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ABSTRACT: Geomorphological controls and catchment sediment characteristics control the formation of floodplains and affect their

capacity to sequester carbon. Organic carbon stored in floodplains is typically a product of pedogenic development between periods

of mineral sediment deposition. However, in organically-dominated upland catchments with a high sediment load, eroded particulate

organics may also be fluvially deposited with potential for storage and/or oxidation. Understanding the redistribution of terrestrial carbon

laterally, beyond the bounds of river channels is important, especially in eroding peatland systems where fluvial particulate organic

carbon exports are often assumed to be oxidised. Floodplains have the potential to be both carbon cycling hotspots and areas of

sequestration. Understanding of the interaction of carbon cycling and the sediment cascade through floodplain systems is limited.

This paper examines the formation of highly organic floodplains downstream of heavily eroded peatlands in the Peak District, UK.

Reconstruction of the history of the floodplains suggests that they have formed in response to periods of erosion of organic soils

upstream. We present a novel approach to calculating a carbon stock within a floodplain, using XRF and radiograph data recorded

during Itrax core scanning of sediment cores. This carbon stock is extrapolated to the catchment scale, to assess the importance of

these floodplains in the storage and cycling of organic carbon in this area. The carbon stock estimate for the floodplains across the

contributing catchments is between 3482-13460 tonnes, equating on an annualised basis to 0.8-4.5% of the modern-day POC flux.

Radiocarbon analyses of bulk organic matter in floodplain sediments revealed that a substantial proportion of organic carbon was

associated with re-deposited peat and has been used as a tool for organic matter source determination. The average age of these

samples (3010 years BP) is substantially older than Infrared Stimulated Luminesence dating which demonstrated that the floodplains

formed between 430 and 1060 years ago. Our data suggest that floodplains are an integral part of eroding peatland systems, acting

as both significant stores of aged and eroded organic carbon and as hotspots of carbon turnover. © 2019 The Authors. Earth Surface

Processes and Landforms published by John Wiley & Sons Ltd.
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Introduction

As conveyors of organic and mineral sediment, water and con-

taminants, rivers play an instrumental role in landscape evolu-

tion, and their catchments feature a variety of depositional

settings that can store sedimentological information about past

and present sediment dynamics (Turner et al., 2015). River

systems and their associated landforms were traditionally

considered as passive pipes of terrestrial organic carbon (OC),

that would eventually be delivered to the ocean, but are now

viewed as active sites of OC processing, redistribution and stor-

age (Aufdenkampe et al., 2011). Floodplains develop in the

transition from erosion dominated to deposition dominated

processes in the longitudinal profile of a river system (Figure 1),

predominantly in lowland landscapes unconstrained by

geology (Jain et al., 2008). As major depositional landforms in

river systems, floodplains are large carbon stores (Hoffmann

et al., 2009), but they are also sites of potentially high carbon

mineralisation rates (Evans et al., 2013) and so may act as

hotspots of carbon processing.

Floodplain growth is geomorphologically controlled by the

balance between lateral and vertical accretion, and erosional

processes. Carbon in floodplains may accumulate as a compo-

nent of sediment deposition, or as in-situ vegetation develop-

ment. The delivery of OC-rich sediments to floodplains by

overbank deposition from river channels, is estimated to be

substantial, despite the fact that it has received relatively little

attention (Cole et al., 2007; Battin et al., 2009; Tranvik et al.,

2009). This paucity of research stems from the absence of infor-

mation on global floodplain extent, carbon cycling processes

and flux magnitudes. Once organic-rich sediment is deposited

or accumulated, floodplains (depicted in Figure 1 as multiple

buried soils) have the capacity to act either as sources or

sinks of carbon (Zehetner et al., 2009) and importantly active
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hotspots of OM transformation (Hoffmann et al., 2009;

Zocatelli et al., 2013).

The residence time and lability of OC in floodplains is con-

trolled by geomorphological functioning and environmental

conditions, including the height of the floodplain relative to

average flood magnitude, grain size of sediments and succes-

sion of vegetation (Hoffmann et al., 2013). For example, high

energy, non-cohesive floodplains characterised by coarse sed-

iments, limited vegetation coverage and substantial water table

fluctuations are considered to have a low long-term storage

potential of OC, because of the destructive and mobile nature

of these channels, resulting in short residence times of depos-

ited sediment and associated organics. Conversely, low energy,

cohesive floodplains are often characterised by fine sediments,

dense vegetation cover and infrequent water table fluctuations,

and are more structurally stable in nature and therefore have a

high long-term storage potential of OC.

In addition to geomorphological and environmental pro-

cesses controlling absolute carbon storage potential, they may

also control the balance of autochthonous versus allochtho-

nous carbon accumulation. Allochthonous deposition is de-

pendent on sediment load and character, in addition to the

deposition processes during floods. Whereas pedogenesis is

dependent on suitable conditions between floods, including

the elevation of the floodplain from the river bed being high

enough to allow suitable time for primary succession (Daniels,

2003; Bullinger-Weber et al., 2014), and the frequency of high

magnitude floods being sufficiently infrequent to rarely initiate

overbank flow on the floodplain.

Some upland catchments in the UK are dominated by peat

soils which have been subject to severe and widespread

erosion (Evans et al., 2006). As these soils are ˜50% OC, the

fluvial sediment yield from peatlands may be highly organic.

Temporary headwater catchment storage by floodplains has

been found to be particularly efficient during flood events

(Evans and Warburton, 2005; Evans et al., 2006). Floodplain

deposition in headwater catchments below eroding peatlands

potentially leads to high allochthonous input of carbon to

the system and production of hotspots of carbon cycling, for

example Evans et al. (2013) found that only 20% of POC

deposited onto headwater floodplains was buried.

The fate of OC in floodplain landforms has previously

received only minimal attention. Upland valleys with high

sediment loads in particular may represent a critical point

in the sediment cascade storing and processing OC from

eroding organic-rich headwater sites. In this context, headwater

peatland catchments with developed floodplains provide an

ideal opportunity to explore the nature and characteristics of

floodplain formation, development and carbon processing.

The objectives of this paper are as follows: 1. Construct a geo-

morphological history of the formation and development of an

upland floodplain in a highly organic catchment. 2. Quantify

carbon storage in the floodplain and extrapolate this to the

wider catchment. 3. Assess the relative importance of carbon

source in the floodplain system. 4. Consider whether these

systems are sites of carbon sequestration or turnover.

Geomorphological Context of the Study Area

This study will focus on floodplain systems in the southern

Pennines, part of the Peak District National Park, in northern

England. The extensive peatlands of the Peak District currently

represent a net sink of 62 ktonnes of CO2 equivalent per year

(Worrall et al., 2009). The River Ashop and River Alport drain

the slopes of both Bleaklow and Kinder Scout; both upland

plateaux which support an extensive cover of blanket peat.

These are amongst the most severely eroded peatland sites in

the UK (Evans and Lindsay, 2010), with a substantial POC flux

derived from them (Pawson et al., 2008; Pawson et al., 2012).

The peat erosion has occurred largely in the last 1000 years in

response to pollution, land use pressures and climate change

(Evans et al., 2006). The River Ashop catchment is 38 km2

(Pawson, 2008) whereas the River Alport catchment is

11 km2. The catchments are underlain by interbedded sand-

stones and mudstones of the carboniferous age Millstone Grit

series (Wolverson-Cope, 1976).

Figure 1. Carbon processing and storage in a peatland headwater catchment. [Colour figure can be viewed at wileyonlinelibrary.com]
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The peatlands in the study area are subject to characteristic

pressures faced by many peatlands around the world including

climatic, land use and pollution pressures (Holden et al., 2007).

The Peak District peatlands have been found to be particularly

vulnerable as they are marginal to the climatic space suitable

for growth of peat bogs in the UK (Clark et al., 2010). They

are therefore susceptible to future climate changes, which

could result in further erosion and redistribution of these signif-

icant long-term carbon stores.

