) (26)

UF(j)/s = UF(j, #s, n) ⇒ [n]0 = [P/s]0 (27)

UF(j)/s = UF(j, #s, n) ⇒ minHit(n) = minHit(P/s) (28)

Proof. We prove (25) by induction over the length of s. For #s = 0, the statement holds because UF(j) starts

with the initial node n of G(P). Suppose that the statement holds for all traces s with length #s 6 k < j, so that

UF(j)/s = UF(j, #s,G(P)/s). Now let s.e be a trace of P, so that e ∈ [P/s]0. Since [G(P)/s]0 = [P/s]0 for all traces

s of P, we conclude that e ∈ [G(P)/s]0, so UF(j, #s,G(P)/s) can engage into e by executing branch (22). Since t is

the transition function of G(P) and e ∈ [G(P)/s]0, t(G(P)/s, e) is defined, and t(G(P)/s, e) = G(P)/s.e. So, the new

recursion in branch (22) is so that UF(j)/s.e = UF(j, #s,G(P)/s)/e = UF(j, #s + 1,G(P)/s.e) as required.

To prove (26), we apply (25) to conclude that UF(j)/s = UF(j, #s,G(P)/s), because s is a trace of P. Noting again

that [G(P)/s]0 = [P/s]0, this implies that e < [G(P)/s]0, so UF(j, #s,G(P)/s) can engage in e by entering branch (20).

The specification of this branch implies that UF(j)/s.e = UF(j, #s,G(P)/s)/e = (fail→ Stop).

Statement (27) follows trivially from (25), because [G(P)/s]0 = [P/s]0 for all traces s of P. Finally, statement (28)

follows trivially from (25), because, according to (17), minHit(G(P)/s) = minHit(P/s) for all traces of P. ✷

Note that it is not guaranteed for UF(j) to run through the traces s, s.e in Lemma 6, if minHit(P/u) = ∅ for some prefix

u of s: in such a case, UF(j) may stop with a pass event by entering branch (21). Therefore, Lemma 6 just states the

existence of UF(j)-executions s, s.e satisfying the properties stated there.

Complete Testing Assumption. As explained above, passing a test case UF(j) requires that none of the possible exe-

cutions (Q |[Σ ]|UF(j)) stops after fail or stops without having produced the event pass. Therefore, it is necessary to

determine whether all possible executions have been covered in the repeated runs of (Q |[Σ ]|UF(j)). The theoretical

completeness results are, therefore, based on a complete testing assumption [3, 20], which means that every possible

behaviour of the SUT is performed after a finite number of test executions. In practice, this is realised by executing

each test several times, recording the traces that have been performed, and using hardware or software coverage analy-

sers to determine whether all possible behaviours of the SUT have been observed. Therefore, testing nondeterministic

SUTs comes at the price of having to apply some grey-box testing techniques.
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3.2. A Finite Complete Test Suite for Failures Refinement

A CSP fault model F = (P,⊑,D) consists of a reference process P, a conformance relation ⊑∈ {⊑T ,⊑F}, and a

fault domainD, which is a set of CSP processes over P’s alphabet that may or may not conform to P. A test suite TS

is called complete with respect to fault model F , if, and only if, the following conditions are fulfilled.

1. Soundness If P ⊑ Q, then Q passes all tests in TS.

2. Exhaustiveness If P @ Q and Q ∈ D, then Q fails at least one test in TS.

The following main theorem establishes the completeness of our test suite.

Theorem 2. Let P be a non-terminating, divergence-free CSP process over alphabet Σ whose normalised transition

graph G(P) has p states. Define fault domain D as the set of all divergence-free CSP processes over alphabet Σ,

whose transition graph has at most q states with q > p. Then the test suite

TSF = {UF(j) | 0 6 j < pq} with UF(j) as specified in (19)

is complete with respect to F = (P,⊑F,D).

The proof of the theorem follows directly from the two lemmas below. The first lemma establishes that test suite TSF

is sound, and the second establishes that the suite is also exhaustive.

Lemma 7. A test suite TSF generated from a CSP process P, as specified in Theorem 2, is passed by every CSP

process Q satisfying P ⊑F Q.

Proof. We make two points in separate steps below. The first is that the test execution cannot reach branch (20)

and raise a fail event. The second is that it cannot deadlock without raising a pass event. This case would also be

interpreted as FAIL, since then pass→ Stop is not failures refined by (Q |[Σ ]|UF(j)) \ Σ.

Step 1. Suppose that P ⊑F Q, so P ⊑T Q and Q conf P according to (2). Since traces(Q) ⊆ traces(P), any adap-

tive test UF(j) running in parallel with Q will always enter the branches (21), (22), or (23) of the external choice

construction for UF(j, k, n). To see this, consider UF(j, k, n) = UF(j)/s with s ∈ traces(Q). Lemma 6 implies

UF(j, k, n) = UF(j, k,G(P)/s), so [n]0 = [G(P)/s]0 = [P/s]0. As a consequence, [Q/s]0 ⊆ [P/s]0 = [n]0, so branch (20)

can never be entered in the parallel execution of Q and UF(j), and the fail event cannot occur.

Step 2. For proving that a test execution can never deadlock without a pass event, it has to be shown that a test

execution can neither block at branch (22) nor at branch (23). These cases are considered separately below.

Step 2.1. Suppose that the test execution blocks at branch (22) after having run through a trace s with #s < j. Since

P ⊑T Q by assumption, s is a trace of P, thus UF(j)/s = UF(j, #s,G(P)/s) according to Lemma 6. Therefore, UF(j)/s

can enter branch (22) with any event from [G(P)/s]0. Since we assume that (Q |[Σ ]|UF(j))/s deadlocks, this means

that [G(P)/s]0 is not a hitting set of minAcc(Q/s), because otherwise at least one e ∈ [G(P)/s]0 would be accepted

by Q/s and the test execution would not deadlock. Now suppose that minHit(G(P)/s) = ∅. Then branch (21) can be

entered, and the test stops after pass. Otherwise, if minHit(G(P)/s) , ∅, let H ∈ minHit(G(P)/s). Since H contains

only elements that are contained in some minimal acceptance of P/s, and all these minimal acceptances are subsets

of [G(P)/s]0, H is a subset of [G(P)/s]0 as well. Since [G(P)/s]0, however, is not a hitting set of minAcc(Q/s), also

H is not a hitting set of minAcc(Q/s). Now this is a contradiction to Lemma 5, since Q conf P by assumption, so H

should also be a (not necessarily minimal) hitting set in minAcc(Q/s). This proves that the test execution cannot block

at branch (22) without being able to pass the test by entering branch (21).
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Step 2.2. Suppose that the execution blocks at branch (23) after having run through some s ∈ traces(Q) ⊆ traces(P)

with #s = j. From Lemma 6 we know that UF(j)/s = UF(j, k, n) = UF(j, #s,G(P)/s), so minHit(n) = minHit(P/s).

