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Imprecise Probabilities

Seamus Bradley∗

Abstract This chapter explores the topic of imprecise probabilities (IP) as it re-

lates to model validation. IP is a family of formal methods that aim to provide a

better representation of severe uncertainty than is possible with standard probabilis-

tic methods. Among the methods discussed here are using sets of probabilities to

represent uncertainty, and using functions that do not satisfy the additvity property.

We discuss the basics of IP, some examples of IP in computer simulation contexts,

possible interpretations of the IP framework, and some conceptual problems for the

approach. We conclude with a discussion of IP in the context of model validation.

1 Introduction

Model validation is an important aspect of quality control when modelling some

phenomenon about which we are uncertain. So, accommodating and representing

uncertainty is of central importance to model validation. Probability theory provides

the standard suite of tools for dealing with uncertainty, but this theory has its lim-

its. For example, models will often contain parameters whose true value we don’t

actually know. Now, we can’t run a simulation without providing a value for this pa-

rameter, so for each simulation we run, we must pick some value. If we sample this

value from a distribution, and run several simulations – sampling from this distribu-

tion each time – we can, to some extent, accommodate uncertainty in the parameter

value. In doing so, however, we are assuming that a certain sort of distribution is

the “right” distribution to be sampling from. If the parameter fluctuates randomly

and we have data on the distribution of fluctuations, perhaps a particular distribution

can be justified. If not, it is typical to pick some “non-committal” distribution that
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will not skew the results of the simulation. For example, if bounds can be put on the

range of values the parameter can take, a uniform distribution is often selected. Now

a uniform distribution seems innocuous, non-committal, but the distribution’s being

uniform for some parameter means that distributions for related parameters are not

uniform. Ferson and Ginzburg (1996) give the example of two independent uni-

formly distributed parameters that give rise to a non-uniformly distributed product.

Or consider two inversely related parameters (like “ice fall rate in clouds” and “ice

residence time in clouds”): if one is uniformly distributed, the other is not. This is,

in essence, the problem that Joseph Bertrand pointed out at the end of the nineteenth

century that is today known as “Bertrand’s paradox”.

The practice of sampling unknown parameters from distributions chosen for con-

venience rather than for empirically grounded reasons is a necessary aspect of stan-

dard modelling practice. Imprecise Probabilities is an approach that attempts to mit-

igate some of the problematic consequences of such a methodology. This chapter

will outline the basic idea of IP, give some examples of IP in modelling contexts,

discuss how we might interpret the IP framework, and point to some potential prob-

lems for IP. We will conclude with a discussion of IP in the context of validation.

2 Basics

The core idea of Imprecise Probabilities (IP) is to represent uncertainty using a set

of probability measures rather than a single such measure (although there are a great

many related formal models that we’ll discuss later in this section).2 The basics of

uncertainty quantification were introduced in CHAP03 and CHAP21, and the prob-

abilistic/Bayesian approach to uncertainty was discussed in CHAP06 and CHAP19,

so let’s jump straight to the basic idea of IP. We use pr to signify a probability

function. The basic idea of IP is that we represent uncertainty, not by a single such

function, but by a set of them – P – defined over the same state space. If X is an

event over which the prs are defined, then we can let P(X) = {pr(X),pr ∈ P}.

That is, we can take P(−) to be a set-valued function that returns the set of values

assigned to X by members of P . We can then apply the rest of the Bayesian machin-

ery “pointwise”. So conditionalising P involves conditionalising on each member

of P and taking the resultant set of conditional probabilities. Expected values also

become sets of values, determined pointwise for each pr ∈ P .

