
This is a repository copy of Fine-scale behavioural adjustments of prey on a continuum of 
risk.

White Rose Research Online URL for this paper:
https://eprints.whiterose.ac.uk/145571/

Version: Published Version

Article:

Kent, Maud I.A., Herbert-Read, James E., McDonald, Gordon et al. (2 more authors) 
(2019) Fine-scale behavioural adjustments of prey on a continuum of risk. Proceedings of 
the Royal Society B: Biological Sciences. pp. 1-8. ISSN 1471-2954 

https://doi.org/10.1098/rspb.2019.0448

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse 

Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless 
indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by 
national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of 
the full text version. This is indicated by the licence information on the White Rose Research Online record 
for the item. 

Takedown 

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by 
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request. 



royalsocietypublishing.org/journal/rspb

Research

Cite this article: Kent MIA, Herbert-Read JE,

McDonald G, Wood AJ, Ward AJW. 2019 Fine-

scale behavioural adjustments of prey on a

continuum of risk. Proc. R. Soc. B 286:

20190448.

http://dx.doi.org/10.1098/rspb.2019.0448

Received: 22 February 2019

Accepted: 30 April 2019

Subject Category:

Behaviour

Subject Areas:

behaviour, ecology

Keywords:

predator–prey interactions, collective

behaviour, risk sensitivity, attack cone,

fountain effect

Author for correspondence:

Maud I. A. Kent

e-mail: maud.kent@sydney.edu.au

Electronic supplementary material is available

online at http://dx.doi.org/10.6084/m9.

figshare.c.4496474.

Fine-scale behavioural adjustments
of prey on a continuum of risk

Maud I. A. Kent1, James E. Herbert-Read4, Gordon McDonald2,

A. Jamie Wood3,5,6 and Ashley J. W. Ward1

1School of Life and Environmental Sciences, 2Sydney Informatics Hub, and 3Visiting Academic in the School of

life and Environmental Sciences, University of Sydney, Sydney, New South Wales, Australia
4School of Biological Sciences, Bristol University, Bristol, UK
5Department of Biology, and 6Department of Mathematics, University of York, York, UK

MIAK, 0000-0001-9922-6189; JEH-R, 0000-0003-0243-4518; AJWW, 0000-0003-0842-533X

In the wild, prey species often live in the vicinity of predators, rendering the

ability to assess risk on a moment-to-moment basis crucial to survival.

Visual cues are important as they allow prey to assess predator species,

size, proximity and behaviour. However, few studies have explicitly exam-

ined prey’s ability to assess risk based on predator behaviour and

orientation. Using mosquitofish, Gambusia holbrooki, and their predator,

jade perch, Scortum barcoo, under controlled conditions, we provide some

of the first fine-scale characterization of how prey adapt their behaviour

according to their continuous assessment of risk based on both predator

behaviour and angular distance to the predator’s mouth. When these

predators were inactive and posed less of an immediate threat, prey

within the attack cone of the predator showed reductions in speed and accel-

eration characteristic of predator-inspection behaviour. However, when

predators became active, prey swam faster with greater acceleration and

were closer together within the attack cone of predators. Most importantly,

this study provides evidence that prey do not adopt a uniform response to

the presence of a predator. Instead, we demonstrate that prey are capable

of rapidly and dynamically updating their assessment of risk and showing

fine-scale adjustments to their behaviour.

1. Introduction
The threat of predation is ubiquitous for many species. In order to survive, prey

must detect and avoid predators, as well as meet daily energy requirements.

A problem for prey species arises from the fact that anti-predator behaviours

such as increased vigilance [1–3], hiding [4–7] and reduced activity rates

[8–10] inherently decrease the amount of time and energy available for impor-

tant fitness-enhancing behaviours, such as foraging, mating or territorial

defence [11]. However, individuals are more conspicuous [12] and less vigilant

[13–15] while engaged in these important fitness-enhancing behaviours,

putting them at greater risk of predation. Owing to the opportunity costs that

arise from these anti-predator behaviours, prey should ideally adjust the inten-

sity of anti-predator behaviour to the level of risk within their environment, a

concept referred to as the risk sensitivity hypothesis [16,17]. Ultimately,

this ability to assess and respond appropriately to risk is an important factor

determining prey survival.