Branch (21) of UF(j, k, n) leads always to a PASS verdict and is taken if minHit(n) = ∅. If minHit(n) , ∅, the

assumption that (Q |[Σ ]|UF(j))/s blocks at branch (23) implies that there exists some H ∈ minHit(n) that is not a

hitting set of minAcc(Q/s). Again, by Lemma 5, this contradicts the assumption that Q conf P. As a consequence, the

test execution can never deadlock at branch (23) without entering branch (21) and passing the test.

Note that the line of reasoning in this proof requires that Q is free of livelocks, because otherwise a pass event might

not become visible, due to unbounded sequences of hidden events performed by Q. ✷

Lemma 8. A test suite TSF specified as in Theorem 2 is exhaustive for the fault model specified there.

Proof. Consider a process Q ∈ D with P 6⊑F Q. According to (2), this non-conformance can be caused in two possible

ways corresponding to the cases P 6⊑T Q and ¬(Q conf P). These cases can be characterised as follows:

Case 1 traces(Q) * traces(P)

Case 2 There exists a joint trace s ∈ traces(Q) ∩ traces(P) and a minimal acceptance AQ of minAcc(Q/s), such that

(see Lemma 1, (11))

∀AP ∈ minAcc(P/s) : AP * AQ, (29)

It has to be shown for each of these cases that at least one test execution of some (Q |[Σ ]|UF(j)) with j < pq ends with

the fail event or deadlocks. We do this by analysing the product graph of the reference process P and the SUT process

Q: any trace s ∈ traces(Q) ∩ traces(P) gives rise to a path labelled by the events of s through this product graph.

Any error can be detected after running through such a trace and then either observing an event outside [P/s]0 (the

violation described by Case 1) or identifying an illegal acceptance AQ (as in Case 2). It is not guaranteed, however,

that s is short enough to be executed by one of the test cases UF(j) with 0 6 j < pq. So, it has to be shown that for any

s leading to an error situation, there exists a trace u of maximal length pq − 1 leading to the same error.

Case 1. Consider a trace s.e ∈ traces(Q) with s ∈ traces(P), but s.e < traces(P). Such a trace always exists because ε is

a trace of every process. In this case, s is also a trace of the product graph G = G(P)×G(Q) defined in Section 2.1, and

G/s = (G(P)/s,G(Q)/s) holds. The length of s is not known, but from the construction of G, we know that G has at

most pq reachable states, because G(P) has p states, and G(Q) has at most q states. By Lemma 3, (G(P)/s,G(Q)/s) can

be reached by a trace u ∈ traces(G) of length #u < pq. Now the construction of the transition function of G implies

that u is also a trace of P and Q, which means that (G(P)/s,G(Q)/s) = (G(P)/u,G(Q)/u). Since test UF(pq − 1)

accepts all traces of P up to length pq − 1, u is also a trace of this test, and, by construction and by Lemma 6,

UF(pq − 1)/u = UF(pq − 1, #u,G(P)/u). Since s.e < traces(P), e is an element of Σ − [P/u]0 = Σ − [G(P)/s]0. Hence,

in at least one execution, UF(pq − 1, #u,G(P)/u) executes its first branch (20) with this event e, so that the test fails.

Again, the assumption of non-divergence of Q is needed for this conclusion.

Case 2. We note again that s is a trace of the product graph G, but we do not know its length. Again, by Lemma 3, the

state G/s can be reached by a trace u ∈ traces(Q)∩ traces(P) of maximal length #u < pq. We consider the test UF(#u),

for which UF(#u)/u = UF(#u, #u,G(P)/u), because of Lemma 6. UF(#u) can always perform branch (22) until the

trace u has been completely processed. UF(#u, #u,G(P)/u) may execute branches (20) or (23) only: (29) implies that

P/s has at least one non-empty minimal acceptance. By (18) this is equivalent to minHit(P/s) = minHit(G(P)/s) , ∅,

and we observe that G(P)/s = G(P)/u, so minHit(G(P)/u) , ∅. As a consequence, branch (21) cannot be taken

because its guard condition evaluates to false for UF(#u, #u,G(P)/u). The guard condition (k < j) for branch (22)

evaluates to false for UF(#u, #u,G(P)/u), too. If branch (20) is executed, the test always fails. If branch (23) is

executed, the test deadlocks and therefore fails for the execution where Q/u selects the minimal acceptance AQ as

specified in (29) and UF(#u, #u,G(P)/u) selects a minimal hitting set H ∈ minHit(P/u) that has an empty intersection

with AQ. The existence of such an H is guaranteed because of Lemma 5. As a consequence, (Q |[Σ ]|UF(#u))/u cannot

produce the pass event in this execution; this means that the test fails. The complete testing assumption guarantees

that this execution really occurs if (Q |[Σ ]|UF(#u)) is executed sufficiently often. This concludes the proof. ✷

Our notion of test can be specialised to deal with traces refinement (see Section 5). We next present an example.
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4. Testing for Failures Refinement – an Example

Generating the test cases UF(p) specified in (19) for the reference process P discussed in Example 1, results in

the instantiations of initials, minimal hitting sets, and transition function shown in Fig. 2; this can be directly derived

from P’s normalised transition graph with nodes N = {0, 1, 2, 3} displayed in Fig. 1.

[0]0 = {a}

[1]0 = {a, b, c}

[2]0 = {a, b, c}

[3]0 = {b, c}

minHit(0) = {{a}}

minHit(1) = {{a, b}, {c}}

minHit(2) = {{a, b}, {a, c}}

minHit(3) = {{b}, {c}}

t(0, a) = 1

t(1, a) = 0

t(1, b) = 0

t(1, c) = 2

t(2, a) = 1

t(2, b) = 0

t(2, c) = 3

t(3, b) = 0

t(3, c) = 3

Figure 2: Initials, minimal hitting sets, and transition function of the normalised transition graph displayed in Fig. 1.

