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JSLHR

Research Article

Using Polygenic Profiles to Predict

Variation in Language and Psychosocial

Outcomes in Early and Middle Childhood

Dianne F. Newbury,a Jenny L. Gibson,b Gina Conti-Ramsden,c

Andrew Pickles,d Kevin Durkin,e and Umar Toseebf

Purpose: Children with poor language tend to have
worse psychosocial outcomes compared to their typically
developing peers. The most common explanations for
such adversities focus on developmental psychological
processes whereby poor language triggers psychosocial
difficulties. Here, we investigate the possibility of shared
biological effects by considering whether the same genetic
variants, which are thought to influence language development,
are also predictors of elevated psychosocial difficulties
during childhood.
Method: Using data from the U.K.-based Avon Longitudinal
Study of Parents and Children, we created a number of
multi–single-nucleotide polymorphism polygenic profile
scores, based on language and reading candidate genes

(ATP2C2, CMIP, CNTNAP2, DCDC2, FOXP2, and KIAA0319,
1,229 single-nucleotide polymorphisms) in a sample of
5,435 children.
Results: A polygenic profile score for expressive language
(8 years) that was created in a discovery sample (n = 2,718)
predicted not only expressive language (8 years) but also
peer problems (11 years) in a replication sample (n = 2,717).
Conclusions: These findings provide a proof of concept
for the use of such a polygenic approach in child language
research when larger data sets become available. Our
indicative findings suggest consideration should be given
to concurrent intervention targeting both linguistic and
psychosocial development as early language interventions
may not stave off later psychosocial difficulties in children.

T
here is sound evidence for the heritable nature

of language ability in children (Stromswold, 2001).

The evidence concerning specific gene contributions

is weaker: Typically, single gene analyses account for only

a very small proportion of trait variance or disorder (Simpson

et al., 2015). Relationships vary between genetic variants

within individuals, across populations, and across genes

meaning that the identification of a single variant is far

from straightforward. This often means that the effects of

variants do not replicate across studies or show differences

in effect direction between cohorts. Within the current

literature, it is hard to ascertain whether such variants

represent false positives or heterogeneous effects (Nudel,

Ceroni, Simpson, & Newbury, 2015). This state of affairs

has led researchers interested in genetic effects to aggregate

indicative findings concerning the relationships between
specific alleles and particular traits into polygenic profile

scores. The advantage of polygenic profiles is that they

combine information from multiple variants and across

genetic loci, enabling more comprehensive and powerful

tests of the hypothesized “genetic burden” associated with

a condition (Levine et al., 2014; Mancuso et al., 2018;

Wray et al., 2014).

The formation of polygenic profiles begins with a

direct genetic association model within a large “discovery
data set.” This involves the investigation of correlations

between individual genetic variants (usually single-nucleotide

polymorphisms or SNPs) and a behavioral outcome of inter-

est. All SNPs that show association above a certain thresh-

old (in terms of p value or effect size) are then collapsed
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into a single weighted composite measure of genetic effects

across multiple variants. Typically, scores are calculated

across a range of thresholds in the discovery sample to allow

the identification of the cutoff that confers maximal predic-

tive power within the discovery sample set. Scores allow

for the presence of false-positive associations, and data

sets can be pruned for relationships between genetic vari-
ants (clumping). Once formulated, the polygenic profile

score can be used within a linear regression model to pre-

dict outcomes in a second independent “replication cohort.”

This may be performed for any measure that is expected to

show shared genetic effects with the behavioral measure

of interest. The prediction accuracy is usually stated as an

R2 measure, which represents the proportion of variance

explained. Polygenic methods have proven particularly suc-

cessful in disorders in which combinations of common vari-
ants predispose individuals to increased risk. Polygenic

profiling has been used to indicate significant genetic over-

laps between neuropsychiatric disorders (Ritter et al., 2017)

as well as between cognitive ability and educational out-

comes (Krapohl et al., 2018).

Such disorders are typically modeled under a “com-

mon disease-common variant” model. While genetic se-

quencing studies indicate that rare variants are also likely

to play a role in neuropsychiatric disorders and traits,
these will not be captured by polygenic profiling and are

unlikely to be important in individual differences in lan-

guage ability. In most instances, the overall predictive

power of polygenic profiles remains low in terms of indi-

vidual risk. Nonetheless, such profiles allow the identification

of individuals at a particularly high risk and can provide

accurate indictors of the underlying risk interactions pro-

viding important information for risk modeling.

Given the lack of large-scale genome-wide association
studies (GWAS) for language-related measures, we selected

robust candidate genes from the literature on genes on

language and reading abilities and/or disorders to construct

targeted scores in this study. Studies of targeted genes

have indicated that some genes may have impacts across

traits and disorders (Newbury et al., 2011; Scerri et al., 2011).

Variants within the KIAA0319 and CNTNAP2 genes have

been associated with both dyslexia and language impair-

ment as well as reading and language measures in the
general population (Newbury et al., 2011; Rice, Smith, &

Gayán, 2009). In contrast, variants in DCDC2 seem to be

of particular relevance to reading disability (Scerri et al.,

2011) and, those in ATP2C2, to language impairment

(Newbury et al., 2009). FOXP2 appears to play a very

specific role but may only be relevant in the presence of

coding mutations with high effect sizes (Morgan, Fisher,

Scheffer, & Hildebrand, 2016). It has been suggested that

variants within the CMIP gene may have alternative effects
within different populations; the “risk” allele of rs12927866

has been associated with lower performance in tests of non-

word repetition in individuals with language impairment

but with higher performance in the general population

(Newbury et al., 2009). Such studies suggest that the role

of risk variants may be modulated by the environment or

genetic background of an individual and mirror findings

of differential susceptibility in the psychiatry literature

(Belsky, 1997).

In this study, we applied a polygenic approach in

which we consider the effects of robust language and read-

ing candidate genes within a single model. Specifically,

we were interested in whether polygenic profiles, based
on language and reading candidate genes (ATP2C2,

CMIP, CNTNAP2, DCDC2, FOXP2, and KIAA0319),

can be used to provide consistent predictors of language

outcomes in early and middle childhood. This was assessed

by the generation of polygenic profiles in a discovery cohort

and the assessment of their correlation with the same out-

comes in an independent replication cohort.

