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Compressible unsteady Görtler vortices1

subject to free-stream vortical disturbances2
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The perturbations triggered by free-stream vortical disturbances in compressible bound-6

ary layers developing over concave walls are studied numerically and through asymptotic7

methods. We employ an asymptotic framework based on the limit of high Görtler number,8

the scaled parameter defining the centrifugal effects, we use an eigenvalue formulation9

where the free-stream forcing is neglected, and solve the receptivity problem by integrat-10

ing the compressible boundary-region equations complemented by appropriate initial11

and boundary conditions that synthesize the influence of the free-stream vortical flow.12

Near the leading edge, the boundary-layer perturbations develop as thermal Klebanoff13

modes and, when centrifugal effects become influential, these modes turn into thermal14

Görtler vortices, i.e., streamwise rolls characterized by intense velocity and temperature15

perturbations. The high-Görtler-number asymptotic analysis reveals the condition for16

which the Görtler vortices start to grow. The Mach number is destabilizing when the17

spanwise diffusion is negligible and stabilizing when the boundary-layer thickness is18

comparable with the spanwise wavelength of the vortices. When the Görtler number19

is large, the theoretical analysis also shows that the vortices move towards the wall20

as the Mach number increases. These results are confirmed by the receptivity analysis,21

which additionally clarifies that the temperature perturbations respond to this reversed22

behavior further downstream than the velocity perturbations. A matched-asymptotic23

composite profile, found by combining the inviscid core solution and the near-wall viscous24

solution, agrees well with the receptivity profile sufficiently downstream and at high25

Görtler number. The Görtler vortices tend to move towards the boundary-layer core26

when the flow is more stable, i.e., as the frequency or the Mach number increase,27

or when the curvature decreases. As a consequence, a region of unperturbed flow is28

generated near the wall. We also find that the streamwise length scale of the boundary-29

layer perturbations is always smaller than the free-stream streamwise wavelength. During30

the initial development of the vortices, only the receptivity calculations are accurate.31

At streamwise locations where the free-stream disturbances have fully decayed, the32

growth rate and wavelength are computed with sufficient accuracy by the eigenvalue33

analysis, although the correct amplitude and evolution of the Görtler vortices can only34

be determined by the receptivity calculations. It is further proved that the eigenvalue35

predictions of the growth rate and wavenumber worsen as the Mach number increases36

as these quantities show a dependence on the wall-normal direction. We conclude by37

qualitatively comparing our results with the direct numerical simulations available in the38

literature.39
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1. Introduction41

In 1940 Görtler (1940) published a paper where a new type of boundary-layer instability42

was introduced. This instability originates from an inviscid unbalance between pressure43

and centrifugal forces caused by the curvature of flow streamlines. The resulting perturba-44

tion evolves in the form of counter-rotating vortices that are elongated in the streamwise45

direction. They have been referred to as Görtler vortices. Görtler’s mathematical result46

was confirmed experimentally by Liepmann (1945), who first showed that transition to47

turbulence is anticipated with respect to the flat-plate case. Comprehensive reviews on48

Görtler flow have been published by Hall (1990), Floryan (1991), and Saric (1994).49

1.1. Incompressible Görtler vortices50

The original work of Görtler (1940) was based on a theory that was simplified by the51

parallel mean-flow assumption, in contrast with the growing nature of boundary layers.52

Tani (1962) first performed detailed measurements of the perturbed flow proving that53

Görtler vortices evolve with a nearly constant spanwise wavelength. An improvement to54

the original theory was achieved in the work of Floryan & Saric (1982) by introducing55

non-parallel effects and using other assumptions that led to an eigenvalue system of56

ordinary differential equations. When the spanwise wavelength of Görtler vortices is57

of the same order as the boundary-layer thickness, Hall (1983) demonstrated that any58

theory simplifying the governing partial differential equations to ordinary differential59

equations does not lead to a precise description of the evolution of the Görtler vortices,60

so that for example the amplitude of the perturbations, the dependence of the growth61

rate on the wall-normal direction, and the flow behaviour near the leading edge would62

not be computed correctly. In Hall (1983) several disturbance profiles were introduced63

at different streamwise locations near the leading edge as initial conditions and, for64

each location and initial profile, the instability developed in a different manner. The65

influence of the external disturbances was not accounted for and the perturbations were66

assumed to vanish outside of the boundary layer. Swearingen & Blackwelder (1983) and67

Kottke (1988) proved experimentally that the receptivity of the base flow to free-stream68

turbulence, i.e., the process by which external disturbances interact with the boundary69

layer to trigger instability, has a strong impact on the properties of Görtler instability,70

such as the spanwise wavelength, and on the breakdown of the vortices to turbulence.71

Hall (1990) was the first to introduce the effect of receptivity to free-stream turbulence72

on the Görtler vortices, obtaining a better agreement with experimental data than for73

the cases where artificial initial conditions were imposed at a fixed streamwise location.74

More recently, Borodulin et al. (2017) also claimed that free-stream turbulence is one of75

the most efficient ways to excite Görtler instability.76

For the flat-plate case, a further pioneering step towards understanding receptivity77

was achieved by Leib et al. (1999), who formulated a rigorous mathematical framework78

based on the unsteady boundary region equations. This framework, through asymptotic79

matching, unequivocally fixes the initial and outer boundary conditions based on the ex-80

ternal free-stream vortical disturbances. Leib et al. (1999) focused on the incompressible81

viscous instabilities that arise in flat-plate boundary layers in the form of streamwise82

elongated vortices, known as Klebanoff modes, now widely recognized to be initiators of83

bypass transition to turbulence (Matsubara & Alfredsson 2001; Ovchinnikov et al. 2008).84

Recently, Ricco et al. (2016) highlighted the strengths of this theory compared to other85

theoretical approaches found in literature for the analysis of bypass transition, and proved86

its validity by showing good agreement with the experimental data and with the direct87

numerical simulation data of Wu & Moin (2009). When streamwise concave curvature is88
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present, Klebanoff modes turn into Görtler vortices as they evolve downstream. This was89

first proved by Wu et al. (2011) by extending the theory of Leib et al. (1999) to flows over90

concave surfaces where free-stream turbulence was modeled by three-dimensional vortical91

disturbances. Their theoretical results agree well with the experimental data in the linear92

region of evolution (Tani 1962; Finnis & Brown 1997; Boiko et al. 2010b). Viaro & Ricco93

(2018) adopted the formulation of Wu et al. (2011) to compute the neutral curves of94

Görtler instability triggered by free-stream vortical disturbances, i.e., the curves in the95

parameter space that distinguish between regions of growth and decay of the boundary-96

layer perturbations. In the limit of high Görtler number, the asymptotic analysis of Wu97

et al. (2011) revealed the different stages through which the Görtler instability evolves. It98

undergoes two pre-modal stages before its exponential amplification. During their growth,99

the vortices become trapped in a wall layer. This is a distinctive feature of incompressible100

Görtler vortices and it is markedly different from the behavior of Klebanoff modes, which101

tend to move to the upper part of the boundary layer.102

The effects of nonlinearity on the unsteady Görtler vortices triggered by free-stream103

vortical disturbances have been studied by Boiko et al. (2010a), Xu et al. (2017) and104

Marensi & Ricco (2017). In addition, the excitation of Görtler vortices by local surface105

nonuniformities has been recently investigated by Boiko et al. (2017).106

1.2. Compressible Görtler vortices107

Transition to turbulence caused by Görtler instability influences the performance108

of several technological applications, especially in the compressible regime. A typical109

important example is the high-speed flow in turbine engine intakes, where the free stream110

is highly disturbed. It is thus crucial to study the influence of free-stream disturbances to111

predict transition in these systems and to evince how the change of the flow regime from112

laminar to turbulent affects the performance of turbomachinery (Mayle 1991; Volino &113