Recall that a probability function pr is a real valued function on an algebra of

events that has the following properties:

2 Although one can find precedents going back to Keynes or even Boole, IP really started in the

middle of the twentieth century with work by people like Koopman (1940), Good (1952, 1962),

Smith (1961) and Dempster (1967). Work in philosophy on IP really starts with Levi (1974, 1980,

1986). Important formal and philosophical work on IP was carried out by Seidenfeld (1983, 1988);

Seidenfeld et al. (1989) (Seidenfeld was Levi’s graduate student). Walley (1991) was a hugely

influential book which, until recently, was still the go-to monograph for many formal details of the

theory. The state of the art in terms of formal theory can be found in Augustin et al. (2014) and

Troffaes and de Cooman (2014). Bradley (2014) provides a philosophical overview.
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Bounded For all X , 0 = pr(⊥) ≤ pr(X) ≤ pr(⊤) = 1 (where ⊥ and ⊤ are the

bottom and top elements of the algebra, respectively)

Superadditive If X ∧Y =⊥ then pr(X ∨Y )≥ pr(X)+pr(Y )
Subadditive If X ∧Y =⊥ then pr(X ∨Y )≤ pr(X)+pr(Y )

A function that satisfies the first and second of these properties is called a “lower

probability” and a function that satisfies the first and third is called an “upper prob-

ability”.

The idea of a set of functions and the idea of a lower probability are intimately

related. Take a set of probabilities, P and define P(X) = infP(X), the lowest

value assigned to X by some member of P . This function P is a lower probability.3

Likewise, P(X) = supP(X) is an upper probability. Moreover, P(¬X) = 1 −
P(X).

And going the other way, take a lower probability lpr, and define the associated

credal set of lpr as the set of probability functions such that pr(X) ≥ lpr(X) for

all X , the set of probability functions that “pointwise dominate” it. If lpr is a lower

probability as defined above, such a set is non-empty; let M(lpr) be the associated

credal set of lpr. Since M(lpr) is a set of probabilities, we can take the “lower

envelope” as we did above: M(lpr)(X). The lower envelope theorem entails that

lpr is a lower probability if and only if M(lpr)(X) = lpr(X) for all X (see §3.3

of Walley (1991) or §2.2.2 of Augustin et al. (2014)). Note that distinct credal sets

might result in the same lower probability.4

As well as credal sets and lower probabilities, there is a huge range of other

related formal methods for representing uncertainty (see, for example, Halpern

(2003); Augustin et al. (2014); Klir and Smith (2001)). For example, Dempster-

Shafer theory (sometimes called Evidence Theory) uses a belief function which is

a lower probability with the further property of being infinite-monotone (a sort of

strengthening of superadditivity). DS theory comes equipped with a slightly differ-

ent interpretation (see §4) and an alternative kind of updating/aggregation rule.5

This brief discussion merely scratches the surface of the rich and interesting the-

ory of IP. Many aspects of statistical method have been replicated inside the IP

framework including statistical inference, graphical models (e.g. Bayes nets), and

stochastic models (e.g. Markov chains).6 See, for example Augustin et al. (2014);

Troffaes and de Cooman (2014).

3 Consider some pr ∈ P for which pr(X ∨Y ) = P(X ∨Y ). infP(X) + infP(Y ) ≤ pr(X) +
pr(Y ), since pr ∈ P , so P is superadditive. Boundedness is trivial, and much the same reasoning

works if the set P doesn’t attain its bounds (just think in terms of the closure of the set).
4 There is a one-to-one correspondence between lower probabilities and a subset of the set of credal

sets, namely those with some nice topological properties. We don’t need to discuss this here, but

see the above listed references for details.
5 See Oberkampf and Helton (2004) for a discussion of DS theory in an engineering context.
6 For introductions to these aspects of IP, see Augustin et al. (2014) chapters 7, 9 and 11 respec-

tively.
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3 Examples

In this section we’ll explore two examples of IP-like ideas that show up when at-

tempting to model physical systems on computers.

3.1 Unknown parameters

Oberkampf and Roy (2010) discuss an example of how IP arises in scientific com-

puting.7 They start from the position of wanting to keep apart epistemic uncertainty

– uncertainty arising from things unknown to the experimenter – and aleatory uncer-

tainty – randomness or natural variability.8 Now, whether some kind of uncertainty

counts as one or the other of these kinds is somewhat a matter of perspective, the dis-

tinction is important. Aleatory uncertainty about a parameter can be accommodated

by having a probability distribution over that parameter in the model. Epistemic un-

certainty, on the other hand, is captured by having a set of such distributions, i.e.

having a credal set.

