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Abstract

Identifying the zinc (Zn) ligation and coordination environment in complex biological and environmental
systems is crucial to understand the role of Zn as a biologically essential but sometimes toxic metal. Most
studies on Zn coordination in biological or environmental samples rely on the extended X-ray absorption
fine structure (EXAFS) region of a Zn K-edge X-ray absorption spectroscopy (XAS) spectrum. However,
EXAFS analysis cannot identify unique nearest neighbors with similar atomic number (i.e., O versus N) and
provides little information on Zn ligation. Herein, we demonstrate that high energy-resolution X-ray
absorption near edge structure (HR-XANES) spectroscopy enables the direct determination of Zn ligation
in whole cell bacteria, providing additional insights lost from EXAFS analysis at a fraction of the scan time
and Zn concentration. HR-XANES is a relatively new technique that has improved our understanding of
trace metals (e.g., Hg, Cu, and Ce) in dilute systems. This study is the first to show that HR-XANES can
unambiguously detect Zn coordination to carboxyl, phosphoryl, imidazole, and/or thiol moieties in model

microorganisms.
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Zinc (Zn) is an essential metal for life in all organisms as it is a cofactor in various enzymes and
plays an indispensable structural role in proteins.’*> However, due to its high stability relative to other
essential, divalent transition metals,* Zn can displace vital metals from proteins and inhibit protein
function above certain concentrations.> Within cells, Zn homeostasis is achieved via feedback mechanisms
for import, shuttling to required sites, storage, and export.5®° To achieve the delicate balance between
necessity and toxicity, Zn remains tightly bound within cells.®* How Zn is coordinated intracellularly, at the
cell surface, and in the extracellular milieu (i.e., the environment) determines its function and reactivity.
Thus, understanding the role of Zn in biology requires detailed knowledge of Zn coordination in complex

biological and environmental systems at relevant Zn concentrations (nM to mM).

Zn is considered borderline between a soft and hard Lewis acid and thus has an equal affinity for
both O- and S-containing ligands.'° The ability of Zn to be stable in many coordination environments
creates multiple possibilities for Zn speciation in undefined samples. Previous studies on Zn(ll)
coordination in biological and environmental systems predominantly have relied on X-ray absorption
spectroscopy (XAS), in particular the extended X-ray absorption fine structure (EXAFS) region, to obtain
coordination information because the samples are not required to be crystalline. While EXAFS is successful
in differentiating Zn bound to O/N versus S,'! first shell analysis fails to identify Zn bound to O versus N
(i.e., scattering shells that are indistinguishable in the EXAFS due to similar atomic number) as well as the
nature of the coordinating ligand. Thiols are the likely identity of the S-containing moiety that binds Zn,
but the O/N-containing moieties could be carboxyl, phosphoryl, imidazole (histidine), and/or amine. Also,
the sample must be fairly concentrated (hundreds of ppm) in order to achieve a suitable EXAFS spectrum
for analysis beyond the nearest neighbors. As a result, in-depth investigations into the nature of Zn-

coordinating ligands are lacking, especially in complex, dilute systems.

In contrast, the X-ray absorption near edge structure (XANES) region of a XAS spectrum is sensitive

to the nature of the coordinating ligand and other factors including the oxidation state and geometry of
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the coordination polyhedron. In addition, XANES can be collected for samples with metal concentrations
down to two orders of magnitude less than the levels examined by EXAFS.1?2 However, due to the finite
lifetime of the core hole generated during a XAS measurement, broadening of spectral features in the
XANES can obscure the analysis. The recent development of high energy resolution (HR)-XANES to
overcome the limitations of core-hole broadening®® has led to advances in our understanding of metals at
dilute concentrations (in some cases < 1 ppm) in complex biological and environmental systems including
Hg, 4% Ce,” and Cu.?® In addition, HR-XANES enhances sensitivity towards pre-edge features and
structural distortion,?22 and the experimental setup also enables detailed X-ray emission spectroscopy.?*
% Herein, we present the first investigation into Zn speciation in biological systems with HR-XANES. We
chose to probe a Gram-negative model bacterium (Pseudomonas putida) and a Gram-positive model
bacterium (Bacillus subtilis) with HR-XANES as a function of growth stage and added Zn concentration to

observe how these factors affect Zn coordination.