Example 4. Consider the following implementation Z of process P from Example 1 that is erroneous from the point

of view of failures refinement. In the specification of Z, it is assumed that rmax > 0.

Z = a→ (Q1 ⊓ R1(rmax, 0))

Q1 = a→ Z ✷ c→ Z

R1(rmax, k) = (k < rmax)&
(
b→ Z ✷ c→ R1(rmax, k + 1)

)

✷

(k = rmax)&
(
b→ Z ⊓ c→ R1(rmax, rmax)

)

It can be checked with FDR that Z is trace-equivalent to P. While k < rmax, Z also accepts the same sets of events

as P. When R1(rmax, k) runs through several recursions and k = rmax, however, R1(rmax, k) makes an internal choice,

instead of offering an external choice, so P 6⊑F Z. Fig. 3 shows the normalised transition graph of Z for rmax = 3.

Running the test UF(j) against Z for j = 0, . . . , 19 (G(P) has p = 4 states and G(Z) has q = 5, so pq − 1 = 19 is

the index of the last test to be executed according to Theorem 2), tests UF(0), . . . ,UF(3) are passed by Z, but Z fails

UF(4), because after execution of the trace

s = a.c.c.c, (note that G(P)/s = node 3 according to Fig. 1),

the test UF(4) offers hitting sets from minHit(3) = {{b}, {c}} in branch (23). Therefore, there exists one test execution

where Z/s accepts only {b} due to the internal choice (note from Fig. 3 that G(Z)/s = node 4), while UF(4)/s only

offers {c} in branch (23) or {a} = Σ − [3]0 for branch (20). As a consequence, this execution of (Z |[Σ ]|UF(4))/s

0
minAcc:
{a}

1
minAcc:
{a,c}
{b,c}

a

a

b
2

minAcc:
{a}
{b,c}

c

b

a

3
minAcc:
{b,c}

c

b

4
minAcc:
{c}
{b}

c

b

c

Figure 3: Normalised transition graph of faulty implementation Z for rmax = 3 from Example 4.
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deadlocks, and the pass event cannot be produced. Another failing execution arises if Z/s chooses to accept only {c},

while UF(4)/s chooses to accept only {a, b}. Therefore, (pass→ Stop) 6⊑F (Z |[Σ ]|UF(4)) \ Σ, and the test fails. ✷

5. Finite Complete Test Suites for CSP Traces Refinement

For establishing traces refinement, the class of adaptive test cases specified below in (30) – (34) is used for a given

reference process P and integers j > 0. Just as for the tests developed in Section 3 to verify failures refinement, the

tests for traces refinement are derived from the reference model’s transition graph

G(P) = (N, n,Σ, t : N × Σ 7→ N, r : N → PP(Σ)).

In contrast to the tests for failures refinement (19), however, we do not need to check the SUT with respect to its

acceptance of hitting sets. Therefore, these do not occur in the specification of the test cases below. We use the

condition on acceptances minAcc(n) = {∅} instead of the condition on hitting sets minHit(n) = ∅ in branch (32).

From (18) we know that these conditions are equivalent, but, by using expression minAcc(n) = {∅}, we make it

unnecessary to calculate hitting sets for generating these tests from G(P), which is expensive.

UT (j) = UT (j, 0, n) (30)

UT (j, k, n) =
(
e : (Σ − [n]0)→ fail→ Stop

)
(31)

✷

(minAcc(n) = {∅})&
(
pass→ Stop

)
(32)

✷

(k < j)&
(
e : [P/s]0 → UT (j, k + 1, t(n, e))

)
(33)

✷

(k = j)&
(
pass→ Stop

)
(34)

It is easy to see that the tests UT (j) satisfy the properties

UT (j)/s = UT (j, #s,G(P)/s) (35)

e < [P/s]0 ⇒ UT (j)/s.e = (fail→ Stop) (36)

proven in Lemma 6 for UF(j) for traces s ∈ traces(P) with #s 6 j.

Since the test UT (j) never blocks any event of an SUT process Q before terminating, the pass criterion, defined

below, can be based on trace instead of failures refinement as required in (24).

Q pass UT (j) =̂ (pass→ Stop) ⊑T (Q |[Σ ]|UT (j)) \ Σ (37)

If the SUT process Q deadlocks after a trace s, and in this case the reference process P is also in a state where deadlock

is possible, this is captured by the fact that minAcc(n) = {∅} for n = G(P)/s. Therefore, branch (32) of a test case

execution state UT (j, k, n) with #s = k 6 j can be entered and the test execution terminates with pass. If, however, Q

blocks after a trace s′ and the reference process satisfies minAcc(P/s′) , ∅, branch (32) cannot be taken, and the test

execution stops without producing pass or fail. In contrast to the test for failures refinement, this is interpreted here as

a successful test execution, because unexpected blocking of the SUT does not violate the trace-refinement relation, as

long as all traces executed by the SUT are traces of the reference process. In particular, if neither pass nor fail is ever

produced, so that (Q |[Σ ]|UT (j)) \ Σ = Stop, the test passes, because (pass→ Stop) ⊑T Stop holds.

The existence of complete, finite test suites is expressed in analogy to Theorem 2. A noteworthy difference is that

the complete suite for traces refinement just needs the single adaptive test case UT (pq − 1), while failures refinement

requires the execution of {UF(0), . . . ,UF(pq− 1)}. The reason is that UT (pq− 1) identifies trace errors for all traces up

to length pq, while UF(pq − 1) only probes for erroneous acceptances at the end of each trace of length (pq − 1).
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Theorem 3. Let P be a non-terminating, divergence-free CSP process over alphabet Σ whose normalised transition

graph G(P) has p states. Define fault domainD as the set of all non-terminating, divergence-free CSP processes over

alphabet Σ, whose transition graph has at most q states with q > p. Then the test suite

TST = {UT (pq − 1)}

is complete with respect to F = (P,⊑T ,D). ✷

As for Theorem 2, the proof is structured in two lemmas, the first ensuring soundness, and the second exhaustiveness.

