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Abstract. We present a new theoretical approach, based on the Hamiltonian formalism, to
investigate the stability of islands in phase space, generated by trapping of energetic particles
(EPs) in plasma waves in a tokamak. This approach is relevant to MHD modes driven by EPs
(EP-MHD) such as toroidal Alfvén eigenmodes (TAEs), EP-driven geodesic acoustic modes
(EGAMs) or fishbones. A generic problem of a single isolated EP-MHD mode is equivalent to
and hence can be replaced by a 2D Hamiltonian dynamics in the vicinity of the phase space
island. The conventional Langmuir wave/bump-on-tail problem is then used as a representative
reduced model to describe the dynamics of the initial EP-MHD.

Solving the Fokker-Planck equation in the presence of pitch angle scattering, velocity space
diffusion and drag and retaining plasma drifts in a model, we find a ”perturbed” equilibrium,
associated with these phase space islands. Its stability is then explored by addressing the
Vlasov/Fokker-Planck – Poisson system. The Lagrangian of this system provides the dispersion
relation of the secondary modes and allows an estimate of the mode onset. The secondary
instabilities have been confirmed to be possible but under certain conditions on the primary
island width and in a certain range of mode numbers. The threshold island width, below which
the mode stability is reached, is calculated. The secondary mode growth rate is found to be
maximum when the associated resonant velocity approaches the boundary of the primary island.
This, in turn, leads to a conclusion that the onset of the secondary mode can be prevented
provided the primary wave number is the lowest available.

1. Introduction

Particle-wave interaction plays a crucial role in a variety of applications. It is particularly
important in burning tokamak plasmas since fast particles are required to provide additional
heating and current drive in a reactor. Energetic particles can be produced by Neutral Beam
Injection (NBI) or Radio Frequency (RF) heating, as well as fusion reactions themselves. These
fast particles can drive Alfvén eigenmodes, which, in turn, may lead to detrimental particle
losses. Since alpha particles are considered as the main heating source in a fusion reactor,
their losses need to be mitigated or prevented in an optimal scenario. In a tokamak, various
nonlinear regimes can be gathered under the umbrella of this bump-on-tail instability [1, 2, 3].
In its simplest version, the bump-on-tail instability can be modelled by a background of thermal
electrons with a Maxwellian velocity distribution, neutralized by steady ions, while fast electrons
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are described by a shifted Maxwellian, localized near a beam velocity, Vb. The problem is 2D,
i.e. one spatial direction, x, and the corresponding velocity variable, V . If the beam velocity
is large enough, the electron distribution function exhibits a positive slope in the vicinity of Vb,
which is prone to instabilities. In its original version, these modes are Langmuir waves, but are
akin to Alfvén modes, driven by a population of fast particles in a tokamak [4]. A bump-on-
tail instability is driven linearly via a wave-particle resonance, which occurs when the particle
velocity matches the mode phase velocity, Vph = ω0/k0, where ω0 is the mode pulsation and k0
is its wave number. A single mode (ω0, k0) evolves nonlinearly in various ways depending on the
dissipation terms (distribution function and field) and the strength of the drive. The different
behaviors (steady, periodic, chaotic and chirping) have been widely studied in the past, and led
to phase diagrams that provide the type of dynamics depending on plasma parameters [5, 6].
Saturation towards a steady state, which is paradigmatic when dissipation is high enough, is
due to the formation of an island near the resonant velocity, V = Vph. The distribution function
flattens within the island, thus decreasing the drive. Saturation occurs when the residual drive
matches the dissipation rate, which is large near the island separatrix, where the gradients of the
distribution function are steep. This process leads to the formation of a plateau near V = Vph
[7]. We also note that saturation is possible in the collisionless regime via the formation of a
plateau in velocity space within the island, and the onset of O’Neil-Mazitov oscillations [8, 9, 10]
– we will however restrict the analysis in the present work to the case where dissipation remains
finite.

Steady solutions are no longer allowed when the dissipation rate decreases. One interesting
behavior is called frequency chirping, the name of which is self-explanatory. Frequency chirping
is ubiquitous in tokamaks for Toroidal Alfvèn Eigenmodes (TAEs) or fishbones [11, 12, 13]. The
explanation, proposed within the framework of the bump-on-tail problem, involves the formation
of clumps and holes in phase space. The motion of a clump/hole pair is associated with a time
dependence of the mode frequency, i.e. chirping [2]. We note that other explanations have
been proposed in the limit of strong drive [3]. The limit of weak drive only will be considered
here. It should be highlighted that the model, described in reference [2], also called the ”Berk-
Breizman” model, addresses the asymptotic behavior of a clump/hole pair dynamics. The
mechanism that leads to the formation of the clump/hole pair is still elusive. One mechanism
was proposed by Lilley and Nyqvist [14], where the clump/hole pair appears because of the onset
of secondary instabilities that occur near the nonlinear structure, associated with a ”primary”
mode. The primary mode here is an unstable wave (ω0, k0), that evolved into a nonlinear quasi-
saturated state, associated with a plateau of the distribution function near the resonant velocity,
V = Vph. The steepening of the distribution at the edges of the plateau drives, in turn, secondary
instabilities, which are identified as negative energy waves in [14]. It should be stressed here that
in this work, the plateau is a band in the velocity space V , and hence does not depend on the
spatial coordinate x. However, the primary mode is expected to evolve towards the formation
of an island in phase space [15]. A plateau then forms inside the island region, bounded by the
separatrix, in the vicinity of which secondary modes are expected to appear. Intrinsically, this
is a 2D problem in phase space, (x, V ). The onset of secondary instabilities near the island in
phase space is the question that is addressed here.

The island in phase space can be treated as a special case of a BGK mode, named after
Bernstein, Greene and Kruskal, who predicted that BGK modes belong to a large class of
nonlinear solutions of the Vlasov – Poisson problem [16]. Hence, the existence of secondary
instabilities close to the island in phase space is related to the question of whether BGK modes
are stable or not. One important difference though is that BGK modes are usually investigated
in the collisionless limit, whereas collisions have an important influence on the saturated primary
mode in the present work. An important theorem that applies to the bump-on-tail problem states
that the BGK saturated mode is unstable [17]. A secondary instability generically appears in
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the form of a subharmonic mode with a wave number that is half the wave number of the
primary BGK mode. The proof is given for a primary mode amplitude that is small enough,
i.e. a situation not too far away from marginal stability. Nevertheless, the regime is nonlinear
in essence since particles, trapped in the primary BGK mode, are accounted for. The theorem
predicts instability, but does not provide a quantitative growth rate of the secondary mode.
The situation is less clear for numerical simulations and related analytic work, since secondary
instabilities are predicted and found under certain conditions only [18, 19, 15]. Indeed, it appears
in [18, 19] that at least three beams are required to obtain instability . This result comes from
a linear stability analysis and numerical simulations. More recently the stability of BGK modes
has been numerically investigated for the bump-on-tail problem [15]. It was found that the onset
of secondary instabilities is not systematic. When a secondary mode appears, it is usually a
subharmonic of the primary one, in agreement with the aforementioned theorem [17]. However,
it appears in practice that secondary instabilities are, in fact, linearly weakly unstable [15].
Therefore, the stability of BGK states seems to be connected to the linear stability properties
of the unperturbed state, as highlighted in [17, 19]. This is not exactly what is looked for as
ideally the initial state should be such that a single primary mode is linearly unstable, while
secondary modes are fully stable. Nevertheless, the nonlinear strengthening of a mode that is
initially weakly unstable is certainly of interest for practical purposes. It should be underlined
here that most analytic calculations do not take into account the island shape of the primary
equilibrium, i.e. most assume a small island width, which is, in fact, equivalent to a linear
stability analysis of the unperturbed state.

The present work investigates the stability of a dissipative primary equilibrium, i.e. situations
where a plateau of the distribution function forms within the primary island, without any
restriction on the island width, and therefore on the distance to marginal stability. Hence
this calculation applies to large island widths, i.e. fully nonlinear situations. The primary
equilibrium is determined by the solution of the Fokker-Planck equation, i.e. with collisions,
accounting for both diffusion and drag. A dispersion relation is then derived. Two forms have
been obtained. In the first one, the distribution function appears only via its average over
the island structure. This dispersion relation applies to numerical simulations, where a single
secondary mode is allowed to grow. A second dispersion relation has also been determined,
which fully accounts for the details of the distribution function. It appears that the onset of
secondary modes depends sensitively on the width of the island. Typically the instability growth
rate becomes positive above a critical island width, reaches a maximum, then decreases with
increasing island width. Stability occurs above a second critical island width. This result is
in line with time dependent numerical simulations, which find that the stability of a primary
mode depends sensitively on the island width. Basically the growth rate is optimum when the
steepening of the distribution function near the island separatrix matches the phase velocity of
the secondary mode.

The remainder of the paper is organized as follows. Section 2 states the problem. The primary
nonlinear equilibrium is computed in Section 3. Section 4 provides the analytic derivation of
the dispersion relation for secondary modes and addresses numerical solutions of this dispersion
relation, as well as initial value solutions. A conclusion follows.

2. Position of the problem

To seek secondary instabilities, we address the conventional Vlasov/Fokker-Planck – Poisson
system, i.e. a set of Vlasov/Fokker-Planck equations

∂fj
∂t

+ V‖▽‖fj + VVV E×B · ▽▽▽fj + VVV b · ▽▽▽fj −
eZj
mjV

[
V‖▽‖Φ+ VVV b · ▽▽▽Φ

] ∂fj
∂V

= Cj (fj) + S (1)
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for each particle species, j, coupled to Poisson’s equation

ε0∇2Φ = −
∑

j

eZj

∫

R

fjdVVV . (2)

Here ‖ denotes a vector component along the magnetic field lines, ∇‖ = bbb · ∇∇∇, bbb = BBB/B. VVV E×B

and VVV b are the EEE ×BBB and magnetic drift contributions. Φ is the electrostatic potential; eZj
and mj are the particle charge and mass, respectively. The right hand side, written as a sum
of the collision operator, Cj , and a source term, S, is to be introduced below. A system of
three particle species is considered: j in Eqs.(1,2) is used for thermal electrons and ions, as
well as a population of EPs, i.e. fast electrons/ions that trigger the bump-on-tail instability.
In a toroidal set of coordinates, the particle distribution function, fj , is to be understood as
fj = fj (t, ψ, ϑ, ζ,VVV ). ψ is the poloidal flux function; ϑ and ζ are the poloidal and helical
angles, respectively. ζ is defined as m0ϑ − n0ϕ − ω0t, where m0/n0 are the poloidal/toroidal
primary mode number, ϕ is the toroidal angle, and ω0 is the primary mode frequency. Eq.(1)
can be rewritten as a pair of Hamilton’s equations for a set of angular and action variables,
{ααα,JJJ}. For a tokamak plasma, the action vector components are represented by three adiabatic
invariants of charged particle motion. Introducing a single perturbation, associated with the
island in phase space, we have H0 (JJJ,ααα, t) = H00 (JJJ) + h cos (nnnααα− ω0t) for the full primary
Hamiltonian. Here H00 is the unperturbed Hamiltonian, i.e. in the absence of the island, and
nnn = (n1, n2, n3) is a triplet of integers. Setting ξ = nnnααα − ω0t, we define a resonant surface
by
∑3

i=1 niΩi (JJJ) = ω0 with dααα/dt = ΩΩΩ(JJJ). Then the action vector becomes JJJ = JJJres + nnnI
in the vicinity of the resonant surface, where JJJres is a vector that lies on the resonant surface
and I measures the corresponding distance to it (see Fig.1). Then it can be easily verified that

Figure 1. A phase space island near the resonant surface, nnn ·ΩΩΩ(JJJ) = 0.