To assess risk, prey must first detect the presence and location of preda-

tors in their environment. Research has shown that prey use chemical,

visual, auditory and tactile cues to gather information on risk [18–20].

Within certain predator–prey systems, visual cues may be particularly impor-

tant in allowing prey to assess risk based on predator species [21,22], body

size [23], gape size [24], body posture [16] and proximity [25]. California

ground squirrels (Spermophilus beecheyi) and slimy sculpin (Cottus cognatus)

increase the intensity of their anti-predator responses when confronted with
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large predators compared to small predators [25,26].

Columbian black-tailed deer (Odocoileus hemionus columbia-

nus) increase flight initiation distances when humans

approach more directly and at faster speeds [27]. Even at

close range, some fishes use visual cues to avoid the

mouth of a predator during inspection behaviour given

that the region in front of its mouth (sometimes referred

to as the ‘attack cone’) poses the greatest threat [28,29]. In

fact, prey fishes use this visual information in an anti-

predator behaviour called the fountain effect in which

they manoeuvre away from the predator’s mouth and

towards the blind spot by the tail [30].

These studies underscore the ability of prey to assess the

level of risk within their environment and respond in a

graded, threat-sensitive manner. Furthermore, they point to

the importance of visual cues in mediating prey responses

to predators. However, few studies have investigated the abil-

ity of prey to continuously assess predation risk as a function

of visual information gleaned from predator behaviour. This

question is particularly relevant for prey species living in con-

stant proximity to potential predators, a scenario that is

common throughout nature. For instance, Pitcher [31] esti-

mated that free-ranging groups of roach, Rutilus rutilus,

were seldom more than 2 m away from predatory pike,

Esox lucius, meaning they are constantly within striking dis-

tance of a predator. This is similar for many populations of

Trinidadian guppies, Poecilia reticulata, living in high preda-

tion habitats [32]. In these scenarios, Pavlov & Kasumyan

[33] speculate that maintaining visual contact may be more

adaptive than moving away as it allows prey to monitor

predator behaviour. Indeed, Magurran & Pitcher [34] found

that minnows, Phoxinus phoxinus, swimming in the presence

of pike predators, E. lucius, shifted between various anti-

predator behaviours, escalating the severity of their response

as pike shifted from stationary behaviour to stalking or

striking behaviour.

The level of threat posed by a predator depends not just

on its behaviour, but also on its relative proximity and orien-

tation to the prey. Surprisingly, the extent to which prey

integrate these additional variables into their risk assess-

ment is relatively unknown (although see [35]). This

apparent gap in the predator–prey research is owing in

part to the historic lack of advanced automated tracking

software but also to the tendency to treat risk as a fixed

factor [36]. As a result, little is known about how prey

gauge the threat posed by a predator on a moment-to-

moment basis or whether they incorporate this information

into their behavioural decisions.

We sought to investigate how prey adjusted their behav-

iour in response to predator behaviour and orientation by

allowing predator and prey to interact in controlled con-

ditions. We hypothesized that prey would adjust their

behaviour based on the predator’s activity level and based

on where they were located in relation to the predator’s

mouth. Specifically, we predicted that prey would increase

anti-predator behaviours, reflected by increases in swimming

speeds, reduced neighbour distances and increases in accel-

eration [34], when they were in the attack cone in front of

the predator, and when the predator was active rather than

inactive. Finally, we sought to characterize for the first time

to our knowledge, the exact shape of the relationship between

these response variables and the relative alignment of

predator and prey.

