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Abstract
The West African climate is unique and challenging to reproduce using standard resolution climate models as a large pro-
portion of precipitation comes from organised deep convection. For the first time, a regional 4.5 km convection permitting 
simulation was performed on a pan-African domain for a period of 10 years (1997–2006). The 4.5 km simulation (CP4A) 
is compared with a 25 × 40 km convection-parameterised model (R25) over West Africa. CP4A shows increased mean 
precipitation, which results in improvements in the mature phase of the West African monsoon but deterioration in the early 
and late phases. The distribution of precipitation rates is improved due to more short lasting intense rainfall events linked 
with mesoscale convective systems. Consequently, the CP4A model shows a better representation of wet and dry spells both 
at the daily and sub-daily time-scales. The diurnal cycle of rainfall is improved, which impacts the diurnal cycle of monsoon 
winds and increases moisture convergence in the Sahel. Although shortcomings were identified, with implications for model 
development, this convection-permitting model provides a much more reliable precipitation distribution than its convection-
parameterised counterpart at both daily and sub-daily time-scales. Convection-permitting scales will therefore be useful to 
address the crucial question of how the precipitation distribution will change in the future.

1  Introduction

West-Africa is one of the most vulnerable areas in the world 
in terms of food security. It has a high sensitivity to climate 
risk (e.g. relying on rainfed agriculture) and little adaptive 
capacity (e.g. lack of infrastructure and a large proportion 
of the population below the poverty line) (Krishnamurthy 
et al. 2014). Changes in the magnitude and duration of cli-
mate hazards in this region can therefore have large effects 
on food security (Richardson et al. 2018), infrastructure, 
health and livelihoods. However, climate information at the 
required space and time scales is not yet reliably available 

for some high-impact events such as short lasting intense 
rainfall (Maraun et al. 2010).

The West African climate is dominated by a monsoonal 
system forced by the strong temperature gradient between 
the warm Sahara (Saharan Heat Low—SHL) and the colder 
waters of the Gulf of Guinea in boreal summer (Fontaine 
and Philippon 2000). The subsequent low level southwester-
lies bring moist air inland and converge with the dry north-
easterly Harmattan winds at the intertropical discontinuity 
(ITD), south of which most rainfall occurs. In April, rainfall 
is most frequent south of 10◦N and by mid-June, the oceanic 
phase fades and the majority of rainfall shifts to the Souda-
nian zone (9◦–12.5◦N , annual rainfall amount exceeding 
750 mm) until September. The Sahelian zone (12.5–18N, 
annual rainfall amount below 750 mm) receives most rainfall 
from June to September (Fink et al. 2017). The Guinea coast 
to the east of Cape Palmas has two rainy seasons: May–June 
and October, with a little dry season in July–August, during 
which small diurnal MCSs are dominant (Fiolleau and Roca 
2013). The Soudano-Sahelian zone is unique as 75% (Souda-
nian zone) to 90% (Sahelian zone) of its rainfall results from 
fast-moving Mesoscale convective systems (MCSs) (Mathon 
et al. 2002; Fink et al. 2006), favoured by the combination of 
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large values of convective available potential energy (CAPE) 
and precipitable water (PW), mid-level dryness and verti-
cal shear. The African easterly jet (AEJ) arising from the 
north–south low-level thermal gradient is largely responsible 
for the last two factors as it is maximum above this zone 
between 500 and 700 hPa and squall-line MCSs are often 
linked with African easterly waves (AEW).

Convection-parameterised models can reproduce some 
larger-scale MCSs at 25 km resolution (Vellinga et al. 2015) 
but km-scale convection-permitting models (CPMs) where 
the convection is explicitly represented are much more suc-
cessful in representing them already at 12 km resolution in 
West Africa (Marsham et al. 2013; Birch et al. 2014; Maurer 
et al. 2017). These models are increasingly being used at 
climate and continental scales but so far their use has mainly 
focused on mid-latitude regions (Liu et al. 2016; Leutwyler 
et al. 2017; Berthou et al. 2018). In the framework of the 
Future Climate For Africa (FCFA) programme, a first-of-its-
kind 10 year-long pan African convection-permitting simu-
lation was run by the Met Office. Stratton et al. (2018) pro-
vided a detailed description of the simulation set-up and a 
first pan-African validation of the first 5 years of simulation. 
They showed a reduced dry bias over the Sahel in JJA and an 
associated reduction in short-wave radiative biases resulting 
from the presence of brighter, more organized convective 
clouds. Using TRMM as reference dataset, they showed that 
there is evidence of westward-propagating convective sys-
tems in the convection-permitting simulation and of better 
distribution of 3-hourly precipitation events in West-Africa. 
The most extreme intense but short-lived rainfall events are 
also better captured. The diurnal cycle of convective pre-
cipitation over land is better handled, although there is still 
a tendency for rain to initiate too early in the day.

The regional African Monsoon Multidisciplinary Analy-
sis (AMMA-2050) project was set to improve understanding 
of climate change for the West African monsoon 5–40 years 
ahead to plan climate-resilient development. In this frame-
work, we aim at informing the extent to which convection-
permitting models can add value in West-Africa compared 
to convection-parameterised models for users of climate 
information related to rainfall, and document where further 
model development is needed. Section 2 first establishes the 
current state of CP-modeling over West Africa. In Sect. 3, 
the simulation set-up, the observational datasets and the 
methods are presented. Section 4 provides an overview of 
the changes brought by CP4A in the West African monsoon 
progression in terms of precipitation characteristics and pro-
pose some explanations of the differences with convection-
parameterised simulation in the light of current knowledge. 
Acknowledging the large spatial and temporal variability of 
precipitation, Sect. 5 presents mean state maps in the peak 
monsoon season and Sect. 6 add details to the broader analy-
sis of Stratton et al. (2018). In that section, we also provide 

a discussion about observational uncertainty thanks to com-
parisons with fine-resolution datasets and give an evaluation 
of precipitation at the model grid-scale in local sites. Finally, 
Sect. 7 shows the spatial distribution of the diurnal cycle of 
precipitation.

2 � Background

The use of explicit convection in West-Africa in season-long 
simulations has shown the better representation of convec-
tive processes, which can then feed back onto improvements 
in the mean state of the monsoon. The main results from 
these previous studies are summarised here.

With case studies or season-long simulations, it was 
shown that Sahel MCSs are more likely to initiate by heating 
over the elevated terrain environments (Laing et al. 2012) 
or over convergent boundaries, such as those produced by 
land-surface vegetation or moisture anomalies, gust fronts 
and cold pool outflow or the diurnal migration of the inter-
tropical discontinuity (ITD) (Taylor et al. 2013; Birch et al. 
2014; Hartley et al. 2016; Maurer et al. 2017; Vizy and Cook 
2018a). They also showed better coupling between AEWs 
and MCSs compared to convection-parameterised models 
(Birch et al. 2014; Vizy and Cook 2018a) and good repre-
sentation of MCS lifecycles (Vizy and Cook 2018a).

Pearson et al. (2010a, 2014) also showed that explicit 
convection leads to an improved representation of the diur-
nal cycle of cloudiness and outgoing longwave radiation 
while Stein et al. (2015b) showed its influence on the verti-
cal structure of clouds.

Furthermore, the better representation of cold pools 
leads to increased northward advection of cooler air into the 
Sahara (Pearson et al. 2010a; Marsham et al. 2011, 2013). 
The lack of cold pools in convection-parameterised mod-
els has been shown to significantly contribute to large-scale 
systematic biases in temperature and humidity observed 
over the central Sahara (Garcia-Carreras et al. 2013). The 
use of off-line dust models also showed that cold pools 
cause around 50% of summertime dust uplift in models 
with explicit convection, which is missing in models with 
parameterized convection (Marsham et al. 2011; Heinold 
et al. 2013).