H0 (JJJ,ααα, t) = H00 (JJJres) + CI2/2 + h cos ξ, where C is the Hessian of the Hamiltonian on the
resonant surface. To simplify the analysis below, we take h slowly varying over the island width.
Setting p = CI, we obtain

H0 = p2/2− ω2
b cos ξ (3)

for a new total primary Hamiltonian. The bounce frequency of deeply trapped particles (i.e.
particles trapped in phase space), ωb, has been defined according to ω2

b = −Ch. Here we note
that any 6D dynamics in phase space can be reduced to a 2D phase space island dynamics,
provided two invariants of motion lie on the resonant surface.
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In the slab geometry in the absence of tokamak drifts, Eq.(1) simply reads

∂fj
∂t

+ V
∂fj
∂x

− eZj
mj

∂Φ

∂x

∂fj
∂V

= Cj (fj) + S. (4)

Eq.(1)/Eq.(4) is to be solved for fj , a time dependent particle distribution function, considered
as a function of position, {ψ, ϑ, ζ}/x, and velocity, VVV /V . Φ is a function of position and
time. For simplicity, let us restrict the analysis to the (t, x) plane. We assume that a
primary wave has been developed and saturated in the form of an island and that the
corresponding potential is Φ (x, t) = Φ0 cos (k0x− ω0t). It is then convenient to work in a
wave reference frame and introduce a new spatial variable ξ = k0x − ω0t that is conjugated to
a momentum, p = ∂ξ/∂t = k0V − ω0. Hence, the Hamiltonian in this set of variables becomes
H0 (x, V ) = (k0V − ω0)

2/2− k20 (eZj/mj) Φ0 cos (k0x− ω0t). It is an invariant of motion and is
equivalent to p as a variable in velocity space, provided the sign of p, noted σp, is kept as an
extra variable. Defining the bounce frequency at the deeply trapped end as ω2

b = k20eZjΦ0/mj ,
we again write Eq.(3) for the full primary Hamiltonian in the (p, ξ) plane. Extending this to
the toroidal geometry, we replace H0 (x, V ) with H0 (ψ,ϕ, ϑ,VVV ) = V 2

‖ /2 + µB + eZjΦ (ψ, ϕ, ϑ)

[20] with µ = V 2
⊥/2B denoting the magnetic moment, and B being the total magnetic field.

The electrostatic potential takes the form Φ0 cos ζ (the ψ dependence of Φ0 has been neglected
for convenience). We underline that the guiding center equations of motion in a tokamak that
fully account for the magnetic drifts as well as their reduced slab formulation are allowed to be
written in a Hamiltonian form. Thus, from a mathematical point of view any EP-MHD problem,
including both the Langmuir wave and the TAE problems, becomes identical in the toroidal and
slab geometry, if written in terms of the Hamiltonian function.

Constant H0 contours in the (p, ξ) plane describe an island-like structure and will be referred
to as an island in phase space. A new equilibrium, described by f0,j , is to be calculated from
the Fokker-Planck equation, which now reads as

∂f0,j
∂t

− {H0, f0,j} = Cj (f0,j) + S. (5)

Here curly brackets represent the conventional Poisson bracket, i.e. {f, g} = ∂f
∂ξ

∂g
∂p − ∂f

∂p
∂g
∂ξ .

Once f0,j is obtained, we can investigate the stability of this new, ”perturbed”, equilibrium,
i.e. the stability of secondary waves, which we take of the form Φkωe

ikx−iωt + c.c., where k
and ω are their wave number and frequency, respectively. In the primary wave frame, these
waves become Φkωe

ilξ−iδωt + c.c. with l = k/k0 and δω = ω − lω0. l here is not necessarily
an integer. We also need to rewrite Eq.(2) in an equivalent Lagrangian formulation. If the
electrostatic potential takes the form Φ (x, t) = Φωe

−iωt + c.c., then the full Hamiltonian and
the full EP distribution function read H (ξ, p) = H0 (ξ, p) + δH and fj (ξ, p) = f0,j (ξ, p) + δfj
with δH = hω (ξ, p) e

−iδωt + c.c. and δfj = fjω (ξ, p) e
−iδωt + c.c. Here H0 (ξ, p) and f0,j (ξ, p)

correspond to the new primary equilibrium, which will be the subject of Sec.3, while δH and
δfj are perturbed parts of the Hamiltonian and of the EP distribution function that arise due
to the secondary mode occurrence. The amplitude factor is hω = eZjΦω with hω (ξ, p) = hkωe

ilξ

(kx is to be replaced by mϑ− nϕ in a tokamak extension with m/n being the poloidal/toroidal
secondary mode number). Poisson’s equation is then equivalent to the state, where the functional

L (ω) = ε0

∫ L

0
dx|▽Φω|2 −

∑

j

eZj

∫ L

0
dx

∫

R

fjω (ξ, p) Φ
∗
ω (ξ, p) dV (6)

is extremum for any variation of Φ∗
ω. Here L is the box length, chosen as a multiple of the

primary period, k0L = 2πj0, where j0 is integer. Thus, we solve ∂L/∂Φ∗
ω = 0 according to
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Fermat’s theorem, and once the solution is found, L (ω) = 0 provides the dispersion relation
for the secondary modes. Redefining the Lagrangian, given by Eq.(6), to rewrite it in terms of
{p, ξ}, we have

L (ω, l) = −l2|hkω|2 +
∑

j

Lj (ω) (7)

with

Lj (ω) = ω2
pj

∫ π

−π

dξ

2π

∫

R

fjh
∗
ωdp. (8)

Lj is the Lagrangian of a given species. The first term in Eq.(7) is the field contribution

to Poisson’s equation. Here ωpj is the plasma frequency of a species, ω2
pj = nj(eZj)

2/ε0mj ,
and the particle distribution function is normalized to density of a considered species, nj ,
in p coordinates, i.e.

∫
R
fjdp = 1. The perturbed Hamiltonian, hkω, is defined as hkω =

k20eZjΦkω/mj . We note that a constant normalization factor has been dropped here. The
perturbed distribution function, fjω, is a solution of the linearized Fokker-Planck equation:

−iδωfjω − {H0, fjω} = {hω, f0,j} . (9)

Since f0,j is a non-trivial function of H0 (p, ξ), the Poisson brackets {H0, fjω} and {hω, f0,j}
introduce multiples of the basic harmonic, lξ − δωt. However far from the island, H0 ≃ p2/2,
and the corresponding solution is trivial. The system then behaves as if primary and secondary
waves do not interact. This case is to be applied to thermal particles, provided the thermal
resonances occur far from the EP resonances in phase space. The second approach, which we
run numerically, consists in keeping the basic harmonics only, so that the Fokker-Planck equation
reads

−iδωfjω − {H0, fjω} =
{
hω, 〈f0,j〉ξ

}
. (10)

An angular bracket here indicates an average over ξ and will be defined below. Finally, a full
nonlinear solution can be obtained by moving from the set of variables {ξ, p} to {ξ,H0;σp} and
will be the subject of Sec.4.

3. Primary equilibrium

To search for the secondary instabilities, we start with a calculation of a new primary equilibrium
state, given by f0,j . f0,j is a solution of Eq.(5) and describes the electron/ion response to a single
island in phase space, associated with the bump-on-tail instability. As the main electrons and
ions are assumed to be Maxwellian, Eq.(5) is to be solved only for the EP fraction, i.e. fast
electrons/ions, whose population is lower compared to the bulk plasma. The combined effect
of the source term and the collision operator is written through the Fokker-Planck collision
integral that includes collisions on energetic particles by the thermal, Maxwellian background.
The initial form of this collision operator acting on the EP distribution function is taken to be
of the form:

Cj + S = 2νj
(1− λB)1/2

B

∂

∂λ

∣∣∣∣
ψ

[
λ(1− λB)1/2

∂

∂λ

∣∣∣∣
ψ

]
+

1

V 2

∂

∂V

[
V 3

(
νslow +

ν‖

2
V

∂

∂V

)]
, (11)

where νj , νslow and ν‖ are the pitch angle scattering, slowing down and parallel velocity diffusion

rates, respectively. λ here is the pitch angle, defined as 2µ/V 2. Following the Berk and Breizman
paper [21, 22], we project this Fokker-Planck operator on the resonant phase space surface to
replace it by a combination of operators in p space. This reduces the collision integral dimension
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from 2D to 1D in velocity space. The Jacobian of this coordinate transformation is given in [21].
After this procedure, we come to

Cj (f0,j) + S = Dp
∂2

∂p2

∣∣∣∣
ξ

(f0,j − feqm,j) + νf,p
∂

∂p

∣∣∣∣
ξ

(f0,j − feqm,j) . (12)

Here Dp and νf,p are the diffusion and dynamical friction (i.e. slowing down) coefficients in p

space, related to the diffusion νd,V and friction νf,V rates in velocity space via Dp = ν3d,V (k0/k)
2

and νf,p = ν2f,V (k0/k). feqm,j is the unperturbed distribution function, i.e. in the absence of the
phase space island, which appears as a dotted line in Fig.3. The Vlasov part of the Fokker-Planck
equation [23] is

df0,j
dt

≡ ∂f0,j
∂t

− τ
[
∂tH0 − 〈∂tH0〉ξ

] ∂f0,j
∂J

+ p
∂f0,j
∂ξ

(13)

with J being the action variable, defined as J (H0, t) =
∮ dξ

2πp (t, ξ,H0;σp), and τ denoting the

bounce period, τ =
∮ dξ

2πp
−1 (t, ξ,H0;σp) (an angular bracket denotes the ξ-averaging procedure

and is to be introduced later in this section). Working in the wave reference frame and seeking
the time-independent solution, we reduce a set of Eqs.(5,12,13) to

p (ξ,H0;σp)
∂f0,j
∂ξ

∣∣∣∣
H0

= Dpp
2 (ξ,H0;σp)

∂2

∂H2
0

∣∣∣∣
ξ

(f0,j − feqm,j)

+ [Dp + νf,pp (ξ,H0;σp)]
∂

∂H0

∣∣∣∣
ξ

(f0,j − feqm,j) .