Continuous headwater floodplains are atypical in upland

landscapes as the channel is confined and the landscape

too steep for fine sediment to be regularly deposited beyond

the boundaries of the channel. In the study area, regular,

fine-grained, stable floodplains are present, despite the up-

land nature of the landscape. Floodplain development may

be in part associated with gradient reductions associated

with valley constrictions due to extensive Holocene landslid-

ing in the region (Johnson and Walthall, 1979; Tallis and

Johnson, 1980). Evidence for previous landslides in the

specific area of investigation in this study can be observed

in Figure 2, providing a reduction in gradient that has pro-

duced more lateral accommodation space for floodplain

formation.

Understanding the role of floodplains in carbon storage and

cycling in fluvial catchments that have characteristic high or-

ganic matter loads is twofold. Firstly, peatland carbon budget

studies often assume oxidation of fluvial exports as standard

practice. In the study area, previous research has focused on

the geomorphological functioning, and carbon cycling within

the peatlands themselves. However, less attention has been

given to the off-site fate of eroded peatland carbon and to as-

certain whether the assumptions regarding off-site oxidation

are correct. The Ashop system is an extreme end-member

where fluvial organic exports are particularly large as a result

of acute erosion. By developing our understanding of how car-

bon is cycled through the landscape in this severely eroded sys-

tem, we can enhance our understanding of the fate of peatland

carbon exports more generally.

Figure 2. Location of the floodplain in relation to the River Ashop and River Alport. DEM evidence of landsliding along the River Ashop, Derbyshire,

UK around the floodplain location. Coring locations: The majority of cores were taken on the large bar to the east. Only one core was taken on the

west bar, but IRSL dates were also obtained from the bank of this bar. Topmost image: Imagery ©2019 Google, Map data ©2019 Google. [Colour

figure can be viewed at wileyonlinelibrary.com]
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Secondly, the nature and level of erosion of blanket

peatlands in the UK at present is globally atypical, but

peatlands that are currently sequestering carbon are at risk of

losing this function as they are vulnerable to future climate

change and land use pressures (Settele et al., 2014; Bonn

et al., 2016). As such, more peatlands, and especially those in

upland environments (Li et al., 2017) are at risk of approaching

the erosion status of the extreme end-member catchments in

this study. This reinforces the importance of acquiring knowl-

edge of the off-site fate of eroded fluvial carbon exports from

peatlands.

Methods

Sample collection

Cores were collected across a floodplain reach of the upper

Ashop (Woodlands Valley) where exposed sections indicated

the presence of organics in the stratigraphy. Multiple flood-

plains of this nature are present along the reach, and this flood-

plain in particular was chosen for accessibility. To understand

floodplain development and account for spatial variability of

sediment distribution and type, sediment cores were collected

from two core transects spanning a single meander bend on

the floodplain of the River Ashop. The floodplain had clear ev-

idence on the basis of visual imagery and an observed flood

during the study period, of a previous palaeochannel and a

present-day cut-off channel, only utilised during extreme floods

(Figure 2). Two stands of vegetation with a distinctive border

are present on the floodplain, with wetland-type vegetation to-

wards the back of the floodplain, at the furthest point from the

channel, and grasses present nearest the channel. Some of

these modern-day features are key to interpreting the sediments

within the floodplain.

Cores were collected in circular Perspex tubes using a Van

Walt stitz corer in three sampling periods during 2014

(WV14-4 and WV14-5), 2015 (WV15-1, 2 and 3) and 2017

(WV17-1, 2 and 3) (Figure 2). WV17-1 and WV17-2 were

taken as replicate cores to use for radiocarbon dating. Cores

were transported in a horizontal position and refrigerated at

5°C. Immediately before scanning, the cores were split in half,

with one half designated as the archive and prepared for core

scanning.

Samples for IRSL (Infra Red Stimulated Luminescence) dating

were collected from a bare face of the river channel on the west

point-bar of the floodplain, close to the location of the core

WV17-3 (Figure 2). Steel tubes were pushed into the cleaned

sediment face and extracted, and a gamma spectrometer was

used to measure the in-situ gamma dose rate. A sample of con-

temporary sediment was also collected from a small bar within

the active channel at the same location using the method

above.

Core scanning and correlation

All cores were scanned for optical imagery, X-radiography and

micro-XRF using a Cox Analytical Systems Itrax core scanner

with a step size of 200 microns for the entirety of each core.

The XRF scans were completed using a molybdenum X-ray

tube set at 55 kV and 30mA with a count time of 15 seconds,

which produces good excitation for a large range of elements

of interest in geochemistry (Croudace et al., 2006). Cores were

covered with a 6μm film to prevent dessication while running

overnight and to avoid contamination of the XRF detector.

Instrument settings were optimised post-scan using the Cox

Analytical Systems Q-Spec software to optimise the mathe-

matical model by adjusting settings for the X-ray tube and de-

tector parameters to ultimately reduce the mean square error

(MSE) of the sum spectra. The enhanced fit was then used to

re-evaluate all single spectra with a maximum of 20 iterations

per spectrum using an automated batch procedure. Individual

spectra with high MSE (generally >4) were then identified

and the settings further altered as above to reduce MSE. The

XRF spectra were quantified using the Q-spec software, pro-

ducing results in peak area. Quantitative data is challenging

to obtain because of the effects variations in water content,

OM content and particle size may have on the diffraction

of X-rays, and total count rate (Croudace and Rothwell,

2015).

Core correlation was a necessity for a geomorphological

understanding of the floodplain processes but will only be

successful in vertically accreting assemblages. Geochemical

profiling is a robust method to link together layers with similar

characteristics. The specific element that was used to achieve

this was Pb, which is relatively immobile under variable water

tables in comparison to other elements (Shuttleworth et al.,

2015), with a substantial body of literature devoted to the study

of the behaviour, and increases in Pb content in the peat profile

associated with industrial pollution and smelting (Lee and

Tallis, 1973; Livett et al., 1979).

Whilst Pb is the best element for core correlation, scanning

sediment cores while wet has known limitations which may

mean that results are an expression of water or OM content

rather than actual variability in the element of interest. ICP-

MS on a sub-set of samples from WV14-5 was used as valida-

tion to calibrate metal concentrations.

Sedimentology and grain size

Visual observation using the cores themselves, and the detailed

optical imagery from the core scanner at a resolution of 47 mi-

crons, were used to produce sedimentological descriptions for

each core containing information regarding contacts between

different facies types, colour changes reflecting oxidation, and

macrofossil presence.

Based on sedimentological interpretation (sharp erosional

contacts with the layer below and flood couplets featuring

coarsening up followed by fining up changes in mineral grain

size), three layers from WV14-5 (380-465, 490-555 and 570-

625mm) interpreted to be single flood events were sampled.

In addition, sediment deposited on the floodplain during a ma-

jor flood event on the 21st November 2016 was sub-sampled to

examine grain size relationships during a modern flood event.

The grain size of the mineral component was measured using

a Malvern 2000G laser granulometer at 0.5 cm intervals in

the core samples, and at more irregular intervals in the modern

sediments. Samples were treated with H2O2 to remove OM

prior to measurement.

Developing a stratigraphic interpretation of organic
source in headwater floodplain sediments

A selection of key criteria were developed as an initial aid to

distinguish between in-situ soil growth and eroded overbank

peat deposition on floodplains (Table I).

Floodplain sediments dominated by overbank deposition

processes typically comprise of distinctive couplets, consisting

of minerogenic sediment and an organic cap (Turner et al.,

2015). The organic cap of a flood couplet within floodplain

D. M. ALDERSON ET AL.
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sediments downstream may represent both in-situ autochtho-

nous accumulation and fluvially transported organics eroded

from the peatlands, ultimately forming what may appear to be

multiple buried soils. However, distinguishing between these

two sources of OM is not straightforward, in large part as they

are likely to be mixed in an individual organic horizon.