Simon 1995). Additional examples of Görtler flows in the compressible regime include114

airfoils (Mangalam et al. 1985), hypersonic air breathing vehicles (Ciolkosz & Spina115

2006), and supersonic nozzles (Chen et al. 1992).116

Compressible Görtler vortices were originally described by the parallel theory of117

Hammerlin (1961) and were first visualized by Ginoux (1971). A parallel theory was118

also employed later by Kobayashi & Kohama (1977) and was further extended to include119

non-parallel effects by El-Hady & Verma (1983), Hall & Malik (1989), and Hall & Fu120

(1989). The eigenvalue approach was improved by Spall & Malik (1989) by solving121

a system of partial differential equations coupled with prescribed initial conditions122

under the assumption of vanishing perturbations outside the boundary layer. Spall &123

Malik (1989) also mentioned that physically meaningful initial conditions do require124

receptivity. This work was later modified by Wadey (1992) through a new set of improved125

initial conditions, but receptivity was still not introduced. The eigenvalue approach with126

vanishing perturbations in the free stream was also adopted by Dando & Seddougui127

(1993) to study compressible Görtler vortices. From these early theories it was first128

noticed that increasing the Mach number leads to a more stable flow and to a shift of the129

vortices away from the wall. More recently, two conference papers by Whang & Zhong130

(2002, 2003) reported direct numerical simulation results on the influence of free-stream131

disturbances on Görtler vortices in the hypersonic regime, Li et al. (2010) investigated132

the nonlinear development of Görtler instability through nonlinear parabolized stability133

equations and direct numerical simulations, and Ren & Fu (2015) showed how differences134

in the primary instability lead to considerable changes in the secondary instability,135

thereby impacting the transition to turbulence.136

Experimental works on compressible Görtler flows are more limited than incompress-137
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ible flows. De Luca et al. (1993) experimentally confirmed that in the compressible regime138

Görtler vortices also evolve with a constant spanwise wavelength. Ciolkosz & Spina (2006)139

ran experimental tests on transonic and supersonic Görtler vortices and showed that140

the spanwise wavelength of the vortices remained approximately constant as the Mach141

number and Görtler number varied and that the measured growth rates agreed reasonably142

well with existing stability results. Görtler vortices were also noticed to be the unwanted143

cause of transition for the design of quiet hypersonic wind tunnels (Schneider 2008). Wang144

et al. (2018) performed a flow visualization of the complete evolution of Görtler vortices145

from the laminar to the turbulent regime reporting that, although the linear growth146

rate decreases as the Mach number increases, the secondary instability was enhanced.147

They also stressed that the theoretical works are steps ahead of the limited number of148

experimental works on compressible Görtler instability. To the best of our knowledge,149

rigorous experiments on compressible flows over concave surfaces describing the effect of150

free-stream turbulence on the Görtler vortices are indeed not available in the literature.151

This has arguably been one of the reasons why, although progresses have been made,152

there are no theoretical works on the receptivity of compressible boundary layers over153

concave surfaces to free-stream vortical disturbances and on the engendered unsteady154

Görtler vortices.155

1.3. Objective of the paper156

The objective of this paper is to study the receptivity of compressible boundary layers157

over streamwise-concave surfaces to free-stream vortical disturbances and the consequent158

growth of unsteady Görtler vortices. We use asymptotic methods and numerical computa-159

tions to solve the equations of motion. We achieve our goal by combining the theoretical160

framework of Wu et al. (2011) for incompressible flows over concave surfaces and the161

one of Ricco & Wu (2007), who extended the theory by Leib et al. (1999) to study162

compressible Klebanoff modes over flat surfaces. We focus on boundary layers where the163

free-stream Mach number is of order one and the instability only takes the form of Görtler164

vortices, i.e., at sufficiently low frequencies for which oblique Tollmien-Schlichting waves165

do not appear at realistic streamwise locations. We thus exclude the range of frequencies166

for which the receptivity mechanism discovered by Ricco & Wu (2007) is operational.167

Section §2.1 outlines the flow scaling and decomposition, while §2.2 presents the168

unsteady boundary-region equations with curvature effects. Starting from these equa-169

tions, in §2.3 we derive a compressible eigenvalue framework with and without the170

parallel-flow assumption, while in §3 we adopt an asymptotic framework valid at high171

Görtler numbers to study the different evolution stages. Section 4 shows the influence172

of compressibility, radius of curvature, and different oncoming vortical disturbances173

on the development of the instability. The numerical boundary-region solutions are174

compared with the eigenvalue and the asymptotic solutions in §4.2 and §4.3, respectively.175

Qualitative comparisons with the direct numerical simulation (DNS) results by Whang176

& Zhong (2003) are given in §4.4.177

2. Scaling and equations of motion178

We consider a uniform compressible air flow of velocity U∗
∞ and temperature T ∗

∞ past179

a slightly concave plate with constant radius of curvature r∗. Hereinafter the asterisk ∗
180

identifies dimensional quantities. In the proximity of the surface, the flow is described by181

the orthogonal curvilinear coordinate system x = {x, y, z} that defines the streamwise,182

wall-normal, and spanwise directions. Therefore, x is the streamwise coordinate, y is the183

wall-normal coordinate, and z is the spanwise coordinate, orthogonal to x and y. The184
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Figure 1: Schematic of the boundary-layer asymptotic regions I, II, III, IV, FS and the
receptivity mechanism to free-stream vortical disturbances, where λx is the streamwise
wavelength of the free-stream disturbance and λx,bl is the streamwise wavelength of the
boundary-layer perturbation q́ sufficiently downstream from the leading edge.

conversion from the Cartesian to the curvilinear coordinates system is achieved through185

the Lamé coefficients hx = 1 − y∗/r∗, hy = 1, and hz = 1 which are also used in Wu186

et al. (2011). These coefficients are only valid when δ∗/r∗ ≪ 1 (Goldstein 1938), where187

δ∗ is a measure of the boundary-layer thickness. This condition is always satisfied in our188

calculations and therefore the singularity at r∗ = 0 is not an issue in the analysis. The189

flow domain is represented in figure 1.190

Small-intensity free-stream vortical perturbations are passively advected by the uni-191

form free-stream flow and are modeled as three-dimensional vortical disturbances of the192

gust type, which, sufficiently upstream and away from the plate, have the form193

u− i = ǫû∞ ei(k·x−kxRt̂) + c.c., (2.1)

where c.c. indicates the complex conjugate, ǫ is a small parameter, i is the unit vector194

along the streamwise direction, and t̂ is the dimensionless time defined below. The195

wavenumber vector k = {kx, ky, kz} and the amplitude of the free-stream velocity196

disturbance û∞ = {û∞, v̂∞, ŵ∞} satisfy the solenoidal condition k · û∞ = 0. Lengths are197

scaled by Λ∗
z = λ∗

z/2π, where λ∗
z is the spanwise wavelength of the gust. As the flow is198

periodic along the spanwise direction and the boundary-layer dynamics is linear because199

the perturbation is assumed of small amplitude, λ∗
z is also the spanwise wavelength of200

the Görtler vortices. This is supported by laboratory evidence as experiments in both201

incompressible and compressible boundary layers over concave plates have reported a202

constant spanwise length scale of the vortices (Tani 1962; De Luca et al. 1993; Ciolkosz203