The spatial complexity of the diurnal cycle has also been 
studied with convection-permitting models. Indeed, Zhang 
et al. (2016a) identified single peaks in the diurnal cycle of 
precipitation in observations occuring either in the afternoon 
or at night in different regions, highlighting the strong spa-
tial gradients in the timing of the diurnal cycle. Zhang et al. 
(2016b) reproduced these single peaks with a convection-per-
mitting model in August 2006 and concluded that afternoon 
rainfall peaks are associated with an unstable atmosphere, and 
that nocturnal rainfall peaks are associated with the westward 
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propagation of rainfall systems, as documented by Laing et al. 
(2008). However, their model tended to have too widespread 
night peaks away from the orography, which they related to too 
high boundary layer which prevented the triggering of after-
noon convection. With the help of a 1 month-long simulation, 
Vizy and Cook (2018a) showed that nocturnal convection is 
not only due to afternoon orographic triggering in neighbour-
ing regions, but also to more complex interactions between 
the Sahel ITD and atmospheric synoptic conditions over 
gradual-sloping terrain. Thanks to 3-month long simulations, 
Vizy and Cook (2018b) also shed light on the mechanisms at 
the origin of daytime convection away from the orography in 
two different regions: one closer to the direct influence of the 
monsoon flow (Burkina Faso) and one further away (eastern 
Niger/Nigeria). They showed different mechanisms in both 
regions. In Burkina Faso, daytime convection is a complex mix 
between long-lived convection triggered in the afternoon far-
ther upstream and locally triggered convection at the left front 
exit of an easterly mid-level jet streak. In eastern Niger/Nige-
ria, daytime convection is mostly locally triggered and depends 
on whether the moist monsoon flow reaches the region, which 
is favoured by previous convection in upstream regions and the 
presence of an AEW disturbance.

This better representation of convective systems does 
have an impact on the mean state. In fact, Marsham et al. 
(2013); Birch et al. (2014) showed that the better diurnal 
cycle of convection in the Sahel in August led to changes in 
the diurnal cycle of winds through enhanced pressure gra-
dients at night between the coast and the Sahel, and reduced 
pressure gradients between the Sahel and the Sahara, leading 
to stronger moisture convergence in the Sahel in convection-
permitting models. This allowed the monsoon to be stronger 
and positioned further north in convection-permitting mod-
els. It turned the Sahel from being a moisture source in 
parameterised models (Meynadier et al. 2010b) to a more 
realistic moisture sink in an explicit model (Birch et al. 
2014; Meynadier et al. 2010a).

These studies suggest that the precipitation distribution 
on longer time-scales in West Africa will be altered in con-
vection-permitting models compared to convection-param-
eterised models, with implications for calculating user-rele-
vant indices, usually derived from convection-parameterised 
models. They also point to changes in the mean state of the 
monsoon peak season and call for examination of the spatial 
complexity of the diurnal cycle in West Africa. We inves-
tigate these points in the present study thanks to a 10-year 
long convection-permitting simulation.

3 � Simulations, observations and methods

3.1 � Simulations

A brief summary of the simulation set-up is given here. A 
detailed description is available in Stratton et al. (2018).

We compare two 10-year long (1997–2006) regional 
climate simulations using the Met Office Unified Model 
(UM) (Walters et al. 2017) over a pan-African domain 
(45S–39N; 24W–56E):

•	 CP4A—a convection-permitting model at 4.5 × 4.5 km 
at the equator (0.0405◦ ×0.0405◦ ). In the absence of 
a scale-aware convection scheme, it does not include 
any convection parametrization and relies on the model 
dynamics to explicitly represent convective clouds.

•	 R25—a convection-parameterised model at 26 × 39 km 
resolution at the equator (0.234◦ ×0.351◦)

Both regional models are forced at their boundaries by 
a global model with the same resolution as R25 forced 
with 0.25◦ present-day daily sea surface temperature (SST) 
(Reynolds et al. 2007). The soil properties are those of 
sand in the whole continent in both simulations following 
De Kauwe et al. (2013) who found that the soil standard 
database used in the UM contains unrealistic small-scale 
variability across Africa. Both models also have the same 
aerosol climatology.

The regional R25 simulation was run with a near-
identical set-up to CP4A. The remaining differences in 
model set-up are primarily because some hypotheses are 
not valid at km-scales: R25 has a one dimensional bound-
ary layer scheme (Lock 2001) while CP4A has a three 
dimensional boundary-layer scheme (Boutle et al. 2014) 
with stochastic perturbations to temperature and moisture 
applied in the subcloud layer of cumulus-capped convec-
tive boundary layers. Another difference is the use of the a 
prognostic cloud fraction and condensation scheme [PC2; 
Wilson et al. (2008)] in R25 whereas CP4-Africa, like 
other convection-permitting UM formulations, uses the 
diagnostic Smith (1990) scheme. Finally, a moisture con-
servation scheme (Aranami et al. 2015) was implemented 
in CP4A but not in R25, partly because these errors are 
supposedly larger in convection-permitting models. This 
has the effect to reduce unrealistically strong precipitation 
intensities due to transport errors from the semi-lagrangian 
scheme. It also reduces mean precipitation in a spatially 
homogeneous way. More details can be found in Stratton 
et al. (2018).

The use of different cloud schemes may also influence 
some of our results but the Cascade studies (Pearson et al. 
2010b, 2014; Birch et al. 2014) did not have differences 
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in the cloud scheme between their convection-parameter-
ised models and convection-permitting model, and found 
qualitatively similar results as this study, so we believe 
that most of the changes between R25 and CP4A are due 
to switching convection off and increasing the resolution.

3.2 � Observations

We use several high-resolution precipitation observational 
estimates to evaluate model performance, since each type 
of estimate has its advantages and drawbacks (Gehne 
et al. 2016). We use two high-resolution satellite retriev-
als: TRMM-3B42v7: Tropical Rainfall Measuring Mis-
sion (TRMM) (2011) and the gauge-corrected version 
of CMORPH (Xie et al. 2017). We also use 3 rain-gauge 
based precipitation estimates at mesosites in Niger, Mali 
and Benin from the African Monsoon Multi-disciplinary 
Analysis, Couplage de l’Atmosphère Tropicale et du Cycle 
Hydrologique (AMMA-CATCH).

Both satellite retrievals use high-resolution infrared 
brightness (IR) temperatures from geostationary satellites 
related to precipitation rates using the more accurate passive 
microwave (PMW) estimates from the polar-orbiting satel-
lites. They differ by how the IR is calibrated, how PMW and 
IR measurements are related and by which bias correction 
is applied.

CMORPHv1-CRT​ In this dataset, high-quality PMW rain-
fall estimates are propagated by motion vectors derived from 
high-frequency IR imagery (Joyce et al. 2004). CMORPH 
is bias corrected against the gauge-based National Centers 
for Environmental Prediction (NCEP) Climate Prediction 
Center (CPC) daily precipitation analysis over land (Xie 
et al. 2010) and GPCP pentad data over the ocean. Cor-
rection over land is done by matching probability den-
sity functions against daily gauge analysis using optimal 

interpolation with orographic correction. CMORPH reso-
lution is 8 km × 8 km and 30 mn, but we aggregated it on a 
0.25 grid and 3-hourly to be comparable with TRMM and 
R25. We use 10 years (1998–2007) in the present study.

