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Using Unstructured Data to Improve the Continuous

Planning of Critical Processes Involving Humans

Colin Paterson, Radu Calinescu, Di Wang and Suresh Manandhar

Department of Computer Science, University of York, York, UK

Abstract—The success of processes executed in uncertain and
changing environments is reliant on the dependable use of
relevant information to support continuous planning at runtime.
At the core of this planning is a model which, if incorrect, can
lead to failures and, in critical processes such as evacuation
and disaster relief operations, to harm to humans. Obtaining
reliable and timely estimations of model parameters is often
difficult, and considerable research effort has been expended
to derive methods for updating models at run-time. Typically,
these methods use data sources such as system logs, run-time
events and sensor readings, which are well structured. However,
in many critical processes, the most relevant data are produced
by human participants to, and observers of, the process and its
environment (e.g., through social media) and is unstructured. For
such scenarios we propose COPE, a work-in-progress method for
the continuous planning of critical processes involving humans
and carried out in uncertain, changing environments. COPE
uses a combination of runtime natural-language processing
(to update a stochastic model of the target process based on
unstructured data) and stochastic model synthesis (to generate
Pareto-optimal plans for the process). Preliminary experiments
indicate that COPE can support continuous planning effectively
for a simulated evacuation operation after a natural disaster.

Index Terms—natural-language processing; stochastic model
synthesis; probabilistic model checking

I. INTRODUCTION

The success of human-centric critical processes such as

search and rescue, disaster relief operations, and emergency

management relies on the dependable use of relevant informa-

tion to support effective decision making. A very challenging

decision-making task in this context is the continuous planning

needed because of the uncertainty and frequent changes in the

environment and goals of operational processes (e.g., [1]–[5]).

When models are used to derive operational plans, it is

paramount to ensure that these models are both reliable and

up to date. Accordingly, the models are updated at run-

time, with their parameters (and sometimes their structure)

derived from observations of data sources which record model

features. The techniques used for this purpose typically require

structured data sources (e.g., application logs or software-

generated events). As such, these techniques cannot be applied

to critical processes with human participants who generate

relevant unstructured data through channels like social media,

web-based forums, and verbal reporting of their observations.

This paper introduces a work-in-progress approach for the

continuous planning of operational processes involving hu-

mans (COPE). The main contribution of COPE is its novel

integration of: (i) natural language processing, to update the
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Fig. 1. Topological map showing the transportation infrastructure of Neopolis

stochastic model of a human-centric critical process by ex-

ploiting information encoded in unstructured data streams such

as Twitter; and (ii) stochastic model synthesis, to dynamically

generate updated Pareto-optimal plans for the process.

II. MOTIVATING EXAMPLE

We consider an operation in which a disaster relief team

must devise and communicate evacuation plans to people

traversing a country to safety after an earthquake that led to

shortages of food and medicine, infrastructure damage, areas

of unrest, etc. The cities and the routes between them present

risks to the success of the operation. In addition, traversing a

city or completing a route has associated costs (e.g., associated

to fuel consumption and journey time).

To illustrate the problem, we introduce the fictitious country

Neopolis with the topological map from Fig. 1. Neopolis rep-

resents a dynamic environment in which the risks of travel can

change very quickly and in which infrastructure is unreliable.

We consider a scenario in which the news of a potential threat

to a team located in Ulla has been received and a decision is

made to evacuate them. The operation will be judged a success

if they reach the evacuation point in Chool before a ship, which

is waiting to transport them (and other similar evacuees) out of

the country, leaves. Thus, we wish to construct an evacuation

plan as a sequence of locations for the team to traverse from

their current location to the evacuation point. The plan will be

continually evaluated and updated using two criteria:

1) the probability of reaching the evacuation point;

2) the expected time to complete the journey.

Accordingly, we need to synthesise plans that: (i) satisfy

constraints specified by the domain experts; and (ii) achieve

Pareto-optimal trade-offs between the two criteria, i.e., they

cannot be modified to satisfy one optimisation criterion with-

out worsening their satisfaction of the other criterion.