To aid in distinction of carbon source it is imperative to con-

sider at what stage allochthonous organics associated with peat

erosion would be laid down during a flood event. There is a

scarcity of literature on organic transport and deposition on al-

luvial landforms during flood events, and therefore we interpret

the likely sequence of events on the basis of changing energy

conditions during the passage of the flood wave (Costa, 1978;

Pizzuto et al., 2008).

During the rising flood, organics are likely to be transported,

but it is improbable that the floodwaters would be high enough

to initiate overbank flow on the floodplain, and therefore they

may simply be washed downstream. However, during the

peak of the flood event, flow velocities both within the stream

and on the floodplain, are likely to be sufficient to transport

sediment. Any deposited sediment that did previously breach

the channel bank may be scoured from the floodplain with

other unconsolidated material at the surface. Evidence

suggests that on frequently flooded alluvial landforms, litter is

substantially reduced in comparison to no-flood zones (Saint-

Laurent et al., 2016). However, velocities may be such that

floodplain residence times may not permit settling of organic

matter. Therefore, the most likely time period for organics to

settle, is during receding flows, when flow velocity is reduced,

but flows remain high enough to continue to inundate the

floodplain.

A key criterion in distinguishing between allochthonous and

autochthonous layers is the context within the flood deposits

and the thickness of an organic layer. Thicker organic layers

containing fibrous material most likely contain a substantial

proportion of organics as a result of pedogenic development

(although they may also contain allochthonous material at the

base), whereas thinner layers or lenses are more likely to relate

to allochthonous peat deposition. The presence of roots in a

suspected in-situ soil deposit provide good evidence that pedo-

genesis has taken place.

Carbon stock calculation

Core scanning offers the potential to calculate detailed carbon

stocks with little laboratory preparation by using density and

carbon content proxies from the data collected during a scan.

The Itrax core scanner can record high quality, high-

resolution X-radiographic images (Francus et al., 2015). Inci-

dent X-rays are attenuated by a wide range of phenomena, with

grey levels acting as a measure of attenuation. The dominant

control on beam attenuation is sediment thickness and bulk

sediment density. The latter is influenced by various factors

such as sediment porosity, water content, composition (OM,

biogenic silica, mineralogy), and grain size (St-Onge et al.,

2007). Fortin et al. (2013) show that sediment density may be

calculated using radiographic data for each pixel. The radio-

graph images obtained are ‘radiographic positives’, so that

low-density areas appear light and higher density areas appear

darker (Croudace et al., 2006).

Between 18 and 20 subsamples (1 cm3) were taken from

each core, and wet and dry bulk densities calculated by

weighing immediately post-sampling, followed by a repeat

weighing after 24 hours in a furnace at 65°C. Radiograph imag-

ery was analysed in Matlab producing an average value across

each row. The greyscale value for each 200μm increment was

then averaged to the corresponding 1 cm depth interval for ev-

ery increment in each core. Regression was performed between

the Matlab-derived greyscale value from the X-radiograph, and

actual dry bulk densities. Individual regression relationships

were calculated for each core because the greyscale values

may not be comparable between cores because of the variety

of factors that determine sediment density.

Primary X-rays during XRF scanning produce two types of

scattering. Rayleigh (or coherent) scattering leaves the photon

energy unchanged, while Compton (or incoherent) scattering

transfers some of the photon energy to electrons in the irradi-

ated material, slightly lowering the energy of the photons. The

amount and relative proportions of the different scattering

mechanism varies with atomic number (Duvauchelle et al.,

1999). High OM content causes more scattering, and favours

the Compton mechanism. The incoherent/coherent scattering

ratio, may be used as an indicator of changes in OM and water

content (Thomson et al., 2006; Liu et al., 2013). This ratio is an

approximation of the atomic number of the average matrix

composition. Incoherent scattering is known to be inversely re-

lated to the mean atomic number of the sediment (Croudace

et al., 2006). Higher intensities of incoherent scattering thus of-

ten reflect higher water and organic contents (Thomson et al.,

2006) and/or lower compaction (higher porosity) in the sedi-

ments of the topmost parts of the profile. Chawchai et al.

(2016) in a study in Thailand, showed that the ratio has a strong

correlation with LOI or TOC when a whole, lithologically var-

iable sediment sequence is used.

To obtain C% values that could be directly compared to the

Inc/Coh ratio, 19 dried sub-samples fromWV14-5 were ground

using a Fritsch vibratory Micro Mill Pulverisette 0 ball mill and

prepared for CHN analysis using a Thermo Fisher Scientific

Flash 2000 CHNS/O analyser to obtain C%. Three repetitions

were run per sample, with calibration and standards run regu-

larly to check the validity of the results. Inc/Coh ratios for the

corresponding 1 cm interval for each sample were averaged

to produce one value. Regression performed between the

Inc/Coh value and the C% derived from the CHN analyser for

just WV14-5 produced a very strong positive, significant corre-

lation (n=19, R2=0.75, p<0.01), so no further CHN analysis

was completed for other cores.

The regression relationship between the Inc/Coh ratio and

C% was used to derive a predicted carbon percentage for every

Table I. Factors determining allochthonous and autochthonous source in headwater floodplains in peatland catchments

Factor In-situ soil Eroded peat

Context in flood deposit Thick organic layer on top of minerogenic flood unit Thin organic layer on top of minerogenic flood unit

Root presence Present and distinguishable but may become less so

downcore when the material is more decomposed

Unlikely to have any distinguishable roots

Texture Consolidated Particulate

OC content High Lower

FLUVIAL CARBON STORAGE IN HEADWATER PEATLANDS
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200μm increment of scanned data, with associated standard

error for every increment. Using the same method, dry bulk

density for every increment was predicted with associated stan-

dard error using the relationship between the radiograph

greyscale value and absolute dry bulk density. Predicted car-

bon proportion and dry bulk density were multiplied to obtain

the amount of C in each 200 micron increment of core and

added together to produce a total carbon stock for each core,

accounting for volume. The errors associated with the predic-

tions of carbon content and density were appropriately propa-

gated.

CS ¼ C�D�V (1)

Total carbon stock (CS) was calculated according to Equa-

tion (1) where C is carbon content, D is density and V is vol-

ume. Errors were propagated appropriately throughout each

stage of the calculation dependent on whether additive or mul-

tiplicative errors were needed. The errors associated with de-

rived density and carbon content for each increment were

calculated by adding the standard error of all values to the ac-

tual value.

E ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

SEd

d

� �2

þ
SEc

c

� �2
s

(2)

Errors were then propagated for each increment according to

Equation (2), where E is total error, SEd is standard error of pre-

dicted density, d is predicted density, SEc is standard error of

predicted carbon and c is predicted carbon content. Further-

more, to calculate total error for each core, individual errors

for each increment were additively propagated.

To account for spatial heterogeneity across the floodplain in

sediment carbon concentrations, the carbon stock was calcu-

lated in each of the five locations representing different areas

of the floodplain. The basal sediments from WV15-1, WV15-

2 and WV15-3 contained gravels and could not be scanned

for XRF or X-radiography. As such, for the locations associated

with WV14-4 and WV14-5, carbon stocks in the lower sedi-

ments were included but were assumed to be zero in the other

three locations.

Thiessen polygons (Thiessen, 1911; Goovaerts, 2000) were

created in ArcGIS to appropriately apportion the carbon stock

for each core across the area of the floodplain associated with

the cores (Figure 3). The carbon stock for each core was multi-

plied by the area of the polygon. The areal carbon stocks were

then summed to produce a total carbon stock for the whole

floodplain.

The error associated with the carbon stock for each Thiessen

polygon was calculated by multiplying the error by the area

of the polygon. The total error for all cores was additively

propagated.