2. Methods

(a) Collection and husbandry
Eastern mosquitofish, Gambusia holbrooki, with standard length of
22.5+2.3 mm (mean+ s.d.) were collected from Manly Dam,
Balgowlah, Australia (33846035.4500 S, 151814050.3800 E), where
they would have been subject to predation by various fish
species, including silver perch (Bidyanus bidyanus), who are
from the same family as the predators used in this experiment
( jade perch, Scortum barcoo). Mosquitofish were collected from
Manly Dam in October 2016 and transported to a temperature-
controlled aquarium at the University of Sydney. All fish were
housed in large stock tanks maintained at 248C with a 12 : 12
light : dark cycle and fed fish flake daily. Commercially-bred
jade perch with standard length of 91.5+ 1.6 mm (mean+ s.d.)
were housed in individual tanks. Previous work on jade perch
found that these predators innately recognize mosquitofish as
prey, although prey capture rates are greater in perch with
experience of live mosquitofish prey [37]. To standardize each
predator’s foraging experience, all predators were fed a mix of
pellets and live mosquitofish daily. All fish were acclimated to
laboratory conditions for a minimum of two weeks before exper-
iments began. This work was approved by the University of
Sydney Animal Ethics Committee (ref: 2016/1077) and was
carried out in accordance with local regulations.

(b) Experimental apparatus and protocol
Experimental tanks consisted of two concentric circular arenas
placed in a larger square tank with water flow between all com-
partments (electronic supplementary material, figure S1). The
outer circular wall was opaque and tapered so that it had a diam-
eter of 572 mm at the bottom of the tank and a diameter of
692 mm at the water’s surface. Tanks were filled to a depth of
70 mm and kept at the same temperature as the stock tanks.
The inner transparent circular arena was used to hold perch
during the experiments and had a diameter of 283 mm. A
single perch (the predator) was placed in the inner enclosure
the night before experiments began and given an additional
hour to acclimate in the morning after the lights were turned
on. To standardize the olfactory cues in the experimental tank,
no predators were fed within 24 h of trials. After the predator’s
acclimation period, mixed sex groups of 10 mosquitofish (the
prey) were released into the outer annulus of the test tank.
After a 1 min acclimation period, trials were filmed for 12 min
using a Canon G1X camera filming at 1080 dpi and 24 fps.
A total of 180 mosquitofish were used in 18 separate trials with
18 different perch predators such that all fish were tested
only once.

(c) Video tracking and data extraction
Videos were formatted and cropped using VIRTUALDUB (v. 1.9.8)
then uploaded to the manual tracking software CTRAX [38].
Using this automated tracking software, the x, y coordinates of
all fish (both predator and prey) were recorded at each frame
over the 12 min trials. Trajectories were then hand corrected
using the FIXERRORS GUI in MATLAB so that each fish had an
unbroken record of its location throughout all 17 280 frames
(see the electronic supplementary material, figure S1).

Using a known ratio of pixels to mm, x, y coordinates were
converted to mm, then used to calculate predator and prey
behaviour. Predator coordinates were used to calculate instan-
taneous speed and turning speed. To account for spurious
fluctuations in tracked movement, coordinates were smoothed
using a rolling average that spanned five frames (208 ms).
Using the same five frame smoothing window, prey coordinates
were used to measure median swimming speed (mm s21),
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median nearest neighbour distances (NNDs; mm) and median
acceleration (mm s22) for each individual prey. We calculated
median swimming speeds and acceleration because both behav-
ioural measures are highly responsive to context [39]. Similarly,
we used NNDs as a measure of risk-perception given that prey
often form more compact and cohesive groups in response to
increased risk [40].

Perch behaviour was characterized by periods of activity,
marked by high speeds and high turning speeds, and periods of
inactivity, marked by low speeds and low turning speeds. This
was determined after histograms of predators’ instantaneous
speed and turning speed revealed bimodal behavioural states
(electronic supplementary material, figure S2). Using these instan-
taneous speed and turning speed thresholds, predator behaviour
could be categorized into ‘active’ or ‘inactive’ states (see the elec-
tronic supplementary material, methods). As perch typically stalk
prey before striking, the probability of the predator striking at prey
increases when they become active [37]. Therefore, we analysed
prey behaviour based on predator activity state.