A comparison of Zn K-edge conventional and HR-XANES for biologically- and environmentally-
relevant Zn compounds is presented in Figure 1. The Zn references include crystalline Zn;(PO,), and
Zn(acetate), - 2H,0, which were chosen to represent Zn binding to the phosphoryl and carboxyl moieties,
respectively, common in biological macromolecules (e.g., nucleic acid and proteins). In addition, we have
included the HR-XANES of ZnS, (sphalerite) —a common environmental form of Zn. We also present HR-
XANES of aqueous Zn complexes with low molecular weight ligands that represent Zn coordination to thiol
(cysteine), imidazole (histidine), and carboxyl (malate) moieties — common Zn binding environments in

proteins. HR- and conventional XANES spectra of additional Zn compounds are provided in Figure S1.

Zn is tetrahedrally and octahedrally coordinated to O atoms in Zn;(P0O,),%® and Zn{acetate), -
2H,0,% respectively, while Zn is tetrahedrally coordinated to S atoms in ZnS.2 The Zn coordination
environment of the aqueous references was initially undefined and thus further assessed by EXAFS

analysis (Figure S2 and Table S2). We confirmed that Zn is bound to 4 thiols from 4 cysteine molecules
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(i.e., Zn(cysteine),) at a distance of 2.32 A in the aqueous Zn-cysteine reference. In aqueous Zn-malate, Zn
is bound to 6 O atoms at a distance of 2.05 A, possibly from bidentate coordination from carboxyl and
hydroxyl groups of 3 malate molecules (i.e., Zn{malate)s), as reported in Zhang et al.?® The EXAFS of the
aqueous Zn-histidine reference fits well considering 4 N atoms bound to Zn at a distance of 2.03 A as well
as 8 C atoms from the imidazole rings at a radial distance of 3.01 A, suggesting a Zn(histidine),,q complex.
We note that charges are not provided for the aqueous complexes shown in Figure 1 due to a lack of

thermodynamic data for the presented structures.
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Figure 1. Zn K-edge XANES measured in conventional mode (transmission; red line) and high energy
resolution (HR) mode (black line) of biologically- and environmentally-relevant Zn reference compounds.
The crystalline references include (A) Zn;(PO.),,%® (B) Zn(acetate), - 2H,0,%” and (C) ZnS.?® The aqueous
references include (D) Zn(cysteine),, (E) Zn(histidine),, and (F) Zn(malate); and their presented local
molecular structure was confirmed by EXAFS fitting (Supporting Information). The conventional and HR
spectra were collected simultaneously and are overlaid to show the enhanced spectral features in the HR
spectra. The edge position (i') of the HR-XANES is presented for each Zn compound.
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The identity and number of the atoms in the first coordination shell for the Zn standards in Figure
lis reflected in the edge position (') and spectral features of the HR-XANES, which arise from Zn 1s to Zn
4sp or Zn 4p transitions as well as multiple scattering.®® The energy of the absorption edge of a XANES
spectrum is typically affected most dramatically by the oxidation state of the target element. However, at
a fixed oxidation state, as is the case for Zn(ll) in this study, the edge energy is also influenced by the
electronegativity and number of coordinating atoms, bond angles, nearest-neighbor interatomic
distances, and higher coordination spheres.?! To gain an understanding of how different Zn coordination
environments are reflected in the edge energy and XANES spectral features, we compared the intensity
of the strongest electronic transition with the absorption edge energy of HR-XANES (Figure 2A) as well as
conventional XANES (Figure 2B) spectra for various Zn references. The intensity of the strongest electronic
transition is defined as the maximum absorption height in the XANES spectrum, and the absorption edge
energy is defined as the energy at one half the maximum absorption height. There is a clear separation
between the Zn species that are bound to S/N atoms and the Zn species that are bound to O atoms in
both the HR- and conventional XANES (Figure 2). ZnS and Zn(cysteine), have the lowest edge energies
likely because the nearest neighbor for both (S) is the least electronegative out of O, N, and S.
Zn(histidine), and Zn-phthalocyanine — tetrahedral (Td) and square planar Zn-N species, respectively —
have slightly greater edge energies than the Zn-S species. O is the most electronegative Zn-coordinating
atom, which explains why the Zn-O species all have the highest edge energies, with octahedral (Oh) Zn-O
species having higher absorption edge energies than Td Zn-O species.?? In addition, Oh Zn-O species have
characteristically high maximum absorption intensities,*? 33 followed by Td Zn-O, and then the Zn-S and
Zn-N species.