Lemma 9. A test suite TST generated from a CSP process P, as specified in Theorem 3, is passed by every CSP

process Q satisfying P ⊑T Q.

Proof. Suppose that P ⊑T Q, so that traces(Q) ⊆ traces(P), and assume that s ∈ traces(Q) with #s < pq. Since s is

also a trace of P, we can conclude

UT (pq − 1)/s = UT (pq − 1, #s,G(P)/s)

because of (35). Now traces(Q) ⊆ traces(P) implies [Q/s]0 ⊆ [P/s]0 = [G(P)/s]0, so UT (pq − 1, #s,G(P)/s) cannot

enter branch (31) and produce a fail event when running in parallel with Q and synchronising over Σ. Therefore, only

four options are available for the test execution (Q |[Σ ]|UT (j))/s to continue.

Case 1. Q/s deadlocks and minAcc(G(P)/s) = {∅}. In this case, the test UT (pq − 1, #s,G(P)/s) enters branch (32),

and its execution stops after pass.

Case 2. Q/s deadlocks, but minAcc(G(P)/s) , {∅}. In this case, the whole test execution deadlocks, and this means

that neither a pass nor a fail event is produced, so the test execution is passed.

Case 3. Q/s selects an event e ∈ [Q/s]0 and #s < pq−1. In this case, the test UT (pq−1) in state UT (pq−1, #s,G(P)/s)

can also engage in e by entering branch (33), and its execution continues without producing a pass or a fail event.

Case 4. #s = pq− 1 holds. In this case, UT (pq− 1, #s,G(P)/s) can enter branch (34), and the test execution stops after

pass.

This case analysis shows that every execution of (Q |[Σ ]|UT (j)) either stops after pass or produces neither pass nor

fail. This proves that Q passes test UT (pq − 1) according to the pass criterion (37). ✷

Lemma 10. A test suite TST specified as in Theorem 3 is exhaustive for the fault model specified there.

Proof. As in the proof for failures testing, we construct the product graph G = G(P) × G(Q) and recall that every

trace s ∈ traces(P) ∩ traces(Q) is associated with a path through G labelled with the same events as s, such that

G/s = (G(P)/s,G(Q)/s). Furthermore, we recall from Lemma 2 that the graph state (G(P)/s,G(Q)/s) can always be

reached by a trace u of length less or equal pq − 1, where the order of G(P) is p and that of G(Q) is q.

Suppose that P 6⊑T Q. Since the empty trace is a trace of every process, there exists a trace s ∈ traces(Q)∩traces(P)

and an event e ∈ [Q/s]0 such that e < [P/s]0. Let u ∈ traces(Q) ∩ traces(P) be a trace with #u < pq and

G/u = (G(P)/s,G(Q)/s). Then

UT (pq − 1)/u = UT (pq − 1, #u,G(P)/s).

By assumption, e ∈ (Σ − [P/s]0) = (Σ − [G(P)/s]0). Since G(Q)/u = G(Q)/s, Q/u can engage into e. Then

UT (pq − 1, #u,G(P)/s) can enter branch (31), and the test execution stops after having produced fail. This proves

that Q fails test UT (pq − 1). ✷

Having established completeness of our test suites, we consider complexity of a testing technique that uses them.
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6. Complexity Considerations

With finite complete CSP test suites test suites at hand, it is now possible to calculate how many test executions

are needed when using them. Previous work did not consider sufficient conditions for finiteness, so estimates for the

maximal number of executions could not be calculated. We answer the following questions. (1) What is the worst-case

bound on the number of test executions to be performed to verify an SUT with respect to failures refinement, when

we use our test suite? (2) What is the worst-case bound for traces refinement? (3) Is it possible to reduce the maximal

length of traces when testing for failures or traces refinement? We consider the first question (1) in Section 6.1,

where we also discuss whether it is possible to reduce the number of test executions with a different test suite. With

the answer to question (1), question (2) is a fairly simple consequence we discuss briefly at the end of Section 6.1.

Question (3) is the subject of Section 6.2.

6.1. Estimates for the Maximal Number of Failures Test Executions

An arbitrary CSP process P might have minHit(P/s) = ∅ for some traces s, so that a test case UF(j) for a j greater

than the size of s can enter branch (21). In this case, further executions are needed to consider traces that have s as a

prefix. To provide a bound on the number of test executions needed, we first define a process Pmax (see (39)), which,

when used as a reference process, requires the maximal number of test executions among all reference processes P

fulfilling minHit(P/s) , ∅ for all traces s. For Pmax, we can establish the actual number of test executions required (see

(47)). We then show that the order of magnitude of the worst-case bound for the number of test executions is the same

also for reference processes P that may have minHit(P/s) = ∅ for some s.

A Reference Process. Given an alphabet Σ of size |Σ | = n > 2, define a collection of subsets of Σ by

C = {A ⊆ Σ | |A | = n − ⌊
n

2
⌋ + 1}. (38)

With this choice of C, define

Pmax =⊓A∈C
e : A→ Pmax (39)

The relevant properties of Pmax are summarised in the following lemma.

Lemma 11. Given alphabet Σ with cardinality |Σ | = n > 2, process Pmax fulfils

[Pmax/s]0 = Σ for all s ∈ Σ∗ (40)

traces(Pmax) = Σ∗ (41)

minAcc(Pmax/s) = C for all s ∈ Σ∗ (42)

minHit(Pmax/s) = minHit(C) for all s ∈ Σ∗ (43)

|minHit(Pmax/s) | =

(
n

⌊ n
2
⌋

)
for all s ∈ Σ∗ (44)

minHit(C) = {H ⊆ Σ | |H | = ⌊
n

2
⌋} (45)

Proof. Since
⋃

A∈C A = Σ by construction of C, [Pmax/s]0 = Σ as stated by (40). Since Pmax/e = Pmax for all e ∈ Σ,

this proves statement (41). The internal choice construct used in the specification of Pmax implies minAcc(Pmax) = C.