Previous experiments have also demonstrated that prey
behave differently when in front of a predator and tend to

avoid the ‘attack cone’ region immediately in front of the preda-
tor’s mouth [29,41]. In light of this work, we analysed prey
behaviour based on their position relative to the predator’s
mouth. To do this, we created a series of 58 bins radiating out
from in front of the predator’s snout (08 to 58) to directly
behind the predator (1758 to 1808). We then calculated the behav-
iour of each individual prey (median speed, acceleration and
NND) in each 58 bin based on whether the predator was active
or inactive.

Individual prey behaviour was only recorded within a 58 bin if
the individual remained within the bin for at least five frames. We
did not investigate lateralized behaviours in either the predator or
prey and instead averaged prey behaviour across the predators’
left and right sides. To avoid any effect of tank geometry on
prey behaviour, we analysed prey within two predator body
lengths of the predator (average predator standard length:
91.5+1.6 mm, therefore prey behaviour was limited to within
183 mm of the predator’s centre of mass). Once all filtering had
been applied, each bin contained an average of 163 individual
prey measures (range: 147–176), which were derived from an
average of 71 timesteps (range: 5–1839 frames).

Table 1. Results from individual mixed effect models tested against each measure of prey behaviour. (Individual nested within trial was included in each model

as a random effect.)

value std. error

conf. int.

t-value p-valuelower upper

median speed (mm s21)

(intercept) 0.01 0.06 20.10 0.12 0.15 0.88

state 20.06 0.01 20.08 20.03 24.32 ,0.001

angle 21.52 0.95 23.38 0.35 21.60 0.11

angle2 214.64 0.96 216.52 212.77 215.30 ,0.001

angle3 5.23 0.96 3.36 7.10 5.47 ,0.001

state * angle 25.54 1.36 28.21 22.87 24.06 ,0.001

state * angle2 10.94 1.36 8.27 13.61 8.02 ,0.001

state * angle3 25.01 1.36 27.68 22.35 23.69 ,0.001

median nearest neighbour distances (mm)

(intercept) 0.00 0.04 20.07 0.08 0.03 0.97

state 0.00 0.02 20.03 0.03 20.04 0.96

angle 27.71 1.22 210.09 25.33 26.34 ,0.001

angle2 23.65 1.22 26.05 21.25 22.98 ,0.001

angle3 6.64 1.22 4.25 9.04 5.43 ,0.001

state * angle 12.61 1.74 9.19 16.03 7.23 ,0.001

state * angle2 21.99 1.74 25.41 1.42 21.14 0.25

state * angle3 27.05 1.74 210.46 23.64 24.05 ,0.001

median acceleration (mm s22)

(intercept) 20.05 0.06 20.16 0.06 20.82 0.41

state 0.06 0.01 0.04 0.08 4.79 ,0.001

angle 20.26 0.93 22.09 1.57 20.28 0.78

angle2 22.19 0.94 24.03 20.35 22.33 0.02

angle3 1.20 0.94 20.64 3.04 1.28 0.20

state * angle 29.83 1.34 212.46 27.21 27.35 ,0.001

state * angle2 4.08 1.34 1.46 6.70 3.05 ,0.003

state * angle3 0.37 1.33 22.25 2.98 0.28 0.78
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(d) Statistical analysis
Each measure of prey behaviour was tested in mixed effect
models against the interaction between predator state and
angle to the predator’s mouth. To fully capture the fine-scale
adjustments in prey behaviour, which were often nonlinear, we
included orthogonal 1st, 2nd, and 3rd order polynomials to
investigate whether the quadratic term significantly improved
the regression compared to the linear term or the cubic term sig-
nificantly improved the regression compared to the quadratic
term. Orthogonal polynomials, using the poly() function in R,
were used to reduce multicollinearity and improve model stab-
ility [42]. While the linear fit was often significant, it failed to
capture the essence of these behavioural responses (see below).
When there was a significant interaction between predator state
and angle, prey behaviour was tested against angle and the
orthogonal polynomials of angle separately based on whether
predators were active or inactive. Depending on which degree
polynomial was significant within the main model, the sub-
sequent subsetted model included the same degree polynomial
along with all lower degree polynomials.

