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ABSTRACT 26 
The carboxysome is a complex, proteinaceous organelle that plays essential roles in carbon 27 
assimilation in cyanobacteria and chemoautotrophs. It comprises hundreds of protein homologs that 28 
self-assemble in space to form an icosahedral structure. Despite its significance in enhancing CO2 29 
fixation and potentials in bioengineering applications, the formation of carboxysomes and their 30 
structural composition, stoichiometry and adaptation to cope with environmental changes remain 31 
unclear. Here we use live-cell single-molecule fluorescence microscopy, coupled with confocal and 32 
electron microscopy, to decipher the absolute protein stoichiometry and organizational variability of 33 
single β-carboxysomes in the model cyanobacterium Synechococcus elongatus PCC7942. We 34 
determine the physiological abundance of individual building blocks within the icosahedral 35 
carboxysome. We further find that the protein stoichiometry, diameter, localization and mobility 36 
patterns of carboxysomes in cells depend sensitively on the microenvironmental levels of CO2 and 37 
light intensity during cell growth, revealing cellular strategies of dynamic regulation. These findings, 38 
also applicable to other bacterial microcompartments and macromolecular self-assembling systems, 39 
advance our knowledge of the principles that mediate carboxysome formation and structural 40 
modulation. It will empower rational design and construction of entire functional metabolic factories in 41 
heterologous organisms, for example crop plants, to boost photosynthesis and agricultural productivity. 42 
 43 
Keywords 44 
Bacterial microcompartment, carboxysome, protein stoichiometry, self-assembly, single-molecule 45 
fluorescence imaging, structural flexibility 46 
  47 
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INTRODUCTION 48 

Organelle formation and compartmentalization within eukaryotic and prokaryotic cells provide 49 

the structural foundation for segmentation and modulation of metabolic reactions in space and 50 

time. Bacterial microcompartments (BMCs) are self-assembling organelles widespread 51 

among bacterial phyla (Axen et al., 2014). By physically sequestering specific enzymes key 52 

for metabolic processes from the cytosol, these organelles play important roles in CO2 fixation, 53 

pathogenesis, and microbial ecology (Yeates et al., 2010; Bobik et al., 2015). According to 54 

their physiological roles, three types of BMCs have been characterized: the carboxysomes for 55 

CO2 fixation, the PDU microcompartments for 1,2−propanediol utilization, and the EUT 56 

microcompartments for ethanolamine utilization. 57 

 58 

The common features of various BMCs are that they are ensembles composed of purely 59 

protein constituents and comprise an icosahedral single-layer shell that encases the catalytic 60 

enzyme core. This proteinaceous shell, structurally resembling virus capsids, is self-61 

assembled from several thousand polypeptides of multiple protein paralogs that form 62 

hexagons, pentagons and trimers (Kerfeld and Erbilgin, 2015; Sutter et al., 2016; Faulkner et 63 

al., 2017). The highly-ordered shell architecture functions as a physical barrier that 64 

concentrates and protects enzymes, as well as selectively gating the passage of substrates 65 

and products of enzymatic reactions (Yeates et al., 2010; Bobik et al., 2015). 66 

 67 

Carboxysomes serve as the key CO2-fixing machinery in all cyanobacteria and some 68 

chemoautotrophs. The primary carboxylating enzymes, ribulose-1,5-bisphosphate 69 

carboxylase oxygenase (Rubisco) (Rae et al., 2013), are encapsulated by the carboxysome 70 

shell that facilitates the diffusion of HCO3
- and probably reduces CO2 leakage into the cytosol 71 

(Dou et al., 2008). Based on the form of enclosed Rubisco, carboxysomes can be categorized 72 

into two different classes, α-carboxysomes and β-carboxysomes (Rae et al., 2013; Kerfeld 73 

and Melnicki, 2016). The β-carboxysomes in the cyanobacterium Synechococcus elongatus 74 

PCC7942 (Syn7942) have been extensively characterized as the model carboxysomes. The 75 

shell of β-carboxysomes from Syn7942 is composed of the hexameric proteins CcmK2, 76 

CcmK3 and CcmK4 that form predominately the shell facets (Kerfeld et al., 2005), the 77 

pentameric protein CcmL that caps the vertices of the polyhedron (Tanaka et al., 2008), as 78 

well as the trimeric proteins CcmO and CcmP (Cai et al., 2013; Larsson et al., 2017). The 79 

core enzymes of β-carboxysomes consist of a paracrystalline arrangement of plant-type 80 
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Rubisco (comprising the large and small subunits RbcL and RbcS) and β-carbonic anhydrase 81 

(β-CA, encoded by the ccaA gene). The colocalized β-CA dehydrates HCO3
- to CO2 and 82 

creates a CO2-rich environment in the carboxysome lumen to favor the carboxylation of 83 

Rubisco. In addition, CcmM and CcmN function as “linker” proteins to promote Rubisco 84 

packing and shell-interior association (Kinney et al., 2012). CcmM in the β-carboxysome 85 

appears as two isoforms, a 35-kDa truncated CcmM35 and a full-length 58-kDa CcmM58 86 

(Long et al., 2007; Long et al., 2010; Long et al., 2011). CcmM35 contains three Rubisco 87 

small subunit-like (SSU) domains that interact with Rubisco (Hagen et al., 2018b; Wang et al., 88 

2019), whereas CcmM58 has an N-terminal γ-CA-like domain in addition to the SSU domains 89 

and recruits CcaA to the shell. RbcX is recognized as a chaperonin-like protein for Rubisco 90 

assembly (Emlyn-Jones et al., 2006; Saschenbrecker et al., 2007; Occhialini et al., 2016); it 91 

has been recently revealed to serve as one component of the carboxysome and play roles in 92 

mediating carboxysome assembly and subcellular distribution (Huang et al., 2019). 93 

 94 

Understanding the physiological composition and assembly principles of carboxysome 95 

building blocks is of key importance not solely to unravel the underlying molecular 96 

mechanisms of carboxysome formation and biological functions, but also for heterologously 97 

engineering and modulating functional CO2-fixing organelles to supercharge photosynthetic 98 

carbon fixation in synthetic biology applications. Previous estimations of the carboxysome 99 

protein stoichiometry from either the whole cell lysates or the isolated forms using immunoblot 100 

and mass spectrometry illustrated the relative abundance of carboxysome proteins (Long et 101 

al., 2005; Long et al., 2011; Rae et al., 2012; Faulkner et al., 2017). Moreover, it was revealed 102 

that carboxysome biosynthesis in Syn7942 is highly dependent upon environmental 103 

conditions during cell growth, such as light intensity (Sun et al., 2016) and CO2 availability 104 

(McKay et al., 1993; Harano et al., 2003; Woodger et al., 2003; Whitehead et al., 2014). The 105 

exact stoichiometry of all building components in the functional carboxysome and how 106 

carboxysomes manipulate their compositions, organizations and functions to cope with 107 

environmental changes have remained elusive. 108 

 109 

Here, we construct a series of Syn7942 mutants with individual components of carboxysomes 110 

functionally tagged with the bright and fast-maturing enhanced yellow fluorescent protein 111 

(YFP) and report the in vivo characterization of protein stoichiometry of carboxysomes at the 112 

single-organelle level, using real-time single-molecule fluorescence microscopy, confocal and 113 
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electron microscopy combined with a suite of biochemical and genetic assays. Quantification 114 

of the protein stoichiometry of β-carboxysomes in Syn7942 grown under different conditions 115 

demonstrates the organizational flexibility of β-carboxysomes, and their ability to modulate 116 

functions towards local alterations of CO2 levels and light intensity during cell growth, as well 117 

as the regulation of the spatial localization and mobility of β-carboxysomes in the cell. This 118 

study provides fundamental insight into the formation and structural plasticity of 119 

carboxysomes and their dynamic organization towards environmental changes, which could 120 

be extended to other BMCs and macromolecular systems. A deeper understanding of the 121 

protein composition and structure of carboxysomes will inform strategies for rational design 122 

and engineering of functional and adjustable metabolic modules towards biotechnological 123 

applications. 124 

 125 

  126 
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RESULTS 127 

Protein stoichiometry of functional carboxysomes at the single-organelle level 128 

We constructed ten Syn7942 strains expressing individual β-carboxysome proteins (CcmK3, 129 

