

This is a repository copy of RAFT dispersion polymerization in silicone oil.

White Rose Research Online URL for this paper: http://eprints.whiterose.ac.uk/145789/

Version: Supplemental Material

Article:

Rymaruk, M.J., Hunter, S.J. orcid.org/0000-0002-9280-1969, O'Brien, C.T. et al. (3 more authors) (2019) RAFT dispersion polymerization in silicone oil. Macromolecules, 52 (7). pp. 2822-2832. ISSN 0024-9297

https://doi.org/10.1021/acs.macromol.9b00129

This document is the Accepted Manuscript version of a Published Work that appeared in final form in Macromolecules, copyright © American Chemical Society after peer review and technical editing by the publisher. To access the final edited and published work see https://doi.org/10.1021/acs.macromol.9b00129

Reuse

Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of the full text version. This is indicated by the licence information on the White Rose Research Online record for the item.

Takedown

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

Supporting information for:

'RAFT Dispersion Polymerization in Silicone Oil'

Matthew J. Rymaruk,^a Saul J. Hunter,^a Cate T. O'Brien,^a Steven L. Brown,^b Clive N. Williams,^b and Steven P. Armes^{a,*}

a. Dainton Building, Department of Chemistry, University of Sheffield, Brook Hill, Sheffield, South Yorkshire, S3 7HF, UK.

b. Scott Bader Company Ltd, Wollaston, Wellingborough, Northamptonshire, NN29 7RL, UK.

Figure S1. Uncalibrated THF GPC chromatograms obtained using a UV detector operating at 298 nm for (i) PETTC CTA (blue trace) and ii) $PDMS_{66}$ -TTC macro-CTA after purification by silica column chromatography followed by a methanol wash (black trace). The absence of any PETTC signal in the $PDMS_{66}$ -TTC macro-CTA chromatogram indicates complete removal of this starting material.

Figure S2. Beer-Lambert calibration curve constructed for PETTC RAFT agent at a λ_{max} of 298 nm in dichoromethane.

Figure S3. THF GPC chromatograms recorded at various intermediate monomer conversions from the polymerization of DMA in D5 silicone oil using a PDMS₆₆ macro-CTA at 90 °C, targeting a final diblock copolymer composition of PDMS₆₆-PDMA₂₀₀ at 25 % w/w solids. DMA conversions were determined at each time point by ¹H NMR analysis in CDCl₃

Table S1. Summary of the target diblock copolymer compositions, copolymer concentrations, DMA
conversions, molecular weight data and final copolymer morphology assignments obtained for the
series of $PDMS_{66}$ - $PDMA_X$ diblock copolymers used to construct the phase diagram shown in Figure 4.

Target Diblock Composition	Solids % w/w	Conv.ª %	Actual PDMA	M _n g mol ⁻¹	M _w /M _n	Morphology by TEM
			DP			
PDMS ₆₆ -PDMA ₃₀	30	98	29	14,400	1.14	Spheres
PDMS ₆₆ -PDMA ₆₀	30	97	58	18,700	1.13	Mixed
PDMS ₆₆ -PDMA ₆₅	30	97	63	19,700	1.11	Mixed
PDMS ₆₆ -PDMA ₆₅	30	97	63	20,300	1.14	Mixed
PDMS ₆₆ -PDMA ₉₅	30	96	91	23,200	1.18	Mixed
PDMS ₆₆ -PDMA ₁₁₀	30	95	105	25,700	1.17	Worms
PDMS ₆₆ -PDMA ₁₁₈	30	95	112	26,700	1.17	Worms
PDMS ₆₆ -PDMA ₁₃₀	30	94	122	26,100	1.22	Mixed
PDMS ₆₆ -PDMA ₁₇₀	30	95	162	33,400	1.19	Mixed
PDMS ₆₆ -PDMA ₁₈₀	30	95	171	35,600	1.19	Vesicles
PDMS ₆₆ -PDMA ₂₀	25	95	19	12,600	1.17	No PISA
PDMS ₆₆ -PDMA ₃₀	25	95	29	14,300	1.13	Spheres
PDMS ₆₆ -PDMA ₅₀	25	97	49	16,900	1.14	Spheres
PDMS ₆₆ -PDMA ₇₀	25	94	66	18,800	1.15	Mixed