The atypical setting of fine-grained, cohesive floodplain de-

velopment within this upland environment is not limited to a

few floodplains, but many that are associated with the catch-

ments draining the localised blanket peat. Google Earth Pro

was used to identify other floodplains in the River Ashop and

Alport valleys with a similar floodplain-like morphology and

further using the polygon tool, calculate the area of each of

these floodplains (Figure 3). Floodplain boundaries were deter-

mined by the visual interpretation of the floodplain edges

encroaching on the channel boundary from imagery. Sharp

breaks of slope and changes in vegetation mark the floodplain

boundaries in these constrained upland systems so that there is

a high degree of confidence in floodplain definition. 57 flood-

plains were identified in total; 13 along the River Ashop, 31

along the River Alport and 13 after the confluence of these

two rivers leading into Ladybower reservoir.

The depth of organic-containing sediment in the floodplain

study site was approximately 1m. To account for varying sedi-

ment depths of the identified floodplains, a field survey of a se-

lection of these floodplains was undertaken. Sediments

equivalent to the upper sediments in the Woodlands valley

(fine sediment with organic layers above a unit of unbedded

coarse sand and gravel) were observed at all sites and the depth

of these sediments recorded in 32 stream sections. The average

depth was 90 cm (n=32; SD= 25 cm), supporting the assertion

that these floodplains are similar in nature and context.

Individual carbon stocks for each identified floodplain in the

River Ashop and Alport catchments were derived using their re-

spective areas, and the average carbon stock per m2 of the sam-

pled floodplain. Error bounds were applied to the calculation of

these carbon stocks by considering the errors associated both

from the carbon density from the Woodlands Valley floodplain

(errors derived from the prediction of density and carbon con-

tent from the Itrax data), total years of floodplain accretion (de-

rived from basal radiocarbon date error range), and floodplain

depth (error derived as 2 SD of measured floodplain depths).

These were used to calculate a minimum and maximum range

for the carbon stock associated with total floodplain area in the

wider catchments.

Dating

Pb content was established on thick organic layers within the

stratigraphy from both the east and west point-bars. Six samples

across two cores were taken where three distinctive Pb peaks

occurred. These three Pb peaks were almost completely consis-

tent throughout all cores, and provided an opportunity for

cross-correlation to establish an approximate chronology for

some of these layers. Basal organic beds were also chosen in

most cores to identify a chronological boundary for the onset

of organic deposition across the floodplain. Two samples were

also taken in order to obtain more modern estimations of age.

Finally, two large pieces of wood were removed to approxi-

mate radiocarbon activity on a different type of material, rather

than being limited to bulk organics. Therefore, samples were

chosen for age approximation based on correlating cores,

obtaining basal and modern dates, and providing the greatest

range of datable material possible in these cores.

Radiocarbon dating was completed by two different labora-

tories. Initially a piece of unidentified wood from WV14-5 at

1014-1015mm was dated and calibrated by Beta Analytic

Inc. using the IntCal13 calibration curve (Reimer et al., 2013)

with the 2 sigma ranges of the result reported. Twelve bulk or-

ganic samples and one wood sample were prepared to graphite

and dated by the NERC radiocarbon facility in East Kilbride

(Figure 4). Samples were pre-treated using HCl, KOH and acid-

ified sodium chlorite where appropriate.

Six samples for IRSL analysis were collected from the ex-

posed bank of the west point-bar close to the location of core

WV17-3. Five were in a vertical sequence at depths of 150,

290, 470, 610 and 780mm, and one sample was located ap-

proximately 10m to the SE along the exposed section at a

depth of 810mm, representing the same stratigraphic horizon

as the 780mm depth sample. One modern sample was also ex-

tracted from the bed sediments. IRSL sample preparation and

dating were undertaken at the University of Sheffield using a

potassium feldspar single-grain post-IR IRSL approach as

outlined by Rhodes (2015).

Sample preparation comprised sieving to separate the 180-

212μm fraction, HCl andH2O2 treatments to remove carbonate
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and organics respectively, density separation to isolate the K-

feldspar fraction using sodium polytungstate at 2.58 g.cm-3,

then following copious rinsing, a brief 10%HF treatment to etch

the surface of the grains. After rinsing and drying, sub-samples

were sieved a second time to remove material <180μm, and

grains mounted individually in Risø single grain holders.

Measurements were made using a SAR (single aliquot

regenerative-dose) protocol and a single grain post-IR IRSL

approach (Brown et al., 2015; Rhodes, 2015; Smedley et al.,

2015) within a Risø TL-DA-20 D DASH automated lumines-

cence reader fitted with a BG3 and BG39 filter combination.

IRSL stimulation (at 50 and 225°C) was with a 150mW

830nm IR laser at 90% power for 2.5 seconds incorporating a

RG-780 filter within the single-grain attachment to reduce the

resonance emission at 415 nm. Vishay TSFF 5210 870nm IR

diodes were used at 90% power for 40 seconds for a hot bleach

treatment at 290°C at the end of each SAR cycle. A preheat of

250°C for 60 seconds was used, and signal growth was fitted

with an exponential, or exponential plus linear, function.

Age estimation was based on the combination of the signals

from the youngest apparent single grain ages for each sample

(Rhodes, 2015). Dose rate contributions included in-situ NaI

gamma spectrometer measurements of the gamma dose rate,

with beta dose rate estimated on the basis of U, Th and K

sediment concentrations determined using ICP-MS for U and

Th and ICP-OES for K. An internal K content of 12.5% was

assumed (Huntley and Baril, 1997), and cosmic dose rate was

calculated based on sample depth. A uniform value of water

content of 12.5 ± 2.5 was assumed based on measured water

content results.

Results

Sedimentology

The cores were split into two facies types, indicating that two

different processes may have formed the current day floodplain

structure. The upper metre of sediments was characterised by

interbedded organics and silty-sands, whereas, the lower sedi-

ments with the exception of WV14-4 and WV14-5 consisted

of coarse sands and gravels with no visible bedding.

The sedimentology within the upper metre of the cores

revealed a variety of sediment types including regular

Figure 3. Thiessen polygons created from the division of the floodplain and distinguished by colour (upper) and identifiable small floodplains

(white) in the River Ashop and Alport catchments. ©2018 Google. [Colour figure can be viewed at wileyonlinelibrary.com]
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minerogenic layers with a variety of different oxidation states,

organic layers, and mixed material containing both organics

and minerogenic material. Detailed characterisation of the

stratigraphy may be found in Alderson (2017). Key observable

features have been identified (Figure 5).

Most cores had an over-thickened A horizon soil at the top of

their profiles with alluvial parent material as observed by

Daniels (2003). These organic A horizons were fairly fibrous,

providing evidence for their recent growth and lack of

decomposition.

Other organic layers in all cores displayed a variety of thick-

nesses and textures. In almost all organic layers, roots were still

visible, although not in the same density as at the top of the

cores. The presence of roots indicated that pedogenic pro-

cesses had taken place within these layers. Organic banding

tended to be thicker in all cores towards the top of the stratigra-

phy. Thin and occasionally discontinuous organic lenses within

mineral sands were also observed in the same cores at a variety

of depths. Organic layers in most cores had a fairly horizontal

structure, with the exception of WV15-3 where the organic

layers presented with an inclined structure indicative of

microtopography on the floodplain surface.

Whereas the upper metre of most cores consisted of inter-

bedded organic and mineral material, the lower sediments

mainly consisted of coarse sands and gravels with little evi-

dence of bedding. Only WV14-4 and WV14-5 had observable

organics and are displayed in Figure 5.

Suspected flood couplets (Turner et al., 2015) were observed

in the fine-grained facies of all cores with some being linked to

clearly observable grain-size changes and organic capping. At

least four of these couplets were present in most cores indicat-

ing laterally extensive deposition.

Distinguishing the presence of allochthonous OM from

sedimentology is challenging, as it may form the substrate

(Baldwin et al., 2013) for soil development, or may be trapped

by rooted vegetation during a flood event (Gurnell, 2014). As

such, it is plausible that within one organic profile, allochtho-

nous material could be present at the bottom or top of a layer

and subsequently mixed throughout via post-depositional pro-

cesses. Therefore, the best opportunity for identifying distinct

allochthonous layers was associated with thin layers or lenses

which have been quickly enveloped by another flood event.