Figure 2 shows the wide variety of edge energies and maximum absorption intensities that can
exist for pure Zn(ll) species and can be useful when selecting standards to determine Zn ligation by HR-

XANES linear combination fitting (LCF). Most notably, the references of Zn predominantly bound to O
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versus S/N are distinct for both Figure 2A and 2B. However, it is important to note that normalization and
energy calibration of XANES spectra as well as structural distortion can influence these features. Thus, the
data presented in Figure 2 were carefully aligned in energy and normalized. In addition, the existence of
multiple Zn coordination environments in a sample causes an averaging effect for both energy and
intensity of the resulting XANES spectrum, which limits our ability to associate edge energy/maximum
absorption intensity with certain Zn coordination environments. This is demonstrated with the Zn-O
standards with mixed Oh and Td coordination in Figure 2B (i.e., hydrozincite — Zn;(CO;),(OH)¢ — and
hopeite — Zn;(PO,), - 4H,0), which have the lowest maximum absorption intensities among the Zn-O
standards but remain unique from Zn-S/N due to their higher edge energy. Differences in coordination
geometry when Zn is bound to the same ligands can also affect the XANES absorption edge energy,

although Waychunas et al. report the effect is small.3?

2'6_A From this study
1 Zn(H20)50q)
2.47 %<?> 2 Zn(malate)s(agy
@ 3 Zn(acetate), 2H,0()
2.2 @ 4 Zng(POu)oce)
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2 207 6 ZnOs)
c 12 7 Zn(acetate)ys)
.g 1.84 8 Zn-phthalocyanines
= 9 Zn(histidine)s(aq)
E 1.6 Fro/e\ A 10 Zn(oysteine)ycaq
= i o
8 HR-XANES 1; ;nsd|ethyld|th|ocarbamate(s)
E 14_ T T T T T T n ©
?; 9660 9662 9664 From the literature
o2 2.4 B 13 ZnCOy(s)
o 14 Zn(H0)atg)
» 22 @ 15 Zn-citrate caq)
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% 504 <?> 17 Zn-histidine aq)
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= 18- 16 (Q’ 4 (from the literature)
- 1 18. Zn5(CO3)2(OH)ecs) (Zn-Os5.2)
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1.4+ 0 h
T T T T )<A"I\IES T AZn-N4
9660 9662 9664 [0 Tdzn-s

Absorption edge energy (eV)
Figure 2. The intensity of the strongest electronic transition plotted against the absorption edge energy
obtained from the (A) HR- and (B) conventional XANES spectra of Zn reference compounds (Figure 1 or
Figure S1) with octahedral (Oh), tetrahedral (Td), and square planar Zn coordination environments. The
intensity of the strongest electronic transition (Zn 1s to 4sp or 4p) was taken as the most intense
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absorption peak in the XANES and the absorption edge energy was defined as the energy at one half the
maximum absorption. (B} Additional references from Salt et al. (14 and 16) and Tang et al. (12, 13, 15, 17,
and 18) that were normalized and aligned in energy with our spectra were included .34 3>

1A B
4
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— ---- 0.97"Zn(cysteine)s(aq)
o 3 +0.03*Zn(histiding)a(aq)
=N —— Pep 1 (ZnCysy) residual = 0.09%
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Figure 3. Zn K-edge HR-XANES of (A) Zn bound to peptides with Cys, (Pep 1), Cys;His (Pep I}, and Cys;His,
(Pep Ill) coordination. (B) Best-fit LCF results to the HR-XANES of Zn-peptides using Zn(cysteine),, and
Zn(histidine), as standards provide (within 10%) the Zn ligation in the Zn-peptides. Residual =

21, Ctara® — (D)2, - | Caara())?] x 100%.