Table S1 Continued

PDMS ₆₆ -PDMA ₉₀	25	95	86	22,700	1.13	Mixed
PDMS ₆₆ -PDMA ₁₀₀	25	95	95	23,200	1.17	Mixed
PDMS ₆₆ -PDMA ₁₀₅	25	95	100	24,300	1.18	Worms
PDMS ₆₆ -PDMA ₁₁₀	25	95	105	24,300	1.17	Worms
PDMS ₆₆ -PDMA ₁₂₀	25	95	114	25,200	1.22	Mixed
PDMS ₆₆ -PDMA ₁₅₀	25	91	137	28,200	1.23	Mixed
PDMS ₆₆ -PDMA ₁₆₀	25	93	149	34,100	1.24	Mixed
PDMS ₆₆ -PDMA ₁₇₀	25	93	158	32,800	1.20	Mixed
PDMS ₆₆ -PDMA ₁₈₀	25	94	169	37,200	1.21	Vesicles
PDMS ₆₆ -PDMA ₁₉₀	25	90	171	37,400	1.24	Vesicles
PDMS ₆₆ -PDMA ₂₀₀	25	93	186	38,300	1.23	Vesicles
PDMS ₆₆ -PDMA ₂₂₀	25	92	202	41,900	1.24	Vesicles
PDMS ₆₆ -PDMA ₂₀	20	88	18	12,100	1.16	NO PISA
PDMS ₆₆ -PDMA ₃₀	20	90	27	15,800	1.15	Spheres
PDMS ₆₆ -PDMA ₅₀	20	89	45	18,800	1.14	Spheres
PDMS ₆₆ -PDMA ₇₀	20	91	64	20,300	1.20	Spheres
PDMS ₆₆ -PDMA ₉₀	20	92	83	20,700	1.17	Mixed
PDMS ₆₆ -PDMA ₁₀₀	20	89	89	23,500	1.19	Mixed
PDMS ₆₆ -PDMA ₁₁₀	20	92	101	24,400	1.27	Mixed
PDMS ₆₆ -PDMA ₁₂₀	20	93	112	25,700	1.27	Mixed
PDMS ₆₆ -PDMA ₁₃₀	20	92	120	28,600	1.21	Mixed
PDMS ₆₆ -PDMA ₁₅₀	20	91	137	27,800	1.33	Mixed
PDMS ₆₆ -PDMA ₁₆₀	20	93	149	27,800	1.36	Mixed
PDMS ₆₆ -PDMA ₁₇₀	20	93	158	32,500	1.26	Mixed
PDMS ₆₆ -PDMA ₁₈₀	20	94	169	32,700	1.29	Vesicles
PDMS ₆₆ -PDMA ₁₉₀	20	91	173	35,500	1.24	Vesicles
PDMS ₆₆ -PDMA ₂₀₀	20	91	182	35,100	1.32	Vesicles
PDMS ₆₆ -PDMA ₂₂₀	20	90	198	36,400	1.32	Vesicles
PDMS ₆₆ -PDMA ₄₀	15	92	37	15,200	1.10	Spheres
PDMS ₆₆ -PDMA ₈₀	15	89	71	20,500	1.14	Spheres
PDMS ₆₆ -PDMA ₁₁₀	15	85	94	24,200	1.11	Spheres
PDMS ₆₆ -PDMA ₁₂₀	15	88	106	24,900	1.16	Mixed
PDMS ₆₆ -PDMA ₁₃₀	15	91	118	27,100	1.16	Spheres
PDMS ₆₆ -PDMA ₁₅₀	15	89	134	23,100	1.36	Mixed
PDMS ₆₆ -PDMA ₁₇₀	15	89	151	29,900	1.20	Mixed
PDMS ₆₆ -PDMA ₁₈₀	15	90	162	28,000	1.31	Mixed
PDMS ₆₆ -PDMA ₁₉₀	15	90	171	27,100	1.34	Vesicles
PDMS ₆₆ -PDMA ₂₀₀	15	80	160	28,200	1.38	Mixed
PDMS ₆₆ -PDMA ₂₂₀	15	86	189	34,200	1.29	Vesicles
PDMS ₆₆ -PDMA ₅₀	10	83	42	16,900	1.14	Spheres
PDMS ₆₆ -PDMA ₈₀	10	80	64	20,100	1.16	Spheres
PDMS ₆₆ -PDMA ₁₀₀	10	79	79	19,900	1.22	Spheres
PDMS ₆₆ -PDMA ₁₂₀	10	80	96	24,100	1.19	Spheres
PDMS ₆₆ -PDMA ₁₅₀	10	79	119	27,000	1.20	Mixed
PDMS ₆₆ -PDMA ₂₀₀	10	83	166	31,900	1.23	Mixed
PDMS ₆₆ -PDMA ₂₂₀	10	87	191	27,100	1.41	Vesicles