CcmK4, CcmK2, CcmL, CcmM, CcmN, RbcL, RbcS, CcaA, RbcX) fused with YFP at their C-130 

termini individually (Supplemental Figure 1). Fluorescence tagging at the native chromosomal 131 

locus under the control of their native promoters ensures expression of the fluorescently-132 

tagged proteins in context and at physiological levels (Sun et al., 2016). Eight of these strains, 133 

in which YFP was fused to CcmK3, CcmK4, CcmL, CcmM, CcmN, RbcS, CcaA, and RbcX 134 

respectively, are fully segregated (Supplemental Figures 1C and 2) and exhibit wild-type 135 

levels of cell size, growth and carbon fixation within experimental error (Supplemental Table 136 

1), consistent with previous observations (Savage et al., 2010; Cameron et al., 2013; Sun et 137 

al., 2016; Faulkner et al., 2017; Huang et al., 2019).  138 

 139 

By contrast, RbcL-YFP and CcmK2-YFP strains are only partially segregated, in agreement 140 

with previous studies (Savage et al., 2010; Cameron et al., 2013; Sun et al., 2016). Through 141 

immunoblot analysis using anti-fluorescence protein, anti-RbcL and anti-CcmK2 antibodies 142 

(Supplemental Figure 2B), we estimate that 29.2 ± 7.1 % (mean ± standard deviation (SD), n 143 

= 4) of total RbcL and 6.0 ± 0.7 % (n = 3) of total CcmK2 were tagged with YFP in RbcL-YFP 144 

and CcmK2-YFP strains. Nevertheless, we excluded the stoichiometric quantification of RbcL 145 

and CcmK2 in this study, in view of the partial segregation which could result in quantification 146 

inaccuracy. 147 

 148 

We used single-molecule Slimfield microscopy (Plank et al., 2009) to visualize individual 149 

carboxysomes that were fused with YFP (Figure 1, Supplemental Figure 3). This technique 150 

allows detection of fluorescently-labelled proteins with millisecond sampling, enabling real-151 

time tracking of rapid protein dynamics inside living cells, exploited previously to study 152 

functional proteins involved in bacterial DNA replication and remodeling (Reyes-Lamothe et 153 

al., 2010; Badrinarayanan et al., 2012), gene regulation in budding yeast cells (Wollman et al., 154 

2017; Leake, 2018), bacterial cell division (Lund et al., 2018), and chemokine signaling in 155 

lymph nodes (Miller et al., 2018). Our prior measurements using relatively fast-maturing 156 

fluorescent proteins such as YFP suggest that less than 15% of fluorescent proteins are likely 157 

to be in a non-fluorescent immature state (Leake et al., 2008; Shashkova et al., 2018).  158 

 159 
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Figure 1A shows the Slimfield images of three representative Syn7942 strains RbcS-YFP, 160 

CcmK4-YFP and CcmM-YFP that grow under ambient air and moderate light (hereafter 161 
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denoted Air/ML), to determine the protein stoichiometry from different carboxysome structural 162 

domains. Single carboxysomes are detected as distinct fluorescent foci in cells of the YFP-163 

fused strains (Figure 1A, Supplemental Figure 3), whose sigma width is approximately 250 164 

nm (n = 100), comparable to the diffraction-limited point spread function width of our imaging 165 

system. We use the number of YFP molecules per fluorescent focus as an indicator of the 166 

stoichiometry of the fluorescently-labelled protein subunits in each individual carboxysomes, 167 

which we determined by quantifying step-wise photobleaching of the fluorescent tag during 168 

the Slimfield laser excitation process (Figures 1B to 1C, Table 1) using a combination of 169 

Fourier spectral analysis and edge-preserving filtration of the raw data (Leake et al., 2003; 170 

Leake et al., 2004; Leake et al., 2006) (see details in Materials and Methods). The resulting 171 

broad distributions of protein stoichiometry, rendered as kernel density estimates, suggest a 172 

variable content of individual components per carboxysome (Figure 1D), indicative of the 173 

structural heterogeneity of β-carboxysomes. The modal average stoichiometry of each protein 174 

subunit per carboxysome was defined by the measured peak from each distribution of the raw 175 

stoichiometric data (Figure 1D, Supplemental Figure 3), after subtracting the background 176 

fluorescence distribution, primarily from chlorophylls, which was determined from the WT cells 177 

(Supplemental Figure 4). 178 

 179 

In the β-carboxysome synthesized in cells grown under Air/ML, Rubisco enzymes are the 180 

predominant components, as indicated by the RbcS content (Table 1). CcmM is the second 181 

most abundant element; there are over 700 copies of CcmM molecules per β-carboxysome. 182 

In addition, the CcmK4 content is greater than that of CcmK3 by a factor of 3.8. CcmL, CcmN, 183 

CcaA and RbcX are the minor components in the β-carboxysome. Our results reveal that 184 

there are 37 CcmL subunits per carboxysome, with the raw stoichiometry distribution showing 185 

some indications of peaks at multiples of ~5 molecules indicative of multiples of CcmL 186 

pentamers (Supplemental Figure 4C), consistent with the atomic structure of CcmL (Tanaka 187 

et al., 2008). A modal average of 37 CcmL molecules thus suggests that a single 188 

carboxysome contains an average of 7.4 CcmL pentamers, less than the 12 CcmL pentamers 189 

that were postulated to occupy all the vertices of the icosahedral shell (Bobik et al., 2015; 190 

Kerfeld et al., 2018). It is feasible that not all vertices of the carboxysome structure are 191 

capped by CcmL pentamers, as BMC shells deficient in pentamers could still be formed 192 

without notable structural variations (Cai et al., 2009; Lassila et al., 2014; Hagen et al., 2018a). 193 
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Our study represents a direct characterization of protein stoichiometry at the level of single 194 

functional carboxysomes in their native cellular environment. 195 

 196 

As a control, we fused RbcL with mYPet, a monomeric-optimized variant of YFP. The RbcL-197 

YFP and RbcL-mYPet cells show no significant difference in the subcellular distribution of 198 

carboxysomes as well as cell doubling times and carbon fixation (Supplemental Figure 5), 199 

demonstrating that there are no measurable artefacts due to putative effects of dimerization of 200 

the YFP tag. 201 

 202 

We also examined the relative abundance of individual carboxysome proteins in the YFP-203 

fusion Syn7942 strains in cell lysates, using immunoblot probing with an anti-fluorescent 204 

protein antibody (Supplemental Figure 2A, Supplemental Table 2). To compare with the 205 

stoichiometry obtained from Slimfield, we normalized the abundance of carboxysome proteins 206 

estimated from immunoblot analysis, using the RbcS content per carboxysome determined by 207 

Slimfield. It appears that the content of β-carboxysome proteins determined by 208 

immunoblotting is generally greater than that within the carboxysome characterized by 209 

Slimfield. Despite the potential effects caused by YFP fusion, this could suggest the presence 210 

of a “storage pool” of carboxysome proteins located in the cytoplasm that are involved in the 211 

biogenesis, maturation and turnover of carboxysomes. The ratio of RbcL/S detected from cell 212 

lysates fraction is about 8:5.8 (n = 4) (Supplemental Table 2), in line with previous results 213 

(Long et al., 2011) but distinct from the in vitro reconstitution observations (Ryan et al., 2018; 214 

Wang et al., 2019). 215 

 216 

Stoichiometry of carboxysome proteins exhibit a dependence on the 217 

microenvironment conditions of live cells 218 

Our previous study showed that the content and spatial positioning of β-carboxysomes in 219 

Syn7942 are dependent upon light intensity during cell growth, revealing the physiological 220 

regulation of carboxysome biosynthesis (Sun et al., 2016). Whether the stoichiometry of 221 

different components in the carboxysome structure changes in response to fluctuations in 222 

environmental conditions is unknown. Here we addressed this question by taking advantage 223 

of the far greater throughput of confocal microscopy compared to Slimfield, whilst still using 224 

the single-molecule precise Slimfield data as a calibration to convert the intensity of detected 225 

foci from confocal images into estimates for absolute numbers of stoichiometry. We achieved 226 