As well as predictors of outcomes, polygenic profiles

can also be used to estimate the level of genetic overlap
between contributing factors. Since genetic factors have

previously been demonstrated to overlap between neuro-

developmental domains and across disorders (Anttila et al.,

2018), we sought to investigate the possibility that poly-

genic profiles for language ability also contribute to the

general development process. There is considerable sup-

port for this at the behavioral level where individuals with

poor language, specifically those with developmental lan-

guage disorder (DLD), tend to have worse psychosocial
outcomes compared to those without DLD (Beitchman

et al., 2001; Botting, Durkin, Toseeb, Pickles, & Conti-

Ramsden, 2016; Botting, Toseeb, Pickles, Durkin, &

Conti-Ramsden, 2016; Durkin, Toseeb, Botting, Pickles,

& Conti-Ramsden, 2017; Yew & O’Kearney, 2015a,

2015b).

Such adverse outcomes are not inevitable. While

having DLD is certainly associated with risk of poorer

psychosocial outcomes compared to unaffected individuals,
these are not found invariably and the strength of any

relationship may vary across different aspects of psycho-

social functioning (Conti-Ramsden et al., 2018; Mok,

Pickles, Durkin, & Conti-Ramsden, 2014; Pickles, Durkin,

Mok, Toseeb, & Conti-Ramsden, 2016; Toseeb, Pickles,

Durkin, Botting, & Conti-Ramsden, 2017). Investigating

the etiology of these differences in psychosocial out-

comes in individuals with DLD speaks importantly to the

debate about whether these problems have a common
genetic origin or are linked in a developmental sequence.

For example, in the latter explanation, a biological driven

language disorder could make social interaction difficult,

and hence, psychosocial difficulties (emotional instability,

peer relationship problems, conduct disorder, hyperactivity,

lack of prosociality) could follow developmentally (Durkin

& Conti-Ramsden, 2007; Redmond & Rice, 1998).

While researchers have begun to address the complex

task of uncovering genetic factors associated with lan-
guage ability, scant attention has been paid to the ques-

tion of whether the same genetic variants predict other

characteristics in children with language disorders. In this

study, we examined a model of shared genetic effects by

considering whether polygenic profiles, based on language

and reading candidate genes (ATP2C2, CMIP, CNTNAP2,
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DCDC2, FOXP2, and KIAA0319), can be used to provide

consistent predictors of psychosocial outcomes in middle

childhood.

Method

Ethical Approval

Ethical approval for the study was obtained from
the Avon Longitudinal Study of Parents and Children

(ALSPAC) Ethics and Law Committee and the local re-

search ethics committees. Ethical approval for the sec-

ondary analysis of existing ALSPAC data was obtained

from the University of York Education Ethics Committee

(Reference: 18/5).

Study Sample

Data from the ALSPAC sample were used in this

study. All pregnant women in the old administrative region

of Avon, whose estimated delivery was between April 1991

and December 1992, were eligible to participate. The

ALSPAC enrolled a sample consisted of 14,775 live-born

children from 15,247 pregnancies. This resulted in a total

number of 15,458 children (including multiple births).

Parents and children provided biological samples and
questionnaire data and took part in direct assessments.

Full details of the cohort are reported elsewhere (Boyd

et al., 2013; Fraser et al., 2013). Data used in this article

were mother derived reports on the child and direct

assessments of the child by the research team at the fol-

lowing time points: the prenatal period (8 and 32 weeks

of gestation) and when the child was aged 15 months,

18 months, 24 months, 8 years, and 11 years. Please note

that the study website contains details of all the data that

are available through a fully searchable data dictionary
and variable search tool (http://www.bristol.ac.uk/alspac/

researchers/our-data/).

An initial sample of 15,445 participants was pro-

vided by the ALSPAC study team. For this study, the fol-

lowing exclusionary criteria were applied: children who did

not have phenotypic data available from speech and lan-

guage sessions at 8 years old (n = 8,062), children who

scored below 60 or with incomplete data on performance

IQ at 8 years old (n = 56), children who were born second
in a multiple birth (twins or triplets; n = 100), unable to

determine DLD status due to missing data or removed

from DLD sample due to autism spectrum disorder (ASD)

and/or hearing loss (n = 475), removed from no-DLD sample

due to ASD and/or hearing loss (n = 391), missing pheno-

typic data (n = 500), and non-White ethnicity (n = 426).

This resulted in a study sample of 5,435 (50% male), who

were included in the genetic analyses.

Measures

Language Measures

Eight measures of language development were col-

lected. For the parent report measures at 15–24 months, a

modified version of the MacArthur–Bates Communicative

Development Inventories (Fenson et al., 1993) was used.

The MacArthur–Bates Communicative Development In-

ventories has been shown to have good validity at a pop-

ulation level (Dale, Bates, Reznick, & Morisset, 1989;

Feldman et al., 2005).

Vocabulary at 15 months old. When the child was
15 months old, parents were given a list of 134 words/phrases

and asked whether their child “understands but doesn’t say”

(1), “understands and says” (2), or “neither” (0). Words/

phrases were age appropriate and included words such as

“bed,” “nose,” and “hot.” Responses were summed to cre-

ate a score ranging from 0 to 268. Higher scores indicate

better vocabulary.

Vocabulary at 24 months old. When the child was

24 months old, a similar measure was used. Parents were
given a list of 123 words/phrases and asked whether their

child “understands” (1), “says” (2), or “neither” (0). Words

were age appropriate and included “hello,” “dinner,”

and “chicken.” Responses were summed to create a score

ranging from 0 to 246. Higher scores indicate higher

vocabulary.

Receptive language at 15 months old. Parents were

shown a list of 12 phrases and asked whether their child

understands. Samples phrases include “Are you sleepy?”
and “Don’t touch.” Responses were coded on a binary

scale (0 = no, 1 = yes) and then summed to create a score

ranging from 0 to 12. Higher scores indicate better recep-

tive language.