^a¹H NMR spectroscopy studies conducted in CDCl₃

Figure S4. Lower magnification TEM image of $PDMS_{66}$ - $PDMA_{100}$ worms synthesized at 25 % w/w in silicone oil (D5) and imaged at 0.05 % w/w. Image analysis using ImageJ software indicated that the lower limit for the mean worm contour length was approximately 1500 nm. The scale bar corresponds to 0.5 μ m.

Figure S5. (a) Representative TEM image of $PDMS_{66}$ - $PDMA_{186}$ vesicles synthesised at 25 % w/w solids in D5 and imaged at ~ 0.20 % w/w. (b) higher magnification image for the 'red box' area indicated in (a) suggesting the presence of multilamellar vesicles

Table 2. Structural parameters obtained from SAXS data fits for the patterns shown in Figure 5 (see main manuscript): sphere or worm core radius (R_c), standard deviation of the core radius (σ_{core}), radius of gyration of the PDMS₆₆ corona chains (R_g), solvent volume fraction in the core (X_{sol}), vesicle membrane thickness (T_m), standard deviation of the vesicle membrane thickness (σ_{Tm}), overall vesicle radius (R_o) and aggregation number (N_{agg})

Copolymer	Morphology	R _c /nm	$\sigma_{ m core}/ m nm$	R _g /nm	X _{sol}	T _m /nm	σ _{τm} /nm	<i>R</i> ₀/nm	N _{agg}
composition									
PDMS ₆₆ -PDMA ₄₉	Spheres	8.3	0.9	1.7	0	-	-	-	196
PDMS ₆₆ -PDMA ₁₀₀	Worms	9.4	1.1	1.6	0	-	-	-	*
PDMS ₆₆ -PDMA ₁₉₁	Vesicles	-	-	1.6	0	20.7	2.6	102.4	48,337

* The mean aggregation number for the worms could not be determined because the mean worm contour length was too large (>> 1 μm, see Figure S4) to be determined by SAXS.

Figure S6. (a) GPC traces obtained using a refractive index (RI) detector (THF eluent; calibrated using a series of near-monodisperse PMMA standards) recorded for a series of PDMS₆₆-PDMA_x diblock copolymers prepared at 25 % w/w solids in D5 silicone oil. (b) Gel permeation chromatogram obtained using a UV detector (λ =298 nm) for the PDMS₆₆-PDMA₁₉ diblock copolymer [shown as the blue trace in (a)]. This shows that the high molecular weight shoulder at around 15 min corresponds to chains that contain trithiocarbonate-based RAFT end-groups. [N.B. The RI and UV detectors were connected in series, so the peak elution time observed for the UV chromatogram is delayed by ~ 30 s relative to that for the RI chromatogram].

SAXS models

In general, the intensity of X-rays scattered by a dispersion of nano-objects [usually represented by the scattering cross section per unit sample volume, $\frac{d\Sigma}{d\Omega}(q)$] can be expressed as:

$$\frac{d\Sigma}{d\Omega}(q) = NS(q) \int_{0}^{\infty} \dots \int_{0}^{\infty} F(q, r_1, \dots, r_k)^2 \Psi(r_1, \dots, r_k) dr_1 \dots dr_k$$
 S1

where $F(q, r_1, ..., r_k)$ is the form factor, $r_1, ..., r_k$ is a set of k parameters describing the structural morphology, $\Psi(r_1, ..., r_k)$ is the distribution function, S(q) is the structure factor and N is the nano-object number density per unit volume expressed as:

$$N = \frac{\varphi}{\int_0^\infty \dots \int_0^\infty V(r_1, \dots, r_k) \Psi(r_1, \dots, r_k) dr_1 \dots dr_k}$$
 S2

where $V(r_1, ..., r_k)$ is volume of the nano-object and φ is their volume fraction in the dispersion. For all SAXS experiments conducted herein, a dilute copolymer concentration of 1.0 % w/w was utilised. As such, for all analysis and modelling it was assumed that s(q) = 1.