Within each mixed effect model, which we created using the
lme function in R [43], prey identity was nested within group
and included as a random effect. This was done to account for
the non-independence of individuals within the same trial. To
meet the assumption of homogeneity of variance, response vari-
ables were transformed using the ordered quantile
normalization transformation [44], though graphs were produced
using raw data to increase interpretability.

To visualize how prey adapted their movements in response
to predator activity state and location, heat plots of prey direction
of movement and speed in relation to the predator’s position and
orientation were created. To do this, we calculated the mean
velocity of all prey movements that occurred in each cell of a
17 � 17 mm gridded array, centred with the predators positioned
at (0, 0) and facing along the positive y-axis. Within each cell of
this array, we also calculated the mean orientation of prey in
relation to the predator. This bin size was selected because it rep-
resents the standard length of the smallest mosquitofish used
within any trial (17.32 mm). This was done separately for times
when predators were active and inactive.

Given the correlational nature of our analysis, it is possible
that our results are bidirectional. That is, predators may shift
activity and position in response to prey, or prey may shift be-
haviour in response to predator activity and angular position.
In this case, we feel the latter interpretation is more likely
given the spatial dispersion of prey throughout the arena render-
ing the ability of predators to respond in a uniform way to
individual or grouped prey difficult. With prey dispersed
around the arena, predators would have encountered the same
value of prey behaviour (speed, NND and acceleration) at
multiple angular positions at any one time.

3. Results
Predators shifted between active and inactive activity states

(electronic supplementary material, figure S3), spending an

average of 58% of each trial inactive and 42% active. Prey

adjusted their median swimming speed as a function of the

interaction between predator activity state and angular pos-

ition relative to the predator’s mouth (i.e. state * angle3; see

table 1). In particular, prey showed a greater range of speeds

across angular positions when predators were inactive and

generally moved more slowly as they approached the head

or tail of the predator (electronic supplementary material,

table S1) (figure 1 and see vector length (represented by the

arrows) in figure 2). The reductions in speed when in front

of a predator potentially allow individuals to update infor-

mation about risk in a manner akin to predator inspection

behaviour [45,46]. While prey slowed down in front of inactive

predators, swimming speeds were not reduced to the same

extent when in front of active predators (figure 1). This is prob-

ably owing to the greater risk associated with occupying

positions within the attack cone and can help explain the pro-

nounced flow of prey away from the predator’s mouth and

towards its tail during periods of activity in figure 2.

Along with these shifts in median speeds, prey also

adapted their median distances to nearest neighbours as a

function of the interaction between predator state and angu-

lar position relative to the predator’s mouth (table 1).

Generally, prey swam closer together in front and behind

the predator, although the shape of this relationship changed

with predator state (electronic supplementary material, table

S1). When predators were inactive, NND was lowest when

prey were behind the predator whereas when predators

were active, NND was lowest in front of the predator

(figure 3). While grouping more closely is a common

response to situations of heightened risk [47], our results

demonstrate an ability to adjust NNDs in response not only

to the presence of the predators, but also to slight changes

in predator behaviour and orientation.

Prey also showed a shift in median acceleration based on

predator state and angular position relative to the predator’s

mouth (table 1). Given that rapid acceleration, potentially

resulting from fast start escape behaviour [48], is an energeti-

cally taxing behaviour, prey should ideally employ this

behaviour in extreme situations, such as when they find

themselves in front of an active predator. Accordingly, we

found a significant relationship between acceleration and

angular position when predators were active with the fastest

accelerations occurring directly in front of the predator’s

mouth and declining as they neared the predator’s tail (elec-

tronic supplementary material, table S1). When predators

were inactive, there was a significant quadratic relationship

with prey showing slightly greater acceleration when located

to the side of the predator (figure 4).