The idea is that if a parameter is subject to aleatory uncertainty, you can sam-

ple values for that parameter (using the given distribution), run the simulation using

those sampled values and then take the distribution of outcome values as telling you

something about uncertainty in the outcomes. However, with epistemic uncertainty,

you must pick specific values of the parameter to run through the model (and you

must pick them using some distribution). You can’t take the distribution of outputs

as telling you about the uncertainty in the outcomes: you can only take the range

of outcome values as telling you what ranges of values of outcome values are pos-

sible given your uncertainty about the parameter. Or perhaps a more careful way

to phrase the same thing: the distribution of output values might be in part due to

the choice of input distribution for the unknown paramaters. If that distribution were

chosen merely for convenience, then we had better not read too much into the output

distribution. As Oberkampf and Helton (2004) say:

If extreme system responses correspond to extreme values of these parameters (i.e. values

near the ends of the uniform distribution), then their probabilistic combination could predict

a very low probability for such extreme responses. Given that the parameters are only known

to occur within the intervals, however, this conclusion is grossly inappropriate. (p. 10–3)

As we discussed earlier: the product of independent uniformly distributed variables

will not be uniform: it will give more weight to those values in the “middle” of

the interval of possible values. If we have no reason to think the variables really

are uniformly distributed, then it seems unwise to discount these possible extreme

responses as the standard approach implicitly seems to.

7 I am drawing mainly from §13.4, but similar ideas appear in a number of other places in the book.
8 This is one dimension of the many ways one can categorise different kinds of uncertainty. See

CHAP03 or Morgan and Henrion (1990) chapter 4.
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This is sometimes known as “probability bounds analysis” or “p-boxes”. The

following two quotations give you the flavour of this approach.

In a probability bounds analysis, the uncertainty about the probability distribution for each

input variable is expressed in terms of interval bounds on the cumulative distribution func-

tion. These bounds form a p-box for each input variable. (Ferson and Hajagos, 2004, p. 136)

Basically, interval analysis should be used to propagate ignorance, and probability theory

should be used to propagate variability. (Ferson and Ginzburg, 1996, p. 133)

A similar approach is advocated by Stainforth et al. (2007b), where they suggest

that we interpret the range of values produced by ensemble members to be a “non-

discountable envelope” of values of that variable: a range of values that we cannot

dismiss as impossible.

3.2 The challenge problems

In 2002 a workshop was organised around the idea of a set of “challenge problems”

that were intended to serve as a kind of standard suite of tests for a theory of uncer-

tainty (Helton and Oberkampf (2004)). Oberkampf et al. (2004) presents the chal-

lenge problems, and many of the papers in that special issue of the journal respond to

them. The problems are designed to highlight issues of “representation, aggregation,

and propagation of uncertainty through mathematical models” (Oberkampf et al.,

2004, p. 15). The challenge is to come up with some way to predict the behaviour

of a system given a model of the system and some evidence as regards some un-

known parameters of that system. Each problem has two unknown parameters, and

some sort of mathematical model whose output depends on those unknowns. The

information about the unknown parameters might be given in a number of different

ways. A simple example is in problem 1, we are told that parameter a is somewhere

in the interval [a1,a2]. A more complex example is given by problem 3c where you

are told that you have n independent sources of information regarding parameter b,

each witness j tells you that b lies in an interval [b j
1,b

j
2]. The model whose outputs

depends on the parameters can also be more or less complex. For example, for some

of the models it is simply a function of the parameters. In other cases the parameters

are meant to represent physical constants of some simple physical system.

Several papers have presented broadly IP solutions to this problem set. For ex-

ample, de Cooman and Troffaes (2004) use the theory of lower previsons to address

the problems, while Ferson and Hajagos (2004) use p-boxes.9

9 See also Fetz and Oberguggenberger (2004) and Helton et al. (2004) for further examples of IP

approaches to the challenge problems. See Ferson et al. (2004) for an overview of the range of

responses to the challenge problems.
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3.3 Nonprobabilistic odds

Frigg et al. (2014) offer a cautionary tale that suggests that treating distributions of

model output as capturing decision relevant probabilities is dangerous when the tar-

get system appears to behave chaotically. The starting point is the scepticism about

ensemble forecast probability distributions expressed by Stainforth et al. (2007a):