(14)

Here p has been replaced by a pair {H0;σp}. It is convenient to define a new distribution
function, g0,j , as f0,j − feqm,j to measure a shift from the equilibrium state. To solve Eq.(14) for
g0,j , we define a small parameter δ = max

(
Dp/ω

3
b , νf,p/ω

2
b

)
≪ 1, which implies weak collisional

dissipation. Treating the system perturbatively, we apply an expansion g0,j =
∑

α g
(α)
0,j δ

α to
obtain

∂g
(0)
0,j

∂ξ

∣∣∣∣∣
H0

= 0 (15)

to 0th order. Here we learn that g
(0)
0,j is ξ-independent at any fixed H0, i.e. g

(0)
0,j = g

(0)
0,j (H0;σp).

Proceeding to next order by introducing collisions, we obtain an exact form of g
(0)
0,j from the

collisional constraint. The O
(
δ1
)
equation reads

p (ξ,H0;σp)
∂g

(1)
0,j

∂ξ

∣∣∣∣∣
H0

= Dpp
2 (ξ,H0;σp)

∂2g
(0)
0,j

∂H2
0

∣∣∣∣∣
ξ

+ [Dp + νf,pp (ξ,H0;σp)]
∂g

(0)
0,j

∂H0

∣∣∣∣∣
ξ

. (16)

To eliminate the term in g
(1)
0,j , we introduce an annihilation operator, which averages the free

streaming term
∂g

(1)
0,j

∂ξ

∣∣∣∣
H0

over ξ. For passing particles in phase space, i.e. particles outside

the phase space island H0 ≥ ω2
b (see Fig.2), we simply integrate over a period in ξ, requiring

g0,j (−π) = g0,j (π). For trapped particles inside the island, i.e. −ω2
b ≤ H0 < ω2

b , we need to
integrate Eq.(16) between the bounce points, given by ξb = ± arccos

(
−H0/ω

2
b

)
, and, in general,

sum over the two streams, σp = ±1, to provide continuity at each bounce point. Therefore, we
introduce

〈...〉ξ =
{

1
2π

∫ π
−π ...dξ, H0 ≥ ω2

b
1
4π

∑
σp
σp
∫ ξb
−ξb

...dξ, −ω2
b ≤ H0 < ω2

b

(17)
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Figure 2. Sketch of H0 against ξ at

p = 0. ξ varies from −π to π outside

the phase space island and between the

bounce points, ξb1,2, given by H0 =

−ω2
b cos ξb1,2, inside the island region.

Figure 3. The EP distribution function f̂0,j vs. p̂ across

the island O-point, i.e. ξ = 0, for arbitrary D̂p and ν̂f,p.

The solution, f̂0,j , is localized to the island vicinity, which

allows the initial equilibrium distribution function to be

Taylor expanded in the vicinity of the resonant surface.

Dashed lines indicate the position of the phase space island

separatrix, Ĥ0 = ω̂2
b . Hats indicate the normalization that

has been chosen as in [24].

ω2
b corresponds to the separatrix of the phase space island. Dividing both sides of Eq.(16) by
p (ξ,H0;σp) and applying the ξ-averaging operator, Eq.(17), we arrive at the final equation for

the leading order EP distribution function, g
(0)
0,j :

〈Dpp (ξ,H0;σp)〉ξ
∂2g

(0)
0,j

∂H2
0

∣∣∣∣∣
ξ

+

〈
Dp

p (ξ,H0;σp)
+ νf,p

〉

ξ

∂g
(0)
0,j

∂H0

∣∣∣∣∣
ξ

= 0. (18)

To match solutions at the trapped/passing boundary, Hc
0 = ω2

b , we impose
∑

σp
σpg

p = 0,∑
σp
gp = 2gt and

∑
σp
∂gp/∂H0 = 2∂gt/∂H0 to provide continuity across the boundary. Here

indices p and t denote the passing and trapped regions, respectively. These matching conditions
can be treated as the particle conservation law as we cross the boundary [25]. Far from the
island, f0,j must be linear in p to match to the Maxwellian equilibrium distribution function
(see Fig.3). This linear behavior is provided by feqm,j and as f0,j = feqm,j+g0,j , g0,j must satisfy

∂pg0,j |p→±∞ = 0. Solving this numerically for arbitrary Dp, νf,p and ωb, we obtain g
(0)
0,j as a

function of H0 for each σp. f
(0)
0,j vs. H0 is shown in Fig.4 for passing and trapped particles (the

solution technique can be found in the appendix 6.1). The solution in the trapped region has

no σp dependence, which results from Eq.(17). Constant f
(0)
0,j contours, plotted in Fig.4 in the

(p, ξ) plane, map out constant H0 contours of the phase space islands. Once f
(0)
0,j = f

(0)
0,j (H0;σp)

is found, we immediately obtain f
(0)
0,j in p space, i.e. f

(0)
0,j (H0 (ξ, p) ;σp).

The perturbative approach we apply breaks down in the ”dissipation” layer, i.e. in a narrow
region of phase space in the vicinity of the island separatrix. Here collisional dissipation becomes
comparable to free streaming ∼ p∂/∂ξ, and a full solution of Eq.(14) is required. Solving Eq.(14)
with similar boundary conditions in H0 and applying f0,j (−ξb) = f0,j (ξb) (ξb reduces to π for
passing particles) in ξ, we obtain f0,j = f0,j (ξ,H0 (ξ, p) ;σp). f0,j vs. p is illustrated in Fig.3
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Figure 4. (top) The leading order EP distribution function as a function of y =
√
Ĥ0 + ω̂2

b for two

branches of the stream, σp = ±1 for (a) a case of pure diffusion, (b) when velocity diffusion and drag

are comparable and (c) when the drag term is dominant. The dotted line represents the trapped/passing

boundary, yb =
√
2ω̂b. y ≥ yb and 0 ≤ y < yb correspond to the passing and trapped regions, respectively.

The trapped particle solution is σp-independent and hence both σp branches match in the trapped region.

(bottom) Constant f̂
(0)
0,j contours in the (p̂, ξ) plane, which repeat the phase space island structure; ω̂b = 1.

Hats indicate the normalization that has been chosen as in [24].

for arbitrary D̂p and ν̂f,p. As can be seen from the figure, in a pure diffusion case the flattening
of the EP distribution function is maintained across the island. f0,j vs. p approaches the
Zakharov and Karpman solution [7], but with a more detailed treatment of the separatrix layer.
Inclusion of drag modifies the distribution form significantly, creating a hole close to the island
O-point, which grows with growing νf,p. A similar destabilizing effect of dynamical friction
was demonstrated by Lilley [22] in the slab geometry. Estimations, made in [22], show that
the slowing down effect might be dominant over the collisional diffusion near the resonance
region. As will be shown in Sec.4, a shape of the secondary mode Lagrangian and hence the
corresponding dispersion function depend significantly on the amount of drag included.

In Figs.5-7 we benchmark the EP distribution function, obtained as a solution of Eq.(14),
against the full-f approach, provided by COBBLES (see appendix 6.5 for more detail). Two
scenarios are considered: (1) pure diffusion and (2) νf,V & νd,V . The friction/diffusion ratio
νf,V /νd,V . 1 in a typical NBI discharge and νf,V /νd,V & 1 in the vicinity of the TAE resonance
(νf,V /νd,V = 2.16 chosen in our model). The behavior in the island region is found to be in
good agreement with the COBBLES results. The discrepancy far from the island is expected
and arises due to the difference in the boundary conditions we apply.

3.1. Self-consistency
We need to ensure that the perturbed Hamiltonian is consistent with the Maxwell set of
equations. We restrict the analysis to the first harmonic of the distribution function in ξ,
in accordance with the cos ξ form of the perturbed Hamiltonian. Hence, we define the following
component gω0,j of the distribution function:

gω0,j (J, t) =

∮
dξ

2π
g0,j (ξ, J, t) e

−iξ. (19)
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Figure 5. The ξ-averaged EP distribution function, 〈f0,j〉ξ, vs. p for arbitrary Dp and νf,p,

ωb = 0.1ωpe. f0,j is normalized to neqmk0/ωpe, neqm is the equilibrium density. Thick lines indicate

the solution of Eq.(14), which is localized to the island vicinity. Thin lines indicate the COBBLES

distribution function. Diffusion and friction rates in velocity space are νd,V = 0.01ωpe and νf,V = 0

(blue curves), νd,V = 0.01ωpe and νf,V = 0.0216ωpe (red curves). In p space, these correspond to

diffusion Dp = ν3d,V (k0/k1)
2
= 1.6 · 10−5ω3

pe and drag νf,p = ν2f,V (k0/k1) = 0/4.0 · 10−4ω2
pe, respectively.

νf,V /νd,V = 2.16.

Figure 6. Same as Fig.5 except for the bounce

frequency value, ωb = 0.07ωpe.

Figure 7. Same as Fig.5 except for the bounce

frequency value, ωb = 0.05ωpe.

Maxwell’s equations are equivalent to finding an extremum of the functional L (ω) =
L(field) (ω) + L(part) (ω) with respect to the vector potential AAA∗

ω and electrostatic potential Φ∗
ω,

where

L(field) (ω) =

∫
dxxx

(
ε0EEEω ·EEE∗

ω − 1

µ0
BBBω ·BBB∗

ω

)
(20)

and

L(part) (ω) =
∑

j

∫
dxxx (jjjω ·AAA∗

ω − ρω · Φ∗
ω) (21)

Here EEEω is the electric field, BBBω the magnetic field, jjjω the current density and ρω the charge
density. Summing over j represents a sum over all the species. A straightforward calculation
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shows that

L(part) (ω) = −
∑

j

∫
dxxxdpppgω0,jh

∗
ω −

∑

j

∫
dxxx
nj(eZj)

2

mj
AAAω ·AAA∗

ω, (22)

where hω = eZj (Φω − VVV ·AAAω) is the perturbed Hamiltonian, and VVV = (ppp− eZjAAAeqm (xxx)) /mj

is the unperturbed velocity, which is a function of (xxx,ppp). Solving a bump-on-tail problem,
we drop the magnetic field contribution and reduce a problem to 2D in phase space. Hence,
Eqs.(20,22) are equivalent to Eqs.(7,8). For δω ≪ ω0 the Lagrangian can be written as
L (ω) = L0 (ω) + L1 (ω). Here L0 is real and is related to the magnetohydrodynamic (MHD)
energy, δWMHD, (it can be shown that L0 = −2δWMHD) and L1 represents the weak resonant
interaction between the perturbed electro-magnetic field and particles. Hence for one resonant
species, L1 =

∫
dxxxdpppgω0,jh

∗
ω. The functional L1 is complex, in particular 2ωℑL1 measures the

resonant energy exchange between the mode and the exciting particles. At lowest order, we find
a dispersion relation that gives the reference real pulsation, ω0, i.e. L0 (ω0) = 0. The first order
reads

2ω0
∂L0

∂ω

∣∣∣∣
ω=ω0

[δω + i (γ + γd)] = −2ω0L1. (23)

Setting Λω = ω0∂L0/∂ω|ω=ω0
(mode energy frequency), we find the following constraint

δω = − ω0

Λω
ℜL1,

γ = − ω0

Λω
ℑL1 − γd.