TRMM-3B42v7 In the Tropical Rainfall Measuring Mis-
sion 3B42v7 (TRMM), the monthly means of the 3-hourly 
microwave-calibrated IR rainfall estimates are combined 
with the GPCC monthly rain gauge analysis (Schneider 
et al. 2014) to generate a monthly satellite gauge combina-
tion (TRMM3B43). Each 3-hourly field is then scaled to sum 
to the corresponding monthly satellite gauge field (Tropical 
Rainfall Measuring Mission (TRMM) 2011). The dataset is 
3-hourly and on a 0.25◦ grid. We use 10 years (1998–2007) 
in the present study.

AMMA-CATCH Three so-called mesosites with enhanced 
surface measurements were set up within the AMMA pro-
ject: the Ouémé mesosite in central Benin (AMMA-CATCH 
1996), the Niamey mesosite in southern Niger (AMMA-
CATCH 1990) and the Gourma mesosite in Mali (AMMA-
CATCH 2003). Within these three sites rain gauge networks 
are maintained by the Institut de Recherche pour le Dével-
oppement (IRD) funded AMMA-CATCH program. Rainfall 
data at high temporal resolution are freely available from 
the AMMA-CATCH database (see http://www.amma-catch​
.org; data accessed in March 2018). In this study, we use 
the gridded versions of the datasets on a 4 km grid spanning 
1999–2008 in Benin, 2006–2011 in Mali and 1997–2006 in 
Niger. They were derived from the rain-gauges by a dynamic 
interpolation method (Vischel et al. 2011). Their locations 
are shown in Fig. 1.

CHIRPS,CRU,ARC2 Three other datasets are used to 
compare their precipitation climatology. Two of them 
include both infrared imagery and stations: the Climate Haz-
ards Group InfraRed Precipitation with Stations (CHIRPS) 
dataset (Funk et  al. 2015a) and the Africa Rainfall 

Fig. 1   CP4A orography (colour 
shading), definition of the zones 
used throughout the article and 
location of the three AMMA-
CATCH meso-sites used in 
this study (M: Gourma, Mali, 
B: Ouémé, Benin, N: Niamey, 
Niger)

http://www.amma-catch.org
http://www.amma-catch.org
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Climatology (ARC2) (Novella and Thiaw 2013). The third 
one is the station-based Climate Research Unit CRU TS-3.22 
(Harris et al. 2014).

Dataset comparison CMORPH and to a lesser extent 
ARC2 have a very low precipitation intensity in Guinea, 
Sierra Leone and Liberia, in clear disagreement with all 
other datasets in this zone (Fig. 7). The low precipitation 
intensity in this new version of CMORPH comes from the 
bias correction against the NCEP-CPC rain-gauge analy-
sis (Xie et al. 2017), which is clearly very different from 
GPCC (against which TRMM is corrected). ARC2 and CPC 
are using rain-gauges from the GTS network while GPCC, 
CHIRPS and CRU have extra sources of data including 
national datasets. ARC2 documentation reports that GTS 
stations in Gambia, Guinea-Bissau, Guinea, Sierra Leone, 
and Nigeria reported under 30% of the time from 1983 to 
2009 (Novella and Thiaw 2013). Therefore, the constraint 
from gauges is weak in ARC2 and CMORPH. Although the 
station coverage is also quite low in the GSL region from 
year 2000 in GPCC, it relies on a climatology from earlier 
years (Schneider et al. 2014). We will therefore consider 
TRMM as more reliable in these regions. Note however that 
in other regions, we found that CMORPH had better rainfall 
intensities than TRMM (Sect. 6.1.2), so we chose it as refer-
ence dataset in most figures.

3.3 � Methods

In Sect. 7.2, a precipitation object tracking algorithm is 
applied to CP4A and CMORPHv1-CRT following (Stein 
et al. 2015a). Both datasets are first regridded to a 12 km 
grid and the tracking is then applied to CMORPH 30 mn 
fields and CP4A 15 mn fields. At each time step clusters 
are identified as contiguous grid cells meeting a 1 mm/h 
threshold. A storm is then defined as clusters that propagate 
over a number of time steps, using an overlap criteria of 0.6 
once the cluster is propagated using its estimated velocity. 
Clusters larger than 1000 km2 are considered to be mes-
oscale convective systems whereas clusters smaller than 
1000 km2 are classified as small storms. R25 is not used 
since most clusters would be classed as MCSs due to its 
relatively coarse grid. Only four seasons were used since 
the algorithm is expensive to run on such high resolution 
fields: JAS 1999, 2000, 2001, 2004 for CP4A and 2001, 
2002, 2004 and 2006 for CMORPH. Although the chosen 
years are different in CP4A and CMORPH partly due to the 
quality of CMORPH during those years, we believe this does 
not affect our results, as shown later by plotting different 
years separately.

For most of our analysis, CP4A, R25 and CMORPH are 
conservatively regridded to TRMM grid ( 0.25◦ ) to ensure 
a fair comparison, as advised by Chen and Dai (2018). 
CP4A is only analysed on its native grid in Sect. 6.2 when 

compared to AMMA-CATCH observations and on a 12 km 
grid for the storm tracking.

The map diagnostics include stipplings where the dif-
ference between the model and the dataset is significantly 
different from year-to-year variability at the 5% global sig-
nificance level. We used the following bootstrap method:

•	 Estimate local p value at individual grid points:

1.	 The 10 years are re-sampled a 1000 times with 
replacement and the metric is calculated for each 
sample (same re-sampling for all datasets and mod-
els).

2.	 The mean of the bootstrapped metric was computed, 
and subtracted from each bootstrap estimate; this 
creates a 1000 number of zero-centred metrics and 
gives us an estimate of the probability distribution 
of the test statistic under the null hypothesis.

3.	 The original metric is then compared with this null 
distribution, and the p value is estimated based on 
which quantile the original metric corresponds to 
relative to the null distribution. For instance, if the 
original metric is below 2% or above 98% of the 
values in the simulated null distribution, the uncor-
rected p value would be 0.02.

•	 When carrying out field significance tests for map plots, 
one would expect some significant results to occur by 
chance (Wilks 2016). The problem is further compli-
cated by the natural spatial correlation of geophysical 
data, which leads to incorrect identification of significant 
results. To address this problem we apply a correction to 
the local p value (Wilks 2016), thereby controlling the 
false discovery rates in multi-hypothesis testing with the 
Benjamini/Hochberg false discovery rate (FDR) algo-
rithm. The corrected p values are then compared with 
the 5% global significance level.

4 � Monsoon progression

4.1 � Precipitation

Figure 2 shows the annual cycle of the monsoon (averaged 
between 8W and 6E) in terms of mean precipitation, wet-day 
intensity and wet-day frequency. A wet day is defined as a 
day with more than 1 mm of accumulated rainfall. The coast 
is located at approximately 5◦N . CMORPH and TRMM 
show the oceanic and coastal phases of the monsoon from 
April to June, followed by the “monsoon jump” towards the 
end of June, when more intense rainfall starts in the Sahe-
lian region with maximum rainfall around 12◦N continuing 
towards the end of August. The monsoon gradually retreats 
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south from mid-September to the end of October. Precipi-
tation frequency and intensity are maximum in April-June 
over the ocean and near the coast. Precipitation frequency is 
also large between 9 and 12.5◦N in the Soudanian zone from 
July to September. During this period, precipitation intensity 
is largest around 12.5N with values reaching 11–14 mm/day 
in CMORPH and 14–17 mm/day in TRMM. Precipitation 
intensity is the main point of disagreement between the two 
datasets and it will be shown later that CMORPH is more 
reliable for this metric over land in this region.