 9this by identifying the peak value of the foci intensity distribution from each given cell strain 227 
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obtained from confocal imaging with the peak value of the measured Slimfield foci 228 

stoichiometry distribution for the equivalent cell strain under Air/ML. This approach allows us 229 

to generate a conversion factor which we then applied to subsequent confocal data acquired 230 

under lower light (LL), higher light (HL) and ML with the air supplemented by 3% CO2, and to 231 

estimate relative changes in the stoichiometry of carboxysome building components using 232 

large numbers of cells, without the need to obtain separate Slimfield datasets for each 233 

condition (Figure 2, Supplemental Figures 6 to 8). 234 

 235 

Figure 2A shows confocal fluorescence images of RbcS-YFP, CcmK4-YFP, and CcmM-YFP 236 

strains grown under Air/ML, 3% CO2 (CO2/ML), LL and HL. The confocal images reveal 237 

classic patterns of cellular localization of carboxysomes similar to those observed with 238 

Slimfield microscopy (Supplemental Figure 6). We analyzed the confocal images to detect 239 

carboxysome fluorescent foci within the cells and quantify their fluorescence intensities 240 

(Figure 2B, Supplemental Figures 7 and 8). We find that the number of carboxysomes per cell 241 

is dependent on growth conditions: it is reduced under CO2/ML in contrast to Air/ML, whereas 242 

HL increases the abundance of β-carboxysomes (Supplemental Table 3), consistent with 243 

previous findings (Whitehead et al., 2014; Sun et al., 2016). The slightly different 244 

carboxysome contents estimated in individual YFP-fused strains might suggest potential 245 

mechanisms of the cells that tune carboxysome organization. As a common feature, the 246 

abundance of all the proteins in the β-carboxysome is apparently modulated under distinct 247 

growth conditions. For instance, both RbcS and CcmM have a higher content per 248 

carboxysome under HL compared with that under other conditions, whereas the CcmK4 249 

content per β-carboxysome increase under 3% CO2 (Figure 2B). The dependence of 250 

carboxysome protein stoichiometry inferred from the peak values of the stoichiometry 251 

distributions under different cellular microenvironmental conditions is summarized in Table 1. 252 

 253 

Interestingly, we find that the variation of CcmL abundance per carboxysome rises with 254 

increasing light illumination and CO2 availability (Figure 2C). The measured stoichiometry 255 

distribution of CcmL pentamers suggests the presence of three populations: (I) carboxysomes 256 

with < 60 CcmL subunits (in the range of 32-37); (II) carboxysomes with 60 CcmL subunits, 257 

consistent with the expectation that 12 vertices of the icosahedral carboxysome are fully 258 

occupied by CcmL pentamers (Tanaka et al., 2008; Rae et al., 2013; Kerfeld et al., 2018); (III) 259 

carboxysomes with > 60 CcmL subunits (in the range of 91-102). Using a nearest-neighbor 260 
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model to estimate the probability for the diffraction-limited optical images of individual 261 

carboxysomes in a cell, we find that the Population III carboxysomes represent random 262 

overlap of two or more carboxysomes from the Population I and II (Figure 2C). Population I 263 

represents a “non-complete capped” state in which not all vertices in the icosahedron are 264 

occupied by CcmL pentamers. We find the characteristic stoichiometry of the Population I 265 

carboxysomes increases with the enhancement of light intensity during cell growth, from 32 266 

CcmL molecules (LL) to 35 (ML) and 37 (HL), with HL having a significantly smaller proportion 267 

(23%) of “non-complete capped” carboxysomes compared to ~80% under LL and ML 268 

conditions. Supplementing the air with 3% CO2 under ML similarly results in a substantial 269 

decrease in the proportion of “non-complete capped” carboxysomes in the population (18%) 270 

comparable to the HL condition in the absence of any supplemental CO2. These findings 271 

suggest a dependence of carboxysome assembly which may allow adaptation towards 272 

microenvironmental changes, i.e. the increase in the population of capped carboxysomes in 273 

situations which are favorable towards photosynthesis (HL conditions and locally-raised levels 274 

of CO2). 275 

 276 

This finding is also validated by the changes in protein abundance of other carboxysome 277 

components under environmental regulation (Table 1, Supplemental Figures 7 and 8). Cells 278 

were maintained under different growth conditions prior to microscopy imaging, to ensure 279 

their full acclimation. Variations of protein content in carboxysomes under CO2/ML vs. Air/ML, 280 

and HL vs. LL conditions indicate distinct fashions of stoichiometric regulation of 281 

carboxysome building blocks (Figure 3, Supplemental Table 4). The abundance of CcmK3 282 

and CcmK4, whose encoding genes are distant from the ccmKLMNO operon (Sommer et al., 283 

2017), increases under 3% CO2 and remains relatively constant under HL/LL, contrary to the 284 

changes in the abundance of CcmN and CcmM that are located in the ccm operon. In 285 

addition, the ratio of CcmK4:CcmK3 per carboxysome appear to be relatively constant, in the 286 

range of 3.6−4.1 (Supplemental Table 5), indicating the organizational correlation between 287 

CcmK3 and CcmK4 within the β-carboxysome structure. We find the rise of CcaA content and 288 

reduction of RbcS content under CO2/ML vs. Air/ML, whereas both increase under HL, 289 

suggesting distinct regulation of the two components. It has been recently demonstrated that 290 

the putative Rubisco chaperone RbcX is part of the carboxysome and plays roles in mediating 291 

carboxysome formation (Huang et al., 2019). The fold changes of RbcX content in each 292 

carboxysome under different conditions are close to 1 (Figure 3), probably ascribed to the fact 293 
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that its encoding gene is distant from the rubisco and ccm operons in Syn7942. Collectively, 294 

these results highlight the highly flexible stoichiometry of individual components within the 295 

natural carboxysomes in response to environmental changes. 296 

 297 

Variation of carboxysome diameter represents a strategy for manipulating 298 

carboxysome activity to adapt to environmental conditions 299 

The change in the protein content per carboxysome signifies the variation of β-carboxysome 300 

size and organization among different cell growth conditions. Indeed, electron microscopy 301 

(EM) of Syn7942 WT cells substantiates the variable structures of β-carboxysomes in 302 

response to the changing environment (Figures 4A and 4B). The average diameter of β-303 

carboxysomes is 192 ± 41 nm (n = 33) in Air/ML, 144 ± 24 nm (n = 25) in 3% CO2, 151 ± 22 304 

nm (n = 27) in LL, and 208 ± 28 nm (n = 51) in HL (Figure 4B, Supplemental Table 5, 305 

Supplemental Figure 9). These results reveal that both the CO2 level and light intensity can 306 
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result in alternations of carboxysome size (Figure 4B). Larger β-carboxysomes can 307 
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accommodate more Rubisco enzymes (estimated on the basis of RbcS content) (Figure 4C). 308 

An exception is the carboxysomes under LL, which are around 5% larger than the 309 

carboxysomes under 3% CO2 but comprises only 67% of Rubisco per carboxysome under 310 

CO2 (Figure 4C, Supplemental Table 5). EM images reveal that the lumen of β-carboxysomes 311 

synthesized under LL often contain regions with low protein density (Figure 4A, arrows; 312 

Supplemental Figure 9), 59% for LL (16 out of 27 carboxysomes) compared with 9% for 313 

Air/ML (3 out of 33), 12% for CO2/ML (3 out of 25) and 8% for HL (4 out of 51), which likely 314 

accounts for the reduced and uneven Rubisco loading within the β-carboxysome. 315 

 316 

We also find that CO2-fixing activity per carboxysome increases as the β-carboxysome 317 

structure enlarges, which is correlated to strong light intensity during cell growth (Figure 4D), 318 

demonstrating the correlation between β-carboxysome structure and function in vivo. 319 

Moreover, under HL the CO2-fixation activity per Rubisco of the β-carboxysome declines as 320 

the carboxysome size and Rubisco density in the carboxysome lumen increase (Figure 4E, 321 

Supplemental Table 5). This may suggest that Rubisco density and local Rubisco packing are 322 

important for determining CO2-fixation activity of individual Rubisco (Supplemental Table 5). 323 

Interestingly, the relatively small β-carboxysomes under 3% CO2 exhibit high CO2-fixing 324 

activities per Rubisco and per carboxysome, compared with β-carboxysomes under other 325 

conditions. The enhanced carbon fixation capacity under 3% CO2 might be correlated with the 326 

increase in CcmK3 and CcmK4 content (Figure 3A, Table 1), as it has been shown that 327 

depletion of CcmK3/CcmK4 impedes carbon fixation of carboxysomes (Rae et al., 2012). 328 