The frequency distributions across the ensemble of models may be valuable information

for model development, but there is no reason to expect these distributions to relate to the

probability of real-world behaviour. One might (or might not) argue for such a relation if the

models were empirically adequate, but given nonlinear models with large systematic errors

under current conditions, no connection has been even remotely established for relating

the distribution of model states under altered conditions to decision-relevant probability

distributions. (p. 2154)

Frigg et al. (2014) develop a simple example that illustrates this point. They start

with a simple mathematical system that an agent wants to use to model a vari-

able of interest. The target system’s dynamics are similar to but not identical to

the system used for prediction (the one timestep error is always less than one in a

thousand). Unfortunately, both the target system and the model exhibit chaotic be-

haviour, which means that these errors compound and grow. If we are predicting at

about 8 timesteps out, the errors can grow to such an extent that the distribution of

model outputs for an ensemble of nearby initial conditions can be located entirely on

the left hand side of the unit interval while the ensemble of outputs for the target sys-

tem is entirely on the right hand side. What this means is that the model appears to

be telling you that it’s overwhelmingly likely that the variable will be less than 0.5,

while the truth is that it’s overwhelmingly likely to be greater than 0.5. Obviously

betting using these ensemble probabilities would be disastrous. What Frigg et al.

(2014) show is that, in fact, it’s very often disastrous to bet using ensemble proba-

bilities in a case like this where the dynamics are nonlinear and there’s a chance of

model error.

They suggest that instead of taking the ensemble probabilities at face value, they

should be manipulated to produce “nonprobabilistic odds” which don’t yield ru-

inous betting strategies. How exactly this process should be effected is still up for

debate, but what is clear is that the nonprobabilistic odds thus produced will be in-

versely proportional to upper probabilities, in the same way that probabilistic odds

are inversely related to standard probabilities.

4 Interpretations

What does it mean to say that our uncertainty is captured by a set of probability

measures (or an upper probability, or a p-box, or. . . )? In this section, we shall dis-

cuss some ways of interpreting such claims. I will discuss several such ideas, but I

do not mean to suggest that this survey is exhaustive, nor that the ideas presented
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here are mutually exclusive: it is certainly possible to be motivated by more than

one of these interpretations of the formalism.10

4.1 One-sided betting

Consider betting on the value of a random variable.11 Let X be the set of values that

random variable X can take. A bet on the value of X can be described by a function

from X to the real numbers. Call such functions gambles. How much would you

be willing to pay for a gamble g? That is, when do you find the gamble g − µ

desirable? (Where µ is the constant gamble that corresponds to the amount you pay

to take g). It seems like the highest price you are willing to pay to take g reflects

your valuation of g. Let lpr(X) = sup{µ ∈R : g−µ is desirable}. Now consider the

minimum price you would accept to sell the gamble g. That is, the minimum price

at which you find µ − g desirable. Given some reasonable coherence constraints

on your set of desirable gambles,12 if you require that this should be equal to lpr,

then lpr is a linear prevision. And indeed, if we consider gambles over a set of

indicator functions for some set of states, then lpr gives a probability function. The

exploration of linear previsions as a foundation for probability theory goes back to

Bruno de Finetti. This is one version of what is known as the “Dutch book theorem”,

since the coherence constraints on desirability essentially prevent you accepting a

collection of bets that guarantee you a sure loss (see CHAP06).

If you drop the requirement that your maximum buying price and your minimum

selling price should be the same – if you move away from “two-sided” betting to

“one-sided” betting – then lpr behaves somewhat like a “lower expectation” opera-

tor (called a lower prevision) and its restriction to gambles on indicator functions is

a lower probability as defined above. The theory of lower previsions was first sys-

tematically set out in Walley (1991); Troffaes and de Cooman (2014) provides an

admirably clear self-contained treatment of the theory, as well as significant refine-

ments. Note that the bets discussed in Frigg et al. (2014) are one-sided bets in this

sense.

If we consider real world instances of bookmakers or financial traders, there is

typically a difference between their buying and selling prices for their commodities

(bets, financial products, whatever). Now, part of this spread is explained by the

desire to make a profit, but there is evidence that the “bid-ask spread” can also be

responsive to the amount of uncertainty about the future performance of the instru-

ment (Smith and van Boening, 2008).