Grammar at 24 months old. Parents were given four

examples of grammar rules and asked whether their child

has begun using these rules in their spoken language. Par-

ents were asked about grammar rules such as adding “-ing”

to the end of words and adding “-s” to signify plural. Re-
sponses were coded as “not yet” (0), “sometimes” (1), or

“often” (2) and then summed to create a score ranging from

0 to 8. Higher scores indicate better grammar.

Receptive language at 8 years old. The Weschler Ob-

jective Language Dimensions (Rust, 1996) was used to

measure receptive language. Only one of the two subsets

was used in our study. The child was shown a picture and

listened to a paragraph about the picture. The child then

answered questions about what they had heard. The child
was asked 16 questions. Responses were coded on a binary

scale (0 = incorrect, 1 = correct), yielding a summed score

of between 0 and 16. Higher scores indicate better recep-

tive language.

Expressive language at 8 years old. The Weschler

Objective Language Dimensions (Rust, 1996) was used to

measure expressive language. Only one of the two subsets

was used. The child was shown 10 pictures and asked to

name them. Responses were coded on a binary scale (0 =
incorrect, 1 = correct) and then summed to create a score

ranging from 0 to 10. Higher scores indicate better expres-

sive language.

Nonword repetition at 8 years old. An adapted ver-

sion of the Nonword Repetition Test (Gathercole, Willis,

Baddeley, & Emslie, 1994) was used. The child was asked
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to listen and repeat out loud four each of three-, four-, and

five-syllable nonwords. Responses were coded on a bi-

nary scale (0 = incorrect, 1 = correct) and then summed

to create a score ranging from 0 to 12. Higher scores indi-

cate better nonword memory.

Pragmatic language at 9 years old. The parent report

Children’s Communication Checklist (Bishop, 1998) was
used to measure pragmatic language when the child was

9 years old. A sum score was created using the sum of the

inappropriate initiation, coherence, stereotyped conversa-

tion, use of conversational context, and conversational

rapport subscales (ranging from 86 to 162). Higher scores

indicate better pragmatic language.

Psychosocial Measures

The parent report Strengths and Difficulties Question-

naire (SDQ; Goodman, 1997) was used to measure psycho-

social outcomes at the age of 11 years. Sum scores were

generated for each of the five subscales (Emotional Problems,

Peer Problems, Conduct Problems, Hyperactivity, and Pro-

sociality). The scores for each subscale ranged from 0 to

10, with higher scores indicating more difficulties for the

problem subscales and higher prosociality.

DLD Status

Language measures provide an indication of individ-

ual differences in language ability but do not always reflect

language difficulties, which can be difficult to capture

through measures in single domains. We therefore derived

a measure of DLD using a previously reported framework

(Scerri et al., 2011). Children were categorized as having

DLD if they met at least two of the following four criteria:

(a) pragmatic language > 1 SD below standardized mean,

(b) nonword repetition > 1 SD below the standardized
mean, (c) receptive language > 1 SD below the standard-

ized mean, or (d) positive response to “child has ever had

speech/language therapy.” In line with recommendations

regarding DLD diagnosis, children were excluded if they

had a differentiating biomedical condition such as ASD or

hearing problems (Bishop, Snowling, Thompson, Greenhalgh,

& CATALISE-2 Consortium, 2017). ASD was defined as

mothers responding positively that their child had autism,

Asperger’s, or ASD at the age of 9 years. At the age of
7 years, children underwent a hearing test. Hearing prob-

lems were defined as bilateral hearing impairment, left

unilateral hearing impairment, or right unilateral hearing

impairment. Children with ASD or hearing loss were

also excluded from the comparison sample. There were

346 children with DLD, which yielded a prevalence esti-

mate of approximately 6%, which is consistent with preva-

lence data reported elsewhere (Norbury et al., 2016; Tomblin

et al., 1997).
Our approach to identifying children with DLD,

which involved selecting children at the tail end of the

normal distribution on a number of language measures,

allowed us to investigate DLD at a population level. Stud-

ies of clinical population may suffer from referral bias and

may only represent children at the extreme end of the dis-

order. The sample of children with DLD that we identified

will no doubt be a combination of those with a clinical di-

agnosis and those who are undiagnosed. Similar approaches

have been previously used in other population-wide or com-

munity samples (see Forrest, Gibson, Halligan, & St Clair,

2018; Norbury et al., 2016; Reilly et al., 2010).
Descriptive statistics were used to generate profiles

of the children with and without DLD. Psycholinguistic

and psychosocial characteristics of these two groups, as

shown in Table A1 in the Appendix, support the use of

such a community-based approach. As a group, children

with DLD had poorer early language ability (receptive lan-

guage: 15 months, vocabulary: 15 and 24 months, and

grammar: 24 months) compared to children without DLD.

This was also the case later in childhood when they were
aged 8–9 years. Children with DLD had lower levels of

receptive, expressive, and pragmatic language as well as

lower levels of nonword repetition compared to children

without DLD. As a group, the children with DLD also

had significantly more emotional problems, peer prob-

lems, and conduct problems and had higher levels of hyper-

activity. They were also less prosocial compared to children

without DLD.

In addition to this, descriptive statistics were run to
investigate earlier language profiles of children with and

without DLD. In total, 63% (n = 209) of the children with

DLD had impairment in receptive language and/or gram-

mar at the age of 15–24 months compared to only 28%

(n = 1,345) of children without DLD. These difficulties

persisted at the age of 8–9 years when 79% (n = 272) of

children with DLD had impairment in receptive language

and/or pragmatic language compared to only 17% (n = 864)

of children without DLD. This supports the representative-
ness of this community-based sample of children with DLD.

Genetic Data

Quality Control

Genetic data were obtained in a preprocessed for-

mat from the ALSPAC study team and included only SNP

data for requested candidate genes. Participants were

genotyped using the Illumina HumanHap550 quad chip

genotyping platforms by 23andme subcontracting the
Wellcome Trust Sanger Institute, Cambridge, United

Kingdom, and the Laboratory Corporation of America,

Burlington, NC. Quality control of the data was performed

prior to access. In short, individuals were excluded on

the basis of gender mismatches, minimal or excessive

heterozygosity, disproportionate levels of individual miss-

ingness (> 3%), and insufficient sample replication (identity

by descent < 0.8). Population stratification was assessed

by multidimensional scaling analysis and compared with
Hapmap II (Release 22) European descent (CEU), Han

Chinese, Japanese, and Yoruba reference populations; all

individuals with non-European ancestry were removed. SNPs

with a minor allele frequency of < 1%, a call rate of < 95%,

or evidence for violations of Hardy–Weinberg equilibrium

4 Journal of Speech, Language, and Hearing Research • 1–16
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(p < 5E-7) were removed. Cryptic relatedness was mea-

sured as proportion of identity by descent (> 0.1). Related

participants who passed all other quality control thresholds

were retained during subsequent phasing and imputation.