 329 

Patterns of spatial localization and diffusion of β-carboxysomes in live cells change 330 

dynamically depending upon light intensity during growth 331 

The patterns of β-carboxysome localization within the cyanobacterial cells appears to be 332 

crucial for carboxysome biogenesis and metabolic function (Savage et al., 2010; Sun et al., 333 

2016). We measured the organizational dynamics of β-carboxysomes with distinct diameters 334 

in Syn7942 under different light intensities, using time-lapse confocal fluorescence imaging on 335 

the RbcL-YFP Syn7942 strain. Previous studies have shown that tagging of RbcL with 336 

fluorescent proteins does not obstruct β-carboxysome assembly and function in Syn7942 337 

(Savage et al., 2010; Cameron et al., 2013; Chen et al., 2013; Sun et al., 2016). During time-338 

lapse confocal imaging, we applied illumination on the cell samples, similar to that used for 339 

cell growth, in order to maintain cell physiology. We find that the overall mobility of individual 340 
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β-carboxysomes within cyanobacterial cells is non-Brownian (Figure 5A, Supplemental Movie 341 

1). Carboxysomes under HL display larger diffusive regions than those under LL. The mean 342 

square displacement (MSD) of tracked carboxysomes increased with the rise of light intensity 343 

(Figure 5B), as did the mean microscopic diffusion coefficient of individual carboxysomes 344 

(Figure 5C): an average diffusion coefficient of 2.76 ± 2.83 x 10-5 µm2･s-1 for HL (mean ± SD, 345 

n = 105), 1.48 ± 1.03 x 10-5 µm2･s-1 for ML (n = 84), and 0.28 ± 0.19 x 10-5 µm2･s-1 for LL (n = 346 

336). It is interesting that the mobility of carboxysomes does not exhibit typical constrained 347 

diffusion – asymptotic MSD values at higher values of 𝛕 (Robson et al., 2013) – but rather 348 

exhibits anomalous diffusion at higher values of 𝛕 characterized by a non-linear relation, 349 

which can be observed in the intracellular protein mobility traces of other cellular systems 350 

(Lenn et al., 2008; Wollman et al., 2017). These results indicate the intracellular restrictions, 351 

for example the proposed interactions with the cytoskeletal system (Savage et al., 2010), 352 

McdA and McdB (MacCready et al., 2018) and ParA-mediated chromosome segregation (Jain 353 

et al., 2012), may mediate carboxysome positioning, but do not completely confine the 354 

mobility of carboxysomes. Notably, carboxysomes with a larger diameter (Figure 4) generated 355 
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under HL present a higher diffusion coefficient compares with carboxysomes with relatively 356 

smaller size under ML and LL. However, there is no apparent correlation between the 357 

diffusion coefficient of carboxysomes and their size in the same light conditions 358 

(Supplemental Figure 10). 359 

 360 

  361 
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Discussion 362 

Precise quantification of the protein stoichiometry and organizational regulation of 363 

carboxysomes provides insight into their assembly principles, structure and function. In this 364 

work, we functionally fused fluorescent protein tags to the building blocks in β-carboxysomes 365 

and exploited advanced “Physics of Life” technologies, in particular using bespoke single-366 

molecule fluorescence microscopy to count the actual protein stoichiometry of β-367 

carboxysomes in Syn7942 cells, at the single-organelle level. This approach minimizes the 368 

ensemble averaging encountered in bulk estimations from proteomic and immunoblot 369 

analysis. We characterized the stoichiometric flexibility of carboxysome proteins within 370 

individual polyhedral structures towards environmental variations. Variability of the protein 371 

stoichiometry and size of carboxysomes likely provides the structural foundation for the 372 

physiological regulation of carboxysome formation and carbon fixation activity. Given the 373 

shared structural features of carboxysomes and other BMCs, we believe that this work opens 374 

up new opportunities to quantitatively evaluate protein abundance and decipher the formation 375 

of all BMC organelles, in both native forms and synthetic variants. 376 

 377 

Despite prior efforts on understanding carboxysome structure and function, the relative 378 

stoichiometry of functional carboxysome components in their native cell environment − key 379 

information required for reconstituting entire active carboxysome structures in synthetic 380 

biology (Fang et al., 2018), was still unclear. The major challenges have been the poor 381 

specificity of immunoblots and mass spectrometry, given the homology of carboxysome 382 

proteins and the lack of effective purification of intact carboxysomes from host cells, as well 383 

as the heterogeneity of carboxysome structures (Long et al., 2005). The previous model of 384 

carboxysome protein stoichiometry was based on the total amount of proteins in cell lysates 385 

(Long et al., 2011) and does not directly reflect the stoichiometry of carboxysome proteins in 386 

the organelle, given the possible free-standing carboxysome components in the cytosol (Dai 387 

et al., 2018). We have recently reported the isolation of β-carboxysomes from Syn7942 and 388 

the structural and mechanical exploration of the organelles (Faulkner et al., 2017). 389 

Interestingly, some components, i.e. CcmO, CcmN, CcmP and RbcX, were not detectable by 390 

mass spectrometry in the isolated carboxysomes, likely due to their low content or potential 391 

loss of carboxysome components during isolation. Here, as demonstrated, fluorescence 392 

tagging and Slimfield and confocal imaging enable single-organelle analysis of the protein 393 

stoichiometry of eight β-carboxysome proteins (including RbcX) and their regulation in their 394 



 18

native context, and extends analyses of the assembly and action of carboxysomes. 395 

Microscopy imaging of fluorescently-tagged β-carboxysomes has been used to reveal their 396 

patterns of cellular localization, biogenesis pathways and light-dependent regulation in 397 

Syn7942 (Savage et al., 2010; Cameron et al., 2013; Chen et al., 2013; Sun et al., 2016; 398 

Niederhuber et al., 2017; MacCready et al., 2018). Although we cannot completely exclude 399 

the potential effects of YFP tags on carboxysome structure, we validate that YFP tagging to 400 

most of the structural components does not impede formation of functional carboxysome 401 

structures, suggesting the physiological relevance of the determined protein stoichiometry in 402 

the carboxysome in the presence of fluorescence tags. This flexibility emphasizes the 403 

extraordinary capacity of the carboxysome structure in adjusting their protein stoichiometry 404 

and accommodating foreign proteins while maintaining functionality, indicating the possibility 405 

of manipulating carboxysome organization in bioengineering for diverse purposes. 406 

Exceptionally, fluorescence tagging on CcmP and CcmO does not show normal carboxysome 407 

assembly and localization compared to other YFP-tagged strains (Supplemental Figure 11). 408 

In this work, therefore, we did not include estimation of the protein abundance of CcmP and 409 

CcmO, as well as RbcL and CcmK2 that cannot be fully tagged with YFP.  410 

 411 

Numerous studies have described the regulation of carboxysome protein expression at the 412 

transcriptional level (McGinn et al., 2003; Woodger et al., 2003; Schwarz et al., 2011). 413 

Counting protein abundance of β-carboxysomes at different cell growth conditions enables 414 

direct characterization of the stoichiometric plasticity of carboxysome building components in 415 

the cells grown under not only the same environmental condition but also a range of various 416 

conditions (Figure 6A). Our observations elucidate the size variation of β-carboxysomes in 417 

Syn7942 cells grown under distinct environmental conditions (Figure 6B) and adjustable 418 

carbon fixation capacities of carboxysomes that may be closely linked to the protein 419 

organization and size of carboxysomes. Variations in the diameter of intact carboxysomes, 420 

ranging from 90 to 600 nm, have been also shown in previous studies not only in single 421 

species but also among distinct species (Shively et al., 1973; Price and Badger, 1991; Iancu 422 

et al., 2007; Liberton et al., 2011), suggesting the adaptation strategies exploited by 423 

cyanobacteria for regulating their CO2-fixing machines to survive in diverse niches. It may be 424 

related to the environment-sensitive protein-protein interactions that drive protein self-425 

assembly and BMC formation (Faulkner et al., 2019). Moreover, the spatial positioning and 426 

mobility of β-carboxysomes in live cells appear to be independent of carboxysome diameter 427 
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but show a strong dependence to light intensity, suggesting that light-dependent mechanisms 428 

might mediate carboxysome location and diffusion. Carboxysome spacing and partitioning 429 

have been suggested to be driven by different possible mechanisms, such as the cytoskeletal 430 

proteins ParA and MreB (Savage et al., 2010), ParA-mediated chromosome segregation (Jain 431 
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et al., 2012) via filament-pull model (Ringgaard et al., 2009) or a diffusion-ratchet model 432 