Clearly the conventional XANES can provide useful information (Figure 2). However, when
identifying Zn ligation by LCF, the enhanced spectral features of HR-XANES provide a statistical advantage
over conventional XANES (Figure $3,54). Because Zn-N and Zn-S species overlap in Figure 2, we show that
LCFs to the HR-XANES with Zn(cysteine), and Zn(histidine), as references can identify (within 10%) the Zn
ligation in peptides with ZnCys, (Pep 1}, ZnCys;His (Pep I}, and ZnCys.His, (Pep Ill) coordination (Figure 3).
The Zn coordination in the peptides is well-characterized®® 3¢ 37 and represents common Zn binding
environments in Zn finger proteins, which are characteristically small proteins that require Zn to stabilize
the fold. We confirmed the expected Zn binding environment in the Zn-peptide samples with EXAFS fitting
(Figure S2 and Table S2). The slight differences between the LCF spectra and the Zn-peptide spectra are
likely due to geometrical differences in Zn-ligand coordination, which is particularly visible in the XANES

region due to the prominence of multiple scattering effects.>® However, as we demonstrate with the
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peptide example in Figure 3, LCFs to the HR-XANES can still identify Zn ligation within reasonable accuracy
when the Zn-ligand coordination geometry is unknown. Understanding the effect of coordination
geometry on the spectral features of Zn K-edge HR-XANES would be a topicfor future studies to potentially

gain more information on Zn bonding beyond the identity of the ligands.

A B. subtilis B P. putida C B. subtilis D B. subtifis
0 uM added Zn 0 uM added Zn exponential phase stationary phase

Normalized absorption

—— exponential phase
—— stationary phase

—— exponential phase
—— stationary phase

—— OpM added Zn —— OpMadded Zn

—— 10 uM added Zn —— 10 uM added Zn

—— 100 uM added Zn —— 100 uM added Zn
0

T T T T T T T T T T T T T T T T T T T T
9650 9660 9670 9680 9690 9650 9660 9670 9680 9690 9650 9660 9670 9680 9690 9650 9660 9670 9680 9690
Energy (eV) Energy (eV) Energy (eV) Energy (eV)

0]

Figure 4. Zn K-edge HR-XANES of (A) B. subtilis and (B) P. putida with no additional added Zn that were
harvested in exponential and stationary growth phase as well as B. subtilis in (C) exponential growth phase
and (D) stationary growth phase exposed to 0, 10, and 100 pM Zn as Zn(NOs),,, for 2 hours. The Zn
exposure medium was identical for both growth phases; however, the stationary phase medium did not
contain glucose.

Zn K-edge HR-XANES spectra of B. subtilis and P. putida samples harvested in exponential and
stationary growth phase, adjusted to ODgy, ~ 0.2 (0.3 — 0.4 g per L, wet weight), and exposed to 0 — 100
MM of additional Zn for 2 hours are provided in Figure 4. A comparison of the HR-XANES spectra of cells
harvested in exponential versus stationary phase reveals variations in the Zn coordination environment
for B. subtilis (Figure 4A) but nearly identical Zn coordination environments for P. putida (Figure 4B). Zn in
these bacterial samples came from the growth media, which contained 2.4 uM and 3.8 uM Zn for B.
subtilis and P. putida, respectively. Due to similar amounts of Zn in the growth media, the differences
observed for the 2 bacterial species at exponential and stationary growth stages likely reflect differences
in the utilization and localization of Zn. We also explored the effect of Zn exposure on the Zn coordination

environment in B. subtilis. From the HR-XANES, it is clear that Zn addition to exponential phase B. subtilis
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had no effect on Zn coordination (Figure 4C), while the Zn addition did have an effect on Zn coordination

in stationary phase cells (Figure 4D).

A

120

C|D

100

o]
o
1

LCF results (%)
5 8

N
o
1

0 10 100 0 10 100 0 0
Added Zn (uM) Added Zn (M) Added Zn (uM)

| B Zn(cysteine), [l Zn(histidine); [l Zns(POu), Il Zn(Ac), 2H,0 |

Figure 5. The LCF results (%) for (A) B. subtilis in exponential phase, (B) B. subtilis in stationary phase, (C)
P. putida in exponential phase, and (D) P. putida in stationary phase exposed to 0 — 100 puM Zn using
Zn(cysteine),, Zn{histidine),, Zn;(PO,),, and Zn(acetate), - 2H,0 as standards. LCF results of other fit models
are included in Table S3. The standard error is < 4% for each sample.