The two models (R25 and CP4A) both show similar 
biases in the overall monsoon evolution (left hand panels). 
Rainfall starts too early in the Soudanian zone (June com-
pared to July in the observations), making the monsoon 
jump a little less evident as rainfall occurs both over the 
ocean and over land during June and July. Another bias is 
an underestimation of rainfall in September and a slower 
monsoon retreat in October than in the observations. The 
largest differences between the two models are found in 
the precipitation intensity and frequency: R25 strongly 
overestimates the rainfall frequency and underestimates 
the rainfall intensity in all regions and seasons. Mean 
rainfall results from compensating biases in this model. 
In CP4A, rainfall frequency is much closer to the obser-
vations throughout the seasons and latitudes, although it 
tends to be 10–30% underestimated. Over land, CP4A is 
generally wetter than R25, which is a small ( ≃ 10–20%) 

improvement in July–September but a small deterio-
ration in the shoulder seasons. Note that near 7–8◦N , 
CP4A shows the well-know double peak in precipitation 
(May–June and October) both in terms of mean and fre-
quency of precipitation as in the observations, whereas 
R25 has a weaker amplitude. In May and October, the 
overestimation of precipitation over land north of 9◦ in 
CP4A is mainly due to an overestimation of rainfall fre-
quency. From June to September, CP4A has too strong 
precipitation intensity between 7 and 12.5◦ N.

Another notable difference between the models is the 
strong wet bias in CP4A over the ocean. It comes from a 
clear overestimation of rainfall intensity over the ocean 
and near the coast in May–June. When convection is trig-
gered over the ocean, it is too strong. This is potentially 
a consequence of the lack of coupling between the ocean 
mixed layer and the atmosphere. Although R25 also has a 
prescribed SST, the convection scheme does not seem to 
be as sensitive to the lack of coupling as the explicit way 
of treating convection in CP4A. Another possible reason 
is that at 4.5 km the convection-permitting model does 
not correctly model shallow convection over the ocean 
and tends to have more precipitation from deep convec-
tion, in line with Becker et al. (2017) who found strong 
aggregation of convection when the convection scheme is 
switched off in radiative-convective equilibrium. Further 

Fig. 2   Latitude-time evolution of (left) daily mean precipitation, (centre) wet-day frequency and (right) wet-day instensity averaged over 
10 years and from 8W to 6E. A 10-day running mean has been applied
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testing beyond the scope of our study is necessary to 
reduce this bias.

The monsoon retreat is also slower in both models; CP4A 
does not improve this. Zhang and Cook (2014) explain the 
delay in the demise of the WAM monsoon may partially be 
due to the North Atlantic subtropical high being too weak, 
which is the case in our global model (− 2 hPa in SON com-
pared to ERA-interim, not shown).

4.2 � Winds

The generally stronger mean rainfall from April to Sep-
tember in CP4A compared to R25, in the coastal region 
(5–9N) first and then in the Soudano-Sahelian region 
(9–15◦N ) is possibly explained by the stronger moisture 
convergence in convection-permitting models compared to 
convection-parameterised models in the Soudano-Sahelian 
zone (Marsham et al. 2013; Birch et al. 2014). Since the 
moisture convergence changes are mostly linked with low-
level monsoon wind changes here we examine the 925 hPa 
meridional winds (Fig. 3a–c). In CP4A, the meridional 
winds are stronger between 5 and 9N from March to 
November and weaker between 9 and 18N from June to 
November compared to R25. These weaker winds start in 

June, when convection is triggered in the Soudanian zone. 
This clear pattern corresponds to the sketched explanation 
of Fig. 1 in Birch et al. (2014) and is explained below. 
Note that this makes the biases against ERA-interim larger 
in CP4A south of 9N but smaller between 9 and 15N from 
June to October (but note that ERA-interim 925 hPa wind 
fields will also be impacted by its convection-parameteri-
sation, like R25 is, as explained below).

Figure 4 shows the diurnal cycle of the latitude distri-
bution of mean precipitation and 925 hPa winds averaged 
between 8◦W and 6◦E and from July to September. Gen-
erally, night-time/morning precipitation is much better 
represented in CP4A than R25. Noticeably, the afternoon 
peak is shifted by about 3 h, although it is still too intense 
(see Sect. 7.2 for discussion about this). As illustrated by 
Fig. 4d–f, meridional moisture transport mainly occurs at 
night since dry boundary layer convection is strong dur-
ing the day (Parker et al. 2005). From R25 to CP4A, the 
nocturnal jet in the Soudano-Sahelian zone (9–15N) in 
July–September is weaker and the the late afternoon/noc-
turnal jet in the Guinea coast zone (5–9N) is stronger. Birch 
et al. (2014) illustrated the following mechanism: since con-
vection occurs later in the afternoon and during the night 
in convection-permitting models, there is more incoming 

Fig. 3   Latitude-time evolution of (left) daily mean meridional wind at 925 hPa and (right) daily mean zonal wind at 700 hPa averaged over 
10 years and from 8◦ W to 6◦ E . A 10-day running mean has been applied
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short-wave radiation during the day and convective warming 
at night. Consequently, they showed that night-time tempera-
tures are warmer and surface pressure is weaker, reducing 
the pressure gradient relative to the Sahara and enhancing it 
relative to the coast. Furthermore, enhanced cooling in the 
Sahara by cold pool advection could also reduce the Sahel/
Sahara gradient in the convection-permitting model (Mar-
sham et al. 2013). This mechanism leads to stronger mois-
ture convergence in the Soudano-Sahelian zone and allows 
CP4A to have stronger rainfall than R25. Birch et al. (2014) 
only investigated 40 days in the peak monsoon season. With 
the present study, we can confirm their findings and extend 
them: the fact that the northerly winds at 9–15◦N start to 
be weaker from June, when convection occurs in the Sahel, 
adds to the evidence that convection is influencing low-
level meridional transport. This effect is sustained during 
the whole monsoon season up to early November (Fig. 3).

Rainfall in April–May is also stronger in CP4A (Fig. 2). 
This is possibly linked with a stronger southerly flow in the 
coastal region compared with R25 (Fig. 3), although at that 
time of year, there is no corresponding reduction of south-
erly winds north of 9 ◦N . Figure 5 indeed shows no change 
in the diurnal cycle of winds between R25 and CP4A north 
of 9 ◦N , probably because convection is still weak in this 
region. However, winds are stronger in CP4A in the Guinea 
coast region from 18 to 03 UTC. A similar mechanism 
(warmer temperature at night increasing the pressure gradi-
ent at the coast) could be invoked. Future studies will need 
to investigate this in more detail.

June–September rainfall intensity north of the coastal zone 
(around 9 ◦N ) is also stronger than observed (Fig. 2, right 
panel). Another candidate to explain this is the African easterly 
jet (AEJ) shown in the 700 hPa zonal wind field (Fig. 3d–f). 
It is too broad and intense in both models compared to ERA-
interim. Although the jet is slightly more constrained to the 
south in CP4A in JAS, it still appears too wide. Especially, 
it should be noted that the meridional shear on the southern 
side of the jet extends south to 5 ◦N in the models but ends 
around 8 ◦N in ERA-interim. Therefore, African easterly waves 
(AEW) could potentially occur further south in our models 
and together with stronger vertical wind shear between 5 and 
9 ◦N , could promote long-lived MCSs in this region in CP4A, 
which don’t occur often in reality (Mohr and Thorncroft 2006; 
Maranan et al. 2018). Stronger convection in the early morn-
ing, which is an indicator of long-lived convective systems 
(Zhang et al. 2016a, b; Vizy and Cook 2018a), is indeed found 
both in July–August–September (Fig.  4) and April–May 
(Fig. 5) around 9–10◦N.