(24)

The first equation in Eq.(24) is a correction to the dispersion relation that provides the frequency
shift, δω, while the second one is an energy balance equation, which provides the growth/decay
rate of the wave, γ. Here an ad-hoc damping rate, γd, has been added to Eq.(24). When a
second stabilizing species is added, it corresponds to an energy sink due to the Landau damping.

Rewriting the phase space element in terms of ξ, L1 = 2h2ω
ω2
b

∫ π
−π

dξ
2πdpg0,j (ξ, p, t) e

−iξ, where

dξ
2πdp =

∑
σp

dξ
2π

dH0
p =

∑
σp

dξ
2π

dJ
τp . Then Eq.(24) becomes

δω = −2
ω0

ω2
b

h2ω
Λω

∑

σp

∫ Jmax

0
dJ〈g0,j cos ξ〉ξ,

γ = 2
ω0

ω2
b

h2ω
Λω

∑

σp

∫ Jmax

0
dJ〈g0,j sin ξ〉ξ − γd,

(25)

where Jmax is chosen so that the integration domain covers the whole phase space, inside and
outside the island, i.e. Jmax = ∞, which is also valid for the Zakharov-Karpman solution [7]. To
provide a link to the Berk and Breizman case, we choose Jmax corresponding to the separatrix of
a hole or a clump and replace g0,j , defined as f0,j−feqm,j , by f0,j− feqm,j |res− (∂feqm,j/∂p)|resp
(here res denotes the resonant surface), since J = 0 corresponds to the hole/clump center. In the
Berk-Breizman conventions, there is no sum over σp in Eq.(25), as the action, J , encompasses

both branches of the bounce motion. Setting γL = πω0
∂feqm,j

∂p

∣∣∣
res

h2ω
Λω

as in [1, 2], we recover the

main result of [1, 2]:

(
−δω
γd

)
=

2

π

γL
ω2
b

(
∂feqm,j
∂p

∣∣∣∣
res

)−1∑

σp

∫ Jmax

0
dJ

(〈g0,j cos ξ〉ξ
〈g0,j sin ξ〉ξ

)
. (26)
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Here γ has been taken as zero, i.e. no exponential growth/decay is assumed. Note that γL
does not depend on the amplitude since the mode energy density Λω scales as h2ω. It is
easy to verify that γL is the linear growth rate in the absence of dissipation, i.e. γd = 0.

Indeed, the linear solution of the Vlasov equation is g0,j = −1
2
∂feqm,j

∂p

∣∣∣
res

ω2
b

p−i0+
, so that

ℑL1 = 2h2ω
ω2
b

∫
R
dpℑg0,j = −πh2ω

∂feqm,j

∂p

∣∣∣
res

. Substituting this into Eq.(24) yields the growth

rate γ = γL − γd, where γL is defined above. It appears that γ = γL when γd = 0, so that γL
can be interpreted as a linear growth rate in the absence of dissipation.

4. Stability analysis. Secondary modes

4.1. Filtered solution
If f0,j has no ξ-dependence, either because p≫ ωb (thermal particles) or f0,j is averaged over ξ
(filtered solution), the solution of Eq.(9) is simply

fj,kω = − l

δω − lp+ i0+

〈
∂f0,j
∂p

〉

ξ

hkω. (27)

Using Eqs.(7,8), we obtain

L (δω, l) =


−l2 −

∑

j

ω2
pj

∫

R

l

δω − lp+ i0+

〈
∂f0,j
∂p

〉

ξ

dp


 |hkω|2. (28)

For thermal background, f0,j is given by a non-shifted Maxwellian, fMj = 1

(2π)1/2VTj
e−V

2/2V 2
Tj

with VTj =
√
Tj/mj being the thermal velocity. Hence, the dispersion relation L (δω, l) = 0

for the background electrons and ions reads 1 −
∑

j=e,i

ω2
pj

ω2
tj

∫
R

dς

(2π)1/2
e−ς

2/2 ωtjς
ω−ωtjς+i0+

= 0,

where ωtj = kVTj is the transit frequency. For a mode close to marginality γ = ℑω ≪
ωr = ℜω, and in the large frequency limit ω ∼ ωpj ≫ ωtj , we can apply the Sokhotski-
Plemelj formula to obtain approximately 1

ω−ωtjς+i0+
≃ 1

ω

(
1 +

ωtjς
ω

)
− iπδ (ω − ωtjς), where

δ denotes the Dirac delta function. Hence, an approximate dispersion relation becomes

1 −∑j=e,i

[
ω2
pj

ω2 − i
(
π
2

)1/2 ωω2
pj

ω3
tj
e−ω

2
pj/2ω

2
tj

]
= 0. Expanding this with respect to γ/ωr ≪ 1, we

find ωr ≃ ωpe and γ = −γe, γe = 1
2

(
π
2

)1/2
ωpe

ω3
pe

ω3
te
e−ω

2
pe/2ω

2
te , where we have used the fact that

ωpe ≫ ωpi. This is the conventional expression for the Landau damping rate of the Langmuir
wave. Thus, the functional for thermal particles can be approximated by

Lj (δω, l) = l2

(
ω2
pj

ω2
+ 2i

ωγj
ω2
pj

)
|hkω|2. (29)

j = e, i here indicates main electrons/ions. In the absence of thermal particles, this term
vanishes. The fast particle contribution is then

LEP,j (δω, l) = −ω2
pj

[∫

R

l

δω − lp+ i0+

〈
∂f0,j
∂p

〉

ξ

dp

]
|hkω|2. (30)

In Eq.(30) j = fe, fi indicates fast electrons/ions that drive the bump-on-tail instability. The
total Lagrangian, given by Eq.(7), has the form L (δω, l) = D (δω, l) |hkω|2, where D is the
dispersion function. Hence, the dispersion relation reads

−1 +
∑

j=e,i

(
ω2
pj

ω2
+ 2i

ωγj
ω2
pj

)
−

∑

j=fe,fi

ω2
pj

l2

∫

R

l

δω − lp+ i0+

〈
∂f0,j
∂p

〉

ξ

dp = 0. (31)

Page 12 of 28AUTHOR SUBMITTED MANUSCRIPT - NF-103046.R1

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60



4.2. Full solution of the Vlasov/Fokker-Planck – Poisson system
4.2.1. Formal solution of the Vlasov/Fokker-Planck equation Let us start with the perturbed
Vlasov/Fokker-Planck equation, Eq.(9), which we rewrite as

−iδωfjω + p
∂fjω
∂ξ

= ilp
∂f0,j
∂H0

hkωe
ilξ, (32)

where fjω and p are now functions of ξ, H0 and σp, while hkω is assumed to be a constant.
f0,j is the primary equilibrium distribution function, found in the previous section for the EP
component (and assumed to be Maxwellian for the electron/ion background). To simplify the
analysis, we split the distribution function into an adiabatic response and a resonant part, i.e.

fjω =
∂f0,j
∂H0

hkωe
ilξ + gjω, (33)

respectively. Solving Eq.(32) for gjω, we find

gjω = iδω
∂f0,j
∂H0

hkωe
iδωQ

[∫ ξ

−ξb

dξ′

p′
eilξ

′−iδωQ′

+ C (σp)

]
, (34)

where p′ and Q′ are abbreviations for p (ξ′, H0;σp) and Q (ξ′, H0;σp) (note that ξb becomes π
for the passing branch). Q is defined as

Q (ξ,H0;σp) =

∫ ξ

0

dξ′

p (ξ′, H0;σp)
, (35)

which has an equivalent representation through the incomplete elliptic integral of the first kind,√
2σp
(
H0 + ω2

b

)−1/2
F
(
ξ
2 ,

2ω2
b

H0+ω2
b

)
. C (σp) is a constant of integration that is different on each

branch of σp and is to be determined in next section. The EP Lagrangian is then

LEP,j (δω, l) = ω2
pj

∑

σp

∫ +∞

−ω2
b

dH0

∮
dξ

2π

1

p
fjωh

∗
kωe

−ilξ, (36)

where we have used
∫
R
dp
∫ π
−π

dξ
2π =

∑
σp

∫ +∞
−ω2

b
dH0

∮ dξ
2π

1
p . Eq.(36) can be split into the adiabatic

and resonant parts, LEP,j (δω, l) = Lad,j (δω, l) + Lres,j (δω, l), by substituting Eq.(33). It can
be shown that the energy exchange between waves and particles is given by the imaginary part
of LEP,j (δω, l). Hence, the adiabatic response does not contribute to the exchange of energy,
only Lres,j does. At this stage, C (σp) remains to be calculated.

4.2.2. Matching conditions In the previous section we have determined the perturbed
distribution function, gjω, in terms of the arbitrary constant, C (σp). In this section we introduce
an angle variable α to determine C, and hence to derive the full EP distribution.

To calculate C, we need to maintain the matching procedure. Let us introduce −ξ0 as a
starting point in ξ. For passing particles the distribution function must have the same value
at ξ = −ξ0 and ξ = ξ0 for each sign of p. This can be easily provided. However, the trapped
particle distribution function must be matched both, at ξ = ξ0 after half a bounce on the interval
[−ξ0; ξ0] and again at ξ = −ξ0 at the end of the way back to the initial bounce angle. Note that
when a particle moves from −ξ0 to ξ0, it has a positive momentum p, while p is negative on the
return branch, from ξ0 to −ξ0. So both branches, σp = ±1, are connected at constant energy
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H0. To simplify the C (σp) calculation, we introduce the following variable α instead of ξ for
trapped particles:

α = Ωb

∫ ξ

0

dξ′

p′
, p > 0 (37)

and

α = π − Ωb

∫ ξ

0

dξ′

p′
, p < 0 (38)

with Ωb (H0) =
(∫ ξ0

−ξ0
dξ
π|p|

)−1
being the bounce frequency (ωb is its limit value at the deeply

trapped end, i.e. H0 → −ω2
b ). Here we note

• α increases monotonically with ξ along the trapped trajectory at given H0. It varies from
−π/2 to π/2 for ξ ∈ [−ξ0; ξ0], and from π/2 to 3π/2 on the way back, i.e. ξ ∈ [ξ0;−ξ0].