When the predators were inactive, prey fish tended to

swim anti-clockwise around the annulus, with no discernible
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Figure 1. Graph of median prey swimming speed (mm s21) against angle

from predator’s snout when predators were inactive (left) and active (right).

There was a significant cubic relationship when predators were inactive and a

significant quadratic relationship when predators were active (electronic sup-

plementary material, table S1). Mean median speeds and standard errors are

shown. (Online version in colour.)
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directional coordination with respect to the predator’s orien-

tation (figure 2). However, once predators became active,

prey fish fanned away from the predator’s snout and towards

the predator’s tail.

4. Discussion
Here we provide evidence that prey continuously update

their risk assessment and adjust their behaviour based on

predator behaviour and their position relative to the preda-

tor’s mouth. When predators were inactive and posed less

of an immediate threat, prey showed pronounced inspection

behaviour within the attack cone of the predator with

reductions in speed and acceleration. However, when preda-

tors began to move and therefore posed a greater threat, prey

swam faster, closer together and increased acceleration

within the attack cone of predators. Generally, during periods

of reduced risk when predators were inactive, prey swam in

circles around the annulus. When predators were active, prey

adapted their behaviour by fanning away from the predator’s

mouth and towards its tail, a manoeuvre referred to as the

fountain effect [30].

In thewild, prey species often live in the vicinity of predators,

rendering the ability to assess risk on a moment-to-moment basis

crucial to survival. Seemingly maladaptive behaviours, such

as approaching and inspecting potential sources of risk,

may therefore allow prey to gain information regarding risk

[49,50]. Previous work has shown that prey use visual cues

such as eye width and gape size to assess the level of threat

[24,51], indicating that inspection of the most dangerous

region by a predator’s head can provide vital information.

In the current study, we found that when predators were

inactive, prey approached regions in front of the predator’s

mouth at slower speeds. While counterintuitive, this speed

reduction may decrease prey conspicuousness [52,53] while

enhancing visual acuity through reduced motion blur [54]

and improved flow detection through the lateral line. These

mechanisms might therefore increase the likelihood of detect-

ing predatory attacks when in risky locations [55,56]. In

accordance with the risk sensitivity hypothesis, we found
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that once predators were active, prey increased swimming

speeds within the attack cone of the predator and swam

away from its head and towards the relative safety of its

tail. These increased speeds may reflect the immediate need

to get out of striking distance of the predator and leave the

‘attack cone’ directly in front of its mouth [28,29,41,57,58].

In this way, prey appear to employ adaptive information

gathering behaviours during times of lower risk and shift

to safer, more evasive behaviours as predators posed a

greater threat.

In tandem with this shift to faster swimming in front of

predators, prey reduced distances between themselves and

their nearest neighbours when predators were active. Group-

ing more closely is a common evolutionary response to

predation [59–62]. Indeed, research suggests that individuals

within a group can reduce risk by moving towards neigh-

bours and by positioning themselves closer to the centre of

the group, ultimately resulting in the formation of denser

aggregations [47,63]. This can explain why in many systems,

we see the formation of more compact groups after exposure

to a predator [39,64–67]. In the current study, we found the

smallest neighbour distances occurred when prey were

directly in front of an active predator, suggesting that prey

were capable of gauging risk not based solely on predator

presence, but based on the predator’s behavioural state and

angular position. The fact that prey did not consistently

form more cohesive groups in the presence of a predator

implies that there may be costs associated with remaining

cohesive. These costs, for example, could include increased

cognitive demands associated with the coordination of this

behaviour, or increased competition for resources. Ulti-

mately, understanding how animal decision making circuits

integrate multiple forms of information including the state

and position of the predator, the position of neighbours

and the costs and benefits of cohesion, will provide an intri-

guing avenue for future research, particularly from a

neurological perspective.

