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Abstract. Turbulent plasma edge density fluctuations can broaden a traversing microwave beam degrading

its quality. This can be a problem for scenarios relying on a high spatial localization of the deposition of

injected microwave power, like controlling MHD instabilities. Here we present numerical estimations of the

scattering of a microwave beam by density fluctuations over a large parameter range, including extrapolations

to ITER. Two codes are used, the full-wave code IPF-FDMC and the wave kinetic equation solver WKBeam.

A successful comparison between beam broadening obtained from DIII-D experiments and corresponding full-

wave simulations is shown.

1 Introduction

Electromagnetic waves in the microwave frequency range

have become an indispensable tool for fusion experiments

based on the magnetic confinement concepts of toka-

mak and stellarator. Electron cyclotron resonance heating

(ECRH) and current drive (ECCD), see e.g. Refs. [1, 2],

allow to transfer power in the MW-regime [3] to the

plasma. On the other hand, active and passive microwave

diagnostics occupying only very little space on the inner

wall are routinely used in today’s experiment [4] and will

become even more important in future reactors [5].

Heating and diagnostics suffer, however, both from

plasma density fluctuations existing at the plasma bound-

ary. These fluctuations can reach levels of up to 100 % [6]

and potentially spoil heating efficiencies and result in am-

biguous diagnostics results. This is in particular a prob-

lem for the stabilization of so-called neo-classical tearing

modes (NTMs), a magneto-hydrodynamic instability aris-

ing from small perturbations in the plasma current pro-

file [7, 8]. If not taken care of, they can result in disrup-

tions which are to be avoided at all costs in large-scale

tokamaks like ITER. One way to stabilize the NTMs con-

sists in localized current drive in order to restore the orig-

inal current profile. ECCD has been successfully used to

provide this current [9]. Using numerical tools to evaluate

the consequences of edge density turbulence on the quality

∗e-mail: koehn@igvp.uni-stuttgart.de

of a microwave beam injected for NTM stabilization is the

topic of this paper.

The interaction of electromagnetic waves with plasma

density fluctuations is an important topic since the very

beginning of plasma physics: in the 1930, radio waves

emitted from ground were found to be strongly disturbed

after reflection at the ionosphere [10]. Likewise, radio

waves emitted by distant rotating neutron stars experi-

ence phase disturbances when passing the terrestrial iono-

sphere which makes detection on Earth complicated. In

the 1950s, this problem, which is still an issue for today’s

satellite communication [11], was tackled by describing

the ionosphere as a layer of thin phase screens [12]. This

approach relies on small perturbation levels, and locally

strong density irregularities provide still a challenge in

modeling wave propagation across the ionosphere [13].

In the 1980s high-power microwave sources became

available and the interaction of injected microwaves and

plasma edge density fluctuations in fusion-relevant sce-

narios was studied with geometrical-optics tools [14, 15].

Due to the potentially negative consequences for NTM sta-

bilization in ITER, this topic has gained significant trac-

tion since 2009 [16–21].

2 Numerical tools

2.1 The full-wave code IPF-FDMC

The full-wave code IPF-FDMC is based on the finite-

difference time-domain scheme. It solves Maxwell’s equa-
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tion and the fluid equation of motion of the electrons on a

2D Cartesian grid. The evolution equations for the wave

magnetic field B, the wave electric field E, and the current

density J of the wave read:

∂

∂t
B = −∇ × E (1)

∂

∂t
E = c2∇ × B − J/ǫ0 (2)

∂

∂t
J = ǫ0ω

2
peE − ωceJ × B̂0 − νeJ, (3)

with c the speed of light, ǫ0 the vacuum permittivity,

ωpe =
√

nee2/(ǫ0me) the electron plasma frequency, ωce =

|e|B0/me the electron cyclotron frequency, B̂0 the unit vec-

tor into the direction of the background magnetic field,

and νe an electron collision frequency (as a dissipation

mechanism). More details about the code can be found

in Refs. [22, 23].