• α is an angle variable since it spans [−π/2; 3π/2] along the closed trapped trajectory.

• the choice grants that ξ = ξ (H0, α) is an odd function of α. It also satisfies
ξ (H0, α;σp = +1) = ξ (H0, π − α;σp = −1). Hence, the relation between α and ξ, given
above, can be inverted. Therefore, we find it convenient to express gjω as a function of H0

and α only; α also contains the information on σp. According to Barrow’s theorem, we have
dα/Ωb = dξ/p for both branches. The exact same expression is valid for passing particles,
as we will see later in this section.

• This procedure guarantees that if gjω is treated as a function of α instead of ξ, it is
continuous at ξ = ξ0, i.e. α = π/2, which leaves the only one constant C to determine
for trapped particles.

gjω then takes the form:

gjω = iδω
∂f0,j
∂H0

hkωe
i δω
Ωb
α

[∫ α

−π/2

dα′

Ωb
e
i
(

lξ′− δω
Ωb
α′

)

+ C (σp)

]
, (39)

valid for −π/2 ≤ α < 3π/2. We still have to provide its continuity at ξ = −ξ0 after one bounce,
i.e. gjω (H0, α = −π/2) = gjω (H0, α = 3π/2), which gives immediately

C =

∫ π
−π

dα
Ωb
e
i
(

lξ− δω
Ωb
α
)

e
−2πi δω

Ωb − 1
. (40)

Here we have used the fact that limits of integration can be shifted for a periodic function,
integrated over the length of the period (note that periodicity in α is provided by the choice of
α, while periodicity in ξ is not required). An equivalent expression for C can be obtained by
the relation

+∞∑

k=1

e
2πki δω

Ωb =
1

e
−2πi δω

Ωb − 1
(41)

(see appendix 6.2 for more detail). Rewriting the resonant part of the EP Lagrangian in terms
of α, we obtain

Lres,j (δω, l) =

2πiδω · ω2
pj |hkω|2

∫ +∞

−ω2
b

dH0

Ω2
b

∫ π

−π

dα

2π

∂f0,j
∂H0

e
−i

(

lξ− δω
Ωb
α
)

[∫ α

−π/2

dα′

2π
e
i
(

lξ′− δω
Ωb
α′

)

+ C (σp)

]
(42)
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for trapped particles (with C (σp) given by Eq.(40)). Here both, α and α′ have been shifted
by π/2 for convenience. Note that α′ can be introduced as an extended angle that spans the
interval (−∞; π] and hence an integral over α′ ∈ [−π/2, α] can be replaced by α′ ∈ (−∞; α] .

To consider passing particles, we note that branches σp = ±1 are no longer connected.
Nevertheless, we still can introduce a similar change of variables:

α = Ωb

∫ ξ

0

dξ′

p′
(43)

with Ωb (H0) = σp

(∫ π
−π

dξ
2π|p|

)−1
being the transit frequency. The properties of α (ξ,H0;σp) for

passing particles are the same as described above for trapped particles. We note that the bounce
frequency, Ωb, is negative when σp = −1, and hence ξ and α rotate in opposite directions. Thus,
we arrive at the final expression for the resonant Lagrangian of the form:

Lres,j (δω, l) = 2πiω2
pj |hkω|2

∑

σp

∫ +∞

−ω2
b

dH0

Ωb

δω

|Ωb|

∫ π

−π

dα

2π

∂f0,j
∂H0

e
−i

(

lξ− δω
Ωb
α
) [∫ +∞

−∞

dα′

2π
e
i
(

lξ′− δω
Ωb
α′

)

·Θ
[
σp
(
α− α′

)]
+ C (σp)

]
,

(44)

where Θ is the Heaviside step function. The summation over σp applies only to the passing
domain with σp being the sign of Ωb. This convention will be used throughout the paper, unless
otherwise stated. To check the validity of Eq.(44), we address the limit when the trapped particle
contribution becomes negligible, and ξ can be considered as a linear function of α, i.e. the limit
of deeply passing particles. Then we recover the solution for thermal particles, found in Eq.(28),
and the dispersion relation of the bump-on-tail instability in accordance with Eq.(31).

4.2.3. Explicit resonance form To establish a connection with the filtered solution, we seek
an expression for Eq.(44), where resonances are explicit. This representation must be valid
everywhere in phase space, as we would expect to see secondary modes in a region with the
largest gradient of the primary equilibrium distribution function, f0,j (H0). From a technical
point of view, we need to re-express Eq.(34)/Eq.(39) and hence the functional Eq.(44) in a
resonant form. This is tricky, but the calculation becomes straightforward with the following
remark: since the new variable α is an angle for both trapped and passing particles, we can seek
gjω as a Fourier series in α, i.e.

gjω (α,H0;σp) =
∑

n

gj,nω (H0;σp) e
inα. (45)

Here the σp dependence is relevant to passing particles only. Since the perturbed Hamiltonian is
an exponential function of ξ, it is also an exponential function of α, but with an infinite number
of harmonics instead of only one harmonic in ξ:

hω = hkωe
ilξ =

+∞∑

n=−∞

hnω (H0;σp) e
inα. (46)

Using dα/Ωb = dξ/p, we come to the following solution of the Vlasov/Fokker-Planck equation:

gj,nω = − δω

δω − nΩb + i0+
∂f0,j
∂H0

hnω (47)
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and the corresponding resonant Lagrangian:

Lres,j (δω, l) = −ω2
pj

+∞∑

n=−∞

∑

σp

∫ +∞

−ω2
b

dH0

Ωb

δω

δω − nΩb + i0+
∂f0,j
∂H0

|hnω|2, (48)

where the perturbed Hamiltonian Fourier components, hnω, are

hnω = hkω

∫ π

−π

dα

2π
ei(lξ−nα). (49)

ξ here is a function of (α,H0;σp). We note that n differs from l, except for the deeply passing
end, H0 → +∞, since α = ξ in that case. It can be proved that Eq.(44) and Eqs.(48,49) are
equivalent (see appendix 6.2 for more detail). Adding the adiabatic contribution, we have

LEP,j (δω, l) = −ω2
pj

+∞∑

n=−∞

∑

σp

∫ +∞

−ω2
b

dH0

Ωb

nΩb
δω − nΩb + i0+

∂f0,j
∂H0

|hnω|2. (50)

for the total EP Lagrangian. Eq.(50) has a form close to the filtered dispersion relation but still
is an exact solution of the problem.

4.2.4. Full secondary mode dispersion relation When the island-like structure is fully accounted
for, the dispersion function takes two forms. The resonant form is

D (δω, l) = −l2 + l2
∑

j=e,i

(
ω2
pj

ω2
+ 2i

ωγj
ω2
pj

)

−
∑

j=fe,fi

ω2
pj

+∞∑

n=−∞

∑

σp

∫ +∞

−ω2
b

dH0

Ωb

nΩb
δω − nΩb + i0+

∂f0,j
∂H0

∣∣hnω
∣∣2

(51)

with the coefficients hnω defined as

hnω =

∫ π

−π

dα

2π
ei(lξ−nα). (52)

An equivalent non-resonant form reads

D (δω, l) = −l2 + l2
∑

j=e,i

(
ω2
pj

ω2
+ 2i

ωγj
ω2
pj

)
+

∑

j=fe,fi

ω2
pj

∑

σp

∫ +∞

−ω2
b

dH0

Ωb

∂f0,j
∂H0

+

2πi
∑

j=fe,fi

ω2
pj

∑

σp

∫ +∞

−ω2
b

dH0

Ωb

δω

|Ωb|
∂f0,j
∂H0

∫ π

−π

dα

2π
e
−i

(

lξ− δω
Ωb
α
)

×

×
{∫ +∞

−∞

dα′

2π
e
i
(

lξ′− δω
Ωb
α′

)

·Θ
[
σp
(
α− α′

)]
+ C (σp)

}
.

(53)

(note: Eqs.(51,52)/Eq.(53) reduces to the conventional bump-on-tail dispersion relation,
Eq.(31), in the limit of deeply passing particles, i.e. H0 ≫ ω2

b .) Here δω is complex and
takes the form δω+ iγ. γ corresponds to the secondary mode growth/decay rate. D (δω, γ) = 0
provides the secondary mode dispersion relation. To analyze its stability, we consider contours
of constant |D (δω, γ)| in the (δω, γ) plane [24]. Any root of |D (δω, γ)| corresponds to a pole of
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|D (δω, γ)|−1. For simplicity, we focus on fast electrons, dropping the background ion term in
the dispersion function, as ωpi ≪ ωpe, provided the plasma quasineutrality is maintained. The
fraction of EPs is assumed to be small by default. In [24] we have investigated the Dp, νf,p
and l dependencies of the secondary mode growth/decay rate. γ as a function of the velocity
diffusion and dynamical friction rates has been found to be monotonic, and changing the sign
of γ in a chosen range of plasma and wave parameters. In contrast, γ vs. l, found in [24], has
two roots, which provide the secondary mode stability regions. In Fig.8 we plot the secondary

Figure 8. The normalized secondary mode growth/decay rate vs. l in a pure diffusion case (diamond

markers) and in the presence of drag (circle markers). Solid lines represent the best fit line for each

case. The bounce frequency at the deeply trapped end, ωb/ωp,e = 0.1. The Dp and νf,p values and

normalization have been chosen as in Figs.5-7 (Dp = 1.6 · 10−5ω3
pe, νf,p = 4.0 · 10−4ω2

pe/0). The regions

of negative γ correspond to the stability regions of secondary modes.

Figure 9. The normalized secondary mode growth/decay rate vs. bounce frequency of deeply trapped

particles, ωb in the presence of drag, νf,p (solid lines represent the best fit line for each case). The p

space diffusion is fixed, Dp = 1.6 ·10−5ω3
pe. The primary/secondary wave number ratio, l = 1.25. The Dp

and νf,p normalization have been chosen as in Figs.5-7. In each case arrows indicate roots of γ = γ(ωb).

The first root, ωb,c, corresponds to a critical island half-width, below which the secondary mode is stable.