Again, Pmax/e = Pmax for all e ∈ Σ implies minAcc(Pmax/s) = C for all traces of Pmax, so this shows (42). Statement

(43) is a direct consequence of (42). Let H be any minimal hitting set of C. Then H contains at least ⌊ n
2
⌋ elements,

because otherwise |Σ \ H | > n−⌊ n
2
⌋, and any subset A ⊆ Σ\H with cardinality n−⌊ n

2
⌋+1 would be contained in C, but

satisfy A∩H = ∅. Since ⌊ n
2
⌋+n−⌊ n

2
⌋+1 = n+1, we conclude that any ⌊ n

2
⌋-element subset of Σ intersects every element

of C. Therefore, every minimal hitting set of C has exactly ⌊ n
2
⌋ elements; this shows (45) and |minHit(C) | =

(
n

⌊ n
2
⌋

)
.

The latter shows (44) and completes the proof. ✷
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Test Cases of Pmax. The test cases UF(j) generated from Pmax can never enter branch (20), because Pmax/s has initials

Σ for all traces s ∈ traces(Pmax) according to (40). Moreover, they can never enter branch (21), because minHit(Pmax/s)

is never empty according to (44). Finally, the minimal hitting sets used to probe the SUT at the end of a non-blocking

test execution are always the hitting sets of C according to (43). This results in the following test case structure.

UF(j) = UF(j, 0, n)

UF(j, k, n) = (k < j)&
(
e : Σ→ UF(j, k + 1, t(n, e)

)

✷

(k = j)&
(
⊓H∈minHit(C)

(e : H → pass→ Stop)
)

This means that the branches of UF(j) that can lead to an early termination are not feasible. All tests deadlock, or run

to the end of a trace of size j and then present a choice of events from a minimal hitting set.

Moreover, Theorem 1 establishes that given an alphabet with n elements, there is no Sperner family consisting

of more than
(

n

⌊ n
2
⌋

)
members. In addition, we recall the minimal hitting sets calculated from a given set of minimal

acceptances are a Sperner family (see discussion in Section 2.3). So, (44) establishes that there is no possibility of

providing more choices from minimal hitting sets with a test derived from a process different from Pmax.

In summary, the tests derived from Pmax require the most test executions when compared to tests derived from any

other CSP process P whose collections of minimal hitting sets minHit(P/s) are never empty for any trace s.

Maximal Number of Test Executions for Pmax. When considering the number of test executions to be performed using

UF(j) derived from Pmax against some SUT Q for all j = 0, . . . , pq − 1, and considering that we need to cover all the

possible behaviours of Q, the maximal number of test executions is only reached if (a) Q is a correct refinement of

Pmax (or more generally, of the reference process) and (b) its traces are Σ∗. In such a situation, no test execution blocks

early, because Q/s can always engage into some e ∈ Σ while #s < j, and never blocks in the last step when #s = j and

a hitting set H ∈ minHit(C) is offered by the test case. The resulting number of executions in this case is

nj ·

(
n

⌊ n
2
⌋

)
, (46)

because all traces up to length j can be executed with UF(j) entering branch (22), and each of these traces is followed

by one event from each of the hitting sets of C since Q is correct.

The number of executions in (46) is indeed maximal for all reference processes P fulfilling minHit(P/s) , ∅ for

all traces s. All these processes can never enter branch (21), and, if an execution with an SUT entered branch (20), this

would only lead to early termination of the whole test suite, because a failure has been detected. As a consequence,

|Σ | j is the maximal number of traces to be executed up to length j, and from Theorem 1 we know that the number(
n

⌊ n
2
⌋

)
of hitting sets to be tested at the end of each trace of length j is already maximal.

Summing up formula (46) over all test cases UF(0), . . . ,UF(pq − 1) to be executed and applying the formula for

the sum of a geometric progression, this results int

pq−1∑

j=0

nj ·

(
n

⌊ n
2
⌋

)
=

(
n

⌊ n
2
⌋

)
·

1 − npq

1 − n
with n = |Σ | (47)

as the maximal number of test executions to be performed when testing an error-free SUT Q with traces(Q) = Σ∗

against the reference process Pmax. If we are interested only in the order of magnitude, we have

O
(( n

⌊ n
2
⌋

)
· npq−1) with n = |Σ | . (48)

Considering Empty Collections of Minimal Hitting Sets. The argument so far has shown that the tests derived from

Pmax require the most test executions when considering processes whose collections of minimal hitting sets are never

empty. It remains to consider whether reference processes Z possessing failures (s,Σ) may require more test executions

for their associated tests UF(j) than the bound given for Pmax in (47), because process states Z/s with minHit(Z/s) = ∅
allow for test executions entering branch (21). To this end, consider a test case UF(j) constructed from such a process

Z. Every trace s ∈ traces(Z) with #s < j ending in a process state Z/s with minHit(Z/s) = ∅ allows for
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• one execution of branch (21), where the test execution (Z |[Σ ]|UF(j))/s stops after pass, and

• | [Z/s]0 | continuations of the test execution with events e ∈ [Z/s]0.

For every trace s ∈ traces(Z) with #s = j,

• one execution of branch (21) follows if minHit(Z/s) = ∅, and otherwise

• |minHit(Z/s) | executions checking acceptance of minimal hitting sets.

For a rough estimate of the worst-case upper bound suppose that

1. [Z/s]0 = Σ for all traces s of Z,

2. all traces s with #s < j end in a state with empty minimal hitting sets, and

3. all traces s with #s = j end in a state with a maximal number
(

n

⌊n/2⌋

)
of hitting sets.

We note that this scenario is not feasible for all j ∈ {0, . . . , pq − 1}, because the traces of UF(p − 1) already cover

all states of Z’s transition graph according to Lemma 2, and if all states of Z have empty hitting sets, there are no

acceptance checks to be performed in the last step of the test execution. Therefore, the upper bound calculated next
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cannot be reached by a CSP process. With the three assumptions above, nevertheless, we can calculate that

• UF(0) has
(

n

⌊n/2⌋

)
executions,

• UF(j), for j > 0 has
∑j−1

i=0
ni = nj−1

n−1
executions of branch (21), (n = |Σ | ), and

• UF(j), for j > 0 has
(

n

⌊n/2⌋

)
·nj executions where the acceptance of hitting sets is checked after having run through

a trace of length j.

Summing up over all UF(j) for j = 0, . . . , pq − 1, an upper bound B may be calculated as follows.