& Spina 2006). Velocities are scaled by U∗
∞, the temperature is scaled by T ∗

∞, and the204

pressure is scaled by ρ∗∞U∗
∞

2, where ρ∗∞ is the mean density of air in the free stream.205

The Reynolds number is defined as R = U∗
∞Λ∗

z/ν
∗
∞ ≫ 1, where ν∗∞ is the kinematic206

viscosity of air in the free stream, the Görtler number is G = R
2Λ∗

z/r
∗ = O(1), and the207

Mach number is defined as M = U∗
∞/a∗∞ = O(1), where a∗∞ = (γR∗T ∗

∞)
1/2

is the speed of208

sound in the free stream, R∗ = 287.06 J kg−1 K−1 is the ideal gas constant for air, and209

γ = 1.4 is the ratio of specific heats. The dimensionless spanwise wavenumber is kz = 1210
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and the frequency parameter is kxR = 2πΛ∗2
z U∗

∞/(λ∗
xν

∗
∞). The streamwise coordinate211

and time are scaled as x̂ = x∗/(RΛ∗
z) and t̂ = U∗

∞t∗/(RΛ∗
z), respectively, due to our212

interest in streamwise elongated perturbations. The streamwise scaling used in Ricco &213

Wu (2007) could have been implemented, i.e., x̄ = kxx, but we would have not been able214

to investigate the steady perturbations kx = 0 as in Wu et al. (2011).215

Ricco & Wu (2007) proved that, for certain flow conditions defined by the parameter216

κ = kz/(kxR)
1/2, the spanwise pressure gradient of the disturbance couples with the217

boundary-layer vortical disturbances to generate highly oblique Tollmein-Schlichting218

waves at sufficiently large streamwise locations x̂c. For M = 3, this instability appears219

when 0 < κ < 0.03. As the Mach number decreases, the neutral point x̂c moves220

downstream and if M < 0.8 the x̂c location is too far downstream to be physically relevant.221

In our study we restrict ourselves to cases for which κ > 0.15, a value that comes from our222

choice of experimental parameters given in §4, and therefore the highly-oblique Tollmein-223

Schlichting waves investigated by Ricco & Wu (2007) do not occur.224

2.1. Flow decomposition225

The boundary-layer velocity, pressure, and temperature q = {u, v, w, p, τ} are decom-226

posed into their mean Q and perturbation q́ as227

q(x, t) = Q(x) + ǫ q́(x, t). (2.2)

Under the assumption r ≫ 1, curvature effects on the mean flow can be neglected (Spall
& Malik 1989) and, consequently, at leading order the mean flow behaves as if the plate
were flat. Neither a mean streamwise pressure gradient nor a mean spanwise pressure
gradient is present. The Dorodnitsyn-Howarth transformation can then be applied to
obtain the mean-flow momentum equation M and the energy equation E in similarity
form (Stewartson 1964),

M⌉
(
µF ′′

T

)′

+ FF ′′ = 0, (2.3)

E⌋
(
µT ′

PrT

)′

+ M
2(γ − 1)

µF ′′2

T
+ FT ′ = 0, (2.4)

where we have introduced the compressible Blasius function F = F (η), the temperature
T = T (η), and the dynamic viscosity µ(T ) = Tω, where ω = 0.76 (Stewartson 1964).
The prime ′ indicates the derivative with respect to the independent similarity variable

η = Ȳ / (2x̂)
1/2

, where Ȳ (x̂, y) =
∫ y

0
1/T (x̂, ȳ)dȳ. The Prandtl number, assumed to be

constant, is Pr = 0.707. The boundary conditions for (2.3) and (2.4) are

η = 0⌉ F = F ′ = 0, T ′ = 0, (2.5)

η → ∞⌋ F ′ → 1, T → 1. (2.6)

The streamwise velocity U and the wall-normal velocity V of the mean flow are228

U = F ′, V =
T (ηcF

′ − F )

R(2x̂)1/2
, (2.7)

where ηc(η) = T−1
∫ η

0
T (η̂)dη̂ (Stewartson 1964). The wall-normal mean velocity V can229

only be approximated by (2.7) in specific ranges of η and x̂, as discussed in Appendix B.230
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2.2. The compressible boundary-region equations with curvature effects231

The theoretical framework used herein is a combination of the work of Wu et al. (2011)232

on incompressible Görtler flows over concave surfaces with the work of Ricco &Wu (2007)233

on compressible Klebanoff modes over flat surfaces. Both papers are extensions of the234

original theory developed by Leib et al. (1999) for the incompressible flat-plate case.235

Before introducing the boundary-region equations it is instructive to discuss the236

different asymptotic flow regions, represented in figure 1. The flow domain is divided237

in five main regions: region FS (free stream) for which x2 + y2 ≫ 1, and regions I, II,238

III, and IV. Goldstein (1978) developed an analytic framework for the description of239

the free-stream vortical disturbances in region I. Here, the external disturbances are240

described as a superposition of inviscid harmonic vortical disturbances which, in the241

limit ǫ ≪ 1, can be analyzed separately due to the linearity of the problem. As the242

free-stream vortical disturbances evolve further downstream, the outer flow enters region243

IV where the mean flow is still inviscid. Here, the displacement effect caused by the244

boundary-layer growth and the energy decay due to viscous dissipation are analytically245

treated (Leib et al. 1999). The dynamics of the flow disturbance in these outer regions246

causes the origin and growth of the perturbation in the viscous regions II and III247

inside the boundary layer. The method of matched asymptotic expansion is used to248

link the outer regions I and IV with the boundary-layer regions II and III. Region249

II is governed by the linearized unsteady boundary-layer equations, i.e., the linearized250

unsteady boundary-region (LUBR) equations with the spanwise diffusion and normal251

pressure gradient terms neglected. Originally introduced by Kemp (1951), the LUBR252

equations are the full Navier-Stokes and continuity equations with the terms pertaining253

to the streamwise viscous diffusion and the streamwise pressure gradient neglected. This is254

a rigorous simplification that follows directly from the assumptions R → ∞ and kx → 0.255

Gulyaev et al. (1989), Choudhari (1996), and Leib et al. (1999) recognized that the256

linearized unsteady boundary-layer equations are only appropriate in a small region near257

the leading edge where the spanwise wavelength λ∗
z is much larger than the boundary-258

layer thickness δ∗ = O((x∗ν∗∞/U∗
∞)1/2). As the boundary layer grows to a thickness259

comparable with the spanwise wavelength, i.e., δ∗ = O(λ∗
z), the spanwise diffusion terms260

become of the same order of the wall-normal diffusion terms. This occurs in region III,261

where the Klebanoff modes in the flat-plate case and the Görtler vortices for flows over262

concave surfaces are fully developed. The LUBR equations, complemented by rigorous263

initial and free-stream boundary conditions, must therefore be used to study the flow in264

region III. The boundary-layer perturbations are assumed to be periodic in time t and265

along the spanwise direction z. They are expressed as in Gulyaev et al. (1989),266

q́(x, t) = ikzw̌

{
Rū, (2x̂)1/2v̄,

1

ikz
w̄,

1

R
p̄, Rτ̄

}
ei(kzz−kxRt̂) + c.c., (2.8)

where w̌ ≡ ŵ∞ + ikz v̂
∞(k2x + k2z)

−1/2 and q̄(x̂, η) = {ū, v̄, w̄, p̄, τ̄}(x̂, η).267

The full compressible continuity and Navier-Stokes equations in curvilinear coordinates
are first simplified using the Lamé coefficients. The mean flow (2.7) and the perturbation
flow (2.8) are then introduced into the equations and, taking the limits R → ∞ and
kx → 0 with kxR = O(1), the LUBR equations are obtained:

C⌉ ηc
2x̂

T ′

T
ū+

∂ū

∂x̂
− ηc

2x̂

∂ū

∂η
− T ′

T 2
v̄ +

1

T

∂v̄

∂η
+ w̄ +

(
ikxR

1

T
− 1

2x̂

FT ′

T 2

)
τ̄ − F ′

T

∂τ̄

∂x̂
+

1

2x̂

F

T

∂τ̄

∂η
= 0, (2.9)
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X|
(
−ikxR−

ηc
2x̂

F ′′ + k2zµT
)
ū+ F ′ ∂ū

∂x̂
− 1

2x̂

(
F +

µ′T ′

T
− µT ′

T 2

)
∂ū

∂η
− 1

2x̂

µ

T

∂2ū

∂η2
+

F ′′

T
v̄ +

1

2x̂T

(
FF ′′ − µ′′F ′′T ′ +

µ′F ′′T ′

T
− µ′F ′′′

)
τ̄ − 1

2x̂

µ′F ′′

T

∂τ̄

∂η
= 0, (2.10)

Y| 1

4x̂2

[
ηc (FT ′ − F ′T )− η2cF

′′T + FT
]
ū+

µ′T ′

3x̂

∂ū

∂x̂
− µ

6x̂

∂2ū

∂x̂∂η
+

ηcµ

12x̂2

∂2ū

∂η2
+

1

12x̂2

(
ηcµ

′T ′ + µ− ηcµT
′

T

)
∂ū

∂η
+

[
1

2x̂

(
F ′ + ηcF

′′ − FT ′

T

)
− ikxR+ k2zµT

]
v̄+

F ′ ∂v̄

∂x̂
+

1

x̂

[
2

3T

(
µT ′

T
− µ′T ′

)
− F

2

]
∂v̄

∂η
− 2

3x̂

µ

T

∂2v̄

∂η2
+

µ′T ′

3x̂
w̄ − µ

6x̂

∂w̄

∂η
+

1

2x̂

∂p̄

∂η
+

[
1

3x̂2T

(
µ′′FT ′2 − µ′FT ′2

T
+ µ′FT ′′ + µ′F ′T ′

)
− 1

4x̂2

(
F ′F − ηcF

′2 − ηcFF ′′+

F 2T ′

T
+ µ′F ′′ + ηcµ

′′F ′′T ′ − ηcµ
′F ′′T ′

T
+ ηcF

′′′µ′

)]
τ̄ +

µ′

x̂2

(
FT ′

3T
− ηcF

′′

4

)
∂τ̄

∂η
−

µ′F ′′

2x̂

∂τ̄

∂x̂
+

G

(2x̂)1/2

(
2F ′ū− F ′2

T
τ̄

)
= 0, (2.11)

Z| − k2zηcµ
′TT ′

2x̂
ū+

k2zµT

3

∂ū

∂x̂
− k2zηcµT

6x̂

∂ū

∂η
+ k2zµ

′T ′v̄ +
k2zµ

3

∂v̄

∂η
+

(
4

3
k2zµT − ikxR

)
w̄ + F ′ ∂w̄

∂x̂
+

1

2x̂

(
µT ′

T 2
− F − µ′T ′

T

)
∂w̄

∂η
− 1

2x̂

µ

T

∂2w̄

∂η2
−

k2zT p̄+
k2z
3x̂

µ′FT ′τ̄ = 0, (2.12)

E⌋ − ηc
2x̂

T ′ū+
T ′

T
v̄ +

[
FT ′

2x̂T
− ikxR+

k2zµT

Pr
− 1

2x̂Pr

∂

∂η

(
µ′T ′

T

)]
τ̄ + F ′ ∂τ̄

∂x̂
+

1

2x̂

(
µT ′

PrT 2
− F − 2µ′T ′

PrT

)
∂τ̄

∂η
− 1

2x̂Pr

µ

T

∂2τ̄

∂η2
− M

2 γ − 1

x̂T

(
µF ′′ ∂ū

∂η
+

µ′F ′′2

2
τ̄

)
= 0,

(2.13)

where C, X , Y, Z, E indicate the continuity, x-momentum, y-momentum, z-momentum,268

and energy equations. The prime ′ represents differentiation with respect to the inde-269

pendent variable. The equations of Ricco & Wu (2007) for the compressible flow over a270

flat surface and of Wu et al. (2011) for the incompressible flow over a concave surface271

are recovered by setting G = 0 and M = 0, respectively. Curvature effects derive from272

the centrifugal force and only appear in the convective terms of the Y equation (2.11).273

These terms, boxed in (2.11), are proportional to the Görtler number G and, in the274

compressible case, also include the temperature perturbation (El-Hady & Verma 1983;275

Hall & Malik 1989). The LUBR equations are parabolic along the streamwise direction276

and are influenced by G, ky, kxR, and M, which account for the effects of curvature, ratio277
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of the free-stream spanwise wavelength to the wall-normal wavelength, frequency, and278

compressibility, respectively.279

The streamwise velocity ū and the temperature perturbation τ̄ inside the boundary
layer tend to zero as the free stream is approached because they amplify inside the
boundary layer to an order of magnitude larger than the corresponding free-stream
disturbances (Ricco & Wu 2007). Therefore, the boxed curvature terms in (2.11) can
be neglected as η → ∞ and we recover the free-stream boundary conditions used by
Ricco & Wu (2007):

η = 0⌉ ū = v̄ = w̄ =
∂τ̄

∂η
= 0, (2.14)

η → ∞⌋ ū → 0, (2.15)

∂v̄

∂η
+ |kz|(2x̂)1/2v̄ → −ei[kxRx̂+ky(2x̂)

1/2(η−βc)]−(k2
y+k2

z)x̂, (2.16)

∂w̄

∂η
+ |kz|(2x̂)1/2w̄ → iky(2x̂)

1/2ei[kxRx̂+ky(2x̂)
1/2(η−βc)]−(k2

y+k2
z)x̂, (2.17)

∂p̄

∂η
+ |kz|(2x̂)1/2p̄ → 0, (2.18)

τ̄ → 0, (2.19)

where compressibility effects are taken into account by the parameter βc(M) ≡
limη→∞(η − F ), which is computed numerically (Ricco et al. 2009). Since curvature
effects are also negligible in the limit x̂ → 0, the initial conditions of Ricco & Wu (2007)
apply:

x̂ → 0] ū → 2x̂U0 + (2x̂)3/2U1, (2.20)

v̄ → V0 + (2x̂)1/2V1 −
[
Vc −

1

2
g1|kz|(2x̂)1/2

]
e−|kz|(2x̂)

1/2η̄+

i

(ky − i|kz|)(2x̂)1/2
[
eiky(2x̂)

1/2η̄−(k2
y+k2

z)x̂ − e−|kz|(2x̂)
1/2η̄

]
− v̄c, (2.21)

w̄ → W0 + (2x̂)1/2W1 − Vc|kz|(2x̂)1/2e−|kz|(2x̂)
1/2η̄+

1

ky − i|kz|
[
kye

iky(2x̂)
1/2η̄−(k2

y+k2
z)x̂ − i|kz|e−|kz|(2x̂)

1/2η̄
]
− w̄c, (2.22)

p̄ → P0

(2x̂)1/2
+ P1 +

[
g1 −

Vc

|kz|(2x̂)1/2
]
e−|kz|(2x̂)