(Vecchiarelli et al., 2013) as well as very recently the McdA and McdB that utilize a Brownian-433 

ratchet mechanism to position carboxysomes (MacCready et al., 2018). Altogether, the 434 

organizational flexibility of β-carboxysomes, including modulatable protein stoichiometry, 435 

diameter and mobility, may represent the natural strategies for modifying shell permeability 436 

and enzyme encapsulation and ensuring structural and functional adaptations dependent on 437 

the local cellular environment. 438 

 439 

The estimated number of CcmL pentamers per carboxysome could be less than 12, 440 

demonstrating explicitly that it is not a prerequisite for CcmL pentamers to occupy all 12 441 

vertices of the icosahedral shell to ensure complete formation of functional carboxysomes. 442 

This hypothesis has been validated by previous observations that BMC shells in the absence 443 

of pentamers have no significant morphological changes (Cai et al., 2009; Lassila et al., 2014; 444 

Hagen et al., 2018a). These “non-complete capped” forms appear to be prevalent among the 445 

resultant carboxysomes under Air/ML and LL (Figure 2C), unlike the procarboxysomes 446 

(Cameron et al., 2013) or “immature” carboxysomes which are incapable of establishing an 447 

oxidative microenvironment for cargo enzymes (Chen et al., 2013). Whether the loss of 448 

capping CcmL will create large space within the shell, as a possible mechanism of modulating 449 

shell permeability, or will be compensated for by incorporation of other shell proteins, for 450 

example the additional CcmP trimers that are speculated to be responsible for permeability, 451 

remains to be further investigated. Our results also suggest that carboxysomes could possess 452 

a flexible molecular architecture, resonating with the observation of structural “breathing” of 453 

virus capsids which has been reported to be key to cope with temperature change (Roivainen 454 

et al., 1993; Li et al., 1994). Carboxysomes, though structurally resembling virus capsids, 455 

have been shown to be mechanically softer than the P22 virus capsid by a factor of ~10, 456 

suggesting greater flexibility of protein-protein interactions within the carboxysome structure 457 

(Faulkner et al., 2017). The capping flexibility of pentamers may represent the dynamic nature 458 

of shell assembly probably in the second timescale and tunable protein-protein interactions in 459 

the shell, as characterized recently (Sutter et al., 2016; Faulkner et al., 2019).  460 

 461 

It was proposed that CcmM58 proteins are confined to a subshell layer for linking Rubisco, 462 

CcaA and CcmN to the shell, whereas CcmM35 molecules are predominantly located in the 463 

core to stimulate Rubisco aggregation (Rae et al., 2013). A recent study revealed that 464 
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CcmM35 and CcmM58 display similar distribution profiles in carboxysomes and are both 465 

integrated within the core of the carboxysome (Niederhuber et al., 2017). Fluorescence 466 

tagging at the protein C-terminus exploited in this work allowed us to only estimate the total 467 

amounts of CcmM but not distinguish CcmM35 and CcmM58, which can be addressed by N-468 

terminal labeling of CcmM58 in our future study. Compared with the previous model that was 469 

based on protein stoichiometry of cell lysates (Long et al., 2011), our relative quantifications 470 

determined under the Air/ML condition show the 4.9-fold and 2.2-fold increases in the ratios of 471 

Rubisco/CcmM and Rubisco/CcaA, respectively (Figure 6A, Supplemental Table 5). The 472 

discrepancy may be caused by different sampling methods and cultivation conditions. 473 

 474 

Based on immunoblot analysis of cell lysates, the previous model has proposed an 475 

imbalanced ratio of RbcL to RbcS (∼8:5), likely due to the binding of CcmM to Rubisco 476 

replacing 3 RbcS subunits (Long et al., 2011). This result was similar to our immunoblot 477 

quantification from cell lysates (Supplemental Table 2). Recent studies indicate that CcmM 478 

interacts with Rubisco (RbcL8S8) at distinct sites, without displacing RbcS (Ryan et al., 2018; 479 

Wang et al., 2019). Based on the L8S8 ratio and RbcS abundance per carboxysome 480 

determined, we estimate that there are approximately 853, 550, 367, and 1507 copies of 481 

Rubisco per β-carboxysome under Air/ML, CO2/ML, LL, and HL, respectively (Figure 6A, 482 

Table 1). Even the lowest Rubisco abundance per β-carboxysome (an average diameter of 483 

151 nm) under LL is still greater than the Rubisco abundance per α-carboxysome (an average 484 

diameter of 123 nm) (Iancu et al., 2007) by a factor of 1.6. This finding confirms the different 485 

interior organization of the two classes of carboxysomes: densely packed with Rubisco 486 

forming paracrystalline arrays inside the β-carboxysome (Faulkner et al., 2017) and random 487 

packing of Rubisco in the α-carboxysome (Iancu et al., 2007; Iancu et al., 2010). The different 488 

interior structures may be ascribed to their distinct biogenesis pathways: biogenesis of β-489 

carboxysomes is initiated from the nucleation of Rubisco and CcmM35 and then the shell 490 

encapsulation (Cameron et al., 2013); whereas α-carboxysome assembly appears to start 491 

from shell formation (Menon et al., 2008) or a simultaneous shell-interior assembly (Iancu et 492 

al., 2010). 493 

 494 

While the abundance of most of the structural components varies, the ratio of CcmK4 and 495 

CcmK3 is relatively unaffected (ranging from 3.6 to 4.1, Supplemental Table 5) under the 496 

tested growth conditions, implying their spatial colocalization within the carboxysome shell 497 
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(Figure 6A). This is reminiscent of the recent observation that CcmK3 and CcmK4 can form a 498 

heterohexameric complex with a 1:2 stoichiometry and further form dodecamers in a pH-499 

dependent manner (Sommer et al., 2019). The ccmK3 and ccmK4 genes are located in the 500 

same operon that is distant from the ccm operon and they may have different expression 501 

regulation compared with other carboxysome components (Rae et al., 2012; Sommer et al., 502 

2017). The balanced expression and structural cooperation of CcmK3 and CcmK4 may be 503 

crucial for the fine-tuning of carboxysome permeability towards environmental stress.  504 

 505 

Rational design, construction and modulation of bioinspired materials with structural and 506 

functional integrity are the major challenges in synthetic biology and protein engineering. 507 

Given their self-assembly, modularity and high efficiency in enhancing carbon fixation, 508 

carboxysomes have attracted tremendous interest to engineering this CO2-fixing organelle 509 

into other organisms, for example C3 plants, with the intent of increasing photosynthetic 510 

efficiency and crop production (Lin et al., 2014b; Lin et al., 2014a; Occhialini et al., 2016; 511 

Long et al., 2018). Recently, we have reported the engineering of functional β-carboxysome 512 

structures in E. coli – a step towards constructing functional β-carboxysomes in eukaryotic 513 

organisms (Fang et al., 2018). Our present study, by evaluating the actual protein 514 

stoichiometry and structural variability of native β-carboxysomes, sheds light on the molecular 515 

basis underlying the assembly, formation and regulation of functional carboxysomes. It will 516 

empower bioengineering to construct BMC-based nano-bioreactors and scaffolds, with 517 

functional and tunable compositions and architectures, for metabolic reprogramming and 518 

targeted synthetic molecular delivery. A deeper understanding of carboxysome structure and 519 

the developed imaging techniques will be broadly extended to other BMCs and 520 

macromolecular systems. 521 

 522 

 523 

Materials and Methods 524 

Bacterial strains, growth conditions, light and CO2 treatment, and generation of 525 

mutants 526 

Wild-type (WT) and mutant Synechococcus elongatus PCC7942 (Syn7942) strains were 527 

grown in BG-11 medium in culture flasks with constant shaking or on BG-11 plates containing 528 