B =

(
n

⌊n/2⌋

)
+

pq−1∑

j=1

nj − 1

n − 1
+

pq−1∑

j=1

(
n

⌊n/2⌋

)
· nj

=

pq−1∑

j=1

nj − 1

n − 1
+

pq−1∑

j=0

(
n

⌊n/2⌋

)
· nj

=
npq − npq + pq − 1

(n − 1)2
+

(
n

⌊n/2⌋

)
·

npq − 1

n − 1
=

=

(
n

⌊ n
2 ⌋

)
(n − 1) (npq − 1) + npq − npq + pq − 1

(n − 1)2

Since B cannot be reached anyway, we just calculate its order of magnitude, and this results again in O
(( n

⌊ n
2
⌋

)
· npq−1

)
,

as calculated already for Pmax in (48). Summarising these complexity calculations, we have the following theorem.

Theorem 4. Given a process alphabet Σ, consider a fault model F = (P,⊑F,D), such that the normalised transition

graph of P has p states, and the fault domain D contains all processes Q over alphabet Σ, such that G(Q) has

at most q > p states. Then the maximal number of test executions to be performed using the complete test suite

TSF = {UF(j) | 0 6 j < pq} created from P as specified in Theorem 2 is of order

O
(( n

⌊ n
2
⌋

)
· npq−1) with n = |Σ | .

For processes P satisfying (s,Σ) < failures(P) for all traces s, the reachable precise upper bound is given by

(
n

⌊ n
2
⌋

)
·

1 − npq

1 − n
with n = |Σ | .

✷

As established by Lemma 5, the number of hitting sets used to probe the SUT cannot be reduced: if the reference

process is Pmax, we need to consider all of them, otherwise illegal blocking may remain undetected. In addition, if

Pmax defines the behaviour of the SUT, using smaller sets that are no longer hitting sets lead to a rejection of correct

implementations. Our explicit definition of Pmax to establish this worst-case is useful to illustrate this point.

In [17], it is suggested to test every non-empty subset of Σ whose events cannot be completely refused in a given

process state of the reference model; this leads to a worst-case estimate of 2 |Σ| − 1 for the number of different sets to

be offered to the SUT in the last step of the test execution. This number is significantly larger than the worst-case

estimate
(

n

⌊n/2⌋

)
above. In Fig. 4, the reduction is visualised by plots of the two functions. In [20], the authors also use

minimal hitting sets3, but do not give an estimate for the number of test executions.

3However, they are denoted by minimal acceptances in [20].

20



n n
2


2
n

2 4 6 8

100

200

300

400

500

600

Figure 4: Function plot 2 |Σ| versus
(
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⌊ n

2
⌋

)
.

Estimate for the Maximal Number of Trace Test Executions. According to Theorem 3, a complete test suite checking

traces refinement just contains the adaptive test case UT (pq − 1). As derived for UF(j) above, the maximal number of

executions to be performed by (Q |[Σ ]|UT (pq − 1)) is of order O
(
|Σ | pq−1).

6.2. Upper Bound pq for the Maximal Length of Test Traces

According to Theorem 2, the tests UF(j) need to be executed for j = 0, . . . , pq − 1 to guarantee completeness. So,

the SUT is verified with test traces up to, and including, length pq. With branch (20), UF(j) accepts all traces s.e with

s ∈ traces(P), #s = j, e < traces(P/s), so erroneous traces up to length j + 1 are detected.

It is interesting to investigate whether this maximal length is necessary, or one could elaborate alternative complete

test strategies where the SUT is tested with shorter traces only. Indeed, an example in [29, Exercise 5] shows that,

when testing for equivalence of deterministic FSMs, it is sufficient to test with traces of significantly shorter length.

The following example, however, shows that the maximal length pq is really required when testing for refinement.

Example 5. Consider the CSP reference process P and an erroneous implementation Q specified as follows.

P = P(0)

P(k) = (k < p − 1)&
(
(a→ P(k)) ⊓ (b→ P(k + 1))

)

✷

(k = p − 1)&(a→ P(k))

Q = Q(0)

Q(k) = (k < q − 1)&
(
a→ Q(k + 1)

)

✷

(k = q − 1)&
(
a→ Q(0) ✷ b→ Q(0)

)

The normalised transition graphs of P and Q are depicted in Fig. 5 for the case p = 3, q = 4. Using FDR4, it can be

shown for concrete values of p and q that the “test passed conditions”

(pass→ Stop) ⊑F (Q |[Σ ]|UF(j)) \ Σ and (pass→ Stop) ⊑T (Q |[Σ ]|UT (j)) \ Σ

hold for j = 0, . . . , pq − 2. So, none of the test cases UF(j) and UT (j) are capable of detecting failures and traces-

refinement violations, if they only check traces up to length pq − 1. (We recall that this corresponds to j 6 pq − 2).

Q, however, neither conforms to P in the failures refinement relation, nor in the traces-refinement relation. This

can only be seen when executing the test UF(pq− 1) and UT (pq− 1), respectively. These tests fail, because they allow

for execution of the following trace of length 12

sfail = a.a.a.b.a.a.a.b.a.a.a.b
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Figure 5: Transition graphs of P (left) and Q (right) from Example 5 for p = 3 and q = 4.

Only in the very last step, the final b-event can be produced by Q but is refused by P. Therefore, tests UF(11) and

UT (11) enter their first branch (20) and (31), respectively, when engaging into the last b, and this produces the fail-

event and shows that P 6⊑F Q and P 6⊑T Q according to Theorem 2 and Theorem 3.. The tests UF(j) and UT (j) with

j < pq − 1 = 11 only execute true prefixes of sfail which are allowed for P, so that these tests pass.

This shows that the maximal trace length pq to be investigated in the tests cannot be further reduced without losing

the completeness property of the test suites. ✷

Generalising Example 5, it can be shown that for any p, q ≥ 2, there exist reference processes P with p states and

implementation processes Q with q states, such that a violation of the traces-refinement property can only be detected

with a trace of length pq. This is proven in the following theorem.

Theorem 5. Let 2 6 p, q ∈ N. Then there exists a reference process P and an implementation process Q with the

following properties.

1. G(P) has p states.

2. G(Q) has q states.

3. P 6⊑T Q, and therefore, also P 6⊑F Q.

4. ∀ s ∈ traces(Q) : #s < pq⇒ s ∈ traces(P).