Consequently, these events were more likely to be found to-

wards the bottom of the core when the floodplain was not as

high, so frequent inundation could take place. The most obvi-

ous thin layers were within WV15-3. Textural characteristics

of the thin layers in all cores were difficult to observe as the

layers were so thin (mm scale), but on observation there was

no sign of roots.

Flood event stratigraphy

Direct measurement of grain size fractions through a flood

event is a useful way to provide evidence for and understand

the characteristics of a particular flood event (Schillereff et al.,

2014). Individual flood events may be assumed to end where

the base of an organic bed begins by a sharp erosional contact

(Törnqvist and van Dijk, 1993).

Grain size analysis was undertaken to provide further confi-

dence on the sedimentological interpretation; that the distinc-

tive mineral and organic couplets were associated with flood

events (Figure 6). WV14-5 was chosen as the central core from

the floodplain, characterised by clear minerogenic units with

Figure 4. Compiled optical imagery and x-radiographic density determinations, in addition to Pb relative counts from ITRAX core scanning. Upper

images represent relative core locations on the floodplain with arrows indicating direction of river flow. Red boxes highlight location of thirteen sam-

ples radiocarbon dated by NERC. All radiocarbon samples presented here were bulk soil with the exception of sample 10 which was unidentified

wood. [Colour figure can be viewed at wileyonlinelibrary.com]
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Figure 5. Optical imagery from ITRAX core scanning and interpretation of sedimentological features of the floodplain material. Scanned lower sed-

iments (beyond 1m) represented by D2, for drive 2. [Colour figure can be viewed at wileyonlinelibrary.com]

Figure 6. Mean grain size of three flood units in WV14-5 and two modern day sediment mounds from a large overbank flood event.
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an organic capping, to investigate grain size relationships

through suspected flood events, and through the organics on ei-

ther side of the flood event. A discernible trend in mean grain

size can be distinguished in two layers (380-465mm and

570-625mm). A coarsening upward sequence was distin-

guished with the coarsest grain size at 400mm and 585mm re-

spectively, followed by a fining upwards sequence up to the top

of the layer and partially into the organics. This sequence is in

agreement with interpretation from Costa (1974) where the

grain sizes coarsen up whilst flow velocity increases; with the

maximum grain size representing the peak of the flood and

the waning of the floodwaters represented by a fining upwards

sequence.

The layer from 490 to 555mm is more complex with two

sequences of coarsening up and fining up. The first section

fined up from 550mm with the maximum mean grain size at

530mm. The sequence then approximately fined upwards until

510mm when coarsening upwards proceeded. The maximum

mean grain size was at 500mm followed by another fining up

sequence. This minerogenic section was split by an organic

lens, indicating that there were actually two separate flood

events.

A modern overbank flood event provided the opportunity to

validate the grain size relationships observed in the floodplain

stratigraphy. Both samples of modern deposition, confirmed

the coarsening up followed by fining up relationship (Figure 6).

The combination of the modern and palaeo-grain size relation-

ships give credence to the interpretation that the mineral-

organic sequences were distinct flood events.

Core correlation

The identification of flood couplets and the horizontal struc-

tures of facies across the floodplain suggest that overbank

deposition has occurred. However, the stratigraphy is complex

and not all events may manifest in the same way or at all,

spatially across the floodplain. If certain stratigraphic units

can be linked, this gives further confidence that the upper

metre of sediments in this floodplain have formed by vertical

accretion as a result of overbank flood events.

Three distinctive Pb peaks were observed across most of the

cores and have been cross-correlated in Figure 7. Absolute

values of Pb were unimportant in comparison, because Pb is

expressed in peak area (counts) and therefore absolute Pb

values between cores were not comparable. These peaks were

arguably most distinctive in WV14-4 and appeared to be asso-

ciated with what are characterised according to the classifica-

tion scheme as relatively thick, autochthonous organic layers.

These three peaks form the basis of the inter-core correlation

as demonstrated in Figure 7 and aid in interpreting the visual

stratigraphy of the cores. These layers were selected for age ap-

proximation in WV17-1 andWV17-2, to confirm that the layers

were correlated and to establish the age of the sediment con-

taining the Pb.

One of the most notable differences between cores was the

sedimentology of WV15-2, with the absence of organic layers

below 300mm. As this core is distal from the present channel,

one could assume that it was unlikely that regular overbank de-

position has occurred in the past, with the bulk of this material

accreting by other processes such as lateral point-bar accretion.

However, the presence of the cut-off channel indicated by the

morphology of the floodplain and the fresh trash material ob-

served, suggested that different processes may have occurred.

In flood, high flows would cut off the meander flowing across

the location of WV15-2. The lack of overbank fines and pedo-

genic development below 300mm suggested that the flood-

plain was regularly inundated in this way, without time for

pedogenesis to take place. An alternative explanation relates

to a migrating channel over the lifetime of the floodplain.

Although, the valley is relatively well constrained, there is evi-

dence of a palaeochannel from topographic inspections of the

floodplain, which could explain the predominance of mineral

material at this location.

Figure 7. Pb peak correlations between coring locations. [Colour figure can be viewed at wileyonlinelibrary.com]
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The core correlation linking Pb peaks clearly demonstrated

that most of the floodplain development occurred by concur-

rent deposition with the exception of the most distal part

of the floodplain relative to the present-day channel, where

a cut-off channel or palaeochannel has influenced the

sedimentology.

Age of floodplain

To aid the interpretation of the geomorphological formation

and development of this floodplain, dating control on the flood-

plain stratigraphy was required.

The unidentified piece of wood at the base (1014-1015mm)

of the lower sediments of WV14-5 was dated by Beta Analytic

as being between 500 to 310 Cal years BP. A second piece of

wood towards the bottom of the upper metre of sediments of

WV15-2 (730mm) was dated at 333 ±37 years BP (Table II).

These two ages suggested that the upper stratigraphy of the

floodplain was circa 500 years old.

The bulk organic layers ranged from 1425 ±37 to 6043

±38 years BP, with one sample dated as modern or late 1950s

(Table II). The average age of the bulk organic ages excluding

the modern age was 3010 years BP. Eight out of eleven bulk or-

ganic ages (excluding the modern sample) fit within 3000 years

BP ±1000 years, with three outliers, two of which were slightly

more extreme (1425 and 6043 years BP). Contrary to the inter-

pretation of the sedimentology, these ages suggest that a sub-

stantial proportion of these thick organic layers were derived

from the erosion of ‘old’ peat and that the overbank sediments

observed in the first metre were formed in the last 500 years. An

age depth model is therefore impossible to produce for the up-

per sediments, as the bulk organic layers are at least in part

derived from elsewhere and contain a complex mixture of ages

dependent on the age of the material from which they have

been derived in the peatland catchment.

The IRSL dating samples were taken from the bank of the

west point-bar as opposed to the samples for radiocarbon dat-

ing taken from both point-bars spanning the single meander

bend (Figure 2). Around 50% of measured grains provided a fi-

nite age estimate, and these formed a wide range of measured

apparent values in each case. The dominant effect producing

this spread of apparent single grain ages is incomplete signal

zeroing prior to deposition, although some samples also show

indications of post-depositional mixing of younger material.

The ages excluding the modern sample range from 430 to

1430 years (Table III). A new basal sample was taken at

810mm (WV16-01 – Shfd16076) following concerns about

possible anthropogenic modifications of the floodplain affect-

ing sample WV14-05 (Shfd15054), as this age appeared

inverted in the stratigraphic column. Sample WV14-02

(Shfd15051) from a depth of 29 cm provides an anomalously

high age estimate, and it is presumed that this deposit was laid

down rapidly, possibly at night, with little opportunity for con-

stituent grains to be bleached. The modern sample gives an age

of 40 ±80 years, suggesting that at least some grains from this

sample were reasonably well zeroed at this location.

The original basal sample (WV14-05 Shfd15054 at 78 cm

depth) showed a mixture of zero age grains and older (c.