To conclude this section, the most obvious added value 
from CP4A is the better representation of precipitation fre-
quency and intensity and a shift to later precipitation during 
the day, which has consequences in terms of the diurnal cycle 
of the winds, which reinforces precipitation in CP4A. In the 
rest of the study, we investigate how CP4A represents pre-
cipitation in more detail at space- and time-scales potentially 
useful for users, to identify added value and remaining chal-
lenges for climate model developers. Although this added-
value in terms of precipitation frequency and intensity is clear 
throughout the seasons over land, we focus on changes in the 

a b c d e

Fig. 4   Diurnal cycle of the latitude distribution of 3-hourly precipitation rate (mm/h) averaged between 8W and 6E in July–August–September 
for a CMORPH, b R25 and c CP4A and same diagnostic for the 3-hourly 925 hPa meridional wind (m/s) for d R25 and e CP4A



1999Improved climatological precipitation characteristics over West Africa at…

1 3

precipitation distribution in July–September for the sake of 
brevity and indicate when the changes differ in the shoulder 
seasons.

5 � Spatial distribution of precipitation 
at the monsoon peak

Figure 6 further shows CP4A has a good representation of 
mean rainfall on flat land in the Soudano-Sahelian zone 

a b c d e

Fig. 5   Same as Fig. 4 for April–May

Fig. 6   Mean precipitation (mm/day, top), wet day frequency (centre), 
precipitation intensity on wet days (mm/day, bottom) in JAS for (left 
to right): CMORPH, R25-CMORPH, CP4A-CMORPH and TRMM-
CMORPH in %. Areas where precipitation frequency is below 0.05 in 

CMORPH are masked out in white in the difference plots. Stippling 
shows the significant values at the 5% global level, as explained in 
Sect. 3.3
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between 8W and 6E, compared to R25 which has a 10–30% 
dry bias. This finding can be extended to most low-land 
areas except over the Ivory Coast. Note that in Guinea, 
Sierra Leone and Liberia, CMORPH shows a strong under-
estimation compared to other datasets (Sect. 3.2), so we 
will not discuss model performance in these regions. It is 
again striking that CP4A has a better representation of the 
wet-day frequency and wet-day intensity than R25 in all 
regions. R25 has 30–90% too many wet days and a precipi-
tation intensity 30–70% too low. CP4A has a much smaller 
but opposite bias of too intense and infrequent rainfall in 
the Soudanian and Guinea coast zone, potentially linked 
with a too broad AEJ as explained earlier. There is also 
a remaining dry bias along the Guinea coast, where the 
“little dry season” is too dry by 30–70% (especially in 
Ivory Coast). We speculate that this could be linked with 
an incorrect orientation of the flow at the coast near Cape 
Palmas or too strong southerlies exporting moisture north 
as shown in Fig. 3. This also needs further investigation 
in following studies.

CP4A shows a clear overestimation of precipitation inten-
sity on wet-days over the orography (Jos Plateau, Camer-
oun Line Mountains). Figure 7 compares mean precipita-
tion using different datasets. Although these datasets are not 
independent (e.g. TRMM is corrected against GPCC and 
CMORPH against CPC which has a similar station network 
as used in ARC2, CHIRPS includes TRMM and a previ-
ous version of CMORPH in its climatology), none of them 
shows as much precipitation over the orography as CP4A. 
CHIRPS, which includes fine-scale terrain-induced precipi-
tation enhancement in its baseline climatology (Funk et al. 
2015b), shows the highest rain rates over the orography. 
However, although we can’t rule out a systematic underesti-
mation of orographic precipitation because of scarce station 
data at higher elevation, it is likely that CP4A overestimates 

orographic precipitation. A similar bias (although smaller) 
was found in Europe over the Alps against much higher-den-
sity datasets by Berthou et al. (2018). Note that over lower 
mountains such as the 500–900 m Togo-Atakora mountains, 
mean precipitation is in good agreement with CMORPH, 
ARC2 and CHIRPS.

Note that these points are also valid for April–June and 
October–November. The main difference is that the band 
of too intense precipitation in CP4A around 9 ◦N is shifted 
south by about 1◦ and the overestimation of precipitation 
north of this band is due to too large rainfall frequency.

6 � Daily and sub‑daily precipitation 
distributions

6.1 � On a 25 km grid

6.1.1 � Model evaluation

Distributions of 3 hourly precipitation on a 0.25◦ grid are 
presented in Fig. 8. They are plotted in terms of contribution 
to mean precipitation with near-exponential bins as detailed 
in Klingaman et al. (2017) and further explained in Berthou 
et al. (2018) and in the caption of Fig. 8. The distributions 
are presented for different regions to account for the strong 
spatial variability across West Africa (see Fig. 1):

1.	 SEN, mostly covering Senegal, which is under the influ-
ence of east–west traveling MCSs and of the Atlantic 
ocean,

2.	 NSA, northern part of the Sahelian zone at the edges of 
the Sahara with weak mean precipitation.

Fig. 7   Mean precipitation (mm/day) in JAS for different datasets
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3.	 GSL, mostly covering Guinea, Sierra Leone and Libe-
ria, under the influence of the monsoon flow and strong 
orographic forcing,

4.	 SSZ, covering the Soudanian zone and southern part of 
the Sahelian zone, away from direct orographic influ-
ence,

5.	 GOG, covering southern coastal areas encountering a 
little dry season in JAS,

In all regions, CP4A and R25 have very different precipita-
tion distributions: R25 shows a larger contribution from 
events below 5–8 mm/3 h compared with CP4A and little 
contribution to mean precipitation from rates larger than 
20 mm/3 h. This is coherent with Pearson et al. (2014), 
who showed that 95% of precipitation in a previous ver-
sion of the UM convection-parameterised model came 
from the convection scheme. CP4A is always in better 
agreement with TRMM and this is also true compared 
with CMORPH except in GSL and SEN regions. The 
best agreement of CP4A with CMORPH is in northern 
Sahel. In SSZ, CP4A is in good agreement with TRMM 
but compared with CMORPH overestimates precipitation 
rates above 15 mm/3 h and underestimates precipitation 
below this threshold. In GOG, CP4A underestimates pre-
cipitation below 15–30 mm/3 h compared to CMORPH 
and TRMM, which leads to the dry mean bias at daily time 
scales. The higher end of the distribution is aligned with 
TRMM but the contribution of rates larger than 15 mm/3 h 
is too large compared to CMORPH. Note that this bias 
is also seen at the daily scale in Fig. 6 with too few wet-
days and a too large wet-day intensity. Since CMORPH is 

in better agreement with local observations in SSZ (see 
Sect. 6.1.2), it is likely that CP4A overestimates intense 
precipitation and underestimates weaker precipitation 
in SSZ and more strongly so in GOG. As explained in 
Sect. 4, this may be linked with the extension of the AEJ 
too far south in the models, which potentially favours 
strong convection around 7 ◦N–12◦N . Some of the contri-
bution may also come from strong convection over Lake 
Volta in eastern Ghana as shown in Fig. 7. Overall, CP4A 
is showing a much better precipitation distribution than 
R25, with stronger precipitation events contributing to 
mean precipitation.