1/2η̄ − p̄c, (2.23)

τ̄ → 2x̂T0 + (2x̂)3/2T1, (2.24)

where η̄ ≡ η − βc. Appendix B further discusses the ranges of validity of the outer280

boundary conditions (2.15)-(2.19) and of the initial conditions (2.20)-(2.24) in terms of281

η and x̂. The common parts v̄c, w̄c, and p̄c, the constants g1 and Vc, and the solutions282

U0, V0,W0, P0, T0, U1, V1,W1, P1, T1 are derived in Appendix C. The numerical procedure283

for solving the LUBR equations is described in Appendix A. To stress the importance284
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of receptivity, we note that the solution is influenced by ky only through the initial and285

boundary conditions as ky does not appear in the LUBR equations (2.9)-(2.13).286

2.3. The eigenvalue equations with curvature effects287

Because of the inviscid unbalance between the centrifugal force and the wall-normal288

pressure, the Görtler instability exhibits an exponential streamwise amplification. Fol-289

lowing the work of Wu et al. (2011), we can take advantage of this property by adopting290

a simplified mathematical framework based on an additional decomposition of the quan-291

tities defined in (2.8),292

q̄(x̂, η) = {ū, v̄, w̄, p̄, τ̄} ≡ q̃(η) e
∫ x̂ σEV(x)dx, (2.25)

where q̃ = {ũ, ṽ, w̃, p̃, τ̃} and σEV = σEV, Re + iσEV, Im is a complex function whose real part293

σEV, Re(x̂) is the local growth rate and the imaginary part σEV, Im(x̂) is proportional to the294

streamwise wavenumber of the boundary-layer perturbation, i.e.,295

kx, EV(x̂) =
1

x̂

∫ x̂

σEV(x)dx. (2.26)

Expression (2.25) is a local eigenvalue (EV) decomposition, i.e., valid at a specified296

streamwise location, which implies that the streamwise dependence of the perturbation297

is absorbed in σ(x̂), while the wall-normal variation is distilled in q̃(η). The EV pertur-298

bation (2.25) is only defined within an undetermined amplitude that can only be found299

through the receptivity analysis, i.e., by accounting for the influence of the free-stream300

disturbance. Nevertheless, upon comparison with the LUBR solution, the EV approach301

identifies the streamwise locations where the perturbation exhibits exponential growth302

and where its growth rate and streamwise length scale are not influenced by the initial303

and free-stream boundary conditions.304

By substituting (2.25) into (2.9)-(2.13) we obtain the non-parallel EV system of equa-305

tions, which preserves the growing nature of the boundary-layer mean flow. The equations306

can be further simplified by invoking the η-based parallel mean-flow assumption, which307

implies V = 0, and by taking the limit x̂ ≫ 1 (Wu et al. 2011). For numerical reasons, the308

system of ordinary differential equations is written as a system of first order equations309

by introducing three new variables,310

f̃(η) ≡ ∂ũ

∂η
, g̃(η) ≡ ∂w̃

∂η
, h̃(η) ≡ ∂τ̃

∂η
. (2.27)

The non-parallel compressible EV equations are given in the following, where the terms
between 〈 〉 can be neglected under the parallel flow assumption because they arise from
the wall-normal velocity V given in (2.7).

C⌉ ∂ṽ

∂η
= (σF ′ − ikxR) τ̃ − σT ũ+ ṽ

T ′

T
− Tw̃ +

〈
FT ′

2x̂T
τ̃ − ηc

2x̂
T ′ũ− F

2x̂
h̃+

ηcT

2x̂
f̃

〉
,

(2.28)

X| ∂f̃

∂η
=

(
−ikxR

2x̂T

µ
+ 2x̂σ

F ′T

µ
+ 2x̂k2zT

2

)
ũ− F ′′µ′

µ
h̃+

2x̂F ′′

µ
ṽ −

(
µ′T ′

µ
− T ′

T

)
f̃+

(
µ′F ′′T ′

µT
− µ′′F ′′T ′

µ
− µ′F ′′′

µ

)
τ̃ +

〈
FF ′′

µ
τ̃ − ηcF

′′T

µ
ũ− FT

µ
f̃

〉
, (2.29)
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Y| ∂p̃

∂η
= −σµf̃ − 2σT ′

(
µ′ +

2

3

µ

T

)
ũ+ 2x̂

(
ikxR− k2zµT − σF ′

)
ṽ − µg̃+

(
F ′′µ′σ +

4

3

µ′T ′F ′σ

T
− 4

3

µF ′′σ

T
− 4

3
ikxR

µ′T ′

T

)
τ̃ +

4

3

µ

T
(σF ′ − ikxR) h̃−

2T ′

(
µ′ +

2

3

µ

T

)
w̃ + (2x̂)1/2GF ′

(
F ′

T
τ̃ − 2ũ

)
+

〈
µ

2x̂
f̃ +

(
− ikxRηcT+

σηcF
′T + k2zηcµT

2 − 2ηc
3x̂

µ′T ′2

T
+

2ηc
3x̂

µT ′2

T 2
− 2

3x̂

µT ′

T
− 2ηc

3x̂

µT ′′

T
+

ηc
2x̂

F ′T−

FT

2x̂
− ηcFT ′

x̂
− σFT

)
ũ+

(
4

3

µ′T ′2

T 2
− 4

3

µT ′2

T 3
+

4

3

µT ′′

T 2
− F ′ + 2

FT ′

T

)
ṽ+

(
µ′F ′′

2x̂
− 2

3x̂

µ′′FT ′2

T
+

4

3x̂

µ′FT ′2

T 2
− 2

3x̂

µ′FT ′′

T
− 2

3x̂

µ′F ′T ′

T
− 2

3x̂

µFT ′2

T 3
+

2

3x̂

µF ′T ′

T 2
+

2

3x̂

µFT ′′

T 2
− ikxRF + σFF ′ +

FF ′

2x̂
+

1

2x̂

2F 2T ′

T
− ηcF

′2

2x̂

)
τ̃+

(
2

3x̂

µFT ′

T 2
− 4

3x̂

µ′FT ′

T
− 2

3x̂

µF ′

T
− F 2

2x̂

)
h̃− FTw̃ − 2

3x̂

µF

T

∂h̃

∂η

〉
, (2.30)

Z| ∂g̃

∂η
= 2x̂

(
− ikxRT

µ
+

σF ′T

µ
+ k2zT

2

)
w̃ +

(
−µ′T ′

µ
+

T ′

T

)
g̃−

2x̂k2zT
2

µ
p̃+ 2x̂k2z

(
µ′T ′T

µ
+

T ′

3

)
ṽ +

2x̂k2z
3

T (−ikxR+ F ′σ) τ̃+

〈
FT ′

3

(
1 +

2µ′T

µ

)
τ̃ − FT

µ
g̃ − k2zηcT

′T

(
µ′T

µ
+

1

3

)
ũ− k2zFT

3
h̃

〉
, (2.31)

E⌋ ∂h̃

∂η
= T ′

(
−2µ′

µ
+

1

T

)
h̃+

2x̂PrT ′

µ
ṽ − 2(γ − 1)M2PrF ′′f̃+

2x̂T

(
− ikxRPr

µ
+

σPrF ′

µ
+ k2zT

)
τ̃ +

〈
1

µ

[
PrFT ′ − (γ − 1)M2Prµ′F ′′2−

T
∂

∂η

(
µ′T ′

T

)]
τ̃ − ηcPrT

′T

µ
ũ− PrFT

µ
h̃

〉
. (2.32)

The EV system (2.28)-(2.32) is solved with homogeneous boundary conditions: ũ = ṽ =311

w̃ = τ̃ = 0 at η = 0 and ũ, ṽ, w̃, τ̃ → 0 as η → ∞. For M = 0, the equations of Wu et al.312

(2011) for the incompressible case are recovered. The numerical procedure for solving the313

EV equations is described in Appendix A.314
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3D gust disturbances

M < 3

M ≥ 3

x̂
y

x̂

stage I stage II stage III stage IV

K

O
(
G
−2/3

)
O
(
G
−2/5

)

Görtler

ON

O(1)

δ
∗ = O (λ

∗
z
)

O(G)

OL ηOL

ML

VS

ηVS

WL
ON

Figure 2: Sketch of the boundary-layer asymptotic stages for G → ∞: Klebanoff modes
K, main layer ML, viscous sublayer VS, outer layer OL, and wall layer WL.