To obtain quantitative Zn coordination environment information for the bacterial samples, we
performed LCFs of the HR-XANES using Zn standards to represent 4 functional groups in bacteria capable
of binding Zn — i.e., phosphoryl, carboxyl, imidazole, and thiol (Figures 5, Figure $6). Among the six fit
models we tested (Table S3, Figure S5), the Zn;(PO,),, Zn(acetate),- 2H,0, Zn(histidine),, and Zn(cysteine),
references were necessary for a good fit. The B. subtilis sample harvested in stationary phase and exposed
to 0 uM added Zn contains the highest fraction of Zn bound to cysteine and histidine (Figure 5). The
addition of 10 uM Zn to the stationary phase cells decreases the fraction of Zn-cysteine coordination while
Zn-histidine coordination remains unchanged (Figure 5). Increasing added Zn to 100 uM for stationary
phase B. subtilis further decreases the Zn-cysteine coordination as well as the Zn-histidine coordination.
The remainder of the Zn speciation is made up of a majority of Znz(POs), and a low fraction of Zn(acetate),
- 2H,0. There are small differences among the Zn coordination results of the B. subtilis samples in

exponential growth phase exposed to 0 — 100 uM Zn as well as the P. putida samples in both exponential
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and stationary growth phase, which resemble the results of the B. subtilis sample in stationary growth

phase exposed to 100 uM Zn (Figure 5).

We also performed EXAFS analyses on the bacterial samples by non-linear least squares fitting of
the EXAFS equation (Table 1, Figure S7). For all B. subtilis samples in exponential growth phase, the B.
subtilis sample in stationary phase that was exposed to 100 uM Zn, and all P. putida samples in exponential
and stationary growth phase, the EXAFS fit well considering that Zn is coordinated to 4 O/N atoms. Due
to the low signal to noise ratio in the EXAFS of the bacterial samples and short k range (2 — 11 A1), we did
not perform second shell EXAFS fitting. The only samples that require the inclusion of a Zn-S shell are B.
subtilis in stationary phase exposed to 0 uM and 10 uM of additional Zn (Table 1). The EXAFS fit results
show that Zn-S coordination accounts for 47 + 10% and 22 + 7% of the total cell-associated Zn,
respectively, which agrees with the HR-XANES LCF results. However, the knowledge of Zn binding
specifically to phosphoryl, carboxyl, and imidazole groups in the bacterial samples is lost in the EXAFS
analysis.

Table 1: EXAFS structural fit parameters for bacterial samples containing Znacde

B. subtilis Added Zn (uM) Shell N R (A) 62 (x 103 A?)
0] Zn-O/Nf 3.77+£0.24 1.97 £0.01 5.03 £0.57
Exponential phase 10 Zn-O/N 3.88+0.26 1.97+0.01 5.03 £ 0.57
100 Zn-O/N 3.78+£0.23 1.97 £0.01 5.03 £0.57
0] Zn-O/N 1.98 £0.28 1.97 £0.01 2.51+£0.29
Zn-S 1.751£0.36 2.3310.03 7.54+£0.86
Stationary phase 10 Zn-O/N 2.99+£0.27 1.97 £0.01 5.03 £0.57
Zn-S 0.82£0.27 2.34+0.02 7.54+£0.86
100 Zn-O/N 3.96 £0.22 1.97 £0.01 5.03 £0.57

P. putida
Exponential phase 0 Zn-O/N 3.84+0.22 1.97+0.01 5.03 £ 0.57
Stationary phase 0 Zn-O/N 3.98 £0.20 1.97 £0.01 5.03 £0.57