When predators became active, prey switched between

swimming around the annulus to a manoeuvre commonly

described as the ‘fountain effect’ [30], in which prey fan

away from the predator’s mouth and towards the blind

spot by its tail. Traditionally, observations of this behaviour

describe prey rapidly accelerating out of the predator’s

attack cone in response to a direct strike [34,68]. While

these flash fountain manoeuvres in direct response to preda-

tor strikes are visually apparent, it is interesting to note that

the fountain pattern in this study emerged by averaging

prey behaviour over the course of a trial, suggesting that

these movement patterns around a predator may be occur-

ring more passively through slight adjustments to routine

behaviour. This manoeuvre may act as a way for prey to

increase survival by avoiding the dangerous area in front of

a predator while maintaining cohesion by reforming groups

behind the threat, as reflected in the decreasing NNDs

found towards the tail of the predator. Our findings rep-

resent, to our knowledge, the first description of the

fountain manoeuvre in averaged prey behaviour and ulti-

mately serve to underscore prey’s ability to integrate

information about the risk posed by different predator beha-

viours and different regions of the predator, lending further

support to the risk sensitivity hypothesis.

By using basic routine behavioural adjustments based

on predator activity and their position relative to a threat,

prey fishes may be able to minimize their exposure to risk

through energetically efficient means. However, when

prey inevitably find themselves in a dangerous situation

(or position), they may need to employ more energy-

consuming anti-predator responses, such as fast starts.

Fast starts, or c-starts, are marked by sudden bursts of

acceleration away from a threatening stimulus [48]. In the

current study, we found that acceleration was greatest

when prey were directly in front of an active predator and

decreased linearly with distance from the predator’s

mouth. Previous research has shown that the ability to

rapidly put distance between yourself and danger is a

highly adaptive and conserved behavioural mechanism

[69]. Evidence for the advantages of fast start behaviours

have been found in research using largemouth bass and

four different prey species. In that study, predators were

increasingly likely to abort an attack as prey acceleration

increased [70]. Similarly, the evasion success of prey corre-

sponded to their acceleration rates [71]. This means that the

ability to preserve energy when risk is low and engage in

the most taxing evasive behaviours only when risk is high

could be important to the survival of prey species. Fittingly,

prey in this study showed the greatest acceleration when in

the most extreme situations, namely when they found them-

selves in the direct path or within striking distance of an

active predator.

While previous research has expanded our understanding

of how prey behaviour changes as a function of prey hunger

levels [72], prey group size [73,74], prey provenance [75],

predator diet [76–78] and predator morphology [24,79],

much of this work has been done through the use of model

predators [79], computer animated predators [80], short

exposure times [81] or the use of isolated cues, such as con-

specific alarm cue [73], heterospecific alarm cue [82] or

predator odours [74,76]. Despite the importance of these

manipulative laboratory experiments, there is a dearth of

empirical studies investigating the importance of predator

behaviour in shaping prey behaviour. Many of these previous

approaches have reduced predators from interactive agents to

‘abstract sources of risk’ [36], which prevents researchers

from detecting some of the more nuanced ways in which

prey can respond to the presence of a predator. We found

that prey reduce risk by continuously adjusting their routine

behaviour based on different information gleaned from

visual cues. We found that prey respond continuously to

predator activity levels and adjust behaviour based on angu-

lar distance from the predator’s mouth, demonstrating an

ability to assess risk on a moment-to-moment basis and

adjust behaviour accordingly. It is worth noting that while

we discuss our results from the perspective of the prey, we

did not consider how predators changed their behaviour as

a function of prey behaviour. Ultimately, understanding

predator induced changes in prey behaviour and prey

induced changes in predator behaviour will provide impor-

tant insight into the behavioural arms races within these

predator–prey systems.
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