5. Q conf P.

As a consequence, the upper bound pq for the length of traces to be tested when checking for failures refinement or

traces refinement cannot be reduced without losing the test suite’s completeness property.

Proof. Given 2 6 p, q ∈ N, define reference process P and implementation process Q as in Example 5. It is trivial to

see that G(P) has p nodes and G(Q) has q nodes, so statements 1 and 2 of the theorem hold.

Using regular expression notation, the traces of P can be specified as traces(P) = pref
(
(a∗b)p−1a∗

)
, where pref(M)

denotes the set of all prefixes of traces in M ⊆ Σ∗, including the traces of M themselves. The traces of Q can be

specified by traces(Q) = pref
(
(aq−1(a | b))∗

)
. It is easy to see that traces(Q) * traces(P); for example, the trace

(aq−1b)p is in traces(Q) \ traces(P), because traces of P contain at most p − 1 b-events. This proves statement 3.

Let s ∈ traces(Q) be any trace of length #s = pq − 1, then s = (aq−1(a | b))p−1aq−1 ∈ pref
(
(aq−1(a | b))∗

)
. So, s is

also an element of traces(P), because (aq−1(a | b))p−1aq−1 is also contained in pref
(
(a∗b)p−1a∗

)
, since pref

(
(a∗b)p−1a∗

)

contains all finite sequences of a, where at most p − 1 events b have been inserted. This proves statement 4.

To prove statement 5, we observe that the specifications of P and Q lead to the following sets of minimal accep-

tances. In these definition, the expression (s ↓ b) denotes the number of b events occurring in trace s.

minAcc(P/s) =

{
{{a}, {b}} for all s ∈ traces(P) with (s ↓ b) < p − 1.

{{a}} for all s ∈ traces(P) with (s ↓ b) = p − 1.

minAcc(Q/s) =

{
{{a}} for all s ∈ traces(Q) with #s , 0 mod (q − 1).

{{a, b}} for all s ∈ traces(P) with #s = 0 mod (q − 1).
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So, the minimal acceptance set AP = {a} contained in every minAcc(P/s) fulfils AP ⊆ AQ for any AQ ∈ minAcc(Q/s),

when s ∈ traces(P) ∩ traces(Q). Now Lemma 1, in particular (11), can be applied to conclude that Q conf P. ✷

It is discussed next in Section 7 how the number of test traces to be executed by complete test suites for failures or

traces refinement can still be reduced without reducing the maximal length.

7. Discussion and Conclusions

Further Reductions of the Test Effort. As shown in Theorem 5, the maximal length pq of traces to be tested for either

failures refinement or traces refinement cannot be further reduced. It is noteworthy, however, that when testing FSMs

for equivalence, considerably shorter traces can be used. From the classical results published in [23, 24], for example,

it follows that the maximal trace length to be executed is less or equal to 3p − q, which is considerably smaller than

pq for p, q > 3. As a consequence, the investigation of complete test suites establishing failures or trace equivalence

is of considerable interest and will be discussed in a future paper.

It is also known from FSM testing that it is not necessary to check all traces up to length pq when testing for

reduction of FSMs (which corresponds to trace refinement). Notable complete strategies supporting this fact have been

presented, for example, in [3, 30, 31, 4]. From [10] it is known that complete FSM testing theories can be translated to

other formalisms, such as Extended Finite State Machines, Kripke Structures, or CSP, resulting in likewise complete

test strategies for the latter. We intend to study translations of several promising FSM strategies to CSP. These will

effectively reduce the upper bound for the number of test executions to be performed, which has been shown to be of

the order O
(
|Σ | pq−1) for our traces-refinement tests in Section 6. The bound

(
n

⌊n/2⌋

)
for the number of sets to be used

in probing the SUT for illegal deadlocks, however, cannot be further reduced, as established in Lemma 5.

Adaptive Test Cases. The tests suggested in [17, 20] were preset in the sense that the trace to be executed was pre-

defined for each test. As a consequence, the authors of [20] introduced inconclusive as a third test result, applicable

to the situations where the intended trace of the execution was blocked, due to legal, but nondeterministic behaviour

of the SUT. We consider this as a disadvantage, since, when aiming at executing a specific trace s before being able

to check the test objective—for example, the absence of deadlocks when offering a hitting set H of the minimal

acceptances—it may take several tries until the full trace s is accepted by the SUT. Considering the complete testing

assumption described in Section 3, it may even take c#s tries to reach the end of the trace s, if the SUT can legally

block every event of s due to nondeterminism, so that c trials are required for each event is accepted.

Those authors, later, in the context of a richer algebra based on CSP, have considered a framework similar to

adaptive testing [32]. They have, however, considered only traces refinement, and have not studied complexity.

In contrast to that, our test cases specified in Section 3 and 5 are adaptive. This has the advantage that test execu-

tions (Q |[Σ ]|UF(j)) for failures refinement may only stop early with pass after traces s satisfying minHit(P/s) = ∅,

and may deadlock (a) after a trace s where the SUT illegally deadlocks (so minHit(P/s) , ∅ for the reference process,

but minHit(Q/s) = ∅ for the implementation Q), or (b) in the final step when—just as in the corresponding test cases

specified in [20]— hitting sets H are offered to the SUT and it refuses their acceptance. In both situations (a) and (b)

the test fails. As a consequence, far less test repetitions are required according to the complete testing assumption

than for the successful execution of all test cases specified in [20].

Another distinction of our failures test cases UF(j) to the tests specified in [20] consists in the fact that the former

test both traces refinement and the conf conformance relation in one go, whereas the latter use separate test suites to

establish these two correctness conditions. Again, we consider the structure of the test cases UF(j) as advantageous,

since, when checking acceptance of a hitting set H after a trace s for c times according to the complete testing

assumption, any acceptance of an illegal event e ∈ Σ − [P/s]0 should also be revealed within these c tries.