Figure 9 similarly shows that the more intense values of 
daily precipitation are better represented in CP4A, although 
they are too intense against CMORPH by 10–70% in the 
Soudanian zone. If TRMM is taken as a reference around the 
Guinea mountains, there is also an improvement in CP4A, 
although intense precipitation is overestimated by 30–50%. 
The underestimation of this metric against TRMM in the 
northern part of the Sahel seems to be less reliable, since 
TRMM overestimates strong precipitation in this region (see 
next section). The overestimated intensity of strong rain-
fall events in the Soudanian zone could be linked to a too 
strong AEJ south of 12◦N (Sect. 4), which could promote 
long-lived types of MCSs, mostly absent from this region 
in observations (Maranan et al. 2018).

Finally, Fig. 10 shows the joint probability distribution of 
wet spell duration and mean rainfall intensity in the NSA, 
SSZ and GOG regions. A wet-spell is defined as consecutive 
3 h intervals with rainfall rate above 0.1 mm/h. This figure 
further illustrates that R25 shows too many low-intensity 

Fig. 8   3-hourly precipitation 
contributions to mean precipita-
tion rate in JAS over the regions 
named in the top-left corner for 
TRMM, CMORPH, CP4A and 
R25 regridded on a 0.25◦ grid. 
Precipitation rates are binned 
with near-exponential bin sizes 
[see Klingaman et al. (2017) for 
the exact formula] to account 
for more frequent rain events at 
low rain rates. Then, each bin 
frequency is multiplied by the 
mean bin rate: summing across 
the bins will give the mean 
precipitation rate of the region. 
The x axis is plotted on a log 
scale and the y axis on a linear 
scale to compare the bulk of the 
distribution

a
b c

d e f
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rainfall wet-spells (< 6 mm of cumulated rain) in all dura-
tion bins and not enough intense wet-spells from 6 to 
150 mm. CP4A shows a shift to overall fewer wet-spells, 
which are more intense and short-lasting. As also noted in 
Fig. 8, CP4A agrees better with TRMM in the GOG and 
SSZ regions and with CMORPH in the NSA region. Gener-
ally, the large rainfall amounts happen in shorter wet-spells 
in CP4A compared to CMORPH (e.g. very few events with 
amount larger than 15 mm and duration longer than 9 h 
in CP4A in SSZ and GOG). Moreover, intense wet-spells 
(> 30 mm/h) can have longer durations in GOG than in 
SSZ, in line with Maranan et al. (2018) who showed that 
organised convective systems propagate at a slower speed 
in the SSZ region. CP4A does show this behaviour but to a 
lesser extent than observations. It also shows too many long-
lasting very intense wet-spells (> 60 mm, > 3 h), especially 
in GOG. Crook et al. (2019) also found that the contribution 
to mean precipitation by long-lasting (> 9 h, in a lagrangian 
definition) and slow (< 8 m/s) MCSs was too large in this 
region in CP4A, which could be related to this. The lack of 
weaker events (< 15 mm) in GOG in CP4A is especially 
large for events lasting more than 3 h. CP4A also overesti-
mates the short (0–3 h) wet-spells in all regions compared 
to CMORPH, which is potentially partly linked with its too 
strong diurnal cycle (see Sect. 7).

Overall, CP4A has a very good distribution in Northern 
Sahel but overestimates intense and short-lasting wet-spells 
and underestimates low-intensity events of all durations 
against CMORPH in SSZ and GOG. The dry spells, using 
a simple 1 mm/day threshold, are also generally longer and 
more numerous in CP4A compared with R25, closer to the 
observations except in the GOG region, where CP4A shows 
too many long-lasting (> 5 days) dry spells (not shown). 
Similarly, CP4A shows better performance than R25 for 
RX1 (10-year median of the maximum seasonal precipita-
tion in 1 day), RX5 (10-year median of the maximum sea-
sonal precipitation in 5 days), CDD (10-year median of the 
maximum number of consecutive dry days in one season) 
and CWD (10-year median of the maximum number of con-
secutive dry days in one season) (not shown). CP4A remain-
ing biases in the south of the region and over the orography 
(too strong intensity and too small frequency of rainfall) are 
affecting these variables (not shown).

6.1.2 � Satellite dataset quality

Dataset quality was already discussed regarding the SEN and 
GSL regions in Sect. 3.2. To further check satellite dataset 
quality in other regions, Fig. 11a, c and e show the compari-
son of CP4A, TRMM, CMORPH and the rain-gauge based 

Fig. 9   Average of values over the 99th centile of daily precipitation 
in JAS on a 0.25◦ grid for a CMORPH, b R25-CMORPH, c CP4A-
CMORPH, d TRMM, e R25-TRMM, f CP4A-TRMM. This corre-

sponds to the average intensity of the top 9 daily events in each grid 
point. Stippling shows the significant values at the 5% global level as 
explained in Sect. 3.3
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dataset AMMA-CATCH on the three mesosites (location 
presented in Fig. 1). All datasets are 3-hourly and regridded 
on TRMM grid (0.25◦ ) in these panels. CMORPH shows 
very good agreement with AMMA-CATCH on the three 
sites. CP4A also shows very good agreement with AMMA-
CATCH-Mali and AMMA-CATCH-Niger (the first one is in 
NSA and the second one in the north of SSZ), but in Benin 
has much fewer low-intensity precipitation and too much 
high intensity precipitation compared to AMMA-CATCH-
Benin, similarly to TRMM, as shown in the averaged SSZ 
and GOG regions of Fig. 8. CMORPH seems more reliable 
than TRMM in the NSA and SSZ regions and was therefore 
chosen as a reference dataset in Figs. 2 and 6, although it 
shows other drawbacks over the Guinea mountains as dis-
cussed earlier and in Sect. 3.2.

6.2 � On a 4 km grid

Although a model is not supposed to represent well the 
atmospheric processes at its grid scale (Skamarock 2004), 
some users such as hydrologists may ideally like to use the 

fine temporal and spatial scales provided by CP4A and it 
is further important to evaluate it from a model develop-
ment perspective. The AMMA-CATCH dataset provides a 
good evaluation tool in this regard: the 15 mn- and 3 hourly 
precipitation can be evaluated on a 4 km grid in Fig. 11b, 
d and f. Comparing the left panels and the right panels for 
AMMA-CATCH-3h and CP4A-3h, the only difference is 
the spatial scale: on the left, precipitation is on a 25 km grid 
and on the right it is on a 4 km grid. This shows that CP4A 
is in good agreement at 3-hourly time-scale and 25 km 
scale with AMMA-CATCH-Mali and Niger, but precipi-
tation comes from too intense events on a 4.5 km grid at 
3-hourly time-scale. In all three sites, CP4A peak is shifted 
to higher values on the 4.5 km grid and lighter precipitation 
is underestimated compared to AMMA-CATCH. This sug-
gests that precipitation systems are too intense and localised 
on a 4.5 km grid but aggregate well at 25 km scales. This is 
a known problem of the model when analysed on its native 
grid and it was evaluated that resolutions of about 200 m 
would be required to solve this problem (Hanley et al. 2015; 
Stein et al. 2015a).