2.2 The WKBeam code

The WKBeam code solves the wave kinetic equation in

the presence of random density fluctuations embedded in

a slowly varying background plasma density. The fluctua-

tions are included by applying a scattering operator whose

derivation is based on the Born approximation [25]. The

wave kinetic equation to be solved can be cast into a form

such that the scattering operator depends only on the cor-

relation function of the random density field and thus re-

mains valid even for short-scale fluctuations [26]. Details

about the WKBeam code and the derivation of the under-

lying equations can be found in Refs. [20, 23, 27]

Since the derivation of the scattering operator relies on

the Born approximation, it is expected to become invalid

for large fluctuation levels. More precisely,

[

〈
(

δne/ne,0

)2
〉
]1/2
ω2

pe/ω
2
0 ≪ 1 (4)

needs to be fulfilled for the Born approximation to hold.

Therefore the combination of fluctuation level and back-

ground density needs to be taken into account. The valida-

tion of the Born approximation in WKBeam is investigated

in detail in Ref. [23].

2.3 The simulation set-up

To benchmark WKBeam with the full-wave code IPF-

FDMC, a 2D computational domain is chosen resembling

part of a poloidal cross section in a toroidal magnetic con-

finement device. The background plasma density profile

is linearly increasing as

ne,0(x) =
ne,max

x1 − x2

(x1 − x) , (5)

with ne,max = 0.65·ne,cut (where ne,cut is the O-mode cut-off

density of the injected microwave), x the radial coordinate,

x1 = 2.45 m the position where the density profile starts to

rise until a position of x2 = 2.30 m. A layer of fluctuations

is added to the background profile, where the envelope of

Table 1. Simulation parameters for the benchmark together with

typical ASDEX-Upgrade values

benchmark AUG

f 50 GHz 140 GHz

|B0| 1 T 2.5 − 3 T

L⊥ 5 mm 2 − 10 mm

w0 1 cm 3 cm

the fluctuation amplitude F(x) is described by a Gaussian.

The full electron plasma density profiles then reads

ne(x, z) = ne,0(x) (1 + F(x)δne(x, z)) , (6)

with z the vertical coordinate and δne(x, z) the random

field which is generated by a truncated sum of Fourier-like

modes:

δne(x, z) =

Mi
∑

i

M j
∑

j

Ai, j cos
[

kx,ix + kz, jz + ϕi, j

]

, (7)

with Ai, j the amplitudes of the modes and ϕi, j independent

random phases. There is no dependence on time as the

turbulent density fluctuations appear to be frozen in the

time frame of the microwave.

Figure 1 shows a contour plot of the resulting plasma

density. Note that this is an actual sample used in the full-

wave simulations as input. To properly simulate the effect

of fluctuations in the full-wave code, an ensemble-average

is required with the ensemble consisting of a series of den-

sity profiles each being a sample of the same random den-

sity field. We use synthetic turbulence to ensure that the

statistics of the random field are the same as those assumed

in WKBeam.

A Gaussian beam in O-mode polarization is injected

with its focal point located inside of the grid (as can be

seen in Fig. 1). The simulation parameters are listed in

Table 1. They correspond to ASDEX Upgrade parameters

scaled-down by approximately a factor of 3 (the reduction

in frequency and hence increase in wavelength allows for

coarser numerical grids to be used, strongly reducing the

required computational resources).

2.4 Data analysis

The efficiency of the NTM stabilization depends on the

good localization of the current driven by the injected mi-

crowaves, as explained in the introduction. If the power

deposition is too broad, the resulting current filament will

be too broad to restore the original plasma current profile.

Assuming as a first order approximation that the power

deposition width corresponds to the beam width of the mi-

crowave at the location of absorption (for a detailed dis-

cussion about the correlation between microwave beam

width and deposition profile width, see Ref. [31]), the ad-

ditional broadening of the beam, as compared to the case

without turbulence, is chosen as the quantity of interest to

be compared between the two codes.

As a first step, both codes were compared for beams

propagating in vacuum, which yielded excellent agree-

ment. Next, the plasma profiles as described by Eq. (5)



were considered, i.e. without turbulent density fluctu-

ations (again, excellent agreement is found [23]). The

resulting beam widths are used as reference positions to

which the beam widths obtained from scenarios with fluc-

tuations included are compared. In detail, Gaussians are

fitted to the ensemble-averaged beam cross sections with

the beam width being one fit parameter. The obtained val-

ues are then normalized to the cases without fluctuations.

3 Simulation results

3.1 Illustration of beam broadening

Figure 1. Full-wave simulation grid with colored contour levels

indicating the electron plasma density and contour lines indicat-

ing the absolute wave electric field. Shown is a sample from the

ensemble with the average fluctuation parameters given in the

plot. The snapshot is taken from a video published at [24].