1,000 yr old) grains (Figure 8a), while the replacement sample

(WV16-01 Shfd16076) showed no signs of grains younger than

the combined age of 1060 ±110 years and provided additional

confidence that the previous estimate was based on a contam-

inated location. This sediment sequence was deposited be-

tween 1000 and 400 years ago, and is therefore slightly older

than the overbank deposition dated by 14C in the adjacent

Table II. Radiocarbon dates provided by NERC laboratories. Samples taken from the east and west point-bars

Sample type Publication code Sample identifier

14
C Enrichment

(% Modern ± 1 σ)

Conventional Radiocarbon

Age (years BP ± 1 σ)

%Carbon

Content

δ
13
CVPDB‰

(± 0.1)

Bulk organic SUERC-72209 WV17-1 180mm 103.73 ± 0.47 N/A 20.0 -29.0

Bulk organic SUERC-72210 WV17-1 300mm 75.08 ± 0.34 2302 ± 37 26.3 -29.1

Bulk organic SUERC-72211 WV17-1 460mm 71.89 ± 0.33 2651 ± 37 11.4 -27.9

Bulk organic SUERC-72219 WV17-2 30mm 73.60 ± 0.34 2462 ±37 7.7 -28.2

Bulk organic SUERC-72212 WV17-2 180mm 83.74 ± 0.38 1425 ± 37 9.1 -27.8

Bulk organic SUERC-72213 WV17-2 430mm 74.11 ± 0.32 2407 ± 35 25.4 -28.0

Bulk organic SUERC-72218 WV17-2 560mm 70.63 ± 0.32 2793 ± 37 6.8 -27.6

Bulk organic SUERC-72200 WV15-1-D1 900mm 59.93 ± 0.26 4113 ± 35 1.8 -27.3

Bulk organic SUERC-72201 WV15-2 250mm 47.13 ± 0.22 6043 ± 38 2.1 -25.8

Wood SUERC-72207 WV15-2 730mm 95.94 ± 0.44 333 ± 37 38.1 -25.4

Bulk organic SUERC-72202 WV15-3 770mm 68.04 ± 0.31 3094 ± 37 21.0 -28.1

Bulk organic SUERC- 72220 WV17-3 270mm 68.03 ± 0.31 3094 ± 37 9.9 -28.2

Bulk organic SUERC- 72221

WV17-3

720mm 71.20 ± 0.31 2729 ± 35 7.7 -27.8

Table III. IRSL dating of west floodplain point-bar and channel-bar. Bold type indicative of data used to create an age-depth model

Field

code

Laboratory

code

Depth

(m)

Stratigraphic

notes

De

(Gy)

1 σ

uncertainty

Dose rate

(mGy/a)

1 σ

uncertainty

Age

(years)

1 σ

uncertainty

WV14-01 Shfd15050 0.15 Main section 1.46 ± 0.47 3.38 ± 0.18 430 ± 140
WV14-02 Shfd15051 0.29 Main section 3.58 ± 0.23 2.50 ± 0.13 1430 ± 120

WV14-03 Shfd15052 0.47 Main section 1.98 ± 0.17 2.36 ± 0.11 840 ± 90
WV14-04 Shfd15053 0.61 Main section 1.82 ± 0.14 2.57 ± 0.14 710 ± 70
WV14-05 Shfd15054 0.78 Main section 1.97 ± 0.45 3.19 ± 0.14 620 ± 140

WV14-06 Shfd15055 0.15 Modern bar 0.08 ± 0.18 2.24 ± 0.17 40 ± 80

WV16-01 Shfd16076 0.81 Second section 2.89 ± 0.28 2.73 ± 0.11 1060 ± 110
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point-bar. Including only those ages marked in bold in Table III

produces the age-depth relationship shown by the dashed line

in Figure 8b.

Carbon stocks and uncertainties

Carbon concentration and sediment density were derived from

Itrax core scanning data using X-radiographic density and

Inc/Coh as proxies. Regression analysis of direct measurements

against the proxy data for a subset of samples are displayed in

Table IV. The relationship between Inc/Coh and C% measured

using a CHN analyser had a strong positive (0.75 R2) significant

relationship (p<0.01), and therefore gives us confidence that

Inc/Coh represents a useful proxy for C%. Cores WV14-5,

WV14-4 and WV15-1 had relatively strong positive relation-

ships between average radiographic greyscale and dry bulk

density which were significant (p<0.01). WV15-2 had a weak

positive correlation which was significant (p<0.05). However,

the relationship between radiographic greyscale and dry bulk

density was much weaker in WV15-3 with a positive correla-

tion that was not significant. Šidák corrections to alleviate the

issue of multiple comparisons produced a confidence interval

of 99% to test at, resulting in the correlations for WV15-2 and

WV15-3 being not significant. Despite this, the correlations

may still be used, as derived p values were not a measure of

whether there was a physical relationship as it is well

established that both proxies and the actual measures are re-

lated. The relationships between density in each core were

clearly different (Figure 9) and therefore it was important to

generate individual relationships.

Total carbon stocks are presented in Table V with their asso-

ciated error. WV15-2 had the largest carbon stock followed by

WV14-5, WV15-1, WV15-3 and finally WV14-4. The error as-

sociated with the carbon stocks was largest for WV14-4 and

WV15-3 but was still within a reasonable range. The total stock

in the floodplain was 325 ±10 tonnes.

Figure 8. a) Variability in old basal sample (white, open circles) and

new basal sample (red circles) b) Age-depth relationship of floodplain

sediments based on IRSL dating. Red circles (with the exception of

the modern date) used to create age-depth model. [Colour figure can

be viewed at wileyonlinelibrary.com]

Table IV. Regression statistics for C and Inc/Coh ratio in addition to

dry bulk density and radiographic greyscale correlations

C Density

WV14-5 WV14-4 WV14-5 WV15-1 WV15-2 WV15-3

R 0.868 0.830 0.714 0.618 0.460 0.369

R
2

0.753 0.689 0.510 0.382 0.212 0.136

p <0.001 <0.001 <0.001 <0.000 0.041 0.120

Figure 9. Radiograph and density relationships for each core. p values indicate significant values according to the Šidák correction. [Colour figure

can be viewed at wileyonlinelibrary.com]
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For the wider catchment, the most extensive floodplain de-

velopment and hence the largest stocks by this extrapolation

were below the confluence (Table VI), followed by the River

Ashop and then the River Alport (associated with their areas).

The total carbon stock for floodplains identifiable with the

two catchments was between 3482 and 13460 tonnes, which

represented a substantial stock of carbon in an area where

floodplains are atypical.

This extrapolation of carbon stocks rested on the assumption

that the WV floodplain is representative of the wider system.

This was a substantial assumption, but was supported by the

similar context and scale of these floodplains. Variations based

on floodplain depth and carbon density variation within a sin-

gle floodplain were considered by using minimum and maxi-

mum bounds. However, the OC content and the sourcing of

OC within the extrapolated floodplains, in addition to flood-

plain area identification does represent an unknown error,

although the similar context of the floodplains is reassuring.

Uncertainties withstanding, the extrapolation was useful be-

cause it allowed comparison with existing understanding of

the carbon budgets of the wider system in order to establish

the significance of the data from a singular floodplain.

Carbon stock in context

If the Conventional Radiocarbon Age of the basal radiocarbon

age estimate from WV14-5 D2 (500 to 310 Cal years BP) is

used, (corrected for isotopic variations and an assumed delta
13C), and the years of additional deposition from 1950 to

2016 are taken into account, we can estimate that the upper

portion of the floodplain has accreted over 376-566 years.

The total carbon stock for the Ashop and Alport valley flood-

plains calculated above, divided equally over these years

equated to between 6.2-35.8 (best estimate: 17.7) t C yr-1.