10 For more on the interpretation of IP, see Bradley (2014).
11 We earlier described probability theory in terms of events rather than random variables, but

the difference is mostly cosmetic. Real-valued random variables are functions from events to real

numbers, events are “indicator functions” in the space of random variables.
12 For example, if you find f desirable, and you find f ′ desirable, you should find f + f ′ desirable;

or if a gamble’s payout is always non-negative, then it is desirable. . .
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So, if we interpret lower previsions and lower probabilities as reflecting the

agent’s limiting willingness to bet – as is standard in Bayesian approaches – this

gives us a natural interpretation of the formalism that is broadly in line with the

standard precise probabilist picture.

4.2 Indeterminate belief

One way to interpret credal sets is to take them to reflect an indeterminacy in ra-

tional belief. If P(X) is a set of values, this means that it is indeterminate – vague

– what rational belief you ought to adopt in X given the evidence that determined

that P . This approach takes inspiration from the supervaluationist theory of logic,

which uses a set of truth valuation functions to characterise the satisfaction of a

vague predicate. If Wayne is a borderline case of the predicate “bald”, then “Wayne

is bald” is true according to some members of the set of valuations – “true on some

precisifications” – and “Wayne is bald” is false on others (Williamson (1994)). Ri-

nard (2013, 2015) has argued for a supervaluationist understanding of credal sets:

if it is indeterminate whether the agent’s credence in X is stronger than 0.5, some

members of the credal set have pr(X) > 0.5 while others pr′(X) < 0.5. If every

member of the credal set agrees on something (e.g. that pr(X) > 0.1), then it is

determinately true that the agent believes that pr(X) > 0.1. This idea is sometimes

characterised by the metaphor of the “credal committee” (Joyce (2010)): each prob-

ability in the credal set is a committee member and the committee as a whole must

decide what to do. When there is unanimity in the committee then things are easy,

when there is conflict – disagreement – then things are tricky.13

If you want to treat your credal sets or your lower probabilities not as subjective

credences but as something akin to objective chances, then you might still be able

to take a view of this form: the imprecision in your probabilities is due to objective

indeterminacy in the world. This is an underexplored possibility, but see Bradley

(2016).

4.3 Robustness analysis

Let’s say you run your model with a particular set of parameters, but you are not

confident that the parameters you chose are the actual ones. If there’s a danger that

the result you obtain depends in a big way on the specific value of the parameter

chosen, then perhaps it’s best to explore how robust your result is when changing

those parameter values. The range of output values, the range captured by the set

of probability functions, reflects a robust range of possible outcomes. This “robust

bayesian analysis” has a rich history. See, for example Ruggeri et al. (2005). This

13 The idea of IP as reflecting unresolved conflict – either between persons or within a person – is

one that Isaac Levi discussed in great detail Levi (1980, 1986).
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idea is very closely connected to the discussion of “probability bounds analysis”

and “non-discountable envelopes” discussed in Section 3.1.

If one is taking a Bayesian approach to validation (CHAP6 CHAP19) then one

has to respond to the “problem of the priors”: the criticism that Bayesian methods

rely on epistemically unmotivated prior probability. One response to such a criticism

would be to move to an “imprecise Bayesian” perspective which is, essentially, to

apply the robustness analysis approach to the prior. The set of priors allows one to be

confident that one’s conclusions are not artefacts of the particular prior one chose.

4.4 Evidence Theory

Instead of interpreting lpr as a degree of confidence, or a limiting willingness to bet,

one might want to interpret lpr(X) as “the degree to which the evidence supports X”.