In total, 500,527 SNPs passed these quality control filters.

This formed the pool for the selection of SNPs for this

study.

Selection of SNPs

In the absence of large genome-wide studies, we

sought to increase the power of our polygenic approach

through the a priori selection of candidate genes after a

literature-based search. Genes that had shown previous

robust evidence for association to language and/or reading

within the ALSPAC population using common SNPs

were included in the analyses (Newbury et al., 2009; Scerri

et al., 2011). Although other genes have been previously
associated with language, these involved particular

populations or single studies. The genes of interest and cor-

responding locations (hg38) were ATP2C2 (chr16:84368615-

84463732), CMIP (chr16:81445241-81709799), CNTNAP2

(chr7:146116876-148415616), DCDC2 (chr6:24174729-

24357750), FOXP2 (chr7:114426511-114693772), and

KIAA0319 (chr6:24541241-24645764). In total, there were

1,229 SNPs available at these locations. A summary of

the number of SNPs by gene and location is shown in
Table A2 in the Appendix.

Splitting of Data Set

The data set was randomly split to generate two

independent data sets for genetic analyses (referred to

as the discovery and replication samples) using the

“generate random” command in Stata/SE 14.2. This

generated two approximately equal-sized groups: discov-

ery sample (n = 2,718) and replication sample (n = 2,717).

There were no significant differences between these two
sets of children on all measures of language and psycho-

social outcomes (p > .05).

Statistical Analyses

Association Analysis

SNP data were analyzed for allelic association within
PLINK (Purcell et al., 2007) using linear regression models

for the eight measures of language development. Eight

measures were analyzed across 1,229 SNPs. The associa-

tion metrics for each SNP were then used to generate a

best-fit polygenic profile for each of the dependent vari-

ables (language measures) in the discovery cohort. The

sensitivity of these profiles was evaluated by their ability

to predict the same dependent variable within an indepen-

dent replication set. This process is described in more
detail below.

Polygenic Analysis

Polygenic profile scores were calculated in the dis-

covery cohort within the PRSice (v1.25) package (Euesden,

Lewis, & O’Reilly, 2015). This package uses the effect

sizes of individual SNPs (odds ratio or β) to estimate a

weighted summation score that represents all variant

effects within a single measure. Polygenic profiles were

evaluated across a range of p-value thresholds for the

“base phenotype” in the discovery cohort. Best-fit scores

at a given threshold were then used to predict the same base

phenotype or an alternative “target” phenotype in an inde-
pendent replication cohort. Polygenic profiles that sig-

nificantly predict the outcome of the base measure in the

replication set can be considered sensitive predictors of

genetic risk. The overlaps between polygenic profiles and

alternative target phenotypes can be considered to indicate

the level of overlaps in genetic risk between base and target

traits.

Polygenic profile scores were calculated at increments

of .01 between p-value thresholds of 0 and .5 using the
association results from the eight language measures in

the discovery cohort. SNPs were thinned according to link-

age disequilibrium and p value within the discovery data

set using the “–clump” command in PRSice.

Each polygenic profile was tested within a stepwise

procedure. First, the sensitivity of each of the generated

polygenic profile was assessed by measuring the correlation

of the score with the base language trait in the replication

cohort. Second, the direct effects of the candidate genes
were tested by exploring the ability of the polygenic pro-

files (independent variable) to predict language (DLD sta-

tus) and psychosocial (SDQ subscales at the age of 11 years)

outcomes as dependent variables in the replication cohort.

Nominal p values are presented in the text with Benjamini–

Hochberg adjusted values also given in Table 3.

Results

Associations Between Phenotypes

Pairwise correlations were run between all language

and psychosocial measures at all time points (see Table 1).

Overall, there were positive correlations between language

measures at similar time points. For all parent report

language measures that were taken when the children were

15–24 months old, there were significant correlations with

medium to large effect sizes. Similarly, there were signifi-

cant correlations between direct measures of expressive
and receptive language as well as nonword repetition taken

when the children were 8 years old. The effect sizes for

these were moderate. Pragmatic language when the children

were 9 years old was also positively correlated with direct

measures of language when the children were 8 years old,

although the effect sizes were small. Analyses of language

measures across different time points showed positive correla-

tions, but the effect sizes were generally small. Therefore,

there was considerable variability between language develop-
ment in early and middle childhood.

The findings of correlations between language and

psychosocial measures were mixed. Higher language ability

in early childhood was associated with fewer peer prob-

lems, lower levels of hyperactivity, and higher levels of

Newbury et al.: Polygenic Profiles and Childhood Language 5
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prosociality at 11 years old. On the other hand, language

in early childhood was not associated with emotional

and conduct problems when the children were 11 years

old. Higher language ability in middle childhood was as-

sociated with fewer emotional (except for nonword repeti-

tion) and conduct problems as well as lower levels of
hyperactivity. Therefore, we found some evidence for asso-

ciations between language in early and middle childhood

and psychosocial outcomes in middle childhood.

Genetic Associations

Polygenic profile scores, which incorporated the effects

of common variants across six language-associated genes
(ATP2C2, CMIP, CNTNAP2, DCDC2, FOXP2, and

KIAA0319), were considered in relation to eight language

development measures, DLD status, and five SDQ subscales.

SNP-based approach. Although association in the

ALSPAC cohort has previously been described for some

SNPs included in these analyses (Newbury et al., 2011;

Scerri et al., 2011), the measures and sample set used in

this study differ. We therefore first evaluated associations

between individual SNPs and the eight language measures
to provide a baseline of association prior to polygenic in-

vestigation. As shown in Table 2, at the single SNP level,

no significant association was observed for any language

measure tested in the discovery cohort after correction for

multiple testing. Across all 9,832 tests performed (Hauser,

Moutoussis, Dayan, & Dolan, 2017), 15 had nominal p

values at the 10−4 level and the minimum nominal p value

was 1.77 × 10−4. This was observed between the CNTNAP2

variant rs9648690 and receptive language at 8 years of age
(all SNPs with a p value of 10−4 are shown in Table A3).