The combined catchment area of the Rivers Ashop and Alport

was 49 km2. Therefore, the rate of accumulation per year was

between 0.1-0.7- t C km-2 yr-1. Data from a previous study

has shown fluvial POC flux from the River Ashop near the study

site estimated at 16.4 t C km-2 yr-1 (Pawson, 2008) which

means that approximately between 0.8-4.5-% of the POC an-

nual flux was stored. This POC flux was based on recent data

and does not account for a variable flux over time. In fact, the

POC flux is likely to be lower now than during the last

500 years, because of natural revegetation in the area (Crowe

et al., 2008). Large investments in artificial revegetation in the

wider area have been shown to drive large reductions in POC

flux by an order of magnitude (Alderson et al., 2019). Higher

POC fluxes during earlier stages of floodplain development

would mean that floodplain carbon storage as a proportion of

fluvial POC yield estimated here is a maximum amount.

Fluvial sediment taken during rising flood stages in the River

Ashop catchment was on average 30% OC (Pawson, unpub-

lished data). In comparison, average C% across the WV cores

was 5%, with the possibility that deposited C has been largely

oxidised (83% loss). Petrogenic carbon from this location is

negligible (Shuttleworth et al., 2015) so this cannot explain

the discrepancy. An alternative explanation is that sorting of or-

ganic sediment has occurred during the flood event with the

end product of OC deposited on the floodplain becoming di-

luted. However, supporting the former hypothesis, Evans et al.

(2013) concluded 80% of POC exported from peatlands is

eventually emitted as CO2. Fluctuating water tables typical of

these floodplain environments, are less conducive to preserva-

tion of OC than water saturated peatland environments,

making oxidation of OC prevalent. Thus, using the more

conservative estimate of 80% oxidation from Evans et al.

(2013), floodplain carbon storage equivalent to 0.1-0.7 t C

km-2 yr-1 equates to 0.6-3.7- t C km-2 yr-1 of original deposition.

This further equates to between 3.8-22.3-% of the modern-day

fluvial POC flux. Potential for in situ soil carbon accumulation

means this is a maximum estimate.

Based on sedimentological interpretation identifiable or-

ganic layers may be apportioned by source (Figure 10). It is im-

portant to note that minerogenic carbon was classified as

allochthonous carbon as it did not develop in-situ and predom-

inantly mineral samples had very low C contents. The Millstone

Grit geology in the catchment has a very low C% and there is

little evidence of shales in the stratigraphy. The carbon stock

was thus divided as 23% allochthonous and 77% autochtho-

nous organics. This was clearly an underestimation of alloch-

thonous organics as the derived radiocarbon ages showed

that the bulk layers were much older than the floodplain itself

and must be at least in part derived from eroded soils elsewhere

in the catchment. These layers however were also clearly par-

tially autochthonous as they feature roots and the consolidated

texture associated with in-situ soil growth.

Discussion

Bringing together the variety of methodological approaches

taken in this study, presents the opportunity to deduce how

the floodplain formed and evolved, and the links between these

processes and carbon sequestration. This further allows us to

make inferences about floodplain development and carbon cy-

cling in the wider catchment. We use the floodplain sedimen-

tology and chronology to establish, and evaluate the timing of

the formation of the floodplain and the OC stored within, in

relation to other catchment events. Furthermore, information

from other studies in the catchment is utilised to contextualise

the role of the floodplains in processing laterally redistributed

carbon.

Geomorphological evolution of the floodplain

The nature of the palaeochannel and the grain sizes at the

bottom of the floodplains suggests that the basal sediments

were probably formed by lateral accretion processes or as rapid

Table V. Total carbon stock per core and within floodplain

Core

Total carbon
represented by
core (kgm

-3
)

Area of
Thiessen

Polygon (m
2
)

Total Carbon
stock in Thiessen

polygon (t)

WV14-4/WV17-1 45 ± 5 828 37 ± 4

WV14-5/WV17-2 59 ± 3 1769 105 ± 4

WV15-1 47 ± 1 1169 55 ± 0.9

WV15-2 97 ± 0 803 78 ± 0.1

WV15-3 35 ± 5 1506 50 ± 8

Total: 283 6075 325 ± 10

Table VI. Floodplain carbon stocks in River Ashop and River Alport

catchments

Number Area (m
2
) Carbon stock range (tonnes)

River Ashop 13 41640 844-3261

River Alport 31 33581 680-2630

After confluence 13 96615 1958-7568

Total 57 171836 3482-13460
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accretion of coarse gravels during flood events in a mobile

channel. The existence of horizontal layers of fine sediments

(approximately upper m) throughout most of the cores, and

the correlated layers containing Pb, supports overbank deposi-

tion as a key process that has formed the upper metre of the

modern-day floodplain.

This floodplain can thus be classified as a polyphase flood-

plain, common in these types of deposits as the different sec-

tions represent the legacies of past flow regimes. The majority

of the units in the floodplain may be classified as confined

vertical-accretion sandy floodplains which is order A2 in the

energy classification scheme by Nanson and Croke (1992).

The floodplain is present in an upland confined valley and is

formed largely of sand which overlies basal gravels. The con-

fined nature of the valley functions in intensifying the erosional

power of extreme flood events. Typically, this type of floodplain

builds over hundreds to thousands of years and may be eroded

down to its base by a series of large floods or a catastrophic

flood, after which it reforms. These floodplains are thus unsta-

ble in nature as they are built up of non-cohesive material.

However, this floodplain is clearly atypical of this character-

isation in that it has become cohesive as substantial organic

Figure 10. Characterising organics as allochthonous (33 layers) and autochthonous (40 layers) on the basis of sedimentology. [Colour figure can be

viewed at wileyonlinelibrary.com]
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material is present, building up multiple buried soils throughout

its history. Roots from pedogenesis have acted to bind layers to-

gether and a vegetated surface has trapped finer sediment over

time, transforming the floodplain into a confined cohesive

vertical-accretion floodplain, which is not part of the classifica-

tion of Nanson and Croke (1992). There are limited studies on

pedogenic development on floodplains subject to periodic

flooding (Saint-Laurent et al., 2008). However, the analysis of

alluvial soils may aid in the understanding of the geomorpho-

logical development and dynamics of the river system, as soils

and palaeosols indicate periods of stabilisation by the river, or

in this case periods where the sediment load was highly

organic.

Dating techniques confirmed the floodplain age as late Holo-

cene on the basis of the two wood radiocarbon dates that infer

that the upper portion of the east point-bar of the floodplain is

approximately 500 years old (years before 2016). This wood

has likely been derived from elsewhere in the catchment, but

almost certainly not from the peatland itself, as trees have not

grown on the peatland since before the onset of peat erosion

dated at between 7500 to 5400 BP (Tallis and Switsur, 1991).

The two point-bars are therefore likely to be diachronous. The

upper sediment unit within the west point-bar although slightly

older, is still contemporary in age, with predictions of the onset

of peat erosion in the Peak District which are broadly concen-

trated in the last millennium (Evans and Lindsay, 2010).

This age of the upper section of the east point-bar of the

floodplain composing of overbank fines and organics is consis-

tent with estimations of the onset of peat erosion in this specific

area of 500 ±250 years (Evans and Lindsay, 2010), collated

from the work of Tallis (Tallis, 1994, 1995, 1998) as between

700 and 400 years BP. This confirms that the floodplain devel-

opment occurred during a period of major peat erosion.

The bulk 14C trapped in some of the thick organic layers was

proven to be substantially older than the age of the upper metre

of sediments. Fluvial conventional radiocarbon ages from Up-

per North Grain, one of the headwater catchments associated

with the River Ashop (Evans et al., 2013), range from 2140 to

3190 years BP (77-67 % modern 14C).

Sedimentary floodplain ages demonstrate that the lower ex-

tremities of the overbank sediment sequence in the floodplain

were concurrent with the initiation of peat erosion. Organic

matter eroded from surficial peats at this time and deposited

during early floodplain development would therefore be ap-

proximately 500 years younger than surficial peats eroded and

deposited today. The process of gully incision is often swift (Ev-

ans and Warburton, 2007), exposing the complete peat profile

as a source of eroded sediment. Therefore, although initially

the age of eroded source material is close to 500 years BP it

rapidly becomes a mixed sample across the full age range of

the peat profile.