While the second root, ωb,s defines a saturation level, above which the secondary mode stability is reached.
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mode growth/decay rate, γ, against l = k/k0, based on the full secondary mode dispersion
relation, Eqs.(51-52)/Eq.(53), with f0,j found as a solution of Eq.(14) and shown in Fig.5. As
can be seen from the figure, the secondary mode is stable for l < lc and l ≥ ls. lc and ls are
introduced as roots of γ = γ(l) and hence define the stability region(s) of secondary modes. lc
has been shown to grow monotonically with the dynamical friction rate [24] in a chosen range
of plasma and wave parameters. However, this variation of lc with νf,p is weak in both Fig.3
of [24] and Fig.8 to change the stability region(s) significantly. Due to a larger number of poles
of |D|−1 in the decreasing region of γ vs. l, we introduce two decreasing branches. This gives
two maximum values of γ as a function l. Indeed, provided ω0/k0 and ω/k are the primary
island and the secondary mode resonant velocities, we estimate a value of l that corresponds to
the maximum growth rate of the secondary modes from ω/k ≈ ω0/k0 ± 2ωb/k0. The maximum
growth rate is expected when the secondary mode resonant velocity approaches the boundary of
the primary island, ±2ωb/k0. This can be explained by steepening of the particle distribution in
the vicinity of the island separatrix due to its flattening in the island region in a pure diffusion
case as well as its hole close to the island O-point in the presence of drag (see Figs.5-7 for
the primary equilibrium distribution). As ω ≈ ω0 ≈ ωpe to leading order, the latter condition
roughly translates into 1± 2ωb/ωpe ≈ k0/k = 1/l, which provides an estimation for l for a given
island half-width, ωb (0.83 and 1.25 for ωb = 0.1, respectively). As can be seen from Fig.8, γ
as a function of l is non-monotonic with maximums being in accordance with these estimations.
Adding drag creates a hole at the O-point of the island and hence shifts the largest gradient of
the EP distribution closer to the island center, which, in turn, decreases the stationary point of
γ = γ(l).

The other parameter we can vary is the bounce frequency of deeply trapped particles that
characterizes the width of the island in phase space, 2ωb. We plot γ against ωb for different
friction rates (Fig.9) and in a pure diffusion case for different bulk densities (Fig.10). This
functional dependence is non-monotonic and provides a region of marginal stability of secondary
modes. γ grows monotonically with ωb, crossing the γ = 0 level. Then it reaches maximum and
decreases, crossing γ = 0 for the second time. Hence, we introduce a marginal island half-width,
ωb,c, below which γ < 0 and thus the mode is stable, as well as a saturation level, ωb,s, where γ
as a function of ωb has a second root.

Figure 10. The secondary mode growth/decay rate against ωb in a pure diffusion case, Dp =

1.6 ·10−5ω3
pe (Dp value and normalization have been chosen as in Figs.5-7). The primary/secondary

mode number ratio, k0/k = 4/5. An analytic solution (square and diamond markers) is calculated

based on Eqs.(51,52)/Eq.(53). Solid lines represent the COBBLES growth/decay rates.
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The solution has been benchmarked against the full-f approach. In Fig.10 we plot the
secondary mode growth/decay rate vs. ωb for different equilibrium plasma density, ne, and the
ad-hoc damping rate, γd,0. An analytic solution is governed by Eqs.(51,52)/Eq.(53), while the
COBBLES code in its full-f version (see in the appendix 6.5) has been adopted to provide the
numerical results. They are found to be in good agreement. The benchmarking details are given
in the appendix 6.5. ωb ≈ 0.15ωpe is approximately the point after which the comparison could
no longer be provided. This corresponds to longer times, when the effects outside the secondary
mode stability analysis start playing a role such as mode-mode coupling and the mode non-linear
saturation.

5. Summary and Conclusions

The purpose of the work presented here is to identify the conditions under which an island in
phase space, formed by trapping of EPs in a plasma wave, is subject to secondary instabilities in
the presence of collisions. This is a subject of relevance to MHD instabilities driven by EPs (EP-
MHD) in tokamaks such as fishbones, TAEs or EP-driven geodesic acoustic modes (EGAMs).
The particle dynamics in toroidal magnetic configurations is integrable and can be described by
a set of action/angle variables in 6D phase space. A single Hamiltonian resonant perturbation
generally leads to the formation of an island-like structure near the resonant surface. The
dynamics in the vicinity of this island can be reduced to a 2D, parametrized by two invariants
of motion that lie on the resonant surface. Hence, a single EP-MHD mode is interpreted as a
reduced 2D Hamiltonian dynamics near the island in phase space.

A prototype of such dynamics is the bump-on-tail instability, which arises in 2D space,
{position, velocity}. In the simplest version, the bump-on-tail instability is a Langmuir wave
that becomes unstable when the electron/ion distribution function exhibits a positive slope
near the resonant velocity. In the presence of strong enough dissipation, a single wave, called
here the initial primary wave, evolves towards a steady island structure. The electron/ion
distribution function, associated with the island, represents a ”perturbed” equilibrium. It has
been computed here by solving the Fokker-Planck equation. We chose the collision operator as
a combination of pitch angle scattering, velocity space diffusion and dynamical friction. The
last term is not negligibly small for ITER like parameters and hence needs to be accounted for.
The aforementioned dimensionality reduction from 6D to 2D allows the Fokker-Planck equation
to be solved in the presence of tokamak plasma drifts, not focusing on the idealized purely
electrostatic slab formulation. This ”perturbed” equilibrium includes a thin separatrix layer,
where collisional effects balance the free streaming contribution and hence an expansion in the
small ratio of the diffusion/drag coefficient to ω3

b/ω
2
b could no longer be applied. The dynamical

friction results in a hole close to the island O-point, while diffusion controls the boundary layer
near the separatrix. This numerical solution has been successfully benchmarked against an
analytic solution that is valid in the case of vanishing dissipation, and also against the full-f
kinetic COBBLES code. The steepening of the distribution function near the island separatrix
opens the way to the emergence of secondary instabilities due to the strong positive gradient of
the distribution function in velocity space in this boundary layer. The ”perturbed” equilibrium
is a true non-linear state: a linear perturbative approach cannot be applied whenever the island
width is significant. Thus, a stability analysis that fully accounts for nonlinearities due to the
island shape has been developed, based on the action/angle approach and a variational form
of the Maxwell equations. It leads to a tractable dispersion relation that we have analyzed
numerically. The results have been compared with the full non-linear solution, provided by the
COBBLES code. It has been found that the growth rate of a secondary mode is maximum when
the associated resonant velocity approaches the boundary of the primary island, which was an
expected result.

A key question in the context of EP-MHD modes is the loss of EPs, induced by the non-
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linear evolution of these modes. The bump-on-tail approach we use allows the EP losses to be
found through the damping contribution of the Lagrangian of the primary/secondary modes as
well as from the EP drive that comes from the slope of the distribution function within the
island. Losses are related to the instability strength. In the limit of strong dissipation where
the island width saturates, particle losses are moderate and controlled by the boundary layer
near the separatrix. When dissipation is small, the distribution function exhibits structures in
phase space that evolve in time. Losses are tied to this complex dynamics. One signature of
this dynamics is frequency chirping, the explanation of which is still debated. In the limit of
weak drive, the Berk-Breizman model is most commonly applied. It is based on the formation
of clump/hole pairs that move away from the resonant surface in phase space. Although their
asymptotic dynamics is quite well understood, the formation process of these clump/hole pairs
is not yet clear. Some recent works [14, 35] have proposed that secondary instabilities are
triggered, which lead to the formation of fine scale structures in phase space, and finally to the
production of clump/hole pairs.

Our results also can be compared with works [14, 35], where less dissipative solutions have
been addressed. In the latter case, the distribution function evolves towards an unmodulated
rectangular shape in velocity space, which is quite different from the island-like structure. As
in [14, 35], a threshold in the width of the region where the distribution function flattens must
be exceeded to see the appearance of secondary instabilities. The threshold found in [14, 35]
cannot be quantitatively compared with the one found in this paper since it is dictated by the
island width in the present work, while the plateau is unmodulated in the spatial direction in
the low dissipation case. Nevertheless, the orders of magnitude are the same. One important
result of the present study is the subharmonic character of the secondary wave compared with
the primary mode. Secondary wave numbers are found to be smaller than the primary wave
number in qualitative agreement with previous works on BGK mode stability. This may prevent
the onset of a secondary wave if the primary wave number is already the lowest available. One
may interpret this property as a certain robustness of an island-like structure in the presence
of collisions, which would explain why no/slow chirping is observed in collisional situations.
We also note that turbulence has been proposed as a mechanism that quenches clump/hole
formation [26].

The present work is subject to some limitations. The radial mode structure [36, 37] has
not been addressed in this paper. [37] shows that the narrow structure of the model Alfvén
mode eigenfunction decreases the resonance island width and hence, in principle, can decrease
the secondary mode stability threshold, ωb,c. In contrast, as stated above, the effect of drag
increases the marginal island width. Hence, ωb,c would be determined by a competition of these
two effects. In addition, the effects of finite orbit width (FOW) and finite Larmor radius (FLR) of
EPs on TAEs are left beyond the scope of the paper. Following [38], the FOW can be introduced
perturbatively by Taylor expanding the electrostatic potential about the guiding centre provided
the characteristic length scale of the variation of the electric field is larger than the Larmor radius.
The finite orbit width effects are shown to be stabilizing for TAEs localized in a plasma core and
destabilizing for global TAEs at the tokamak edge [39]. Although the secondary instability onset
has been demonstrated, it does not provide an explanation of the initial erosion of the island
separatrix that ultimately leads to the asymptotic dynamics, proposed by Berk and Breizman.
However, more rigorous derivations are required to provide the actual picture. Furthermore,
the stability of a single phase space island has been investigated here, taking as an assumption
that a single primary mode exists. In a tokamak for instance it corresponds to a single isolated
EP-MHD mode. In a more general case, there can be a number of resonant primary harmonics.
Resonating on the same rational surface, they maintain the island-like configuration, but deform
the separatrix. In contrast, when harmonics resonate on different surfaces, several islands are
formed and can overlap according to the Chirikov criterion. Inside the overlapping region,
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stochasticity is generated. The resulting transport can in principle flatten the distribution
function between two adjacent rational surfaces and thus prevent secondary instabilities in the
stochastic layer that is thus formed. According to some theories, this is relevant to a case in
ITER advanced scenarios when several TAEs arise simultaneously. This situation is left for
future work.
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6. Appendix

6.1. Primary equilibrium: numerical grid
The numerical solution technique for the Fokker-Planck equation, Eq.(14)/Eq.(18), with the
matching conditions at the trapped/passing boundary, given in Sec.3, is presented in this
appendix. This is a 2D/1D differential equation in {ξ,H0;σp}/{H0;σp}. The Dp and νf,p are
taken as parameters. To provide the Maxwellian behavior far from the island in phase space,
we require a zero p and hence H0 gradient of g0,j at p → ±∞. In ξ space, we simply impose
g0,j (−ξb) = g0,j (ξb) (ξb = π for a branch of passing particles). To solve Eq.(14)/Eq.(18), we
apply the shooting method in H0 direction, reducing it to a matrix/algebraic equation for any
H0. Applying the finite difference scheme to H0 space (central difference to the equation and
forward/backward difference at the edges of H0 space), we obtain the following matrix equation:

PPP σj ggg
σ
j+1 +QQQσj g

σ
j +RRRσj g

σ
j−1 +AAAσj = 0 (54)

for the vector solution, gggj , we seek at each H0 grid point, j (note: for Eq.(18) gggj becomes a
scalar, gj , and Eq.(54) should be understood as an algebraic at each j). σ = ±1 for the passing
and σ = |σ| for the trapped branches (note: |σ| denotes ±1/+1 for the trapped branch of
Eq.(14)/Eq.(18), respectively). PPP σj , QQQ

σ
j and RRRσj are square diagonal matrices of size Nξ × Nξ,

and AAAσj is the right hand side vector; both, gggj and AAA
σ
j , are of length Nξ (Nξ is a number of points

in ξ direction). For the reduced ξ-averaged Fokker-Planck equation, Eq.(18), all the coefficients
in Eq.(54) as well as the right hand side become scalars.