Spherical micelle model

The spherical micelle form factor for Equation S1 is given by: ¹

$$F_{s_mic}(q) = N_s^2 \beta_s^2 A_s^2(q, R_s) + N_s \beta_c^2 F_c(q, R_g) + N_s (N_s - 1) \beta_c^2 A_c^2(q)$$

$$+ 2N_s^2 \beta_s \beta_c A_s(q, R_s) A_c(q)$$
S3

where R_s is the core radius of the spherical micelle, R_g is the radius of gyration of the PDMS corona block. The core block and the corona block X-ray scattering length contrast is given by $\beta_s = V_s(\xi_s - \xi_{sol})$ and $\beta_c = V_c(\xi_c - \xi_{sol})$, respectively. Here ξ_s , ξ_c and ξ_{sol} are the X-ray scattering length densities of the core block ($\xi_{PDMA} = 10.12 \times 10^{10} \text{ cm}^{-2}$), the corona block ($\xi_{PDMS} = 8.89 \times 10^{10} \text{ cm}^{-2}$) and the solvent ($\xi_{sol} = 8.78 \times 10^{10} \text{ cm}^{-2}$), respectively. V_s and V_c are volumes of the core block (V_{PDMA}) and the corona block (V_{PDMS}), respectively. The volumes were obtained from $V = \frac{M_{n,pol}}{N_A \rho}$ where $M_{n,pol}$ corresponds to the number-average molecular weight of the block determined by ¹H NMR spectroscopy. The density of PDMA was taken from the literature² ($\rho_{PDMA} = 1.09 \text{ g cm}^{-3}$) while that for PDMS ($\rho_{PDMS} = 0.97 \text{ g cm}^{-3}$) was determined using an Anton Paar density meter DMA 5000M, The sphere form factor amplitude is used for the amplitude of the core self-term:

$$A_s(q, R_s) = \Phi(qR_s)exp^{\left(-\frac{q^2\sigma^2}{2}\right)}$$
 54

where
$$\Phi(qR_s) = \frac{3[\sin(qR_s) - qR_s\cos(qR_s)]}{(qR_s)^3}$$
.

A sigmoidal interface between the two blocks was assumed for the spherical micelle form factor [Equation S3]. This is described by the exponent term with a width σ accounting for a decaying scattering length density at the micellar interface. This σ value was fixed at 2.5 during fitting.

The form factor amplitude of the spherical micelle corona is:

$$A_{c}(q) = \frac{\int_{R_{s}}^{R_{s}+2s} \mu_{c}(r) \frac{\sin(qr)}{qr} r^{2} dr}{\int_{R_{s}}^{R_{s}+2s} \mu_{c}(r) r^{2} dr} exp^{\left(-\frac{q^{2}\sigma^{2}}{2}\right)}$$
55

The radial profile, $\mu_c(r)$, can be expressed by a linear combination of two cubic b splines, with two fitting parameters *s* and *a* corresponding to the width of the profile and the weight coefficient,

respectively. This information can be found elsewhere,^{3,4} as can the approximate integrated form of Equation S5. The self-correlation term for the corona block is given by the Debye function:

$$F_c(q, R_g) = \frac{2\left[e^{(-q^2 R_g^2)} - 1 + q^2 R_g^2\right]}{q^4 R_g^4}$$
 S6

where R_g is the radius of gyration of the PDMS coronal block. The aggregation number of the spherical micelle is:

$$N_{s} = (1 - x_{sol}) \frac{\frac{4}{3}\pi R_{s}^{3}}{V_{s}}$$
 57

where x_{sol} is the volume fraction of solvent in the PDMA micelle core.

A polydispersity for one parameter (R_s) is assumed for the micelle model which is described by a Gaussian distribution. Thus, the polydispersity function in Equation S1 can be represented as:

$$\Psi(r_1) = \frac{1}{\sqrt{2\pi\sigma_{R_s}^2}} exp^{\left(-\frac{(r_1 - R_s)^2}{2\sigma_{R_s}^2}\right)}$$
S8

where σ_{Rs} is the standard deviation for R_s . In accordance with Equation S2, the number density per unit volume for the micelle model is expressed as:

$$N = \frac{\varphi}{\int_0^\infty V(r_1)\Psi(r_1)dr_1}$$
 S9

where φ is the total volume fraction of copolymer in the spherical micelles and $V(r_1)$ is the total volume of copolymer in a spherical micelle $[V(r_1) = (V_s + V_c)N_s(r_1)]$.