This is the intepretation typically associated with the “Dempster-Shafer function”

approach to evidence. A “Dempster-Shafer belief function” is a lower probability

that has the additional property of being “infinite monotone”. The actual formal

description of this property is a little messy, and not particularly illuminating in the

current context, but see (Halpern, 2003, Ch. 2.4) for the basics of Dempster-Shafer

theory, and see (Augustin et al., 2014, Ch. 4&5) and (Troffaes and de Cooman, 2014,

Ch. 6&7) for belief functions and their relation to lower probabilities. Dempster-

Shafer theory also has a distinct theory of evidence combination which is beyond

the scope of this chapter (but see (Halpern, 2003, Ch. 3.4)).14

The motivating idea behind this degree of support idea is that your evidence can

support X to degree p without thereby supporting ¬X to degree 1− p (as would

be required if degree of support were probabilistic). Hawthorne (2005) argues that

Bayesians need to keep degree of belief and degree of support distinct (and that both

concepts are useful).

5 Problems

IP suffers from a number of issues. Here, we shall outline some of them. As we’ll

see, not all of them are really that worrying in the context of model validation.

14 See also Oberkampf and Helton (2004) for an example of DS theory in an engineering context.
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5.1 Updating

Recall that earlier we said that we conditionalise a set of probabilities pointwise.

That is, P(X |Y ) = {pr(X |Y ),pr ∈ P,pr(Y )> 0}.15 There are two problems with

conditionalising this way that are worth mentioning briefly.

First, dilation. An early, important discussion of dilation is Seidenfeld and

Wasserman (1993).16 Consider a set of probabilities P constrained as follows for

all pr ∈ P:

• pr(H) = 1
2

• pr(H|X) = pr(H)

Now consider the proposition Y which is equivalent to (H ∧X)∨ (¬H ∧¬X). It’s

easy to show that for all pr ∈ P , pr(Y ) = 1
2
. Let P contain all probability func-

tions over these propositions other than those ruled out by the above constraints. So

P(X) = [0,1]. Note that it follows from the definition of Y and some basic prob-

ability theory that for all pr ∈ P , pr(H|Y ) = pr(X). Therefore P(H|Y ) = [0,1].
Note that the same reasoning entails that P(H|¬Y ) = [0,1]. This, in essence, is

the phenomenon of dilation. What is this considered a problem? To see this, let’s

consider an example that gives some meaning to the variables.17

I have two coins, one fair and one mystery coin of unknown bias. Let H be

the event that the fair coin lands heads, and let X be the event that the mystery

coin lands heads. (Verify that the above discussed probabilistic constraints seem

reasonable given this interpretation of the propositions). Now I toss both coins and

announce that the two coins landed the same way up (either both heads or both tails),

call this proposition Y . What is your posterior in the fair coin having landed heads?

P(H|Y ) = [0,1]. Your belief in the fair coin’s having landed heads has dilated: the

interval of probability values has spread out from { 1
2
} to [0,1]. And this happens

regardless of whether you learn Y or ¬Y . This seems puzzling. Learning the fact

that the two coins landed the same way up doesn’t seem like it should cause me

to change my belief in whether the fair coin landed heads. It seems like you have

learned something irrelevant to H and it has caused you to become more uncertain

about H. That seems like a strange way to arrange your credences.

Dilation, despite initial appearances, isn’t as problematic as some (e.g. White

(2010)) take it to be. For example, in different ways, Joyce (2010), Bradley and

Steele (2014b), Pedersen and Wheeler (2014) and Hart and Titelbaum (2015) all ar-

gue that dilation is actually the correct response to the evidence as specified. Gong

and Meng (2017) argue that dilation is a symptom of a mis-specified statistical in-

ference problem, not a problem for IP per se.

We can think of the problem as follows. The constraints we placed on our model

place no constraint at all on what values pr(H|Y ) might take. It is somewhat in-

tuitive that H and Y say nothing about each other. If we take this “silence” to be

15 The restriction to non-zero probability in the conditioning event is for convenience: if we had

defined credal sets in terms of Popper functions or similar we could do without such a restriction.
16 A recent characterisation of dilation is found in Pedersen and Wheeler (2014).
17 This description of the puzzle follows Joyce (2010).
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modelled by probabilistic independence – pr(H|Y ) = pr(H) = 1
2

– then our P

becomes the singleton with pr(X) = pr(H|Y ) = 1
2
. But, as Pedersen and Wheeler

(2014) point out, independence for sets of probabilities can be much more subtle

(Cozman (2012)). As Bradley (2014) explains, probabilistic independence is not the

appropriate characterisation of the “silence” of Y with respect to H. As it stands, it

is compatible with the problem set up that Y would be very informative about H,

if only we knew something about the bias of the mystery coin. That is, if we knew

that the mystery coin were biased towards heads, learning that the coins landed the

same way up would be evidence in favour of heads on the fair coin. It is not that H

and Y are unrelated: it’s just that the nature of their relationship is unknown.