Fault Domains. As already mentioned, the work in [21] defines a fault domain as the set of processes that refine a

given CSP process. In that context, only testing for traces refinement is considered, and the complete test suites may

not be finite. So, the work presented here goes well beyond what is achieved there, but is restricted to finite and

nonterminating reference processes. In addition, [21] presents an algorithm for test generation that can be adapted

to consider additional selection and termination criteria, like, for example, the length of the traces used to construct

tests. It would be possible, for instance, to use the bound indicated here. Moreover, specifying a fault domain as a
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CSP process allows us to model domain-specific knowledge using CSP. For example, if an initialisation component

defined by a process I can be regarded as correct without further testing, we can use I; RUN as a fault domain, to

indicate that any SUT of interest implements I correctly, but afterwards has an arbitrary behaviour specified by RUN.

Implications for CSP Model Checking. As explained in the previous sections, passing a test is characterised by the

failures-refinement check (pass → Stop) ⊑F (Q |[Σ ]|UF(j)) \ Σ for failures testing. If the SUT Q is not a pro-

grammed piece of software or an integrated hardware or software system, but just another CSP process specification,

it is of course possible to verify the pass criterion using the FDR4 model checker. For checking the refinement

relation P ⊑F Q, the pass criterion has to be verified for j = 0, . . . , pq − 1, where p and q indicate the number

of nodes in P’s transition graph and the maximal number of nodes in Q’s graph, respectively (Theorem 2). Since

the test cases UF(j) have such a simple structure, it is an interesting question for further research whether checking

(pass→ Stop) ⊑F (Q |[Σ ]|UF(j)) \ Σ for j = 0, . . . , pq − 1 can be faster than directly checking P ⊑F Q, as one would

do in the usual approach with FDR4. This is of particular interest, since the checks could be parallelised on several

CPUs. Alternatively it is interesting to investigate whether the check of4

(pass→ Stop) ⊑F (Q |[Σ ]| ⊓
pq−1

j=0
UF(j)) \ Σ

may perform better than the check of P ⊑F Q, since the former allows for other optimisations in the model checker.

For a large implementation process Q, it may be too time consuming to generate its normalised transition graph,

so that its number q of nodes is unknown. In such a case, our testing approach based on fault domains may still be

used as efficient bug finders: use the number of nodes of the normalised transition graph of the reference process as

the initial value for q and increment q from there, as long as each increment reveals new errors.

Practical Application to Embedded Systems Testing. Test models developed in CSP are particularly useful for test-

ing embedded control systems; see [33, 34], for example, for reports on practical application. Using complete test

methods is particularly attractive for justifying the test case selection when verifying safety-critical control systems.

The complexity estimates in Section 6, however, indicate that completeness will result in considerable test effort de-

pending exponentially on the number of states in reference model and implementation. Moreover, the complexity

considerations showed that nondeterminism increases the number of test cases further by a significant factor.

Therefore, we expect that the test strategy presented in this paper will only be applicable to rather small control

systems, when used directly for HW/SW integration testing, where tests are executed on the target hardware and in

real physical time. There are, however, several options to circumvent or at least mitigate the complexity problem.

(1) Recent research on the certifiability of autonomous systems advocates a multi-level approach to testing. In the first

stage, very many tests are executed concurrently in a cloud configuration.5 In the second stage, a smaller subset of

these tests is then executed against the real physical embedded system. We expect that the complete testing approach

described here would typically be applied for stage 1 in the cloud configuration.

(2) The number of test cases to consider in a complete test suite can be significantly reduced by the introduction of

equivalence classes. It has been shown in [10] that complete testing theories for finite state machines induce likewise

complete equivalence class testing strategies for more complex modelling formalisms, such as Kripke Structures or

CSP. Experimental evaluations have shown that with the help of such classes, complete test suites with manageable

size can be generated [35, 36]. The experiments considered on-board speed monitors for trains, airbag controllers,

and route controllers for railway interlocking systems.

(3) A further promising option is to eliminate nondeterminism. For safety-critical systems, nondeterminism usually

occurs in environment models or in high-level models of the target system for specifying behavioural options. The

implementation itself is typically deterministic. As a consequence, the high-level model can be refined until all design

decisions are included, so that the lower-level models are deterministic. Now the SUT could be tested for equivalence

to the lower-level model. The lower-level model would typically have more states than the higher-level one, but – as

4We are grateful to Bill Roscoe for suggesting this option.
5An informal overview describing the ongoing discussion about virtualisation of tests and simulations in the cloud can be found in

https://www.linkedin.com/pulse/virtual-testing-qualification-autonomous-vehicles-lopez-rodriguez.
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mentioned at the beginning of this section – maximal trace length would now be only 3q − q instead of pq (recall that

p denotes the number of states in the reference model, and q the maximal number of states in the implementation).

Therefore, complete test suites checking trace or failures equivalence are of considerable interest as well.

(4) If the ultimate goal is to establish failures refinement, there is a useful heuristic for reducing the test effort

while the SUT is probably still faulty (e.g. for newly developed components). We start with the longest test cases

UF(pq − 1),UF(pq − 2), . . . , and only perform the shorter tests UF(j) with small j when the longer ones do not reveal

any errors. This is very effective, since longer test cases completely check trace refinement, before hitting sets are

applied to check admissibility of nondeterministic behaviour at the end of the longest traces. As a consequence, trace

errors will be quickly revealed before fully covering the failures-related tests.

The question whether the SUT is inside the specified fault domain can usually be answered by performing static

analyses of the SUT code or by monitoring state coverage and decision coverage during test executions. If the code

has been automatically generated from a low-level model, this is further simplified when the code generator’s strategy

for introducing auxiliary variables (if any) is known. Even in the case where it cannot be determined whether the

SUT is inside the fault domain, the experiments from [35, 36] have shown that the test suites generated according to

a complete strategy still have superior test strength, when compared to naive heuristic testing approaches.

Conclusion. In this paper, we have introduced finite complete testing strategies for model-based testing against finite,

non-terminating CSP reference models. The strategies are applicable to the conformance relations failures refinement

and traces refinement. The underlying fault domains have been defined as the sets of CSP processes whose normalised

transition graphs do not have more than a given number of additional nodes, when compared to the transition graph of

the reference process. For these domains, finite complete test suites are available. We have shown for the strategy to

check failures refinement that the way of probing the SUT for illegal deadlocks in our test cases is optimal, so that it

is not possible to guarantee exhaustiveness with fewer probes. Moreover, the maximal length of the test traces cannot

be reduced without losing the test suite’s completeness property; this holds both for traces and failures refinement.
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