3. Theoretical results315

In most experiments where flows over concave surfaces have been investigated in316

incompressible and compressible conditions, the Görtler number has been larger than 102.317

This motivated Wu et al. (2011) to study the asymptotic limit G → ∞ that revealed the318

necessary conditions for the inviscid instability and the different stages of the evolution319

of the incompressible Görtler vortices. We herein extend the analysis of Wu et al. (2011)320

to the compressible case with M = O(1). A summary of the physical results extracted321

through the asymptotic analysis of this section is given in §3.5 on page 25. Even though322

this theoretical analysis unveils crucial physical characteristics that are not revealed by323

a purely numerical approach, it will become evident that the numerical solution of the324

LUBR equations is nevertheless needed for a thorough understanding and an accurate325

computation of the flow, especially for G = O(1), where the asymptotic analysis is invalid.326

Figure 2 shows the different streamwise stages through which the perturbation evolves327

in the limit G ≫ 1. In this limit we can identify four main layers, namely the main layer328

ML, the outer layer OL, the viscous sublayer VS, and the wall layer WL.329

3.1. Stage I. Pre-modal regime: x̂ 6 G
−2/5

330

We first consider the region in the proximity of the leading edge, i.e., x̂ ≪ 1, where the331

power-series expansion (C 7) is valid. By assuming that w̄ = O(1), η = O(1), ηc = O(1),332

and T, T ′, F, F ′ = O(1), an order of magnitude analysis of the terms in the C equation333

(2.9) leads to334

ū = O(x̂), τ̄ = O(x̂), v̄ = O(1). (3.1)
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The terms of the Y equation (2.11) become of order335

O(1)

︸ ︷︷ ︸
unsteadiness

+O
(
1

x̂

)

︸ ︷︷ ︸
inertia

+O
(
x̂1/2

G

)

︸ ︷︷ ︸
curvature

=
P ′
0(η)

(2x̂)3/2︸ ︷︷ ︸
η pressure gradient

+O
(
1

x̂

)

︸ ︷︷ ︸
diffusion

, (3.2)

by using the power-series expansion (C 7) for the pressure. When x̂ ≪ G
−2/3, the336

equations are steady and the curvature effects are negligible compared to the other terms.337

Therefore, the perturbation evolves as flat-plate Klebanoff modes, denoted by the letter K338

in figure 2, and the wall-normal gradient of the pressure perturbation is negligible because339

the term dominates as x̂ ≪ 1. Further downstream where x̂ = O
(
G
−2/3

)
, curvature effects340

start to influence the other terms, including the pressure field, rendering the asymptotic341

series expansion (C 7) invalid. The gradient of the pressure p along η grows to an order-342

one magnitude as it balances the centrifugal term. Substituting the scaled variables343

x† = x̂ G
2/3, u† = ū G

2/3, τ † = τ̄ G
2/3, (3.3)

into (2.9)-(2.13) and neglecting terms ≪ 1, the perturbation field is described by

C⌉ ηc
2x†

T ′

T
u† +

∂u†

∂x†
− ηc

2x†

∂u†

∂η
− T ′

T 2
v̄ +

1

T

∂v̄

∂η
− FT ′

2x†T 2
τ † − F ′

T

∂τ †

∂x†
+

F

2x†T

∂τ †

∂η
+ w̄ = 0, (3.4)

X| − ηc
2x†

F ′′u† + F ′ ∂u
†

∂x†
+

1

2x†

(
µT ′

T 2
− F − µ′T ′

T

)
∂u†

∂η
− µ

2x†T

∂2u†

∂η2
+

F ′′

T
v̄+

1

2x†T

(
FF ′′ − µ′′F ′′T ′ +

µ′F ′′T ′

T
− µ′F ′′′

)
τ † − µ′F ′′

2x†T

∂τ †

∂η
= 0, (3.5)

Z| F ′ ∂w̄

∂x†
+

1

2x†

(
µT ′

T 2
− F − µ′T ′

T

)
∂w̄

∂η
− µ

2x†T

∂2w̄

∂η2
= 0, (3.6)

E| − ηcT
′

2x†
u† − M

2 (γ − 1)

x†

µF ′′

T

∂u†

∂η
+

T ′

T
v̄ +

1

2x†

[
FT ′

T
− M

2(γ − 1)
µ′F ′′2

T
−

1

Pr

∂

∂η

(
µ′T ′

T

)]
τ † + F ′ ∂τ

†

∂x†
+

1

2x†

(
µT ′

PrT 2
− F − 2µ′T ′

PrT

)
∂τ †

∂η
− 1

2x†Pr

µ

T

∂2τ †

∂η2
= 0.

(3.7)

It is sufficient to solve C, X , Z, and E to find the velocity and temperature perturbations.
The pressure p̄ is solved a posteriori from Y, which reads

Y⌋ 1

(2x†)
2

[
FT − ηcF

′T − η2cF
′′T + ηcFT ′ +

2F ′

(2x†)
1/2

]
u† +

µ′T ′

3x†

∂u†

∂x†
−

µ

6x†

∂2u†

∂η∂x†
+

ηcµ

12x†2

∂2u†

∂η2
+

1

12x†2

(
ηcµ

′T ′ + µ− ηcµT
′

T

)
∂u†

∂η
+

1

2x†

(
F ′ + ηcF

′′−

FT ′

T

)
v̄ + F ′ ∂v̄

∂x†
+

1

x†

(
2

3

µT ′

T 2
− 2

3

µ′T ′

T
− F

2

)
∂v̄

∂η
− 2

3x†

µ

T

∂2v̄

∂η2
+

µ′T ′

3x†
w̄−
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µ

6x†

∂w̄

∂η
+

1

2x†

∂p̄

∂η
+

[
1

(2x†)
2

(
ηcF

′2 − FF ′ + ηcFF ′′ − F 2T ′

T
− µ′F ′′ − ηcµ

′′F ′′T ′+

ηcµ
′F ′′T ′

T
− ηcµ

′F ′′′

)
+

1

3x†2T

(
µ′′T ′2F − µ′T ′2F

T
+ µ′T ′′F + µ′T ′F ′

)
−

F ′2

(2x†)
1/2

T

]
τ † − µ′F ′′

2x†

∂τ †

∂x†
+ µ′

[
T ′F

3x†2T
− ηcF

′′

(2x†)
2

]
∂τ †

∂η
= 0. (3.8)