2 5.2 is fixed at 0.95 for all fits. b The 8 datasets were fit simultaneously with 23 variables and 38.8 independent
points. <All fits had a k range of 2.0-10.2 A* and an R range of 1.1 — 2.0 A, except stationary phase B. subtilis
exposed to O uM and 10 pM Zn which had an R range of 1.1 -2.25 A and 1.1 —2.20 A, respectively. 9 All datasets
shared an AE, variable which fit to -0.05 + 0.36 eV. € Results of the fit are presented in Figure S7. f A Zn-N shell is
indistinguishable from Zn-0O in the EXAFS.
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Because EXAFS spectra mainly depend on the radial distance of neighboring atoms from the
absorbing atom, unique chemical species can have identical EXAFS. The ambiguity that can exist in EXAFS
analysis is particularly a problem for Zn due to the complexity of Zn binding environments that can arise
in biological and environmental systems. Many previous studies identified whether Zn was bound to O/N
vs. S with EXAFS but could not provide the ligand identity.3%42 With HR-XANES, we notably observe Zn
binding to histidine in both B. subtilis and P. putida, which to our knowledge, has yet to be directly
observed in whole cell bacterial samples. Although Zn binding to histidine residues is common in proteins
(known from X-ray crystallography),* the inability to distinguish N from O binding with EXAFS has likely
prevented the identification of Zn-histidine coordination in systems with multiple Zn sites. In addition,
studies have typically assumed that Zn-N binding will not occur at neutral pH because amines are
protonated at neutral pH and thus cannot bind Zn.3 4% 44 Interestingly, stationary phase B. subtilis exposed
to no additional Zn contained the highest percentages of Zn-histidine and Zn-cysteine coordination. B.
subtilis is known to form spores under conditions of environmental stress (e.g., the nutrient limited
conditions characteristic of stationary growth phase),* which may be responsible for the different Zn
coordination environments. In addition, the fact that the percentage of cysteine and histidine binding is
similar in the stationary phase B. subtilis sample with no added Zn implies ZnCys.His, coordination. Zn
finger proteins commonly contain ZnCys,His, binding sites and are involved in regulating cell death
(apoptosis), which is expected for cells in stationary growth phase.*® In contrast, the Zn coordination
environment in P. putida exposed to no additional Zn did not change with growth phase. The unaffected
Zn coordination environment could reflect a Zn usage or storage mechanism that differs from B. subtilis
under nutrient limited conditions. It is also possible that a majority of the Zn that is associated with P.

putida remains at the cell surface, where it presumably would not be affected by changes in growth stage.

We observed a predominance of Zn-phosphoryl binding in many bacterial samples, although we

consciously excluded PO4* from the exposure media due to the low solubility of Zn;(PO,),). The
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organophosphate (B-glycerophosphate, also known as glycerol 2-phosphate) in the exposure medium (1
mM) is known to weakly bind metals (logK of Zn-B-glycerophosphate = 2.1) and is not likely the phosphoryl
source.”” In addition, the P. putida samples and B. subtilis exponential phase sample that obtained all their
Zn from the growth medium (0 uM added Zn) all exhibit > 50% Zn-phosphoryl binding, which should not
be attributed to the B-glycerophosphate in the exposure medium. The bacterial cells may retain some
inorganic PO,* from the growth medium even after washing with the exposure medium which could react
with the added Zn in the assay medium. However, other phosphoryl sources exist in bacteria that could
bind Zn including macromolecules (e.g., nucleic acid),*®* phospholipids,*® and even ATP.1% 4° The
abundance of phospholipids in the cell envelope could explain the increased Zn-phosphoryl binding with
added Zn concentration in stationary phase B. subtilis as stationary phase cells are not expected to actively
import Zn. In addition, we are not the first to report Zn binding to phosphoryl groups in microbial systems.
Using knowledge from first and second shell EXAFS fitting, Sarret et al. reported Zn binding to phosphoryl
groups in the isolated cell walls of Penicillium chrysogenum and only Zn binding to carboxyl groups after
the phosphoryl groups were saturated with Zn.*! In addition, Ha et al. employed EXAFS to report Zn(ll)
bindingto O in the extracellular polymeric substance (EPS) layer and membrane of Shewanella oneidensis,
and they inferred that Zn(ll) was binding to phosphoryl groups with knowledge from potentiometric
titrations.** Toner et al. also observed Zn(ll) binding to predominantly phosphoryl groups in a bacterial