To synthesise such plans, we want to construct a model

of the environment based on the most up to date knowledge
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Fig. 2. Pareto front for the Neopolis evacuation scenarios (left) and two
Pareto-optimal plans (right)

available. Some of the model parameters will be fixed, e.g.

the distance between locations, whilst others will need to be

estimated by domain experts (e.g., the risk of capture when

traversing a city or road, and the likelihood of having to return

to a previous stage of the journey due to a road block). Note

that when knowledge is encoded in unstructured sources, it

cannot be utilised by existing route planning services like

Google Maps or Apple Maps. These services rely heavily on

historic road traffic data (which is invalid during emergencies)

and on real-time location data from devices running these

services (which include no information about many of the risks

and costs which impact evacuation route planning).

Fig. 2 shows a set of Pareto-optimal plans generated by

COPE (as described in the next sections) for the Neopolis

scenario. The upper solution, via Treebach, has the highest

probability of success; however, this plan takes a long time

to reach the evacuation centre due to the sea crossing. The

second plan has a slightly lower chance of success but is much

faster. Given the highly dynamic nature of the environment

we cannot guarantee that the assumptions made in order to

synthesise these plans will remain valid for the duration of the

evacuation. Therefore, these plans must be updated in response

to changes in the sensed environment. We assume that Twitter

is used extensively in this region, and hence we wish to use this

social media platform to inform model updates and planning

decisions.

III. COPE CONTINUOUS PLANNING

A. Approach overview

Fig. 3 depicts the high-level workflow of our COPE ap-

proach to continuous planning of operational processes. The

six steps of this workflow are described below.

Step 1 - Domain experts initiate the continuous planning

by specifying constraints and optimisation criteria for the

required plans based on the objectives of the operational

process. For instance, for the planning of evacuation routes,

the constraints may define a maximum route completion time,

and the (conflicting) optimisation criteria may include min-

imising risk and costs (e.g. fuel consumption if refuelling is

difficult or impossible). COPE allows for these constraints and

optimisation criteria to be specified in probabilistic variants of

stochastic logic [6] extended with costs and rewards [7].

Step 2 - Given these constraints and optimisation criteria,

and considering the characteristics of the operation and their

prior domain knowledge, the experts then develop an initial

stochastic model of the operational process. For example,

for the evacuation operation, the model captures the relevant

locations and preliminary estimates for the time, success

probability and cost of travelling between these locations. The

COPE stochastic modelling process uses Markovian models

annotated with costs. Such models have an established track

record of supporting planning in uncertain scenarios [8]–[10].

Step 3 - Dealing with the uncertainties and frequent changes

of operational processes requires the continuous exploitation

of both dedicated data streams provided by trusted personnel

and openly available information provided by the general

public. COPE deals with the real-world scenario where data

is encoded in messages available in natural language (i.e. as

plain English text in the form of Twitter messages).

Step 4 - COPE utilises Natural language processing (NLP)

techniques built on our recent research [11]–[13] to trans-

late the plain-English items of information into a stream of

machine-readable events. The NLP engine is configured to

identifiy those events which are relevant for the calculation of

risk, costs, durations and any other features required to update

the COPE stochastic model.

Step 5 - The NLP-generated stream of machine-readable

events drives the continuous stochastic model learning which

underpins COPE. Up-to-date Markov models of the opera-

tional process are built and updated continuously, starting from

the initial stochastic model developed by the domain experts.

This key COPE step leverages recent research on adaptive

model learning [14], [15] and refinement [16], [17].

Step 6 - This COPE step employs plan synthesis techniques

to dynamically generate sets of feasible Pareto-optimal which

optimise the objective in the presence of system constraints.

These plans then act as an advisory input to the disaster relief

team and are communicated to the end users via standard

channels of communication.