Equation (3.8) is decoupled from the other equations since, in the new scaling (3.3), the344

pressure term in Z is negligible, so the flow is governed by the boundary-layer equations,345

i.e., the effects of the spanwise viscous diffusion and of the spanwise pressure gradient346

are negligible (although the boundary-layer equations may also apply if a mean spanwise347

pressure gradient is imposed).348

As the flow evolves further downstream we seek the location where the curvature effects349

begin to influence the perturbation velocity also through the pressure gradient along the350

z direction in the Z equation (2.12). The pressure has now grown to an unknown order351

of magnitude. This is found by balancing the curvature and the pressure terms of the352

Y equation (2.11) to obtain Gx̂1/2 ∼ p̄/x̂, hence p̄ = O
(
G x̂3/2

)
. The terms of the Z353

equation (2.12) become of order354

O(1)

︸ ︷︷ ︸
unsteadiness

+O
(
1

x̂

)

︸ ︷︷ ︸
inertia

= O
(
G x̂3/2

)

︸ ︷︷ ︸
η pressure gradient

+O
(
1

x̂

)

︸ ︷︷ ︸
diffusion

, (3.9)

from which it is inferred that the pressure comes into play in the Z equation when355

x̂ = O
(
G
−2/5

)
. A new scaling can thus be introduced for η = O(1), as follows356

x̆ = x̂ G
2/5, ŭ = ū G

2/5, τ̆ = τ̄ G
2/5, p̆ = p̄ G−2/5. (3.10)

After substitution into the LUBR equations (2.9)-(2.13), the equations of motion become

C⌉ ηc
2x̆

T ′

T
ŭ+

∂ŭ

∂x̆
− ηc

2x̆

∂ŭ

∂η
− T ′

T 2
v̄ +

1

T

∂v̄

∂η
+ w̄ − FT ′

2x̆T 2
τ̆ − F ′

T

∂τ̆

∂x̆
+

F

2x̆T

∂τ̆

∂η
= 0,

(3.11)

X| − ηcF
′′

2x̆
ŭ+ F ′ ∂ŭ

∂x̆
+

1

2x̆

(
µT ′

T 2
− µ′T ′

T
− F

)
∂ŭ

∂η
− µ

2x̆T

∂2ŭ

∂η2
+

F ′′

T
v̄+

1

2x̆T

(
FF ′′ − µ′′F ′′T ′ +

µ′F ′′T ′

T
− µ′F ′′′

)
τ̆ − F ′′µ′

2x̆T

∂τ̆

∂η
= 0 (3.12)

Y| 2F ′

(2x̆)
1/2

ŭ+
1

2x̆

∂p̄

∂η
− F ′2

(2x̆)
1/2

T
τ̆ = 0, (3.13)

Z| F ′ ∂w̄

∂x̆
+

1

2x̆

(
µT ′

T 2
− F − µ′T ′

T

)
∂w̄

∂η
− µ

2x̆T

∂2w̄

∂η2
− k2zT p̆ = 0, (3.14)

E⌋ − ηcT
′

2x̆
ŭ− M

2 (γ − 1)

x̆

µF ′′

T

∂ŭ

∂η
+

T ′

T
v̄ + F ′ ∂τ̆

∂x̆
+

1

2x̆

(
1

Pr

µT ′

T 2
− F − 2

Pr

µ′T ′

T

)
∂τ̆

∂η
+
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1

2x̆

[
T ′F

T
− M

2 (γ − 1)
µ′

T
F ′′2 − 1

Pr

∂

∂η

(
µ′T ′

T

)]
τ̆ − µ

2x̆PrT

∂2τ̆

∂η2
= 0. (3.15)

In (3.11)-(3.15), the unsteady effects are still negligible and the perturbation is thus357

steady. Since we know that the Görtler vortices eventually acquire a modal form it can358

be inferred that, if (3.11)-(3.15) admit an asymptotic eigensolution, x̂ = O
(
G
−2/5

)
is the359

location where the Görtler instability ensues (Wu et al. 2011).360

3.2. Stage II. Asymptotic eigensolution regime: G−2/5 ≪ x̂ ≪ 1361

Following the incompressible case of Wu et al. (2011), we assume that the leading order362

asymptotic eigensolution for x̆ ≫ 1, i.e., x̂ ≫ G
−2/5, and η = O(1) for the middle layer363

ML is of the form364

q̆ = x̆ϕ
[(

x̆−α+1UE , VE , WE , x̆
−α+3/2PE , x̆

−α+1TE

)
+ ...

]
eσ̆(x̆), (3.16)

where the eigenvalue σ̆(x̆) is expanded at leading order as365

σ̆(x̆) = σ̆0 x̆
α + ..., (3.17)

q̆(x̂, η) = {ŭ, v̄, w̄, p̆, τ̆}(x̂, η), QE(η) = {UE , VE ,WE , PE , TE}(η), and σ̆, α, ϕ are unknown366

constants. Substituting (3.16) and (3.17) into (3.14) yields367

σ̆0αF
′x̆αWE − k2z x̆

−α+5/2TPE = O(1), (3.18)

from which, equating the exponentials, α = 5/4. A system of ordinary differential
equations for the eigenfunctions QE(η) is then derived by substituting (3.16) and (3.17)
into (3.11)-(3.15) and taking the limit x̆ ≫ 1. The resulting inviscid equations are

C⌉ ασ̆0UE − T ′

T 2
VE +

1

T
V ′
E +WE − ασ̆0

F ′

T
TE = 0, (3.19)

X| ασ̆0F
′UE +

F ′′

T
VE = 0, (3.20)

Y| 2
√
2F ′UE + P ′

E −
√
2F ′2

T
TE = 0, (3.21)

Z| ασ̆0F
′WE − k2zTPE = 0, (3.22)

E⌋ ασ̆0F
′TE +

T ′

T
VE = 0. (3.23)

These equations can be rearranged to obtain an equation for VE ,368

d2VE

dη2
− 2T ′

T

dVE

dη
+

[
2F ′′T ′

F ′T
− F ′′′

F ′
+

√
2k2z

(σ̆0α)2

(
2F ′′T

F ′
− T ′

)]
VE = 0, (3.24)

subject to the boundary conditions

η = 0⌉ VE = 0, (3.25)

η → ∞⌋ dVE

dη
→ 0, (3.26)

which correspond to the no-penetration and bounded conditions, respectively. Equation369

(3.24) is solved with the same numerical method used to solve the EV system (2.28)-370

(2.32). For M = 0 the results agree with those of Wu et al. (2011). The first three371
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M 0 0.5 0.9 1.5 3 4

σ̆
(1)
0 0.811 0.828 0.864 0.949 1.259 1.501

σ̆
(2)
0 0.505 0.516 0.538 0.591 0.785 0.937

σ̆
(3)
0 0.370 0.377 0.394 0.433 0.575 0.685

σ̆
(1)
1 -1.567 -1.580 -1.608 -1.676 -1.927 -2.122

σ̆
(2)
1 -1.656 -1.670 -1.700 -1.773 -2.042 -2.248

σ̆
(3)
1 -1.709 -1.723 -1.754 -1.829 -2.105 -2.316

B̆ 1.016 1.004 0.978 0.925 0.779 0.701

Table 1: The first three eigenvalues σ̆0 from (3.17) and σ̆1 from (3.42), and the wall-
normal scaling coefficient B̆ used in (3.28) for different Mach numbers.

eigenvalues σ̆0 are shown in table 1 for different values of the Mach number. There is a372

very mild influence of the Mach number in subsonic flow conditions while in supersonic373

flow conditions σ̆0 increases as the Mach number increases, so the Görtler vortices are374

more unstable as the compressibility effects intensify.375

To study the flow in the vicinity of the wall, we take the mean-flow values at η = 0,376

i.e., F = F ′ = F ′′′ = T ′ = 0, while F ′′, T , T ′′ = O(1). Locally, since η = 0 is a377

regular singular point, the solution VE can be written as a Fröbenius series (Wu et al.378