Let’s turn now to another puzzle related to updating sets of probabilities: the

problem of belief inertia. This problem, though not under that name, goes back

to §13.2 of Levi (1980), and is also discussed by Walley (1991); Vallinder (ming)

provides a nice discussion of the current state of the art. Consider the mystery coin

again. Recall that proposition X is “mystery coin lands heads up”, and P(X) =
[0,1]. Now consider learning that in ten flips of the mystery coin, 8 were heads. Call

this proposition Z. This seems like some evidence that could potentially move your

credences about. But note that P(X |Z) = (0,1). Why? Because, even if we assume

that all the priors in P are “well behaved” beta distributions over the unknown bias

of the mystery coin, there are some distributions in P that put so much weight

on the probability for landing heads being really really low that even evidence Z

doesn’t move them very far away from 0. In the case that P(X) = [0,1] the “credal

committee” contains members that are so stubborn that they are moved an arbitrarily

small distance by the evidence. And likewise for the top end of the unit interval.

Starting with a vacuous prior like this seems to make learning impossible.

The imprecise probabilities that are likely to arise in a validation setting are not

likely to be vacuous, so perhaps this is less of a concern in the current context.

5.2 Decision making

Ultimately, we often want to use the results of our simulations for decision support:

we want to take our simulation of the behaviour of a nuclear reactor to inform safety

standards for new reactors, for example. This boils down to the question: how do we

translate our uncertain predictions into policy advice? We want to take into account

the uncertainty in our simulations and perhaps err on the side of caution by focusing

on, for example, the worst case among the plausible scenarios consistent with our

evidence. So how do we make decisions with sets of probabilities?

If you had a single probability function, you can act so as to maximise expected

utility. What is the analogue decision rule for imprecise probabilities? There are a

number of possibilities, each with drawbacks. Should you act to maximise minimum

expectation over probabilities in your set? Pick an option that maximises expected
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value with respect to some pr ∈ P?18 Find some way to average over the set of ex-

pectation and maximise that?19 Elga (2010) argues that no imprecise decision the-

ory is even minimally adequate, although the consensus now seems to be that Elga

overstated his case (Bradley and Steele, 2014a; Chandler, 2014; Sahlin and Weirich,

2014). In any event, it is still true that providing IP with an adequate decision theory

is an unresolved issue. In a sense, it is not surprising that decision making with IP is

difficult: the whole point is that we are being careful to represent the full extent of

our lack of knowledge, and we shouldn’t expect decision making to be easy in such

a case. Indeed, it would appear to be a surprise if decision making were as easy as

it is in a case where we know the objective probabilities of the events, or have some

reason to believe our subjective estimates are on the right track.

6 Validation and IP

So where does all of the above leave the practitioner? What should someone who

works with computer simulations take away from this discussion of imprecise prob-

abilities? We’ll discuss the issues of interpretation and the problems in the sections

below, but first, I want to say something about where to situate IP in general. Some,

particularly in philosophy, seem to see IP as a rival to the standard Bayesian view

of subjective probability. I think this is a mistake. IP is a suite of tools, a range

of methods that extend and improve on the standard probabilistic tools. They are

provided in order to overcome some problems that the standard theory has with se-

vere uncertainty, careful propagation of uncertainty and giving appropriate weight

to serious dangers. Questions remain about when it is appropriate to deploy the ad-

mittedly more complex machinery of IP, and when it is best to stick with the simpler

tools of standard probability, but the above discussion of the “challenge problems”

highlights that many practictioners do see value in the use of IP.