B. Architecture and generic implementation

For a preliminary evaluation of COPE, we developed a

generic implementation of its workflow from Fig. 3. We then

specialised this implementation, whose architecture is shown

in Fig. 4, to develop a simulator for the Neopolis evacuation

operation introduced in Section II.

At regular intervals, the generic COPE implementation

probes OSINT sources (for our simulator this was Twitter) and

retrieves data in response to a search request. This data is then

passed to the COPE controller, which sends the data through

a (Python-implemented) gateway to the NLP classifier.

The NLP classifier is pre-trained to identify event types

relevant to the application domain. For the Neopolis scenario,

we considered three event types: gunshot, earthquake (because

of the risk of aftershocks), and flood (which may be caused,

for instance, by damages to dams and locks). If an event

is identified then this is returned to the controller with a

confidence level (a value between 0 and 1, where 1 denotes
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Fig. 9. Workflow for the COPE planner

with that route by 50% and increase the probability to

return to the starting location by 30%.

These rules are then encoded within the Event Manager, which

updates the parameters of the HLAM when needed, and then

returns control to the COPE controller with a notification that

the model has been modified.

D. Planning

The aim of the planning processes is to identify the optimal

action to take in each state of the model with reference to the

specified optimization criteria whilst respecting any specified

constraints. Fig. 9 shows the planning workflow enacted by

COPE. The first step is for a model generator to convert the

HLAM to a stochastic model. The generator implements the

probabilistic modelling assumptions defined by the domain

experts, Fig. 5, and produces a model which encodes the action

sets, Fig. 6. For our running example the model generated is a

discrete-time Markov chain (DTMC) in the PRISM high-level

modelling language [24], with the actions encoded as integer-

valued parameters in the model. This encoding is equivalent

to a Markov decision process, but we prefer it in the current

version of COPE because of the way in which our synthesis of

new plans with multiple constraints and multiple optimisation

criteria works.

Each of the optimisation criteria are then encoded as model

properties in temporal logics. For the DTMC models used in

our example these are encoded as probabilistic computation

tree logic (PCTL) [6].

The planning heuristic next creates a concrete plan by

setting the values associated with the actions. The stochastic

model and optimisation criteria are then passed to a model

analysis engine, for our example this is PRISM.

The action set and resulting property values form a solution

and this is then evaluated against the specified constraints. If a

constraint is violated then the solution is discarded otherwise

the solution is compare to the best current solutions. The

planning heuristic maintains a list of Pareto optimal solutions

and, when the stopping criteria is reached, these solutions are

returned to the user.

For small models it is possible to run an exhaustive search

of the solution space, however, as the number of locations

and actions increases this becomes unfeasible and therefore

we look to more efficient search heuristics. For our example

the search heuristic was implemented using the EvoChecker

approach which we previously developed [3], [25], [26].

TABLE II
EVACUATION SCENARIO

Time Event (data source)

Day 1, 08:10 Initial evacuation plan generated.
Day 1, 09:45 Aftershock affecting Ulla bridge.

(1000 tweets from California earthquake dataset)
Day 1, 10:00 Team depart Ulla.
Day 1, 23:00 Gunshot in Pretch.

(2000 tweets from the Lower Manhattan gunshot dataset)
Day 2, 05:00 Flood on Hurratta Highway.

(3000 tweets from the Colorado flood dataset)

V. INITIAL EXPERIMENTS AND RESULTS

In order to evaluate COPE we constructed a HLAM for

the motivating example given in Section II. We then synthe-

sized an evacuation scenario as a Twitter stream with events

extracted from each of the test sets given in Table I. These

events were shifted in time to fit the synthesised scenario, and

the location names were mapped to locations in Neopolis;

otherwise, the data sets were left unaltered. The complete

scenario is shown in Table II.

The data which precedes events in Table I was combined to

create a set of “normal” tweets. Tweets from this set was then

sampled randomly and added to the event data to construct a

complete synthesised stream for the scenario.