Fig. 10   Number of wet-spells per season (in JAS) and per 0.25◦ grid-
point in different duration and cumulated rainfall categories. Top is 
for the NSA region, middle for the SSZ region and bottom the GOG 

region (defined in Fig.  8) for the four datasets as indicated in the 
titles. The number written above the plots is the average number of 
wet spells per grid point per season. Note the colorbar is log scale
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At a 15 mn scale, a similar bias is also present in Benin 
and Mali, but in Niger the differences are tripolar (under-
estimation of precipitation below 6 mm/h, overestimation 
between 6 and 15 mm/h and underestimation between 
15 and 50 mm/h). The precipitation contribution repre-
sented this way has two peaks: the peak at stronger values 
dominates in AMMA-CATCH while the peak at weaker 
values is dominant in CP4A. This may be related to the 
convective and stratiform parts of precipitating systems, 
which may have different shares in CP4A compared to 
AMMA-CATCH. Table 1 gives further information on the 
spatial characteristics of rainfall in CP4A compared to the 

rain-gauge network of the Niamey mesosite in Niger, for 
1997–2006 from July to September. Large-scale precipita-
tion systems are defined as covering at least 30% of the 
30 rain-gauges in AMMA-CATCH and of the 625 grid 
points in CP4A. Their number is in very good agreement 
between CP4A and AMMA-CATCH. On this mesosite, 
96% of precipitation comes from these large-scale sys-
tems in AMMA-CATCH. This fraction is 86% in CP4A, 
due to both the underestimation of large-scale event mean 
intensity (by 30%) and the overestimation of the number 
of small-scale events (by 59%) and their intensity (by 
56%). The mean inter-event time and the mean size of the 

Fig. 11   3-hourly precipita-
tion contributions to mean 
precipitation rate (mm/h) in 
JAS on a 0.25◦ grid (left) and 
3-hourly/15-mn precipitation 
contributions to mean precipita-
tion rate on a 4 km grid (right) 
for the three AMMA-CATCH 
mesosites: a, b Gourma (Mali), 
c, d Niamey (Niger), e, f Ouémé 
(Benin). Mean precipitation rate 
(sum across all bins) is indi-
cated in the legend box. a, c, e 
Are similar to Fig. 8 but for the 
mesosites instead of the wider 
regions. The mesosite locations 
are indicated in Fig. 1
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precipitation systems is in good agreement (only differ-
ent by about 15%) between CP4A and AMMA-CATCH 
(Table 2), although the mean intensity is underestimated 
by about 38%, which is in the same range as Fig. 6 at the 
daily time-scale against CMORPH. Figure 11d shows that 
this underestimation mainly comes from precipitation rates 
between 15 and 50 mm/h being underestimated, although 
6–15 mm/h precipitation is overestimated.

7 � Diurnal cycle and MCSs

7.1 � Better diurnal cycle in CP4A

Zhang et  al. (2016a) showed that the diurnal cycle in 
TRMM had a single peak at most grid-points and has a 
strong spatial variability. Therefore, to avoid averaging 
over given regions, we use a harmonic fit of the 3-hourly 
datasets and diagnose the hour of maximum precipita-
tion and the amplitude of the harmonic (Fig. 12). Three 
quantities can be compared between the models and the 
observations: the area where the harmonic fit is not good 
( R2

< 0.5 ), shown in grey, the amplitude of the harmonic 
(a–d) and its phase (e–h). First, CP4A has larger areas 
where the harmonic fit is suitable for the diurnal cycle 

(less grey area) than R25, quite similar to the observations. 
Figure 4 indeed shows that R25 has a very strong peak 
around midday, and a cosine fit is likely a sub-optimal 
estimation of this behaviour.

Second, the largest amplitude of the diurnal cycle is 
found over the orography (except in CMORPH over the 
Guinea mountains) and offshore the western coasts of GLS 
and Nigeria/Cameroon. Precipitation is maximum in late 
afternoon over the orography. This is well reproduced 
in both R25 and CP4A models, although R25 tends to 
have an earlier precipitation peak and CP4A a stronger 
amplitude.

Third, over flat land in the Sahel region, CP4A is superior 
to R25 in both phase and amplitude of the diurnal cycle. Its 
amplitude is quite similar to TRMM but still overestimated 
compared with CMORPH. The timing of maximum precipi-
tation is too early in R25, which is a well-known behaviour 
of the convective parameterisation (e.g. Martin et al. (2017); 
Trenberth et al. (2017)). CP4A still peaks too early, but note 
that CMORPH and TRMM tend to have too late a peak com-
pared to AMMA-CATCH observations by about 2 h (Pfei-
froth et al. 2016). Indeed, CP4A agrees better with AMMA-
CATCH than TRMM and CMORPH in Benin where the 
afternoon peak is dominant (not shown). However, CP4A 
has a more spatially homogeneous timing of precipitation 
than both datasets in the Sahel: it occurs mainly between 4 
pm and 8 pm. The early morning peak over Niamey (Niger, 
blue/green colours), shown in the observations (and in 
AMMA-CATCH, not shown) and the east–west gradient 
from the Jos Plateau to Niamey are not well represented in 
CP4A. Note that these are due to travelling MCSs generated 
both over the Jos Plateau/AÏr mountain orography and the 
Damergou gap Vizy and Cook (2018a). The daytime peaks 
in Burkina Faso and eastern Niger/Nigeria were explained 
by Vizy and Cook (2018b) by local triggering of convection 
in different circumstances in both regions and by the travel-
ling long-lived MCSs also triggered in the Damergou gap.

Nevertheless, patterns in coastal countries are well cap-
tured by CP4A: the night-time peak of precipitation over 
Eastern Senegal and Ivory Coast, and the early morning peak 
between the Jos Plateau and the Cameroon Line mountains.

Table 1   Mean number of 
events per year and mean 
annual rainfall by event type at 
Niamey mesosite (Niger) in JAS 
(1997–2006)

For AMMA-CATCH, a minimum threshold of 1 mm at at least two stations define an event. For CP4, there 
is no minimum threshold. Events are separated by a minimum of 30 min. Large events are given when at 
least 30% of stations/grid-points recorded more than 0.5 mm of rainfall

Mean annual number of events Mean annual rainfall (mm)

Total Large events Small events Total Large events Small events

AMMA-CATCH 49 32 17 402 385 17
% of total 100 65 35 100 96 4
CP4A 57 30 27 311 269 42
% of total 100 53 47 100 86 14

Table 2   Inter-event time: days between each event, measured from 
beginning of one event to the beginning of the next

Event size: values are in proportion of stations/data points measuring 
precipitation. Event intensity: average rainfall per station per event. 
All values are for July–August, averaged over 1997–2006 for the 
Niamey mesosite (Niger). Note that AMMA-CATCH has 30 stations 
whereas CP4 has 625 points over the same area

Inter-event 
time (days)

Event size 
(ratio)

Event 
intensity 
(mm)

AMMA-CATCH mean 1.88 0.58 11.1
AMMA-CATCH std 1.57 0.34 9.1
CP4A mean 1.62 0.67 6.8
CP4A std 1.25 0.25 6.5
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On the southern coast, there is a gradient in peak rain-
fall from 06 to 09 UTC at the coast to later afternoon peak 
around 6 ◦N , as also indicated by Fig. 4a–c. This pattern, pre-
sent both in the observations and the models, clearly shows 
the signature of sea breeze. This is not so clear from the 
wind intensity (Fig. 4d–f) but Parker et al. (2017) explain 
that the sea breeze does not behave as a gravity current since 
the monsoon flow is strong but rather as a deepening of 
the boundary layer from the coast to inland. As shown in 
Fig. 4a–c, the morning peak in precipitation in CP4A is 
overestimated over the sea and coast. The inland penetra-
tion is also too large: up to  7◦N in both R25 and CP4A 
against  6◦N in CMORPH and Fig. 4.18 of Parker et al. 
(2017).

From Fig. 5, most of these conclusions are also valid in 
April–May: the precipitation signature of the sea breeze in 
even stronger than in JAS in both the observations and the 
models.

Note also the early morning peak of precipitation over 
Lake Volta in CP4A, which is not present in CMORPH and 
TRMM but also reported by Parker et al. (2017) in terms of 
cloudiness (in their Fig. 4.18).