6.1 Interpretations

We discussed four ways of interpreting the mathematical framework of IP: betting,

indeterminate belief, robustness analysis and evidence theory. Which of these will

be appropriate depends on your goals and how you are using the tools. Probabilities

show up in validation, and there is a question about how to interpret them.20 Your

general interpretative view on probabilities is going to inform what you think about

IP. If your inclination is to treat probabilities in a subjective Bayesian way, then

the betting approach seems a natural fit for interpreting imprecise probabilities. If,

18 This option, called “E-admissibility” by Levi (1974) – and discussed in depth in Levi (1986) –

is a popular one among some IP theorists.
19 See Bradley (2015) for some discussion of the options.
20 See Hájek (2011) for an introduction to interpretations of probability.
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however, your inclination is to treat probabilities as objective chances or objective

evidential probabilities, then perhaps the “indeterminate belief/chance” route is a

better fit.

If the imprecise probabilities arise from responding to the aleatory/epistemic un-

certainty distinction in an “unknown parameters” context (see section 3.1) then it

makes sense to see IP as a kind of “robustness analysis”.

The case of the “evidence theory” view of IP – lpr(X) represents the degree to

which the evidence supports X – is an interesting one. This interpretation is strongly

associated with Dempster-Shafer belief functions which are a special case of lower

probabilities. It seems that much of the literature on this topic doesn’t make a dis-

tinction between the “robustness analysis” view and the “evidence theory” view.

6.2 Problems

We looked at two kinds of problems for IP: problems related to updating and prob-

lems related to decision making.

It seems that the problems for updating aren’t all that problematic in the vali-

dation applications of IP. First, note that conditionalisation plays a relatively minor

role outside of the Bayesian approach. And even where conditionalisation does play

a role, the goal is to propagate the uncertainty. So if that yields large intervals of

output variables then that is a good thing: the uncertainty has been adequately prop-

agated. Take dilation: dilation occurs when you have two variables whose interac-

tion is unknown. By that I mean, when it is unknown whether they are positively

or negatively correlated.21 In a validation context, if you were in that situation, you

would want to know the range of possible system responses if the parameters were

positively correlated or if they were negatively correlated: you would want to see

that range of responses represented in your model output. Likewise for belief iner-

tia. If it is consistent with your evidence that X might not be affected very much by

conditioning on Z, then your model output should accommodate that possibility. In

short, the first two problems discussed are problematic when we interpret P(A|B)
as rational credence in A having learned B, but in a context where the probability

models are representing possible relationships between variables in a model, the

phenomena of dilation and inertia do not seem so problematic.

So what about decision making? If we are required to make a decision on the

basis of some simulation-based prediction that involves several underconstrained

parameters, it would be a mistake to make decision making too easy. Take a simple

example of deciding on how high to build your flood defenses. Let’s imagine that

you use a climate model to predict whether sea level rises will be small, moderate or

or large. We run a bunch of climate models, varying some unknown parameters, and

come up with a range of possible future scenarios. A precise probabilistic approach

might say that on average sea level rise will be moderate. Now, it might be tempting

21 For a more careful and rigorous characterisation of dilation, see Pedersen and Wheeler (2014).
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to build flood defenses that can cope with moderate rise but not with a large rise. It

might also be tempting to not bother with investing in defenses that can be extended

in the case of a large rise: after all, the models say that won’t happen. Of course, such

a decision maker has made a mistake in paying too much attention to the headline

“moderate rise” and not enough attention to the small print “range of scenarios”. By

taking seriously the task of propagating the uncertainty and presenting the full range

of scenarios consistent with the physical constraints, the IP approach highlights the

ranges of cases that the decision maker cannot discount in her deliberations. That

makes it harder to make a decision, but it does so in a way that will improve the

decisions made. Of course, one can go too far: the range of climate scenarios con-

sistent with our models range from ice age to everybody dies of heatstroke. It’s

hard to make any sort of decision that will lead to good outcomes across the board

there. But propagating that uncertainty, presenting the “non-discountable envelope”

of scenarios, prevents the decision maker from being misled by the headline model

average.

7 Conclusion

Imprecise probabilities can provide an expressively rich and sophisticated theory of

uncertainty that builds on and extends orthodox probability theory. The formal foun-

dations of IP are fairly solid although there are still some conceptual sticking points

that need work. Such a theory has the potential to find many useful applications in

the field of computer simulation validation.
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