In general, the language measures at 8 and 9 years of age

showed a higher level of association than measures taken

at 15 or 24 months of age. These data illustrate the diffi-

culties associated with single SNP analyses across candi-

date genes and support the rationale for polygenic analyses,

which collapse multiple genetic measures into a single

factor and may be more robust to differences between

sample sets.
Consistency of polygenic profile scores. Polygenic

profile scores were calculated for each of the eight lan-
guage measures on the basis of the effect sizes for all SNPs
investigated in the discovery cohort. These scores were
then evaluated for their association with the same base
measure in the independent replication sample under the
same threshold allowing the identification of scores and
measures that provide a sensitive marker of genetic effects
across samples (see Table 3). One of the eight polygenic
profile scores generated (expressive language at 8 years of
age) did provide a consistent marker for genetic effects
upon language outcomes. The best fit for this polygenic
profile score was found at a p threshold of .23 and explains
.18% of trait variance (R2) in the replication set (nominal
p = .042; see Figure 1). After clumping for linkage disequi-
librium and p value, this score was based on 65 SNPs
spread across all six candidate genes included. Seven
of the SNPs fell in reading candidate genes (DCDC2
and KIAA0319), with the remainder falling in language
candidate genes (ATP2C2, CMIP, CNTNAP2, and
FOXP2).

Polygenic effects on other outcomes. The effects of
the polygenic profile score upon expressive language at
8 years of age were found to be correlated with peer prob-
lems at 11 years of age suggesting genetic overlaps be-
tween expressive language and this outcome (see Table 3).
To inform our understanding of the extent of overlaps, we
calculated the best-fit threshold across both outcome mea-
sures in the replication set. At a p-value threshold of .23
(as maximized in the discovery sample), the expressive
language profile score explained .22% of variation in peer
problems at the age of 11 years (nominal p = .049). In con-
trast, the best fit for the prediction of peer problems at
11 years old was found at a p threshold of .06 and in-
cluded 27 SNPs representing a subset of those contributing
to expressive language. This score explained .43% of the
trait variance in peer problems (R2) in the replication set
(nominal p = .0058, Benjamini–Hochberg corrected p value

Table 1. Pairwise correlations between all phenotypes.

Measure, child age 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12. 13.

1. Vocabulary, 15 months 1
2. Vocabulary, 24 months .59*** 1
3. Receptive, 15 months .61*** .41*** 1
4. Grammar, 24 months .47*** .74*** .28*** 1
5. Receptive language, 8 years .04* .11*** .00 .09*** 1
6. Expressive language, 8 years .10*** .21*** .03* .19*** .37*** 1
7. Nonword repetition, 8 years .13*** .30*** .06*** .26*** .20*** .30*** 1
8. Pragmatic language, 9 years .08*** .17*** .05*** .14*** .10*** .15*** .16*** 1
9. Emotional problems, 11 years .02 .01 .00 .01 −.06** −.03* −.02 −.22*** 1
10. Peer problems, 11 years −.05** −.10*** −.07*** −.07*** .01 .00 −.04** −.30*** .35*** 1
11. Conduct problems, 11 years −.01 −.04* −.03 −.02 −.06*** −.08*** −.07*** −.30*** .29*** .25*** 1
12. Hyperactivity, 11 years −.11*** −.15*** −.07*** −.12*** −.08*** −.12*** −.11*** −.44*** .25*** .23*** .47*** 1
13. Prosociality, 11 years .09*** .07*** .13*** .05*** −.02 −.02 −.03* .16*** −.10*** −.20*** −.41*** −.32*** 1

*p < .05. **p < .01. ***p < .001.

6 Journal of Speech, Language, and Hearing Research • 1–16

Downloaded from: https://pubs.asha.org Univ of York-England on 08/28/2019, Terms of Use: https://pubs.asha.org/pubs/rights_and_permissions 



Table 2. Genetic association to language measures in the discovery cohort.

Gene
Vocabulary,
15 months

Vocabulary,
24 months

Receptive language,
15 months

Grammar,
24 months

Receptive
language,
8 years

Expressive
language,
8 years

Nonword
repetition,
8 years

Pragmatic
language,
9 years min p min p trait

ATP2C2 .01513 .00543 .003633 .01061 .000631 .000662 .01517 .016 .000631 Receptive language
CMIP .009171 .01004 .001037 .05581 .00034 .000582 .006129 .01474 .00034 Receptive language
CNTNAP2 .003648 .000648 .002706 .002598 .000177 .004907 .000244 .000922 .000177 Receptive language
DCDC2 .05209 .004193 .01358 .04792 .000295 .008146 .01634 .03848 .000295 Receptive language
FOXP2 .09811 .03679 .03812 .1279 .06864 .2249 .2641 .001574 .001574 Pragmatic language
KIAA0319 .01414 .01301 .04021 .00289 .00674 .001015 .004646 .00076 .00076 Pragmatic language
Min p .003648 .000648 .001037 .002598 .000177 .000582 .000244 .00076 .000177 Receptive language
Min p gene CNTNAP2 CNTNAP2 CMIP CNTNAP2 CNTNAP2 CMIP CNTNAP2 KIAA0319 CNTNAP2

Note. Single-nucleotide polymorphisms (SNPs) with a nominal p value of less than 9.9 × 10−4 are highlighted in bold. Minimum p values are given for all traits and genes. No single
SNP was significantly associated after multiple testing corrections.
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Table 3. Polygenic prediction of measures and outcomes in the replication cohort.