COPE was then executed using the synthesized data set,

and the resulting routes and decisions are shown in Fig. 10.

Every time when an event is detected, COPE generates a set

of Pareto-optimal plans which are displayed to the user with

the associated probability of success and estimated time to

arrival (E.T.A.). The user then selects one of the planned routes

(indicated by * in the diagram) and the route is then followed

until the next event occurs. For each plan a solid line indicates

the section of the route still to be completed whilst the dashed

line indicates that portion of the route already undertaken. As

the team travels across the country COPE successfully detects

each event and calculates the Pareto-optimal routes from the

team’s present location to the evacuation point at Chool.

The motivating example used in our preliminary exper-

iments generates models with 12 decision parameters, one

for each location in the map. The total search space for

this problem is then 46,656 (including combinations that

correspond to invalid solutions to the problem). Searching this

problem space for Pareto-optimal solutions was undertaken

using NSGA II [27], an efficient multi-objective genetic al-

gorithm which has been widely used in a range of problem

domains, and which is implemented into COPE.

To evaluate the impact of model size on the performance

of COPE, we carried out additional experiments to increase

the search space. The model generation module was modified

to allow for multiple routes across each location in Neopolis.

This involved the addition of many different ways to travel

across cities, and replacing junctions with multiple different

routes through rural regions. The risks and costs associated

with each of these routes was randomized, and Table III shows

the search space and time for COPE to generate plans for

these much larger models. All of the experiments were run

on a 2.9 GHz MacBook Pro i5 with 16 GB of memory.
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TABLE III
COPE SCALABILITY EXPERIMENTS

#Routes through Search Time
cities & junctions space (s)

1 46, 656 45

5 244× 10
6 49

20 4× 10
15 81

The NSGA II algorithm used a population size of 100 and

evaluated 1000 model instances.

Whilst we are aware that more experimentation needs to

be undertaken to assess the scalability of our approach, these

experiments suggest that COPE is able to handle stochastic

models which include a large parameter search space.

VI. RELATED WORK

COPE is an example of a human-in-the-loop system [28]

where humans are not only consumers of information but also

provide input and operate as system-level effectors. The use

of stochastic models enables the accurate analysis of systems

in uncertain environments. However, maintaining up-to-date

stochastic models at run-time is challenging, and several

approaches have been proposed to learn model parameters

using maximum likelihood estimators [29], Bayesian estima-

tors [14], [30]–[32] and Kalman filters [33]. These approaches

require structured data sources and, unlike COPE, cannot

leverage information encoded in unstructured data.

Social media has become increasingly useful in providing

timely information and valuable insights during crisis situa-

tions [34], [35] and constructing event detection algorithms

which analyse social media at run-time is now an active

research area [36], [37]. More widely, the extraction of in-

formation from unstructured data has seen application in a

range of domains from healthcare [38] to politics and finance

decision support systems [39]. The primary focus of this work

is information extraction and, unlike COPE, not the updating

of stochastic models at run-time.

To the best of our knowledge, COPE is the first approach

that integrates event detection from unstructured data and the

run-time updating of stochastic models.

VII. CONCLUSIONS AND FURTHER WORK

In this paper we introduced COPE, a work-in-progress

approach for updating stochastic models of human-centric

processes through the exploitation of information encoded in

unstructured data streams.

We implemented a specialisation of the COPE architec-

ture and demonstrated how natural language processing and

stochastic synthesis could be integrated to provide Pareto-

optimal solutions for a planning problem in the presence of

data extracted from real-world events.

In future work we intend to integrate information extraction

from additional unstructured sources, including longer narra-

tive forms and audio data. Data collected will also inform the

deployment of resources to acquire additional data, e.g. the

deployment of drones to acquire aerial imagery. In addition,

we will formalise the derivation of model update rules in

response to observed data and domain expertise. We will

also assess the scalability of COPE, specialise the generic

architecture for additional application domains, and explore

options for the assurance of COPE applications by extending

the methodology from [40].
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