The model fitting to the final SAXS pattern for the PDMS₆₆-PDMA₄₉ spheres indicated $\varphi = 0.0$, $R_{PY} = 8.25$ nm and $f_{PY} = 0.009$, which is consistent with the expected volume fraction of polymer (0.0093). The experimental R_g obtained from this fitting for the coronal PDMS chains (1.7 nm) is also physically reasonable, since it is close to the theoretically calculated parameter. Assuming that the contour length of a PDMS monomer is 0.243 nm (two silicon-oxygen bonds in all-trans conformation), the total contour length of a PDMS₆₆ block, $L_{PDMS66} = 66 \times 0.243$ nm = 16.04 nm. Given a mean Kuhn length of 1.13 nm [based on the known literature value for PDMS⁵], an estimated unperturbed radius of gyration, $R_g = (16.04 \times 1.13/6)^{0.5}$, or 1.74 nm is determined.

Worm model

The worm-like micelle form factor in Equation (S1) is expressed as:¹

$$F_{w\ mic}(q) = N_w^2 \beta_s^2 F_{sw}(q) + N_w \beta_c^2 F_c(q, R_q) + N_w (N_w - 1) \beta_c^2 S_{cc}(q) + 2N_w^2 \beta_s \beta_c S_{sc}(q)$$
 S10

where the core block and the corona block X-ray scattering length contrast is given by $\beta_s = V_s(\xi_s - \xi_{sol})$ and $\beta_c = V_c(\xi_c - \xi_{sol})$, respectively. Here, ξ_s , ξ_c and ξ_{sol} are the X-ray scattering length densities of the core block ($\xi_{PDMA} = 10.12 \times 10^{10} \text{ cm}^{-2}$), the corona block ($\xi_{PDMS} = 8.89 \times 10^{10} \text{ cm}^{-2}$) and the D5 solvent ($\xi_{sol} = 8.78 \times 10^{10} \text{ cm}^{-2}$), respectively. V_s and V_c are the volumes of the core block (V_{PDMA}) and the corona block (V_{PDMS}), respectively. The volumes were obtained from $V = \frac{M_{n,poly}}{N_A \rho}$ using the solid-state densities of PDMA ($\rho_{PDMA} = 1.09 \text{ g cm}^{-3}$) and PDMS ($\rho_{PDMS} = 0.97 \text{ g cm}^{-3}$), where $M_{n,pol}$ corresponds to the number-average molecular weight of each block determined by ¹H NMR spectroscopy. The self-correlation term for the worm-like micelle core of radius R_{sw} is:

$$F_{sw}(q) = F_{worm}(q, L_w, b_w) A_{cs_{worm}}^2(q, R_{sw})$$
S11

which is a product of a core cross-section term:

$$F_{cs_{worm}}(q,R_g) = A_{cs_{worm}}^2(q,R_s) = \left[2\frac{J_1(qR_{sw})}{qR_{sw}}\right]^2$$
 S12

where J_1 is the first-order Bessel function of the first kind, and a form factor $F_{worm}(q, L_w, b_w)$ for selfavoiding semi-flexible chains represent the worm-like micelle, where b_w is the worm Kuhn length and L_w is the mean worm contour length. A complete expression for the chain form factor can be found elsewhere.⁶ The self-correlation term for the corona block is given by the Debye function shown in Equation S6. The interference cross-term between the worm micelle core and the corona chain is given by:

$$S_{sc}(q) = \Psi^{2}(qR_{g})J_{0}^{2}[q(R_{sw} + R_{g})]F_{worm}(q, L_{w}, b_{w})$$
513

where $\Psi(qR_g) = \frac{1-exp(-q^2R_g^2)}{(qR_g)^2}$ is the form factor amplitude of the corona chain, R_g is the radius of gyration of PDMA corona block and J_0 is the zero-order Bessel function of the first kind. The interference term between the worm corona chains is:

$$S_{cc}(q) = \Psi(qR_g)A_{cs_{worm}}J_0[q(R_{sw} + R_g)]F_{worm}(q, L_w, b_w)$$
S14

The mean aggregation number for worm-like micelles is given by:

$$N_{w} = (1 - x_{sol}) \frac{\pi R_{sw}^{2} L_{w}}{V_{s}}$$
 \$15

where x_{sol} is the volume fraction of solvent within the worm-like micelle core. Possible semi-spherical caps at the ends of each worm are not considered in this form factor. It is also assumed that S(q) = 1 at sufficiently low copolymer concentrations (e.g. 1.0 % w/w).