Consistency of polygenic profile score (base trait same as target trait)

Trait modeled
Best-fit threshold

p value
No. SNPs in
best-fit model

Proportion of trait
variance explained by
polygenic score (R2)

Nominal
p valuea

Benjamini–Hochberg
adjusted p valueb

Vocabulary, 15 months .09 32 .106% .125 .432
Vocabulary, 24 months .03 13 .023% .480 .549
Receptive language, 15 months .50 111 .034% .385 .513
Grammar, 24 months .16 47 .089% .162 .432
Receptive language, 8 years .03 19 .061% .239 .478
Expressive language, 8 years .23 65 .182% .042 .336
Nonword repetition, 8 years .09 42 .008% .666 .666
Pragmatic language, 9 years .01 9 .056% .300 .480

Overlaps in genetic effects (ability of expressive language polygenic profile to predict language and psychosocial outcomes at the age of 11 years)

Base trait Target trait
Best-fit threshold

p value
No. SNPs in
best-fit model

Proportion of trait
variance explained by
polygenic score (R2)

Nominal
p valuea

Benjamini–Hochberg
adjusted p valueb

Expressive
language,
8 years

DLD status .08 30 .028% .419 .628

Expressive
language,
8 years

Emotional problems,
11 years

.50 123 .085% .210 .420

Expressive
language,
8 years

Peer problems,
11 years

.06 27 .428% .006 .036

Expressive
language,
8 years

Conduct problems,
11 years

.01 9 .094% .189 .420

Expressive
language,
8 years

Hyperactivity,
11 years

.40 97 .015% .601 .666

Expressive
language,
8 years

Prosociality,
11 years

.02 17 .010% .666 .666

Note. SNPs = single-nucleotide polymorphisms; DLD = developmental language disorder.
aModels with nominal p values less than .05 are highlighted in bold. bBold results reached a significant level of association following a Benjamini–Hochberg adjustment at a false discovery
rate of .05.

8
J
o
u
rn
a
l
o
f
S
p
e
e
c
h
,
L
a
n
g
u
a
g
e
,
a
n
d
H
e
a
rin

g
R
e
s
e
a
rc
h
•
1
–
1
6

Downloaded from: https://pubs.asha.org Univ of York-England on 08/28/2019, Terms of Use: https://pubs.asha.org/pubs/rights_and_permissions 



of .036 at a false discovery rate of .05; see Table 3 and
Figure 2).

Discussion

Using polygenic profile scores, we investigated genetic

effects on language and psychosocial outcomes. Polygenic

profile scores indicated some evidence of association across

the SNPs tested, and the profile score for expressive lan-

guage at 8 years old provided a consistent marker across

the candidate genes. Of particular interest, the expressive

language profile score at 8 years was significantly asso-

ciated with peer problems at the age of 11 years. These

findings are consistent with behavioral models in which
early language difficulties increase the risk of psychosocial

difficulties.

The polygenic profile scores used here were based

on six genes that have previously been associated with lan-

guage and/or reading. We hypothesized that this targeted

approach would increase the likelihood of constructing
meaningful polygenic profiles within the moderate sample

sizes available (Dudbridge, 2013). In support of this hy-

pothesis, we found that variation across these candidate

genes could provide a consistent marker of the genetic ef-

fects upon expressive language, although the proportion

of variance explained remained low throughout (< .3%).

All genes contributed to the risk model with 5% (65 of the

1,229 SNPs tested) of variants contributing to the best-fit

polygenic profile. While the proportion of variance ex-
plained is low, this is not uncommon. In other fields,

such as education, earlier studies of polygenic effects ex-

plained approximately 2% of variance (Rietveld et al.,

2013). In the most recent work, larger data sets have

allowed for the identification of more SNPs, and so in-

creasing the variance explained to approximately 13%

(Lee et al., 2018). Similarly, larger sample sets and GWAS

will allow the relative evaluation of the targeted loci studied

in this article. A priori candidate genes have been substanti-
ated within larger polygenic studies (Ritchie et al., 2019),

Figure 1. Best-fit model of genetic effects upon expressive language at 8 years of age. The best fit was found at a
p threshold of .23 and explains .18% of trait variance (R2) in the replication sample (p = .042).
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although many candidate genes do not replicate at the GWAS

level (Border et al., 2019; Johnson et al., 2017). Despite

the small proportion of variance explained, our findings

support the role of common variants of small effect sizes

within a complex genetic model of language development
and reiterate the utility of polygenic profiles, which capture

multiple effects within a single score.

Furthermore, polygenic profile scores of expressive

language were able to predict peer problems at the age

of 11 years indicating the genetic overlaps between this

measure and psychosocial outcomes (see Table 3). These

findings support the previous behavioral findings, which

show that language ability is correlated with psychoso-

cial outcomes (Conti-Ramsden & Botting, 2004; Forrest
et al., 2018; Mok et al., 2014). In addition, our study extends

these observations in that it suggests that expressive lan-

guage difficulties may increase the concomitant peer prob-

lems through shared biological pathways informing our

understanding of the routes to psychosocial difficulties

in children with language disorder. If replicated, such a

finding is important as it may indicate the need for concur-

rent intervention targeting both linguistic and psychosocial

development, rather than assuming early language inter-

ventions will stave off later emergence of peer problems.

We found that the best-fit p-value thresholds for the
prediction of peer problems (pT = .06) formed a subset

of those that provided the most consistent score for expres-

sive language alone (pT = .23). This finding indicates that,

within the polygenic model, different subsets of SNPs may

be more relevant to different outcomes. Although the actual

number of variants differed between thresholds, the weight-

ing of individual SNPs was fixed between thresholds and the

SNPs that contributed to peer problems formed a direct sub-

set of those associated with expressive language. Specifically,
we found that 42% (27/65) of the variants contributing to ex-

pressive language also contributed to peer problems at the

age of 11 years. The relative numbers of variants from each

gene were consistent across thresholds, and in general, these

ratios reflected gene size. This therefore supports the relative

role of all six candidate genes in language development.