biofilm.>°

The intracellular free ion concentration of Zn is very low (i.e., nano- to femtomolar range),® and it
is generally believed that the majority of cellular Zn is tightly bound to metalloproteins to avoid displacing
other metals from their intended sites.® > However, the chemical speciation of the intracellular Zn pool is
not well defined.>? Our finding that Zn can bind predominantly to phosphoryl groups associated with
bacterial cells suggests that, at the Zn concentrations in this study, the coordination chemistry of Zn is not

dominated by binding sites in proteins because amino acid residues do not contain phosphoryl groups.
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Potentially, a large fraction of Zn can occupy sites in the cell envelope in addition to being sequestered
intracellularly by metalloproteins. Bacterial phosphoryl groups may be a sink for Zn in natural

environments impacted by high Zn concentrations.

We have demonstrated that HR-XANES spectroscopy can be employed to obtain quantitative
information on Zn ligation in complex biological systems using the spectral features of structurally well
characterized model complexes. In contrast, first-shell EXAFS spectroscopy fails to identify the nature of
the Zn-coordinating ligand, especially when Zn is bound to carboxyl, phosphoryl, and imidazole groups.
For the first time using only XAS techniques, we show that the Zn coordination environment in 2 bacterial
species involves a mixture of Zn-phosphoryl, Zn-carboxyl, Zn-thiol, and Zn-imidazole binding. Changes in
growth phase affect Zn coordination in B. subtilis but not in P. putida. Our findings can be used to interpret
how bacteria react to (in terms of uptake and storage) nutrient limitation and Zn exposure at short time
scales. Future studies on the effect of coordination geometry and higher coordination spheres on the Zn
K-edge HR-XANES will improve our ability to characterize Zn coordination in complex biological and

environmental systems.

Experimental Methods

Bacterial species and exposure media. Bacillus subtilis 168 and Pseudomonas putida ATCC® 33015™ were
generously donated by Jeremy Fein, University of Notre Dame and stored at -80 °C in glycerol stock. B.
subtilis and P. putida were streaked from frozen stock onto individual LB agar plates, incubated for ~24
hours at room temperature, and stored at 4 °C in the refrigerator for no more than 1 month. A single
colony of B. subtilis or P. putida was inoculated into nutrient sporulation medium phosphate® (NSMP) or
modified M9 medium (Table S1), respectively, and shaken overnight at 150 rpm at room temperature (24
—26°C). B. subtilis and P. putida were harvested in both exponential and > 12 hours into stationary growth
phase, washed twice (3,300 g for 10 minutes), and resuspended in the final exposure medium. The

exposure medium for B. subtilis was modified from NSMP, eliminating undefined components and

ACS Paragon Plus Environment

Page 14 of 20



Page 15 of 20

OOV D WN =

\O

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

The Journal of Physical Chemistry Letters

phosphate, and contained 20 mM MOPS buffer, 1 mM Na-B-glycerophosphate, 0.13 mM methionine, 0.12
mM tryptophan, 10 mM glucose, 0.5% (v/v) metal mixture (140 mM CaCl,, 10 mM MnCl,, and 200 mM
MgCl,), and 5.0 mM NaOH (pH = 6.8). The exposure medium for P. putida contained 20 mM MOPS buffer,
1 mM Na-B-glycerophosphate, 0.1 mM NH,CI, 0.8 mM MgSO, - 7H,0, 10 mM glucose, and 7.5 mM NaOH
(pH = 7.0). Glucose was eliminated from the exposure medium for cells harvested in stationary phase to
further limit metabolic activity. For consistency, the final cell densities of exponential and stationary phase

cells were kept at an ODgy of 0.2.

Zn(ll) exposure assays. A 10 mM Zn{NO,), stock solution (trace metal grade) was used for all exposure
assays and stored at 4 °C. Stock solutions were prepared in Milli-Q water at 20 times the final desired
Zn(ll) concentration immediately before addition to bacterial cell suspensions. The final Zn(ll)
concentrations included 0 uM, 10 uM, and 100 uM added Zn(ll} for B. subtilis and 0 UM added Zn(ll) for
P. putida. The Zn(ll) exposure assays were initiated by the addition of 2.5 mL of 20 times concentrated
Zn(ll) stock solution to 47.5 mL of exponential and stationary growth phase cell suspension in the
respective exposure media. The assays were conducted in the dark in acid-washed 125 mL Erlenmeyer
flasks sealed with foil. Cells were shaken at 150 rpm for 2 hours after which the solution was used for the

determination of cell-associated Zn(ll) speciation by HR-XANES (see below).