Overall, CP4A is better able to reproduce the shape, tim-
ing and amplitude of the diurnal cycle than R25 away from 
the orography. It is able to reproduce the spatial structure of 
the phase around the orography and in coastal countries but 
not in the Sahel.

7.2 � Still too much non organised convection

In this section, we seek to understand the diurnal cycle 
biases in CP4A.

Stratton et al. (2018) showed by means of a Hovmöller 
diagram on 1 month (Fig. 9 of their article) that westward 
propagating MCSs are well represented in CP4A but smaller-
scale slow moving diurnal precipitation is too intense. To 

Fig. 12   a–d Amplitude of the 
harmonic fit to the diurnal cycle 
of precipitation in JAS (mm/h); 
e–h phase (hour of maximum) 
of the harmonic fit to the diur-
nal cycle (local time) in JAS. 
Areas where the goodness of 
fit R2

< 0.5 are masked in grey 
in panels a–d and in white in 
panels e–h 
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quantify this behaviour, Fig. 13a shows the contribution of 
precipitation to mean diurnal cycle by storm type: small 
storms and MCSs are differentiated by a size threshold of 
1000 km2 . This is determined using the tracking of precipi-
tation objects described in Sect. 3.3. This figure shows that 
night-time/morning precipitation mainly results from MCSs 
(over 90% in CMORPH) and that small storm contribution is 
maximum around midday, representing 15% of rainfall at that 
time in CMORPH. In CP4A, this midday peak of small-scale 
storm contribution occurs later and is much stronger than in 
CMORPH: up to 65% of the rainfall at 2 pm comes from small 
storms. Therefore, the too early peak of total precipitation in 
CP4A in the Sahel and probably the more homogeneous spa-
tial structure of the hour of maximum precipitation is related to 
too large a share of diurnal small-scale convection compared to 
MCSs in the precipitation mean rate. Although different years 
were used in CP4A and CMORPH to do the tracking, this par-
ticular model bias is much larger than year-to-year variability, 
as shown by individual years (thin lines in Fig. 13). This is 
also consistent with the comparison against AMMA-CATCH, 
using different criteria (Sect. 6.2 and Table 1): it also showed 
too much small-scale convection but the right number of large-
scale events. The good number of MCSs is consistent with the 
presence of a night-time peak of correct intensity in CP4A 
in Fig. 4. Note that this is an opposite bias to Zhang et al. 
(2016b), who found that diurnal convection is not triggered 

enough in their CPM, and they link it with too high a bound-
ary layer. In CP4A, this behaviour may be related to the use of 
stochastic perturbations in the boundary layer scheme, which 
may require some tuning down for this region.

Moving south to the GOG region (Fig. 13b), the share of 
small-scale convection is larger in GOG than in SSZ, as also 
shown by Maranan et al. (2018): it grows from 15% at mid-
night to 25% around midday. CP4A also has a similar share in 
the morning ( 20%) but again the afternoon peak is overesti-
mated (up to 75% of total rainfall at this time of day).

8 � Conclusion

We present a comparison of a 10-year 4.5 km convec-
tion-permitting model (CP4A) with a 25 km ×  40 km 
regional simulation using a convective parameterisation 
(R25) in terms of their representation of the West Afri-
can monsoon. Both simulations were driven by a present-
day atmosphere-only GCM at 25 km × 40 km and cover 
a pan-African domain. Overall, CP4A shows substantial 
improvements compared to R25 in terms of precipitation:

•	 improved wet-day frequency and intensity,
•	 improved distribution of 3-hourly precipitation, with 

very good agreement in the Sahelian zone (12.5–18N) 

a b

Fig. 13   Contribution to mean hourly precipitation rate (%) by time of day for small storm clusters (< 1000 km2 ) and MCSs (> 1000 km2 ); a for 
the SSZ region and b for the GOG region. Thick lines are the 4-year averages and thin lines represent individual years
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against CMORPH and AMMA-CATCH on a 25 km 
grid,

•	 better representation of dry and wet spells
•	 better representation of the diurnal cycle and of its spa-

tial variability around the coasts and orography.
•	 good representation of the size and number of large-

scale MCSs compared with AMMA-CATCH Niamey 
in JAS. Crook et al. (2019) will provide more in-depth 
analysis of MCSs.

•	 reduced mean bias over the Sahelian region in JAS, 
from 10 to 30% to typically less than 10%.

Nevertheless, CP4A still shows the need for further model 
improvements:

•	 the monsoon progression is relatively similar to R25 and 
the driving model, starting too early and ending too late, 
the wet biases in April–May and October are stronger 
in CP4A, potentially linked with too strong late evening 
monsoon flow from the ocean to the coast in these sea-
sons.

•	 from 7 ◦N to 12.5N (Soudanian zone and just south of 
it), heavy rainfall is too intense and frequent and low-
intensity rainfall is not frequent enough, with an overall 
dry bias in these regions. This could be at least partly 
related to the too broad AEJ in both models, with the 
meridional gradient of the zonal wind reaching the coast 
in the models.

•	 in the Sahelian zone away from the orography, small-
scale diurnal convection contributes too much to total 
precipitation and this leads to a diurnal phase which is 
too homogeneous in this region. This could be tested 
in short simulations and potentially be corrected by 
reducing the amplitude of stochastic perturbations in the 
boundary layer.

•	 precipitation is too intense over the orography and over 
the ocean. We speculate that the latter could be reduced 
by the coupling with an ocean slab model.

•	 if analysed on a 4.5 km grid, precipitation is too intense 
(low-intensity precipitation rates are underestimated, 
high intensities most often overestimated, except in Niger 
at 15 mn time-scale.). This suggests that CP4A output 
should not be used on its native grid to drive hydrology 
or crop-models, or should first be bias-corrected.

Although we used the closest model set-up as possible, R25 
and CP4A still have a few other differences than just chang-
ing resolution and switching off the convection scheme. 
They have some influence on our results that we could not 
quantify in this study.

Nevertheless, results from shorter month-long simula-
tions such as the Cascade project are confirmed and extended 
to other seasons using a 10-year mean: the better diurnal 

cycle of convection in CP4A influences the diurnal cycle of 
wind, with stronger moisture convergence in the Sahel from 
June, when convection starts in the Soudano-Sahelian zone. 
This leads to stronger moisture convergence in the Sahel and 
increased precipitation in CP4A. In April–May, the monsoon 
flow at the coast is also enhanced at night in CP4A, probably 
leading to a worsening of the wet bias in this season. Future 
studies such as the Coupling of convective rainfall and tem-
perature gradients in a warming climate (CLOVER) within 
the AMMA-2050 project will investigate in more details the 
representation of monsoon processes in the Gulf of Guinea 
coastal region.

Unlike mid-latitude regions, where CPMs add value for 
the precipitation field mainly on the sub-daily time-scale 
(Liu et al. 2016; Berthou et al. 2018), this CPM shows much 
larger improvements in the distribution at both daily and 
sub-daily scales when analysed at 25 km scale. However, it 
should be noted that improvements in the parameterisations 
are on-going to take into account the problems highlighted 
in this study. Furthermore, research is on-going to include 
a scale-aware convection parameterisation, which would 
potentially be able to produce more light-precipitation in 
convection-permitting models.

This article highlights that CP4A is more suitable than 
R25 in representing precipitation at both time and space 
scales which are very important from a user-perspective, 
due to the better representation of MCSs. We can therefore 
expect CP4A to give more reliable user-relevant climate 
change information about intense rainfall, wet/dry spells and 
evolution of MCSs in this region. Future study will analyse 
how different the climate change signal is between R25 and 
CP4A.
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