The left boundary in a general form in H0 space (i.e. for deeply trapped particles at j = 0)
reads

P̂̂P̂P
|σ|,t
0 ggg

|σ|,t
0 + Q̂̂Q̂Q

|σ|,t
0 g

|σ|,t
1 + R̂̂R̂R

|σ|,t
0 g

|σ|,t
2 + Â̂ÂA

|σ|,t
0 = 0. (55)

To set the j = 0th element, we assume a linear relation between ggg at jth and (j + 1)th grid
points, and hence we write

ggg
|σ|,t
j = ααα

|σ|,t
j ggg

|σ|,t
j+1 + βββ

|σ|,t
j , (56)

from the side of trapped particles. Here ααα
|σ|,t
j is the square matrix and βββ

|σ|,t
j is a vector of length

Nξ. Combining Eqs.(54,56), we obtain the following recurrence relation:

ααα
|σ|,t
j = −

[
QQQ

|σ|,t
j +RRR

|σ|,t
j ααα

|σ|,t
j−1

]−1
PPP

|σ|,t
j ,

βββ
|σ|,t
j = −

[
QQQ

|σ|,t
j +RRR

|σ|,t
j ααα

|σ|,t
j−1

]−1 [
RRR

|σ|,t
j β

|σ|,t
j−1 +AAA

|σ|,t
j

]
.

(57)

Combining Eqs.(55,56,57), we calculate ααα
|σ|,t
0 and βββ

|σ|,t
0 at the deeply trapped end. Then using

Eq.(57) we find all ααα
|σ|,t
j s with βββ

|σ|,t
j s up to the trapped/passing boundary, H0 = Hc

0 (j = Np1),
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as shown in Fig.11. We apply the exact same algorithm to the passing branch. The right
boundary condition, i.e. for deeply passing particles at j = Np2, is

P̂̂P̂P σ,pNp2
gggσ,pNp2

+ Q̂̂Q̂Qσ,pNp2
gσ,pNp2−1 + R̂̂R̂Rσ,pNp2

gσ,pNp2−2 + Â̂ÂAσ,pNp2
= 0. (58)

Employing
gggσ,pj = ααασ,pj gggσ,pj−1 + βββσ,pj , (59)

and substituting this into the initial equation, Eq.(54), we come to

ααασ,pj = −
[
PPP σ,pj ααασ,pj+1 +QQQσ,pj

]−1
RRRσ,pj ,

βββσ,pj = −
[
PPP σ,pj ααασ,pj+1 +QQQσ,pj

]−1 [
PPP σ,pj βββσ,pj+1 +AAAσ,pj

]
.

(60)

Combining Eqs.(58,59,60), we calculate ααασ,pNp2
and βββσ,pNp2

at the deeply passing end and using

Eq.(60) we find all ααασ,pj s with βββσ,pj s up to H0 = Hc
0 (j = 0) from the passing side (see Fig.11).

Once all ααασj s and βββ
σ
j s are obtained from the passing and the trapped side (the trapped/passing

boundary itself, j = Np1 for trapped and j = 0 for passing particles, is excluded from the
scheme), we apply the matching conditions, introduced in Sec.3. To solve Eq.(14), we require
both σ branches of the solution we seek to be in a class CCC1 (i.e.

∑
σ σg

σ,p =
∑

|σ| |σ| g|σ|,t,∑
σ g

σ,p =
∑

|σ| g
|σ|,t and similar relations for the first derivatives), which translates into

ggg+1,p
0 = ggg+1,t

0 ≡ ggg+c ,

ggg−1,p
0 = ggg−1,t

0 ≡ ggg−c ,

1

∆H0,t

[
3ggg+1,t
Np1

− 4ggg+1,t
Np1−1 + ggg+1,t

Np1−2 + 3ggg−1,t
Np1

− 4ggg−1,t
Np1−1 + ggg−1,t

Np1−2

]
=

1

∆H0,p

[
−ggg+1,p

2 + 4ggg+1,p
1 − 3ggg+1,p

0 − ggg−1,p
2 + 4ggg−1,p

1 − 3ggg−1,p
0

]
,

1

∆H0,t

[
3ggg+1,t
Np1

− 4ggg+1,t
Np1−1 + ggg+1,t

Np1−2 − 3ggg−1,t
Np1

+ 4ggg−1,t
Np1−1 − ggg−1,t

Np1−2

]
=

1

∆H0,p

[
−ggg+1,p

2 + 4ggg+1,p
1 − 3ggg+1,p

0 + ggg−1,p
2 − 4ggg−1,p

1 + 3ggg−1,p
0

]

(61)

to find the boundary elements, ggg±c . The uniform grid has been assumed here, ∆H0,p,t are
the step sizes in H0 space for the passing and trapped branches, respectively. For the
reduced Fokker-Planck equation, Eq.(18), whose trapped solution is σ-independent due to ξ
averaging, the matching conditions at Hc

0 reduce to
∑

σ σg
σ,p = 0,

∑
σ g

σ,p = 2g|σ|,t and∑
σ ∂g

σ,p/∂H0 = 2∂g|σ|,t/∂H0 that translate into

g
|σ|,t
Np1

= g+1,p
0 = g−1,p

0 ≡ gc,

2

∆H0,t

[
3g

|σ|,t
Np1

− 4g
|σ|,t
Np1−1 + g

|σ|,t
Np1−2

]
=

1

∆H0,p

[
−g+1,p

2 + 4g+1,p
1 − 3g+1,p

0 − g−1,p
2 + 4g−1,p

1 − 3g−1,p
0

]
,

(62)

to find the boundary element, gc. Substituting Eqs.(56,59) into Eq.(61)/Eq.(62) gives us a
relation for ggg±c /gc. Once ggg±c /gc is found, we reconstruct the rest solution elements from
Eqs.(56,59) up to the trapped/passing edges. The described solution technique is illustrated
in Fig.11 for Eq.(18).
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Figure 11. A schematic representation of the solution technique.

6.2. Resonant and non-resonant representation of the dispersion relation
To show that both resonant Eqs.(51,52) and non-resonant Eq.(53), representations of the
dispersion function are equivalent, we compare resonant parts of the perturbed distribution
function, gjω, given by Eqs.(34/39,40) and Eqs.(45,47). Substituting Eqs.(47,49) into Eq.(45)
gives

gjω (α,H0;σp) = −
∑

n∈Z

δω

δω − nΩb + i0+
∂f0,j
∂H0

hkωe
inα

∫ π

−π

dα′

2π
ei(lξ

′−nα′). (63)

Using the Landau relation, which is

1

δω − nΩb + i0+
= −i

∫

R+

ei(δω−nΩb)σdσ, (64)

and then applying the Shah function relation:

∑

n∈Z

ein(α−α
′−Ωbσ) = 2π

∑

k∈Z

δ
(
α− α′ − Ωbσ − 2πk

)
(65)

we modify the above formula to obtain

gjω (α,H0;σp) = 2πiδω
∂f0,j
∂H0

hkω
∑

n∈Z

∫

R+

dσ

∫ π

−π

dα′

2π
ei(lξ

′+δωσ)δ
(
α− α′ − Ωbσ − 2πn

)
, (66)

which we can rewrite as

gjω (α,H0;σp) =

2πi
δω

Ωb

∂f0,j
∂H0

hkω
∑

n∈Z

∫ 3π/2

−π/2

dα′

2π
exp

[
i

(
lξ′ + δω

α− α′ + 2πn

Ωb

)]
·Θ
(
α− α′ + 2πn

Ωb

)
.

(67)

Here we have used a limit operation for a periodic function to change the limits of integration,
and n has been replaced by −n due to periodicity. δ and Θ are used for the Dirac delta and
the Heaviside step functions, respectively. From now we assume Ωb > 0, the same analysis can
be produced for negative Ωb values. As α, α′ ∈ [−π/2; 3π/2], α − α′ ∈ [−2π; 2π]. For n ≤ −1
the Heaviside function is always zero. If n = 0, then α′ ∈ [−π/2;α]. If n = 1, the Θ-function is
always one. Therefore,

gjω (α,H0;σp) = 2πi
δω

Ωb

∂f0,j
∂H0

hkω

∫ α

−π/2

dα′

2π
exp

[
i

(
lξ′ + δω

α− α′

Ωb

)]
+

2πi
δω

Ωb

∂f0,j
∂H0

hkω

+∞∑

n=1

∫ π

−π

dα′

2π
exp

[
i

(
lξ′ + δω

α− α′ + 2πn

Ωb

)]
.

(68)
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Applying Eq.(41), we obtain

gjω (α,H0;σp) = 2πi
δω

Ωb

∂f0,j
∂H0

hkω

{∫ α

−π/2

dα′

2π
exp

[
i

(
lξ′ + δω

α− α′

Ωb

)]
+

∫ π
−π

dα′

2π exp
[
i
(
lξ′ + δωα−α

′

Ωb

)]

exp
(
−2πi δωΩb

)
− 1



 ,

(69)

which is exactly Eqs.(39,40).

6.3. Wave-particle energy exchange
To calculate energy exchanged between waves and particles, δW , we need to address the
imaginary part of the Lagrangian, given by Eq.(6). Hence, using the final dispersion relation,
Eq.(51), we write δW = −2δωℑD|hkω|2. Applying the Sokhotski-Plemelj formula, 1

δω−nΩb±i0+
=

p.V. 1
δω−nΩb

∓ iπδ (δω − nΩb) to real δω, we come to

δW = −2πω2
pjδω

+∞∑

n=−∞

n
∑

σp

∫ +∞

−ω2
b

dH0
∂f0,j
∂H0

|hnω|2δ (δω − nΩb). (70)

This energy exchange is negative, provided
∂f0,j
∂H0

> 0, i.e. the secondary mode drive is possible,
which we could see from the secondary mode stability analysis.