Vesicle model

The vesicle form factor in Equation (S1) is expressed as:⁷

$$F_{ves}(q) = N_v^2 \beta_m^2 A_m^2(q) + N_v \beta_{vc}^2 F_c(q, R_g) + N_v (N_v - 1) \beta_{vc}^2 A_{vc}^2(q)$$

+ $2N_v^2 \beta_m \beta_{vc} A_m(q) A_{vc}(q)$ S16

The X-ray scattering length contrast for the membrane-forming block (PDMA) and the coronal stabilizer block (PDMS) is given by $\beta_m = V_m(\xi_m - \xi_{sol})$ and $\beta_{vc} = V_{vc}(\xi_{vc} - \xi_{sol})$, respectively, where ξ_m , ξ_{vc} and ξ_{sol} are the X-ray scattering length densities of the membrane-forming block ($\xi_{PDMA} = 10.12 \times 10^{10} \text{ cm}^{-2}$), the coronal stabilizer block ($\xi_{PDMS} = 8.89 \times 10^{10} \text{ cm}^{-2}$) and the solvent ($\xi_{sol} = 8.78 \times 10^{10} \text{ cm}^{-2}$). V_m and V_{vc} are the volumes of the membrane-forming block and the coronal stabilizer block, respectively. Using the molecular weights of the PDMA and PDMS blocks and their respective mass densities ($\rho_{PDMA} = 1.09 \text{ g cm}^{-3}$ and $\rho_{PDMS} = 0.97 \text{ g cm}^{-3}$), the individual block volumes can be calculated from $V = \frac{M_{n,pol}}{N_A \rho}$, where $M_{n,pol}$ corresponds to the number-average molecular weight of the block determined by ¹H NMR spectroscopy. The amplitude of the membrane self-term is:

$$A_m(q) = \frac{V_{out}\varphi(qR_{out}) - V_{in}\varphi(qR_{in})}{V_{out} - V_{in}}e^{\left(-\frac{q^2\sigma_{in}^2}{2}\right)}$$
 S17

where $R_{in} = R_m - \frac{1}{2}T_m$ is the inner radius of the membrane, $R_{out} = R_m + \frac{1}{2}T_m$ is the outer radius of the membrane, $V_{in} = \frac{4}{3}\pi R_{in}^3$, $V_{out} = \frac{4}{3}\pi R_{out}^3$. It should be noted that Equation S17 differs from that reported in the original work.⁷ More specifically, the exponent term in Equation S17 represents a sigmoidal interface between the blocks, with a width σ_{in} accounting for a decaying scattering length density at the membrane surface. The numerical value of σ_{in} was fixed at 2.5. The mean vesicle aggregation number, N_v , is given by:

$$N_{v} = (1 - x_{sol}) \frac{V_{out} - V_{in}}{V_{m}}$$
 S18

where x_{sol} is the solvent (i.e. D5) volume fraction within the vesicle membrane.

A simpler expression for the corona self-term of the vesicle model than that used for the spherical micelle corona self-term was preferred because the contribution to the scattering intensity from the corona block is much less than that from the membrane block in this case. Assuming that there is no penetration of the solvophilic coronal blocks into the solvophobic membrane, the amplitude of the vesicle corona self-term is expressed as:

$$A_{vc}(q) = \Psi(qR_g) \frac{1}{2} \left[\frac{\sin[q(R_{out} + R_g)]}{q(R_{out} + R_g)} + \frac{\sin[q(R_{in} - R_g)]}{q(R_{in} - R_g)} \right]$$
 S19

where the term outside the square brackets is the factor amplitude of the corona block copolymer chain such that:

$$\Psi(qR_g) = \frac{1 - exp^{(-qR_g)}}{\left(qR_g\right)^2}$$
 S20

Again, the experimental R_g value of 1.6 nm for the PDMS₆₆ coronal block is comparable to the estimated value. The latter can be calculated from the total contour length of the PDMS₆₆ block, L_{PDMS66} = 66 × 0.243 nm = 16.04 nm (since the projected contour length per PDMS monomer repeat unit is defined by two silicon-oxygen bonds in an all-trans conformation, or 0.243 nm) and the Kuhn length of 1.13 nm based on the known literature value for PDMS⁵ result in an approximate R_g of (16.83 × 1.13/6)^{0.5} = 1.74 nm.