1.5% (w/v) agar at 30°C. Syn7942 WT and mutants were maintained and grown under 529 

different intensities of constant white LED light illumination: 80 μE·m−2·s−1
 as HL (higher light 530 
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in ambient air), 50 μE·m−2·s−1 as Air/ML (moderate light in ambient air), 10 μE·m−2·s−1
 as LL 531 

(lower light in ambient air) to ensure full acclimation, respectively. Cultures were grown in air 532 

without an additional CO2 source, except for the CO2 treatment experiment in which Syn7942 533 

cultures in the growth incubators were aerated with 3% CO2 under moderate light (CO2/ML). 534 

 535 

Cultures were constantly diluted with fresh medium to maintain exponential growth phase for 536 

the following imaging and biochemical analysis. Escherichia coli strains used in this work, 537 

DH5a and BW25113, were grown aerobically at 30 or 37°C in Luria-Broth medium. Medium 538 

supplements were used, where appropriate, at the following final concentrations: ampicillin 539 

100 mg∙mL-1, chloramphenicol 10 mg∙mL-1, apramycin 50 mg∙mL-1, and arabinose 100 mM. 540 

 541 

All YFP-fusion mutants were generated following the REDIRECT protocol (Supplemental 542 

Figure 1) (Gust et al., 2002), by inserting the eyfp:apramycin DNA fragment to the C-terminus 543 

of individual carboxysome genes based on homologous recombination (Supplemental Table 544 

6). Primers used in this work were listed in Supplemental Table 7. The same strategy was 545 

also applied for the mYPet mutant. For these mutant strains, BG-11 medium was 546 

supplemented with apramycin at 50 μg∙mL-1. 547 

 548 

Cell doubling time and growth curve measurement 549 

Cultures were inoculated at OD750 of 0.05-0.1 with fresh BG-11. Growth of cells was 550 

monitored at OD750 using a spectrophotometer (Jenway 6300 spectrophotometer, Jenway, 551 

UK) every 24 hours. Doubling times were calculated using exponential phase of growth from 552 

day 1 to day 4. Four biological replicates from different culture flasks were recorded. Data are 553 

presented as mean ± standard deviation (SD). For each experiment, at least three biological 554 

replicates from different culture flasks were analyzed. 555 

 556 

Slimfield microscopy and data analysis 557 

Live cells were applied at the small volume onto the BG-11 agarose pad at 0.25 mm 558 

thickness to maintain physiological growth, air dried to remove excessive medium and then 559 

assembled with plasma cleaned (Harrick-Plasma) glass cover slips. A dual-color bespoke 560 

laser excitation single-molecule fluorescence microscope was used utilizing narrow 561 

epifluorescence excitation of 10 µm full width at half maximum (FWHM) in the sample plane 562 
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to generate Slimfield illumination using narrowfield epifluorescence (Wollman and Leake, 563 

2016; Wollman et al., 2016b; Wollman et al., 2017). This was incident on a sample mounted 564 

on a Mad City Labs nanostage built on an inverted Zeiss microscope body consisting of a 20 565 

mW 514 nm wavelength laser. A Chroma GFP/mCherry dichroic was mounted under the 566 

Olympus 100x NA = 1.49 TIRF (total internal reflection fluorescence) objective, which delivers 567 

10 mW excitation power. The image was split into YFP and chlorophyll channels using a 568 

bespoke color splitter utilizing a Chroma dichroic split at 560 nm with 542 nm and 600 nm, 25 569 

nm bandwidth filters. Imaging was done with an Andor iXon 128 x 128 pixel EMCCD camera 570 

(iXon DV860-BI, Andor Technology, UK), at a pixel magnification of 80 nm/pixel using 5 ms 571 

camera exposure time. Excitation intensity was initially reduced by 100x using and ND = 2 or 572 

1 attenuation filter for high copy number strains (all except CcmL and RbcX) to avoid pixel 573 

saturation on the EMCCD camera detector before a full-power photobleaching. Sample sizes 574 

for individual strains are 60 (RbcS), 219 (CcmK3), 77 (CcmK4), 316 (CcmL), 71 (CcmM), 86 575 

(CcmN), 95 (CcaA) and 211 (RbcX), respectively. Each population of carboxysomes comes 576 

from 20-30 fields of view, with 1-7 cells per field of view. 577 

 578 

The analysis was performed using bespoke MATLAB (Mathworks) software (Miller et al., 579 

2015) with previously outlined methods (Llorente-Garcia et al., 2014; Wollman et al., 2016a; 580 

Beattie et al., 2017; Lund et al., 2018; Stracy et al., 2018). In brief, candidate bright 581 

fluorescent foci were identified in images using morphological transformation and thresholding. 582 

The sub-pixel centroids of these foci were determined using iterative Gaussian masking and 583 

their intensity quantified as the summed intensity inside a 5-pixel radius region of interest 584 

(ROI) corrected for the mean background intensity inside a surrounding 17 x 17 pixel ROI 585 

(Delalez et al., 2010; Leake, 2014). Foci were accepted and tracked through time if they had 586 

a signal-to-noise ratio, defined as the mean intensity in the circular ROI divided by the 587 

standard deviation in the outer ROI, over 0.4. The characteristic intensity of single 588 

YFP/mYPet was measured from the distribution of detected foci intensity towards the end of 589 

the photobleaching (Figure 1), confirmed by comparing the obtained value to individual 590 

photobleaching steps obtained using edge-preserving filtration (Figure 1) (Leake et al., 2003; 591 

Leake et al., 2004). The stoichiometry of foci was then determined through cell-by-cell based 592 

Slimfield imaging using numerical integration of pixel intensities (Wollman and Leake, 2015) 593 

in each carboxysome divided by the intensity of a single YFP (Figure 1B). 594 

 595 
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For high-copy-number strains, intensity of carboxysomes was very high compared to the 596 

chlorophyll but for CcmL (typically ~2x, compare Supplemental Figure 3 with Supplemental 597 

Figure 4A) the fluorescence intensity per carboxysome was comparable (although generally 598 

brighter) to small regions of bright chlorophyll, detected as foci by our software, as confirmed 599 

by looking at the parental strain with no YFP present. To correct for this chlorophyll content, 600 

we tracked parental WT Syn7942 cells as YFP-labelled cells to calculate the apparent 601 

chlorophyll stoichiometry distribution (Supplemental Figure 4A). The CcmL distribution was 602 

then corrected by subtracting the apparent chlorophyll distribution. To investigate putative 603 

periodic features in the stoichiometry distribution, we used the raw uncorrected values to 604 

minimize dephasing artefacts (Figure 4C) using a kernel width of 0.5 molecules (equivalent to 605 

the error in determining the characteristic intensity). The peak values in other strains were far 606 

from the chlorophyll peak and so unaffected by this correction. 607 

 608 

Confocal microscopy imaging and data analysis 609 

Preparation of Syn7942 cells for confocal microscopy was performed as described earlier (Liu 610 

et al., 2012; Casella et al., 2017). Cells were maintained under different growth conditions 611 

prior to microscopy imaging, to ensure full acclimation. Confocal fluorescence images (12-bit, 612 

512 x 512 pixels) were recorded using a Zeiss LSM780 with an alpha Plan-Fluor 100x oil 613 

immersion objective (NA 1.45) and excitation at 514 nm from an Argon laser. YFP and 614 

chlorophyll fluorescence were captured at 520−550 nm and 660−700 nm, respectively. The 615 

image pixel size was 41.5 nm. The pixel dwell time was 0.64 μs and the frame averaging was 616 

8, resulting in an effective frame time of ~1.5 s. The pinhole was set to give z axis resolution 617 

of 1 μm. Live-cell confocal fluorescence images were recorded from at least five different 618 

cultures. The sample stage was pre-incubated and thermo-controlled at 30°C before and 619 

during imaging. Zoom settings were set to have each carboxysome visualized with a 620 

minimum of 8 x 8 pixels array to allow sufficient profiling of carboxysome signals by peak 621 

intensity recognition and measurement. All images were captured with all pixels below 622 

saturation. 623 

 624 

Confocal microscopic images were processed using FIJI Trackmate plugins (Tinevez et al., 625 

2017) to retrieve peak intensities of carboxysomes based on the Find Maxima detection 626 

algorithm. Noise tolerance was determined by background intensities in empty regions. 627 