Figure 2. Best-fit model of genetic overlaps between expressive language at 8 years of age and peer problems. The
best fit was found at a p threshold of .06 and explains .43% of variance (R2) in the replication sample (p = .006).
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The methods reported here provide a useful approach
to the investigation of relationships between genetic risks and
environmental factors. Through the application of polygenic
profiles, we have demonstrated potential shared genetic re-
lationships between expressive language and peer problems.
These findings provide further evidence of the role of genes
in language development and emphasize the importance of
larger-scale studies to identify specific factors that moderate
risk and mediate positive psychosocial outcomes for chil-
dren affected by language disorder. Likewise, investigations
of genetic comorbidities between language disorder and
psychosocial outcomes represent an interesting future
direction (Bulik-Sullivan et al., 2015). Application of
this approach has revealed substantial overlaps between
neurodevelopmental disorders and in relation to educational
attainment (Gialluisi et al., 2019; Grove et al., 2019). Such
studies allow biological insights into disease mechanisms
and may help to target intervention to individuals who will
best benefit from additional support in terms of long-term
outcomes.

An additional finding of note concerns the prosocial

subscale of the SDQ. Previous evidence indicates that indi-

viduals with DLD show relatively stable prosociality scores

from late childhood to 24 years old (Lindsay & Dockrell,

2012; Toseeb et al., 2017). The finding that prosociality
was within the normal range for both those with DLD and

those without (see Table A1) provides further support for

the inference that prosociality is a characteristic of relative

strength in young people with DLD (in contrast to their

less favorable scores on the other SDQ subscales). We

obtained no indication that prosociality scores could be

predicted by polygenic profiles, suggesting that this aspect

of psychosocial functioning may either be influenced by

other genetic factors or be nurtured by socialization processes
(or some interaction of these factors). We cannot resolve

this issue on the basis of the present data, but the findings

do add to an accumulating body of evidence that this

strength in prosociality in those with DLD may be

sufficiently robust to warrant incorporation in therapeu-

tic work (Conti-Ramsden & Durkin, 2016; Toseeb et al.,

2017).

When considering the findings of this study, some

drawbacks should be borne in mind. This study considers
only a small number of genes that, between them, account

for only a small proportion of genetic risk. Thus, although

the patterns that we observed support existing behavioral

data, we must qualify these observations with the fact that

these effects only represent a small proportion of genetic

liability and a small part of the complex picture of risks

relevant to language disorders. Nonetheless, in the absence

of a large-scale picture of genome-wide effects in language

disorder, the focus of this work upon a small set of robust
candidate genes allowed the derivation of consistent poly-

genic profile of language disorder, albeit with a small

effect size. A functional candidate approach, such as the one

we have reported here, has previously been shown to pro-

vide an accurate way of focusing polygenic profile studies,

for example, in fibrogen pathways in cardiovascular disease

(Cronjé et al., 2017). In this instance, the use of a specified

set of candidate genes allowed the further exploration of rela-

tive subsets in relation to outcome measures. This study il-

lustrates the utility of polygenic models in the study of

language disorders and, when larger samples become avail-

able, can be extended to a genome-wide model.

We should also note that only one of the p values

found in the current study survived multiple testing correc-

tions. Although polygenic profiles allow the reduction of

dimensions through the consideration of a single weighted

risk score, they still involve multiple tests, especially when

high-resolution best-fit modeling is employed (Euesden et al.,

2015). The use of hypothesis-driven, predefined models

offsets this issue to some extent as we have some a priori

expectation of the patterns we will observe from the behav-

ioral literature. Nonetheless, these findings require exten-

sion to, and replication in, larger, independent data sets

to claim significance.
Overall, our study illustrates the utility of polygenic

methods in the study of children’s language development.
We found preliminary evidence that polygenic profiles for
expressive language can be used to predict expressive lan-
guage and peer problems in an independent sample. Our
findings point to particular language and psychosocial
outcomes that appear to be associated with genetic risk of
language disorder.
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Table A1. Group level comparisons for all variables of interest.

Measure, child age

Overall Without DLD With DLD
Mean difference

[95% CI] Test statistics
Effect
sizen Range M (SD) M (SD) M (SD)

Language and communication measures
Vocabulary, 15 months 5,259 0–268 88.36 (43.23) 89.37 (43.32) 73.43 (39.03) 15.94 [11.18, 20.71] t(5,257) = 6.56*** 0.37
Vocabulary, 24 months 5,205 0–246 158.66 (53.16) 161.57 (51.88) 116.11 (53.34) 45.46 [39.69, 51.23] t(5,203) = 15.44*** 0.87
Receptive, 15 months 5,263 0–12 9.18 (2.41) 9.20 (2.40) 8.90 (2.50) 0.30 [0.03, 0.57] t(5,261) = 2.20* 0.12
Grammar, 24 months 5,205 0–8 3.62 (2.55) 3.74 (2.53) 1.84 (2.05) 1.90 [1.63, 2.18] t(5,203) = 13.42*** 0.76
Receptive language, 8 years 5,429 2–15 7.61 (1.87) 7.73 (1.80) 5.86 (1.99) 1.87 [1.68, 2.07] t(5,427) = 18.62*** 1.03
Expressive language, 8 years 5,416 0–10 7.65 (1.68) 7.74 (1.61) 6.26 (2.04) 1.48 [1.30, 1.66] t(5,414) = 16.22*** 0.90
Nonword repetition, 8 years 5,424 0–12 7.41 (2.42) 7.64 (2.27) 4.11 (2.13) 3.53 [3.28, 3.78] t(5,422) = 28.03*** 1.56
Pragmatic language, 9 years 4,464 98–162 151.83 (6.62) 152.43 (5.87) 144.12 (10.03) 8.32 [7.61, 9.03] t(4,462) = 22.94*** 1.33
Psychosocial outcomes
Emotional problems, 11 years 4,308 0–10 1.36 (1.64) 1.34 (1.64) 1.65 (1.744) −0.31 [−0.51, −0.11] t(4306) = −3.05** −0.19
Peer problems, 11 years 4,157 0–9 0.95 (1.39) 0.92 (1.36) 1.47 (1.70) −0.55 [−0.72, −0.38] t(4155) = −6.37*** −0.40
Conduct problems, 11 years 4,290 0–9 1.11 (1.33) 1.08 (1.31) 1.56 (1.56) −0.49 [−0.65, −0.33] t(4288) = −6.02*** −0.37
Hyperactivity, 11 years 4,283 0–10 2.56 (2.13) 2.48 (2.08) 3.76 (2.50) −1.28 [−1.54, −1.03] t(4281) = −9.83*** −0.61
Prosociality, 11 years 4,305 0–10 8.40 (1.62) 8.41 (1.62) 8.20 (1.69) 0.22 [0.02, 0.41] t(4303) = 2.18* 0.13

Note. DLD = developmental language disorder; CI = confidence interval.