6.4. Angle variable for trapped and passing particles
It is convenient to introduce a trapped parameter defined as

κ2 =
2ω2

b

H0 + ω2
b

. (71)

The passing domain corresponds to 0 ≤ κ ≤ 1, while the trapped domain is determined by
1 ≤ κ < +∞. The bounce frequency is then given by the relation Ωb = 1/2τ (κ) for trapped
and by Ωb = σp/2τ (κ) for passing particles, where the function τ is such that

τ (κ) =
2

π
K
(
κ2
)
, 0 ≤ κ ≤ 1

τ (κ) =
2

π

1

κ
K

(
1

κ2

)
, 1 ≤ κ < +∞

(72)

Here K is the complete elliptic integral of the first kind. As expected, the bounce/transit
period becomes large near the trapped/passing boundary, κ = 1, since K (κ) ≃ −1

2 ln |1− κ| for
|1− κ| ≪ 1. A useful expression for α in the upper quadrant 0 ≤ ξ ≤ π/2, 0 ≤ α ≤ π/2 is

α =
F
(
ξ/2, κ2

)

F (π/2, κ2)
, 0 ≤ κ ≤ 1

α =
π

2

F
(
sin−1 [κ sin (ξ/2)] , κ−2

)

F (π/2, κ−2)
, 1 ≤ κ < +∞

(73)

Here F is the incomplete elliptic function of the first kind, defined as F (δ,m) =
∫ δ
0

dδ′√
1−msin2δ′

.

This relation can formally be inverted to provide a link between the angles ξ and α. Using
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the relation between complete and incomplete elliptic integrals, K (m) = F (π/2,m), we rewrite
Eq.(72) as

sin

(
ξ

2

)
= sn

(τα
2
, κ2
)
, 0 ≤ κ ≤ 1

sin

(
ξ

2

)
=

1

κ
sn

(
κτα,

1

κ2

)
, 1 ≤ κ < +∞

(74)

valid for all αs and ξs. The function sn (δ,m) is the Jacobian elliptic function that coincides
with the trigonometric sin δ for m ≤ 1. One recovers that ξ = α for deeply passing particles
κ = 0, and ξ = ξ0 sinα for deeply trapped particles κ → ∞. ξ0 here is the bounce angle,
sin (ξ0/2) = 1/κ. Note however that the function differs significantly from the sine function for
barely trapped and passing particles κ ∼ 1.

6.5. COBBLES simulation
The primary equilibrium distribution function and the secondary mode growth/decay rate, based
on Eqs.(51,52)/Eq.(53), have been benchmarked against the COBBLES code, which is to be
described in this appendix.

We cast the Berk-Breizman model [27] in a many-wave form. We consider a 1D plasma with
a distribution function, f (t, x, V ), in a box length L = 2π/k1 with periodic boundary conditions
in x direction (k1 is the lower secondary mode number). To ensure quasineutrality, we assume
a background population of the opposite charge with a distribution function f (t, V ), which is
the spatial average of f . In the initial condition, the velocity distribution,

f0 (V ) ≡ f (t = 0, V ) = f e,i0 (V ) + ffe,fi0 (V ) , (75)

comprises a Maxwellian bulk,

f e,i0 (V ) =
ne,i

VTe,i
√
2π
e
− 1

2

(

V
VTe,i

)2

, (76)

and a beam of high energy particles,

ffe,fi0 (V ) =
nfe,fi

VTfe,fi
√
2π
e
− 1

2

(

V −Vb
VTfe,fi

)2

, (77)

where ne,i and nfe,fi are bulk and beam electron/ion densities, VTe,i and VTfe,fi are thermal
velocities of bulk and beam particles, and Vb is the electron/ion beam drift velocity. The
evolution of a full electron/ion distribution is described by Eq.(4), coupled to the displacement
current equation (DCE),

∂E

∂t
= −eZj

ε0

∫
V (f − f0) dV − 2γdE, (78)

to provide self-consistency. The DCE is used here instead of Poisson’s equation to find the
time dependent E-field, E = −∂Φ/∂x. γd is the ad-hoc damping rate, defined as in [23]. In
the limit of γd = 0, Eq.(78) is equivalent to Poisson’s equation. The average electric field,
E0, is kept zero at all times. The term proportional to γd is an external wave damping,
which is taken to be model for all linear dissipative mechanisms of the wave energy to the
background plasma [29]. Note that unlike previous works, γd is allowed to depend on the wave
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number. Due to periodicity in x, we seek a solution, written as a Fourier series in x such that
E (x, t) = Ek (t) e

ikx+ c.c. and similarly for f . Here we have assumed a single mode of the wave
number k, which corresponds to the situation of an isolated single TAE. For k 6= 0, Eq.(78)
yields the time evolution of the wave. In the initial condition we apply small perturbations,
f (t = 0, x, V ) = f0 (V ) [1 +

∑
k ǫk cos (kx+ φk)], where each φk is a random phase. The initial

value of E is obtained by solving Poisson’s equation. The right hand side of Eq.(4) is the adopted
1D projection of the Fokker-Planck operator [22, 28] that includes both drag and diffusion. It
is given by Eq.(12), rewritten in V space.

To perform numerical simulations of the Berk-Breizman model, Eqs.(4,12,78), we adopt the
COBBLES code in its full-f version (COBBLES stands for COnservative Berk-Breizman semi-
Lagrangian Extended Solver). It has been developed in previous works [30, 6, 31, 32], based
on the Cubic-Interpolated-Propagation (CIP) scheme [33] and the Strang splitting method [34].
The normalization is as follows: time is normalized to the total electron/ion plasma frequency
ωp, distance to the smaller secondary wave number k1, density to the total plasma density
neqm, and electric field to mjω

2
p/ (eZjk1), where ω

2
p = neqmeZj

2/ (ε0mj). All quantities like
f are sampled on uniform Eulerian grids with Nx and NV grid points in x and V directions,
respectively, within the computational domain {(x, V )| 0 ≤ x < L = 2π/k1, Vmin ≤ V ≤ Vmax}.
The boundary conditions are periodic in x direction and fixed in V direction. For the simulation,
we have chosen Vmin = −8, Vmax = 18, Nx = 256, NV = 2048 and a time step width ∆t = 0.05.
The simulated species is thermal electrons with the fast electron component included, and the
ions act as a neutralizing species (the opposite situation is also allowed). To benchmark the
solution of Eq.(14), which is localized to the island vicinity, against the COBBLES solution,
valid in a full range of V , we need to set the f0,j behavior far from the island, i.e. ∂feqm/∂p|res.
As Eq.(4) is written in the absence of plasma drifts, p here needs to be understood as k0V .
Provided p is normalized to ωpe, ωpe ∂feqm/∂p|res, which is equal to ωpe ∂feqm/k0∂V |Vph , reads

1√
2πV̂Tfe

e
− 1

2

(

V̂ph−V̂b

V̂Tfe

)2

V̂b − V̂ ph

V̂ 2
Tfe

in units of nfek0/ωpe. Hats here indicate that the corresponding quantities have been normalized
to ωpe/k0. The parameters for the initial bump-on-tail distribution are VTfe = 0.72ωpe/k0,
Vb = 1.2ωpe/k0, Vph = 0.9364ωpe/k0 ≈ ωpe/k0 and nfe/neqm = 0.05. The COBBLES distribution
function results are shown in Figs.5-7 and are found to be in agreement with the localized
solution in the vicinity of the phase space island. The dissipation is arbitrary set-up such that
only one mode, namely mode m = 4 (with km = mk1), is linearly unstable for f = f0. We
choose γd (k4) = 0 and γd (k) = 0.038 for k 6= k4. We define ωm,L0 and γm,L0 as the linear
frequency and growth rate of the mode of wave number km = mk1 in the absence of dissipation
and collisions. Note that γm,L0 is proportional to the slope of f0 at the resonant velocity
Vm = ωm,L0/km, γm,L0 = (π/2) ∂f0/∂V |Vm . We define the full linear growth rate γm,L as the
linear growth rate including the effects of collisions and dissipation. In the collisionless limit,
when γm,L ≪ ωm,L0, the full linear growth rate reduces to γm,L = γm,L0 − γd (km). With the
parameters listed above, γ4,L = 0.034 and γm,L < 0 for all m 6= 4. In particular, γ3,L = −0.009
and γ5,L = −0.0008. Fig.12 shows the time evolution of the amplitudes of modes m = 3, 4, 5,
8 and 12, which are the dominant modes for the time interval t < 1000. Fig.13 shows snapshots
of the velocity distribution near the phase velocities of modes m = 3, 4 and 5. We observe
that mode m = 4 grows linearly up to t ≈ 300, after that it saturates. By comparing this
with a control simulation, where all other (m 6= 4) modes are artificially filtered out, we have
observed that the time evolution of both amplitude and velocity distribution are not significantly
impacted by the presence of other modes until ∼ 1000. Modes m = 5 and m = 3 decay linearly
until t ≈ 200 and t ≈ 320, respectively, after that they grow. This timing of reversal coincides

Page 26 of 28AUTHOR SUBMITTED MANUSCRIPT - NF-103046.R1

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60



Figure 12. Time evolution of the amplitudes of Fourier modes k = mk1 of the E-field. Inset: zoom

near the time of reversal of evolution of the mode m = 5. In the inset, the two dashed lines correspond

to growth/decay rates γ5,L = −0.0008 and γ5,sec = 0.012. The diffusion and the slowing down rates are

νd,V = 10−2 and νf,V = 0, respectively.

Figure 13. Spatial average of the distribution function. Vertical lines indicate phase velocities

Vm = ωm,L0 of modes km = mk1. The diffusion and the slowing down rates are νd,V = 10−2 and

νf,V = 0, respectively.

with the time when the steep slopes at the boundaries of the BGK island, formed by mode
m = 4, reach the phase velocities of modes m = 3 and m = 5. These results are qualitatively
consistent with the secondary instability theory. As can be seen in Fig.12, the growth rate of
m = 5 varies continuously around t = 300. However, it does stabilize at g5,sec = 0.012 for a finite
time interval, 380 < t < 400. Fig.12 includes the amplitudes of modes 8 and 12. Since they are
harmonics of the dominant mode m = 4 and since the growth rate of m = 8 is double that of
m = 4, we interpret their growth as the result of the fluid-like mode-mode coupling (probably in
a class of modular-parametric instabilities), rather than the result of kinetic interactions between
particles and waves. In the simulations of Figs.12,13, the primary mode would be in a regime
of constant-amplitude steady-state, if the secondary modes were not present. It is only in the
presence of the other modes (including secondary instabilities), that the regime changes to a
chaotic regime with strong amplitude oscillations and some chirping.
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