Imaging for different treatments in the same strain was performed under the same imaging 628 
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settings. For strains with visible cytosolic signals, the cytosolic background intensity was 629 

determined by the average peak intensities in non-carboxysome regions over the central line 630 

of the cell and was subtracted to obtain peak intensities. Raw data were processed by Origin 631 

Lab and MATLAB (Mathworks) for profile extraction and statistical analysis and the goodness-632 

of-fit parameter for Violin plot visualization. Violin plots were generated by R to illustrate the 633 

fluorescence intensity distribution of individual building proteins per carboxysome fitted by 634 

kernel smooth fitting. The representative values and deviations of signal intensities were 635 

represented by Peak value ± half width at half maximum (HWHM) measured from kernel 636 

density fitted profiles, respectively. The significance of differences between treatments was 637 

evaluated by Mann-Whitney U-tests pair-wisely (Supplemental Table 4). Standard errors of 638 

sampling were determined through randomized grouping of intensity entries, with each group 639 

containing a minimum of 70–100 entries. Errors were controlled below 5% to have accurate 640 

estimation from the distributions. The relative protein abundance of carboxysomes was 641 

estimated by confocal imaging under Air/ML, CO2/ML, LL, and HL was normalized by the 642 

definite copy number of each strain under Air/ML determined by Slimfield imaging. 643 

 644 

Live-cell time-lapse confocal imaging and data analysis 645 

A 2 mm-thick BG-11 agar mat was prepared in stacked sandwiches to accommodate drops of 646 

diluted Syn7942 cells. Cells were incubated on the BG-11 agar mat on the microscope for 1-2 647 

hours before imaging. The continuous light illumination was provided at the intensity relatively 648 

equal to HL, ML, or LL that were used for cell growth, in order to maintain cell physiology. The 649 

same illumination was applied to the cells during time-lapse imaging with a hand-made 650 

module that switched off the light during laser scanning (less than 5 s per minute intervals). 651 

The interval time was set to 60 s to guarantee sufficient light illumination between imaging. 652 

The laser power was set to the minimum (1%) to reduce the bleaching for signals during long-653 

term tracking. Images were initially corrected for horizontal drifting by Descriptor-based series 654 

registration (2d/3d+T) plugin, and then were processed by the Trackmate plugin in FIJI for 655 

particle tracking. Retrieved track data was analyzed using bespoke MATLAB (Mathworks) 656 

scripts for MSD. Diffusion coefficient calculations and data visualization were modified as 657 

previously described (Ewers et al., 2005; Sbalzarini and Koumoutsakos, 2005). Diffusion 658 

coefficients were calculated by fitting the first 6 points of the MSD vs. 𝝉 curves. As the MSD 659 

vs. 𝝉 curves indicated potentially non-Brownian diffusion at higher 𝝉 values, we described the 660 

diffusion coefficients as “apparent diffusion coefficients”. Tracking and diffusion coefficient 661 
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determination were tested by computational simulations (Supplemental Movie 2). Bespoke 662 

Matlab code was written to generate simulated image stacks of carboxysomes diffusing inside 663 

cells. Images were simulated by integrating a model 3D point spread function over a 3D 664 

model for the cell structure (Wollman and Leake 2015). This model comprises an inner 665 

cytosol surrounded by thylakoid membranes (indicated by chlorophyll fluorescence) and 3 666 

carboxysomes with a diameter of 200 nm. Each component’s intensity was adjusted to match 667 

real images before representative Poisson noise was applied. Carboxysomes were simulated 668 

undergoing Brownian motion with a diffusion coefficient of 1.3 x 10-5 µm2･s-1 over 40 image 669 

frames. Trackmate tracking and diffusion coefficient calculation yielded a mean diffusion 670 

coefficient of 1.32 ± 0.02 x 10-5 µm2･s-1, giving a 1.5% error. 671 

 672 

Immunoblot analysis 673 

Immunoblot examination was carried out following the procedure described previously (Sun et 674 

al., 2016). 150 µg of cell lysate, measured by Pierce Coomassie (Bradford) Protein Assay Kit 675 

(Thermo Fisher Scientific), was loaded on 10% (v/v) denaturing SDS-PAGE gels. Immunoblot 676 

analysis was performed using the primary mouse monoclonal anti-GFP (Invitrogen, 33-2600), 677 

capable of recognizing series of GFP variants including YFP, the rabbit polyclonal anti-RbcL 678 

(Agrisera, AS03 037), the horseradish peroxidase-conjugated goat anti-mouse IgG secondary 679 

antibody (Promega, W4021) and a Goat anti-Rabbit IgG (H&L), HRP conjugated (Agrisera 680 

AS10 1461). Anti-CcmK2 antibody was kindly provided by the Kerfeld lab (Michigan State 681 

University, US) (Cai et al., 2016). Protein quantification from immunoblot data was carried out 682 

using FIJI. Our nominal assumption that the ratios of YFP-tagged to total RbcL or CcmK2 in 683 

carboxysomes are similar to those in cell lysates. 684 

 685 

In vivo carbon fixation assay 686 

In vivo carbon fixation assay was carried out to determine carbon fixation of Syn7942 WT and 687 

mutant cells, as described in the previous work (Sun et al., 2016). For each WT and mutant, 688 

at least three biological replicates from different culture flasks were assayed. Significance was 689 

assessed by two-tailed Student’s t-tests. 690 

 691 

Electron microscopy and carboxysome size measurement 692 
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Electron microscopy was carried out as described previously (Liu et al., 2008; Sun et al., 693 

2016). Carboxysome diameter was measured as described previously (Faulkner et al., 2017) 694 

and was analyzed using Origin.  695 

 696 

Accession Numbers 697 

Accession numbers of genes in this article are provided in Supplemental Table 6. 698 
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Figure legends 763 

Figure 1. Slimfield quantification of cells grown under ambient air/moderate light 764 
Air/ML conditions. 765 
(A) Averaged Slimfield images of YFP fluorescence (green) over 5 frames of strains 766 
expressing shell component CcmK4-YFP, the interior enzyme RbcS-YFP, and the shell-767 
interior linker protein CcmM-YFP. White dashed lines indicate cell body outlines.  768 
(B) Distribution of the intensities of automatically detected foci from the end of 769 
photobleaching, corresponding to the characteristic intensity of in vivo YFP. Inset shows the 770 
Fourier spectrum of ‘overtracked’ foci, tracked beyond photobleaching, showing a peak at the 771 
characteristic intensity. 772 
(C) Representative fluorescence photobleaching tracked at ultra-fast speed. The CcmK4 plot 773 
shows an inset ‘zoomed in’ on lower intensity range with step-preserving Chung-Kennedy 774 
filtered data in red, showing individual photobleaching steps clearly visible at the 775 
characteristic intensity. Brightness (kcounts), counts measured per camera pixel multiplied by 776 
1,000. 777 
(D) Distribution of YFP copy number detected for individual carboxysomes in corresponding 778 
mutants, rendered as kernel density estimates using standard kernel width. Heterogeneity of 779 
contents was observed, and a “preferable” copy number, represented by kernel density peak 780 
values could be determined. Statistics of copy numbers (Peak value ± HWHM) are listed in 781 
Table 1 for ML conditions. The corresponding Slimfield images and histogram for complete 782 
strain sets are shown in Supplemental Figure 3. 783 
 784 

Figure 2. Relative protein quantification of CcmK4, RbcS and CcmM in the 785 
carboxysome under different CO2 levels and light intensities using confocal 786 
microscopy. 787 
(A) Confocal images of CcmK4-YFP, RbcS-YFP and CcmM-YFP strains under Air/ML, 788 
CO2/ML, LL and HL. Fluorescence foci (green) indicate carboxysomes, and cell borders were 789 
outlined by white dashed lines. Scale bar indicates 2 μm. 790 
(B) Violin plot of carboxysome intensities under Air/ML, CO2/ML, LL and HL, normalized to 791 
kernel density ML peak values (peaks marked by white dashed lines). 792 
(C) Kernel density estimates of CcmL carboxysome copy number grown under Air/ML, CO2, 793 
LL and HL detected by Slimfield and corrected for chlorophyll. Triple Gaussian fits are 794 
indicated as colored dashed lines with the summed fit in red. The percentage in each 795 
Gaussian is indicated aside. 796 