*p < .05. **p < .01. ***p < .001.

Table A2. Summary of single-nucleotide polymorphisms (SNPs) by gene.

Gene Number of SNPs in analysis ALSPAC coordinates (hg38)

CMIP 172 chr16:81445241-81709799
ATP2C2 158 chr16:84368615-84463732
DCDC2 100 chr6:24174729-24357750
KIAA0319 52 chr6:24541241-24645764
FOXP2 27 chr7:114426511-114693772
CNTNAP2 720 chr7:146116876-148415616

Note. ALSPAC = Avon Longitudinal Study of Parents and Children.

Appendix

N
e
w
b
u
ry

e
t
a
l.:

P
o
ly
g
e
n
ic

P
ro
file

s
a
n
d
C
h
ild

h
o
o
d
L
a
n
g
u
a
g
e

1
5

Downloaded from: https://pubs.asha.org Univ of York-England on 08/28/2019, Terms of Use: https://pubs.asha.org/pubs/rights_and_permissions 



Table A3. Single-nucleotide polymorphisms (SNPs) in analyses that reached nominal level of significance (p = 10−4)

Chr Position (hg38) SNP Gene Allele1

Included in
best fit exp_8y

profile
(p = .23)?

Vocabulary,
15 months

Vocabulary,
24 months

Receptive language,
15 months

Grammar,
24 months

Beta p Beta p Beta p Beta p

6 24,314,672 rs9379651 DCDC2 A −1.351 .5093 −6.109 .01607 −0.1064 .336 −0.1663 .1661
6 24,583,953 rs6902039 KIAA0319 C 1.16 .3863 −0.8389 .6099 0.149 .04021 −0.04688 .5469
7 146,727,562 rs34084487 CNTNAP2 C 5.07 .07184 7.158 .04169 0.2534 .09833 0.5021 .002598
7 147,487,190 rs6464815 CNTNAP2 T 0.6864 .7096 −3.496 .123 0.03331 .7392 −0.1422 .1853
7 147,572,753 rs12539980 CNTNAP2 C 4.956 .003648 7.165 .000648 0.2057 .02591 0.2086 .03608
7 147,818,988 rs17824995 CNTNAP2 G 1.414 .5182 3.175 .2367 0.008313 .9441 0.08794 .4891
7 147,889,090 rs10488350 CNTNAP2 C 1.838 .3275 3.33 .1491 −0.0247 .8085 0.1546 .1573
7 148,026,296 rs12533565 CNTNAP2 A 0.5879 .6871 0.1989 .9118 −0.02252 .7765 0.000354 .9967
7 148,038,344 rs17545705 CNTNAP2 T 1.214 .4798 0.9511 .6518 −0.04772 .6083 0.01602 .8724
7 148,361,425 rs9648690 CNTNAP2 G −0.7228 .5916 −2.727 .09997 −0.1181 .1057 −0.03607 .6467
16 81,523,885 rs4889330 CMIP T −4.449 .0944 −4.453 .1764 −0.477 .001037 0.01413 .9278
16 81,657,207 rs8061723 CMIP G y 0.6783 .7325 −0.12 .961 0.07432 .4901 0.03503 .7627
16 84,373,185 rs12716749 ATP2C2 G 2.221 .08795 0.01276 .9937 0.1107 .1165 0.1219 .1079
16 84,375,135 rs4782938 ATP2C2 C 0.3783 .7795 −2.336 .1598 0.02716 .7109 −0.00841 .9149

Chr Position (hg38) SNP Gene Allele1

Included in
best fit exp_8y

profile
(p = .23)?

Receptive language,
8 years

Expressive language,
8 years

Nonword repetition,
8 years

Pragmatic language,
9 years

Beta p Beta p Beta p Beta p

6 24,314,672 rs9379651 DCDC2 A −0.3094 .000295 −0.05658 .4727 −0.05744 .6122 −0.2796 .3931
6 24,583,953 rs6902039 KIAA0319 C −0.07661 .1682 0.02487 .627 −0.1593 .03062 −0.7102 .00076
7 146,727,562 rs34084487 CNTNAP2 C −0.1638 .1674 0.1272 .2427 0.02013 .8977 −0.4656 .3105
7 147,487,190 rs6464815 CNTNAP2 T −0.1425 .06321 −0.1227 .08263 −0.1671 .1005 −0.9668 .000922
7 147,572,753 rs12539980 CNTNAP2 C −0.03939 .5783 −0.00515 .9373 −0.00171 .9854 −0.03829 .8876
7 147,818,988 rs17824995 CNTNAP2 G −0.07544 .4059 −0.00309 .9706 0.4062 .000717 −0.0116 .9733
7 147,889,090 rs10488350 CNTNAP2 C −0.04349 .5775 −0.02074 .7733 0.3762 .000275 −0.04313 .8841
7 148,026,296 rs12533565 CNTNAP2 A −0.02775 .6457 −0.04145 .4591 0.2951 .000244 0.002313 .9921
7 148,038,344 rs17545705 CNTNAP2 T −0.05244 .4618 −0.05376 .4124 0.3128 .000923 −0.1206 .659
7 148,361,425 rs9648690 CNTNAP2 G −0.2103 .000177 −0.03933 .4471 −0.158 .03438 −0.2025 .3485
16 81,523,885 rs4889330 CMIP T −0.02818 .8012 0.04406 .6692 −0.07686 .6047 −0.01377 .9739
16 81,657,207 rs8061723 CMIP G y −0.07487 .366 −0.2621 .000582 −0.1408 .1998 0.08177 .7936
16 84,373,185 rs12716749 ATP2C2 G −0.0351 .518 −0.1695 .000669 0.1498 .0369 −0.1631 .4294
16 84,375,135 rs4782938 ATP2C2 C −0.01576 .7792 −0.1766 .000662 0.06389 .3915 −0.3851 .07137

Note. Minimum p value for each outcome measure is highlighted in bold. Tests that reach a nominal p value of 10−4 are highlighted in gray.
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