The effect of a layer of turbulent plasma density fluctu-

ations on a microwave beam can be nicely illustrated with

full-wave simulations, as shown in Fig. 1. The beam is in-

jected from the right hand side and has its focal point ap-

proximately where the density profile starts to rise. A split-

ting of the injected beam is seen in this example, strongly

perturbing the quality of the beam. The interested reader

is referred to Ref. [24] where the video belonging to the

snapshot shown in Fig. 1 can be seen.

For a quantitative data analysis, the average over the

full ensemble of the full-wave simulations needs to be

taken. This work uses an ensemble size of N = 3000

which is large enough to ensure that the statistical er-

ror is small compared to the averages. Figure 2 shows

the ensemble-averaged beam cross section from full-wave

simulations together with the corresponding result from

WKBeam calculations. The turbulence parameters are the

same as for the single sample shown in Fig. 1. A first thing

to notice is that the average beam does not change its di-

rection of propagation. Hardly any difference of WKBeam

to the full-wave solution can be seen in this representation.

Both signals experience a small broadening (together with

a reduction of the peak amplitude) as compared to the case

without turbulence.

Figure 2. Beam cross section at a radial position of x = 2.35 m

from full-wave simulations (ensemble-averaged) and WKBeam

calculations.

3.2 Scanning the fluctuation parameters

In both codes, IPF-FDMC and WKBeam, the parameters

defining the turbulent plasma density fluctuations were

varied over a wide parameter range. This was done to ex-

plore the ability of the codes to analyze current and future

devices, as well as to explore the validity of the Born ap-

proximation, expressed in Eq. (4), and thus of WKBeam.

The fluctuation strength, the background density, and the

width of the fluctuation layer were varied in a series of pa-

rameter scans. Due to the limited space in this paper for

the proceedings, we will only present a selection of the re-

sults here and like to refer the interested reader to the full

paper [23].

Figure 3 (left) shows the beam broadening deduced

from full-wave simulations as a function of fluctuation

level and background density at the location of the fluc-

tuations. It can be clearly seen that the broadening is a

function of both parameters, as expected. The contour plot

on the right hand side shows the deviation of the corre-

sponding WKBeam calculations with respect to the full-

wave simulations. Note that WKBeam consistently over-

estimates the broadening. Even for large fluctuation levels

of 50 %, the disagreement to the full-wave solution is be-

low 10 %. Recalling the criterion to be fulfilled for the

Born approximation to hold, Eq. (4), it is possible to draw

a rough estimation: with the y-axis corresponding to the

first factor and the x-axis to the second factor, the result-

ing product of the two quantities should be below 0.15 to

keep the overestimation of WKBeam below 10 %.

Note that those results were obtained for a width of

the fluctuation layer of approximately w0 = 2 cm ≈ 3.3 λ0,

with λ0 the vacuum wavelength of the injected microwave.

According to the results discussed in Ref. [28], the beam

broadening scales linearly with the width of the fluctuation

layer if the fluctuation level is not too large. The observed

scaling of the beam broadening may serve as estimations

for current experiments or predictions for future experi-

ments.

An important result of the benchmark study is the ap-

plicability of WKBeam for modern tokamaks. For the AS-

DEX Upgrade tokamak, for example, edge density values



Figure 3. (Left) Beam broadening as obtained from full-wave simulations as a function of the background density at the position of

the fluctuation layer and as a function of the fluctuation level. (Right) Overestimation of the corresponding WKBeam results to the

full-wave solution.

reach at maximum 0.2·ne,cut [29] and maximum fluctuation

levels of 20 % [30]. With the resulting control parameter

given by Eq. (4) being below the stated value of 0.15 (and

by checking Fig. 3 (right)) WKBeam can be reliably ap-

plied for this scenario. Considering ITER parameters [20],

the overestimation of WKBeam calculations is on the or-

der of 1 % due to the correspondingly low (normalized)

density. Note that the deviation of the WKBeam results

does not depend on the width of the fluctuation layer [23].

Due to the long propagation length of the injected mi-

crowave beam in ITER, this is an important information

strengthening the reliability of WKBeam.