 797 

Figure 3. Changes in carboxysome protein stoichiometry upon increases in CO2 levels 798 
and light intensity. 799 
(A) Comparison of carboxysome protein stoichiometry under CO2 treatment. Increase in the 800 
CO2 concentration resulted in the rise of CcmK3, CcmK4, CcaA and CcmL contents and the 801 
decline of RbcS, CcmN and CcmM contents. 802 
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(B) Comparison of carboxysome protein stoichiometry under light intensity treatment. 803 
Increased light intensity led to the elevation of RbcS, CcmM, CcmL, CcaA and CcmN 804 
contents, whereas the abundance of RbcX, CcmK3 and CcmK4 contents per carboxysome 805 
did not change dramatically. 806 
Mann-Whitney U-tests were performed to compare the numbers of functional units of 807 
individual carboxysome proteins changed from CO2/ML to Air/ML (A) and from HL to LL (B). *, 808 
p < 0.05; ***, p < 0.005; ns, p > 0.05. 809 
 810 

Figure 4. Variations of the carboxysome size and carbon fixation under Air/ML, CO2, LL 811 
and HL. 812 
(A) Thin-section electron microscopy (EM) images showing individual carboxysomes in the 813 
Syn7942 WT cells under Air/ML, CO2, LL and HL treatments Yellow arrows indicate the 814 
carboxysomes with spaces of low protein density under LL. More EM images are shown in 815 
Supplemental Figure 9. Scale bar indicates 1 μm. 816 
(B) Changes in the carboxysome diameter under Air/ML, CO2, LL and HL measured from EM 817 
(n = 33, 25, 27 and 51, respectively), with representative carboxysome images depicted 818 
above. Dashed lines indicate medians and solid lines indicate means. Differences in the 819 
carboxysome diameter are significant between CO2 and air (p = 1.92 x 10-14) and between LL 820 
and HL (p = 8.29 x 10-7), indicated as ***. 821 
(C) Correlation between the carboxysome size and the Rubisco content per carboxysome 822 
under Air/ML, CO2, LL and HL. 823 
(D) Correlation between the carboxysome size and CO2 fixation per carboxysome. 824 
(E) Correlation between the carboxysome size and CO2 fixation per Rubisco of the 825 
carboxysomes. Carboxysome diameters and CO2 fixation are presented as average ± SD, 826 
whereas the carboxysome total protein content and Rubisco content are shown as Peak 827 
value ± HWHM. 828 
 829 

Figure 5. Spatial localization and diffusion dynamics of carboxysomes in Syn7942 cells 830 
are dependent on light intensity. 831 
(A) Tracking of carboxysome diffusion in cells grown under HL, ML and LL. Colored lines 832 
indicate the diffusion trajectories of each carboxysomes and circles represent the diffusion 833 
areas of each carboxysomes over 60 mins. Scale bar indicates 1 μm. 834 
(B) Non-linear MSD (Mean Square Displacement) vs. the time interval (𝛕) profiles suggest the 835 
mobility of carboxysomes in Syn7942 cells grown under HL, ML and LL. Inset, zoom-in view 836 
of the MSD profile under LL. 837 
(C) Diffusion coefficient of carboxysomes in vivo decreases significantly when the light 838 
intensity reduces: 2.76 ± 2.83 x 10-5 µm2･s-1 for HL (mean ± SD, n = 105), 1.48 ± 1.03 x 10-5 839 

µm2･s-1 for ML (n = 84), and 0.28 ± 0.19 x 10-5 µm2･s-1 for LL (n = 336). p = 3.05 x 10-5 840 
between HL and ML; p = 2.77 x 10-5 between ML and LL, two-tailed Student’s t-test). 841 
 842 

Figure 6. Model of the β-carboxysome structure and protein stoichiometry. 843 
(A) Diagram of an icosahedral carboxysome structure and organization of building 844 
components. The stoichiometry of each building component within the carboxysome and its 845 
variations in response to changes in CO2 and light intensity are shown on the right (See also 846 
Table 1). *Rubisco content was estimated from RbcS stoichiometry based on the RbcL8S8 847 
Rubisco structure. The majority of shell facets shown in light blue is tiled by the major shell 848 
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protein CcmK2. The total abundance of CcmM58 and CcmM35 was estimated. The 849 
components RbcL, CcmK2, CcmO and CcmP were not directly determined in this work and 850 
thus are not shown in this model. 851 
(B) The carboxysome diameter is variable in response to changes in the CO2 level and light 852 
intensity. 853 
 854 
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Table 1. Protein stoichiometry of the Syn7942 β-carboxysome and its variability in cells grown under Air/ML, CO2/ML, LL and HL 855 
conditions determined from Slimfield and confocal microscopy. Stoichiometry is presented as Peak value ± HWHM and the sample sizes 856 
are indicated as n. Peak values were determined from Slimfield stoichiometry profiles of each carboxysome proteins (Figure 1, 857 
Supplemental Figure 3). Quantification of CcmL under the four conditions was acquired from Slimfield for accurate measurement of 858 
copies of shell pentamers for capping the carboxysome structure. Copies of other carboxysome proteins were calculated using Slimfield 859 
results (bold) with definitive counts of protein copies under Air/ML (See also Supplemental Figure 3) in combination with relative 860 
quantification of each protein under the four conditions from confocal imaging (See also Supplemental Figure 7 and 8). Protein structures 861 
were derived from previous studies (Kerfeld et al., 2005; Long et al., 2007; Tanaka et al., 2007; Tanaka et al., 2008; Long et al., 2011; 862 
Kinney et al., 2012; McGurn et al., 2016). *Monomeric unit of CcmM was designated to CcmM35 that is the majority of CcmM; CcmM58 863 
is postulated as a trimer. 864 
 865 

Category Structure Protein 

Air/ML CO2/ML LL HL 

Peak value ± 
HWHM 

Number of 
functional 

units 

Peak value ± 
HWHM 

Number of 
functional 

units 

Peak value ± 
HWHM 

Number of 
functional 

units 

Peak value ± 
HWHM 

Number of 
functional 

units 

Shell 
proteins 

Hexamer 
CcmK3 92 ± 148  

(n = 219) 15 ± 25 172 ± 83  
(n = 2048) 29 ± 14 83 ± 31 

(n = 1516)  14 ± 5 87 ± 52  
(n = 2155) 14 ± 9 

CcmK4 314 ± 194  
(n = 77) 52 ± 32 562 ± 263 

(n = 1918)  94 ± 44 313 ± 121  
(n = 1766) 52 ± 20 304 ± 95 

(n = 3215)  51 ± 16 

Pentamer CcmL 37 ± 17  
(n = 316) 7.4 ± 3.4 66 ± 24 

(n = 311)  13.2 ± 4.8 34 ± 15 
(n = 394) 6.8 ± 3.0 69 ± 24 

(n = 220) 13.8 ± 4.8 

Structural 
proteins 

Monomer* CcmM 719 ± 1433 
(n = 71) 719 ± 1433 468 ± 425 

(n = 2313) 468 ± 425 483 ± 366 
(n = 3655)  483 ± 366 1176 ± 691 

(n = 2318)  1176 ± 691 

Monomer CcmN 74 ± 51  
(n = 86) 74 ± 51 52 ± 28  

(n = 3143) 52 ± 28  51 ± 20 
(n = 4022)  51 ± 20 82 ± 34  

(n = 5074) 82 ± 34  

CA  Hexamer CcaA 86 ± 81  
(n = 95) 14 ± 14 129 ± 86  

(n = 1354) 21 ± 14 65 ± 21  
(n = 217) 11 ± 4 122 ± 59 

(n = 2837)  20 ± 10 

Rubisco 
enzyme L8S8 RbcS 6822 ± 9200 

(n = 60) 853 ± 1150 4401 ± 6655
(n = 894) 550 ± 832 2934 ± 5492

(n = 752) 367 ± 687 12057 ± 5186
(n = 1974) 1507 ± 648 

Rubisco 
chaperone Dimer RbcX 39 ± 32  

(n = 211) 20 ± 16 38 ± 10  
(n = 1370) 19 ± 5 40 ± 9 

(n = 1402) 20 ± 5 40 ± 9 
(n = 1861) 20 ± 5 
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