There are clear consistencies between the modern ages of

riverine POC and the ages of sedimentary OC stored through-

out the floodplain. These similarities are consistent with a flu-

vial POC load dominated by old peat transported as a result

of extensive gully erosion. The mean age of the fluvial load (ap-

proximately 3000 years BP) is approximately half the estimated

age of the eroding peatlands and is consistent with an organic

load derived from erosion through the full depth of the peat

profile. The old age of OC in the floodplain sediments is there-

fore consistent with the bulk of stored OC deriving from depo-

sition of older peat eroded from the catchment. However, it is

clear that pedogenesis has also occurred within these layers

as evidenced by the substantial root density present.

Variation in apparent age of OC observed in the WV flood-

plain sediments is therefore likely to be a result of different

levels of dilution by in-situ vegetation that has subsequently

decomposed, meaning that all layers may not feature the same

proportion of allochthonous versus autochthonous material.

Implications of POC deposition versus pedogenesis

Extensive peat erosion in the blanket bogs of Bleaklow Plateau

and Kinder Scout has occurred over the last 500 ±250 years,

forming widespread gully systems within the deep peat. The

POC flux even recently is substantial as far down the catchment

as the Woodlands Valley study site (16.4 t C km-2 yr-1: Pawson,

2008), and as major restoration efforts have taken place in re-

cent years which have been successful, we may assume by in-

ference that the POC flux was previously higher.

If the initial sedimentological interpretation was used without

knowledge of the radiocarbon ages, 23% of the OM stored in

the floodplain sediment was associated with allochthonous de-

position. Nevertheless, evidence from the bulk organic matter
14C measurements for this floodplain demonstrates that this is

a substantial underestimation of the amount of re-deposited

peat that has been stored in these floodplain sediments. How-

ever, these thick layers cannot simply be classed as allochtho-

nous as there is little doubt that there is a mixture of in-situ

organics and redeposited peat as the thick organic layers have

firmly established root systems, that would not be characteristic

of re-deposited POC. As such, the sedimentological classifica-

tion cannot be used with confidence to discriminate between

allochthonous and autochthonous sources.

The implication of these results is that there has been a sub-

stantial lateral redistribution of terrestrial carbon. The disparity

in organic content between high flow suspended sediments

and preserved floodplain sediments and previous work on sed-

iment preservation (Pawson et al., 2008; Evans et al., 2013) in-

dicate that the extensive peatland erosion has generated

carbon flux to the atmosphere due to oxidation on the flood-

plain surface. The implication is that these headwater flood-

plains, despite acting as sites of substantial allochthonous

carbon sequestration and generation of additional storage of

autochthonous OC, are also hotspots of allochthonous carbon

turnover and important components of the sediment cascade.

The presence of consolidated, organic floodplains is atypical

in an upland landscape. Floodplain formation in these systems

appears to be related to two geomorphological events. Exten-

sive early Holocene landslide deposits reduce local valley gra-

dients but the analysis presented here demonstrates that

floodplain formation was not initiated until the late Holocene,

concurrent with the onset of rapid erosion of the organic soils

of the headwaters of this system, which dramatically increased

the sediment load (Figure 11). The landslide event is contin-

gent, (sensu Simpson, 1963) creating the accommodation

space for floodplain genesis higher in the catchment than might

normally be the case. Floodplain formation however was trig-

gered by immanent (sensu Simpson, 1963) sedimentological

processes driven by upstream erosion.

The floodplains created in this environment are a function of

the severity of the peatland erosion in this region, representing

an end-member with regards to fluvial POC export. This pro-

cess has led to substantial lateral terrestrial carbon cycling, with

storage of aged carbon and hotspots of carbon turnover as key

outcomes.

Comparison of the floodplain storage of the fluvial POC flux

in this catchment (0.8-4.5%) to other studies is difficult, since

most relevant studies involve landscape-scale catchments

which do not consist of organic-dominated soils. Nevertheless,

Worrall et al. (2018) estimated overbank storage as 2% in a

study of the River Trent, UK, using estimates of the proportion

of bankfull discharge to estimate overbank sedimentation.
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Gomez et al. (2003) estimated that floodplain storage of the

Waipaoa river in New Zealand was 4% of the annual POC flux.

Similarities in the fluxes derived from these studies to the fluxes

in this peatland dominated system are surprising. Highly or-

ganic fluvial sediment loads would suggest floodplain storage

in organic-dominated catchments should be much higher than

non-organic prevalent systems. The fact that in-situ preserva-

tion of carbon is at rates comparable to other floodplains is con-

sistent with the hypothesis that significant oxidation of OC has

occurred on the floodplain.

Although the formation of floodplains are a consequence of

the extreme nature of this environment, the processes underly-

ing topographic adjustment and erosion are inherent within

upland landscapes. Severe erosion in particular is a threat in

peatland environments that have up until now held an intact

status, as a repercussion of climate and land use change. As

such, continued enhancement of our knowledge of the role of

floodplains in cycling and storing OC must become a critical

research priority. Peatlands that are in the process of eroding,

offer a unique opportunity to research floodplain development

and carbon processing as it develops, rather than after the

event.

As with erosion, deposition is an episodic event (Stallard,

1998) and understanding transient storage in river systems

should become a research priority in terrestrial carbon cycling

as increasing evidence demonstrates that these systems are

not passive (for example Galy et al., 2015; Hilton, 2016). In

fact, these systems play an important role in setting the radio-

carbon content (and organic matter quality) of riverine POC

cycled back into the fluvial system and eventually the ocean,

which models suggest may interrupt this pathway on timescales

of millennia or greater (Torres et al., 2017). Future research on

previously severely eroded, and presently eroding systems must

focus attention on the timescales of POC retention and the

governing processes that dictate these timescales.

Conclusions

This is the first in-depth investigation of geomorphological his-

tory, carbon storage and carbon source in a floodplain from an

organic headwater catchment. A unique approach using Itrax

core scanning data was used to derive a carbon stock, suggest-

ing that this method may prove successful in other locations

and environments, without the need for time-consuming tradi-

tional methods.

The carbon stock estimate for the floodplains across the

catchments is between 3482 and 13460 tonnes, equating to

storage of between 0.8-4.5% of the modern-day fluvial

flux, although this is almost certainly an overestimation as a

result of restoration measures in the headwater catchments.

Standard sedimentological approaches proved unreliable in

Figure 11. Processes leading to floodplain formation and carbon cycling in headwater catchments. The landslide process is contingent to this loca-

tion, whereas the peatland erosion and the increased sediment load that follows are immanent processes.
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apportioning allochthonous/autochthonous carbon. 14C aging

of organic matter indicated a dominance of OC sourced from

off-site erosion of peatlands. However, viewing these sites sim-

ply as carbon stored is misleading. Comparison of floodplain

OC content with fluvial sediments indicates that these systems

have potentially been turning over substantial quantities of car-

bon to the atmosphere.

Patterns of carbon flux have established that upland flood-

plains are an inherent part of this eroding peatland system. Stor-

age and oxidation are both key processes with pedogenesis

producing further carbon storage and stabilising the floodplain.

In eroding peatland systems, erosion, deposition and turnover

of carbon are intimately linked at the landscape scale and

floodplains are a dynamic component of this system.

The role of headwater floodplains has not previously been

recognised in terrestrial carbon cycling, but the work presented

here suggests that they are a dynamic component of the terres-

trial carbon cycle where net carbon sequestration is under the

control of geomorphological as well as biological processes.

Further work is urgently required to ascertain the fate of

floodplain carbon with regards to both quantity and quality. If

headwater deposits are hotspots of carbon transformation, then

erosional fluxes of POC from peatlands could be a source of at-

mospheric carbon. Understanding of the fluvial geomorphol-

ogy and carbon cycling/storage status of floodplains as part of

eroding upland catchments, may be central to estimation of

the greenhouse gas balance of eroding peatlands.
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