3.3 Extrapolations towards ITER

Mitigation and suppression of NTMs is of vital importance

for future tokamak experiments as explained in the intro-

duction. In ITER, the EC upper launcher system is de-

signed for this purpose [32]. Recently, the importance of

quantifying the influence of plasma density fluctuations on

the efficiency of NTM stabilization in ITER has been high-

lighted [31]. Due to the short spatial scales of the density

fluctuations, their effect cannot be accounted for by tools

based on the geometrical-optics approximations (which

are otherwise commonly used to design and describe mi-

crowave heating scenarios in fusion experiments). The

WKBeam code was deliberately developed to handle this.

Estimating the beam broadening due to plasma density

fluctuations in ITER using WKBeam is the topic of a pa-

per published earlier this year [20]. The main result of that

paper will only be briefly discussed here.

As shown in Section 3.2, the strength of the scattering

of the microwave beam, precisely the beam broadening,

depends on a number of parameters of the turbulent den-

sity fluctuations. Choosing a ”correct” set of parameters is

therefore important to get reliable results. The term ”cor-

rect” refers to parameters describing the flat top phase of

the ITER baseline scenario [33]. The spatial profile of the

fluctuations’ amplitude and the perpendicular correlation

length of the density structures used in the modeling are

based on experimental surveys [34]. The fluctuations am-

plitude profile we are using has a constant strength of 2 %

in the core and 20 % in the scrape-off layer, corresponding

to an H-mode discharge.

Comparing first the power deposition profiles deduced

from WKBeam and from the beam tracing code TOR-

BEAM for the case without fluctuations, they reveal ex-

cellent agreement. Including fluctuations, which cannot be

done with codes like TORBEAM [35], a significant broad-

ening of the deposition profile is found. Taking the effect

of ballooning into account, i.e. a poloidal variation of the

density fluctuation amplitude, an overall broadening of ap-

proximately a factor of 2 is obtained. Considering the in-

stalled microwave power in ITER, it can be concluded that

the most dangerous NTMs expected to occur in the 15 MA

Q = 10 standard H-mode scenario can still be stabilized

based on the current model of the density fluctuations. As

mentioned in the beginning of this section, a detailed dis-

cussion of the results is found in Ref. [20].

Besides the EC upper-launcher system, ITER is also

equipped with an equatorial EC launcher [36] aiming to

influence the sawtooth cycle which is thought to affect the

onset of NTMs. It is thus of interest to estimate the de-

teriorating effect of density fluctuations on this scenario

as well. The WKBeam code predicts a less severe beam

broadening (referring to the upper-launcher calculations)

of a factor of 1.2 − 2.5, as discussed in detail in Ref. [37].

Note that the broadening is also of less importance here as

the requirement on the localization of the power deposition

is reduced for influencing the sawtooth cycle.

3.4 Cross-polarization scattering

An interesting effect occurs at small plasma densities,

where the dispersion surfaces of O- and X-mode are not

well separated: mode coupling can occur. Triggered by

fluctuations at low background plasma density values, this

cross polarization scattering can be problematic: mode

scattered from one polarization to the other not only re-

duces the heating or current drive efficiency due to the



original polarization but the other polarization can itself

deposit power at non-optimal positions or locally dam-

age wall components if being reflected at a cut-off. Thus,

the scattering operator in WKBeam has been extended to

also included the possibility of mode scattering [37, 38].

As the underlying assumptions for deriving the scatter-

ing operator are, however, only marginally fulfilled for

the parameters where mode scattering can actually be rel-

evant, a benchmark against full-wave simulations is re-

quired. Here, we present preliminary results of cross-

polarization scattering obtained from full-wave simula-

tions in the course of this (ongoing) benchmark study.

The configuration of the simulations differs from the

geometry described in Section 3.1: it is optimized to re-

sult in a recognizable amount of mode-scattering. The

wave frequency is increased to 110 GHz and the back-

ground magnetic field has a component pointing into the

2D simulation domain, Btor = −1 T, and a vertical com-

ponent of Bz = 1 T. The correlation length of the density

structures is L⊥ = 5 mm and the layer of fluctuations is

shifted towards lower densities as shown in Fig. 4. Due to

the oblique orientation of the background magnetic field,

the injected O-mode is now elliptically polarized. As also

shown in Fig. 4, the simulation domain includes the right-

hand cut-off, which is a cut-off for the X-mode, in order to

serve as a filter for that part of the microwave beam which

is scattered from the injected O-mode to the X-mode: the

X-mode is reflected at the cut-off and can thus be easily de-

tected. To visually separate the reflected X-mode from the

injected O-mode, an appropriate injection angle is chosen

such that the two modes do not overlap.