For the vesicle model, it was assumed that two parameters are polydisperse: the overall radius of the vesicles and the membrane thickness (R_m and T_m , respectively). Each is assumed to have a Gaussian distribution, so the polydispersity function in Equation (S1) can be expressed as:

$$\Psi(r_1, r_2) = \frac{1}{\sqrt{2\pi\sigma_{R_m}^2}} exp^{\left(-\frac{(r_1 - R_m)^2}{2\sigma_{R_m}^2}\right)} \frac{1}{\sqrt{2\pi\sigma_{T_m}^2}} exp^{\left(-\frac{(r_1 - T_m)^2}{2\sigma_{T_m}^2}\right)}$$
S21

where σ_{Rm} and σ_{Tm} are the standard deviations for R_m and T_m , respectively. Following Equation S2, the number density per unit volume for the vesicle model is expressed as:

$$N = \frac{\varphi}{\int_0^\infty \int_0^\infty V(r_1, r_2) \Psi(r_1, r_2) dr_1 dr_2}$$
 S22

where φ is the total *volume fraction* of copolymer in the vesicles and $V(r_1, r_2)$ is the total *volume* of copolymers in a vesicle $[V(r_1, r_2) = (V_m + V_{vc})N_v(r_1, r_2)]$. Programming tools within the Irena SAS Igor Pro macros were used to implement the scattering models.⁸

References

- (1) Pedersen, J. S. Form Factors of Block Copolymer Micelles with Spherical, Ellipsoidal and Cylindrical Cores. *J. Appl. Crystallogr.* **2000**, *33*, 637–640.
- (2) Jones, E. R.; Mykhaylyk, O. O.; Semsarilar, M.; Boerakker, M.; Wyman, P.; Armes, S. P. How Do Spherical Diblock Copolymer Nanoparticles Grow during RAFT Alcoholic Dispersion Polymerization? *Macromolecules* **2016**, *49*, 172–181.
- Pedersen, J. S.; Gerstenberg, M. C. The Structure of P85 Pluronic Block Copolymer Micelles Determined by Small-Angle Neutron Scattering. *Colloids Surfaces A Physicochem. Eng. Asp.* 2003, 213, 175–187.
- (4) Pedersen, J. S.; Svaneborg, C.; Almdal, K.; Hamley, I. W.; Young, R. N. A Small-Angle Neutron and X-Ray Contrast Variation Scattering Study of the Structure of Block Copolymer Micelles: Corona Shape and Excluded Volume Interactions. *Macromolecules* 2003, *36*, 416–433.
- (5) Vatankhah-Varnosfaderani, M.; Daniel, W. F. M.; Everhart, M. H.; Pandya, A. A.; Liang, H.; Matyjaszewski, K.; Dobrynin, A. V.; Sheiko, S. S. Mimicking Biological Stress–strain Behaviour with Synthetic Elastomers. *Nature* 2017, *549*, 497–501.
- (6) Pedersen, J. S.; Schurtenberger, P. Scattering Functions of Semiflexible Polymers with and without Excluded Volume Effects. *Macromolecules* **1996**, *29*, 7602–7612.
- (7) Bang, J.; Jain, S.; Li, Z.; Lodge, T. P.; Pedersen, J. S.; Kesselman, E.; Talmon, Y. Sphere, Cylinder, and Vesicle Nanoaggregates in Poly(styrene-B-Isoprene) Diblock Copolymer Solutions. *Macromolecules* 2006, 39, 1199–1208.
- (8) Ilavsky, J.; Jemian, P. R. Irena : Tool Suite for Modeling and Analysis of Small-Angle Scattering. *J. Appl. Crystallogr.* **2009**, *42*, 347–353.