Preparation of bacterial samples, peptides, and references for XAS. After the 2 hour Zn(ll) exposure
period, the cells were washed twice with 0.1 M NaClO,. After the final wash, the cell pellet was suspended
in 500 pL of 0.1 M NaClO, and pipetted into a 1.5 mL microfuge tube fitted with an EMD Millipore
centrifugal filter unit (Mfr # UFC510024). The filter provided in the unit was switched out for a 0.2 um
cellulose acetate filter (Whatman) that was cut with a ~7 mm diameter hole punch. The cell suspension
was then centrifuged at 10,000g for 8 minutes, collecting the cell pellet on the filter. The pellet on the
filter was then sandwiched between pieces of Kapton tape, plunged in LN;, and kept frozen until analysis.

The samples were shipped to the ESRF on dry ice (< 48 hours in transit).
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The peptides with sequences
ProTyrLysCys,ProGluCys,GlyLysSerPheSerGinLysSerAsplLeuVallysXaa, GInArgThrYaa,,ThrGly, where the
metal coordination sites are Cys,His, (Xaa = Yaa = His), Cys;His (Xaa = His, Yaa = Cys), and Cys, (Xaa = Yaa
= Cys), were purchased from Life Technologies Corporation (Carlsbad, CA) and prepared as previously
described.™! Specifically, a 10 mM peptide and 9 mM Zn{NO), solution were prepared in 100 mM HEPES,
50 mM NaCl, pH = 7.0 buffer and allowed to equilibrate for 1 hour. Aqueous Zn-malate, Zn-histidine, and
Zn-cysteine references (pH adjusted to 7.0 with NaOH) were prepared in Milli-Q water at a final Zn(NO;),
concentration of 25 mM and a final ligand concentration of 250 mM. All liquid references were pipetted

into copper sample holders and immediately flash frozen into LN, prior to HR-XANES measurement.

Zn(acetate),- 2H,0, ZnS, and Zn;(PO,), powders were purchased from Sigma Aldrich. The spectra collected
of Zn-acetate, Zn3(PO,),, and Zn-phytate (pH = 7) were provided graciously by Emmanuel Doelsch and
preparation details have been reported previously.>* Zn powdered references were diluted to 0.1 — 0.4

wt% with boron nitride and pressed into 5 mm diameter pellets.

Collection and analysis of XAS spectra. Zn K-edge conventional XANES, HR-XANES, and EXAFS spectra
were collected on the CRG-FAME-UHD beamline (BM16) at the European Synchrotron Radiation Facility
(ESRF). The beamline is equipped with 2 Si(220) monochromators (AE/E = 5.6 x 10%). All samples were
measured at ~10 K in high energy resolution fluorescence detection {(HERFD) mode with 5 spherically bent
Si crystal analyzers (bending radius = 1 m, crystal diameter = 0.1 m). The Zn K, fluorescence line (8.638
keV) was selected using the 642 reflection, and the diffracted fluorescence was measured with a silicon
drift detector (SDD, Vortex EX-90). The beam (size = 100 um x 200 um) was moved to a new position on
the sample after each scan, and beam damage was not observed. The effective energy resolution in high
resolution mode was calculated as 0.63 eV. The energy calibration was carefully maintained with a Zn foil
placed behind the sample. Transmission data was also collected for Zn references that were of high

enough concentration in order to obtain conventional XANES for comparison with HR-XANES. Data
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1

2

‘31 357 normalization and processing were performed with Athena, R, and Larch.>> Self-absorption was not an
Z 358  issue forthe Zn references (0.1 — 0.4 wt %) or the bacterial samples (0.02 — 0.4 wt % Zn).

7

8 359  Quantification of total Zn. The concentration of total Zn in the growth media was measured on an ICap-
9

10 360 Qsingle collector ICP-MS using NIST 1643f as an external standard and 500 ppb Sc as an internal standard.
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