Figure 4. Contour plot of the electron plasma density (colored)

and of the absolute value of the wave electric field as obtained

from full-wave simulations intending to study cross-polarization

scattering due to density fluctuations at low plasma densities.

Although no reflection at the right-hand cut-off is

seen in Fig. 4 at first glance, a small amount of cross-

polarization scattering does actually occur in this case. It

is approximately 0.40 % which is too small to be visible in

this representation. As expected, even for the case without

density fluctuations, there is a small amount of coupling to

the other mode. From the full-wave simulations, a value of

approximately 0.36 % is deduced for this geometry (which

can be reduced by injecting wider beams with a narrower

angular spectrum). The fluctuations thus result only in a

small absolute increase of the wrong mode content.

WKBeam calculations yield an X-mode content larger

by approximately a factor 2−3. Due to the assumptions be-

ing applied when deriving the scattering operator, this de-

viation is expected to change with the background density

(into the direction that lower densities, when the modes

are ”more” degenerated, result in less reliable results). A

systematic comparison between full-wave simulations and

WKBeam is currently underway and will be published in

a separate paper.

As stated in Refs. [37, 38], the cross-polarization scat-

tering values obtained from WKBeam thus serve as an up-

per bound. Together with the preliminary results from full-

wave simulations, cross-polarization due to density fluctu-

ations seems to be on the same order in ITER as the polar-

ization uncertainty due to the launcher. It is therefore not

expected to result in severe problems.

4 Simulation-experiment comparison

The microwave power deposition profiles can be exper-

imentally determined using an electron cyclotron emis-

sion diagnostic in power-modulated discharges. An ac-

companying transport analysis separates the effect of pro-

file broadening due to diffusion and due to other effects

like a turbulent edge layer. Broadening of the injected EC

beam of up to a factor of 2.5 could be determined in DIII-D

this way, as presented on the last EC-conference [39]. In-

spired by these experiments, we elaborated the possibility

of performing simulations resembling the experiment as

closely as possible. An ensemble of plasma density pro-

files including turbulence was created with the BOUT++

code [40] using the Hermes model [41]. Equilibrium pro-

files obtained from DIII-D discharges were used as in-

put parameters. The fluctuation levels obtained from the

BOUT++ simulations were confirmed to correspond to

those found in the experiment.

The ensemble of density profiles including plasma

density fluctuations was then used as input for 3D full-

wave simulations using the EMIT-3D code [42]. The

simulation domain does not include the full propagation

path from the emitting antenna to the place of absorp-

tion in the plasma center. It is instead restricted to the

area where the strongest fluctuation levels are observed

as this region is thought to be responsible for the ob-

served broadening. Making the assumption that the per-

turbed (ensemble-averaged) beam can be approximately

described by a Gaussian (and that the simulation domain

is sufficiently far away from the beam waist), its width

can be linearly extrapolated to the location of absorption.

Comparison with the experimentally deduced beam broad-

ening is possible this way, yielding excellent quantitative

agreement over a wide range of fluctuation levels (real-

ized by different experimental scenarios). The results are

presented and discussed in detail in a paper submitted re-

cently [43].



5 Summary

We have shown that turbulent edge density fluctuations

can lead to significant broadening of an injected mi-

crowave beam. The stabilization of NTMs requires good

spatial localization of the beam and the presented parame-

ter scans of the fluctuation parameters may serve to quan-

titatively estimate the reduction in efficiency. Full-wave

simulations have been used to benchmark WKBeam cal-

culations, where very good agreement was found of a large

parameter range. In particular for the expected density

fluctuations in ITER, the deviations of the WKBeam are

negligible. This supports the results from the correspond-

ing calculations for ITER, performed with WKBeam, pre-

dicting that NTM stabilization is still possible in ITER

taking into account the effect of fluctuations. A first es-

timation of the effect of cross-polarization scattering has

been performed, which seems to not be an issue in ITER.

Finally, a comparison between beam broadening obtained

from a series of DIII-D experiments and from full-wave

simulations of these experiments was presented yielding

excellent agreement.
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