2011) that gives V ′
E (0) = 1 when normalized. Additionally, the no-penetration condition379

requires VE (0) = 0. Taking the derivative of (3.22) and substituting P ′
E from (3.21) shows380

that the spanwise velocity component satisfies the no-slip condition, i.e., WE (0) = 0.381

However, the streamwise velocity component does not satisfy the no-slip condition since,382

from (3.19) we find UE (0) → − (σ̆0αT0)
−1

, where T0 ≡ T (0). This is consistent with the383

inviscid nature of the governing equations (3.19)-(3.23) for x̂ = O
(
G
−2/5

)
from which384

(3.24) is derived. In order for the streamwise velocity to satisfy the no-slip condition at385

the wall, a viscous sublayer VS is introduced in the near-wall region. Substituting (3.16)386

into (3.12) and balancing convection and diffusion in the limits η → 0 and x̆ ≫ 1 yields387

ασ̆0F
′UE ∼ x̆−α µ

2T
U ′′

E , (3.27)

from which388

η ∼ B̆ x̆−5/12, (3.28)

where B̆ ≡ [µ0/ (2λασ̆0T0)]
1/3

and T0, µ0 ≡ µ(0), λ ≡ F ′′(0) arise from Taylor-expanding389

the mean flow at η = 0. The thickness of the VS is ηVS = O
(
x̆−5/12

)
where the constant390

of proportionality B̆ decreases as the Mach number increases, as shown in table 1. The391

wall-normal scaled variable for the VS becomes392

ζII = B̆
−1x̆5/12η. (3.29)

An order of magnitude balance of the equations for η → 0 reveals that PE = O(η) from393

(3.22), VE = O(η) from (3.19), and consequently TE = O(η) from (3.23). Therefore, the394

solution in the VS expands as395

q̆ = x̆ϕ
[(

x̆−1/4us, ηvs, ws, x̆
1/4ηps, x̆

−1/4ητs

)
+ ...

]
eσ̆(x̆), (3.30)
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where q̆(x̂, ζII) = {ŭ, v̆, w̆, p̆, τ̆}(x̂, ζII). Starting from the system of equations (3.11)-(3.15)
for η = O(1) and x̆ = O(1), introducing the change of variable (3.29) and the expansion
(3.30), the system of equations for ζII = O(1) and x̆ ≫ 1 becomes

C⌉ ασ̆0us +
1

T0
v′s + ws = 0, (3.31)

X| ασ̆0 (ζIIus − u′′
s ) +

1

T0
vs = 0, (3.32)

Y| p′s = 0, (3.33)

Z| λασ̆0 (ζIIws − w′′
s )− k2zT0ps = 0, (3.34)

E⌋ τ ′′s = 0, (3.35)

where the prime ′ indicates the derivative with respect to ζII. The energy equation E in the396

VS does not contain the pressure and the velocity components. Equations (3.31)-(3.35)397

are rearranged to obtain an equation for vs(ζII),398

(
d2

dζ2II
− ζII

)
v′′s = 0, (3.36)

subject to the boundary conditions

ζII = 0⌉ vs = 0, v′s = 0, (3.37)

ζII → ∞⌋ v′s → 1. (3.38)

The first boundary condition, i.e., vs = 0, represents the no-penetration condition, while399

the derivatives of the wall-normal velocity come from the continuity equation. Only three400

boundary conditions are needed since two constants of integration can be obtained from401

(3.38). The solution of (3.36) has the same form as in the incompressible case of Wu402

et al. (2011),403

vs = Cs

∫ ζII

0

(
ζII − ζ̄II

)
Ai

(
ζ̄II
)
dζ̄II, (3.39)

where Cs = 1/
∫∞

0
Ai (ζII) dζII = 3 and Ai is the Airy function of the first kind. For ζII → ∞404

the solution becomes vs → ζII + v∞, where the transpiration velocity v∞ is405

v∞ ≡ −Cs
∫ ∞

0

ζIIAi (ζII) dζII. (3.40)

For ζII → ∞ the VS solution must match the ML solution for η = O(1).406

The transpiration velocity (3.40) thus induces a correction term of order O
(
x̆−5/12

)

in the ML. We can then further expand (3.16) and (3.17) to take this viscous correction
into account. We obtain

q̆ =x̆ϕ
[ (

x̆−1/4UE , VE , WE , x̆
−1/4PE , x̆

−1/4TE

)
+

x̆−5/12
(
x̆−1/4U

(1)
E , V

(1)
E , W

(1)
E , x̆−1/4P

(1)
E , x̆−1/4T

(1)
E

)
+ ...

]
eσ̆(x̆), (3.41)

where the eigenvalue σ̆(x̆) expands as407

σ̆(x̆) = σ̆0 x̆
5/4 + x̆−5/12

(
σ̆1 x̆

5/4
)
+ ... . (3.42)
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Substituting (3.41) and (3.42) into (3.11)-(3.15) for x̂ = O
(
G
−2/5

)
and η = O(1), and

collecting the O
(
x̆−5/12

)
terms gives

C⌉ 5σ̆0

4
U

(1)
E − T ′

T 2
V

(1)
E +

1

T
V ′
E

(1)
+W

(1)
E − 5σ̆0

4

F ′

T
T

(1)
E =

2σ̆1

3σ̆0T

(
F ′′

F ′
− T ′

T

)
VE ,

(3.43)

X| 5σ̆0

4
F ′U

(1)
E +

F ′′

T
V

(1)
E =

2σ̆1

3σ̆0

F ′′

T
VE , (3.44)

Y| 2
√
2F ′U

(1)
E + P ′

E

(1) −
√
2F ′2

T
T

(1)
E = 0, (3.45)

Z| 5σ̆0

4
F ′W

(1)
E − k2zTP

(1)
E − 5σ̆1

6

F ′

T
V ′
E = −5σ̆1

6

F ′′

T
VE , (3.46)

E⌋ T ′

T
V

(1)
E +

5σ̆0

4
F ′T

(1)
E =

2σ̆1

3σ̆0

T ′

T
VE . (3.47)

An equation for V
(1)
E can be derived from (3.43)-(3.47),

d2V
(1)
E

dη2
− 2

T ′

T

dV
(1)
E

dη
+

[
2
F ′′T ′

F ′T
− F ′′′

F ′
+

2
√
2k2z

(ασ̆0)
2

F ′′T

F ′
−

√
2k2z

(ασ̆0)
2T

′

]
V

(1)
E =

10
√
2k2z σ̆1

3 (σ̆0α)
3

(
F ′′T

F ′
− 1

2
T ′

)
VE , (3.48)

subject to the boundary conditions

η = 0⌉ V
(1)
E (0) = B̆ v∞, (3.49)

η → ∞⌋ dV
(1)
E

dη
→ 0, (3.50)

where (3.49) comes from the matching at O
(
x̆−5/12

)
of the wall-normal velocity in the

ML for η → 0 with the wall-normal velocity in the VS for ζII → ∞. Condition (3.50) comes
from requiring that the solution be bounded. The eigenvalue σ̆1 can either be computed
numerically from the solution of (3.48) with its boundary conditions (3.49) and (3.50) or
from the solvability condition

10
√
2k2z σ̆1

3 (ασ̆0)
3

(∫ ∞

0

F ′′T

F ′
VE

2dη − 1

2

∫ ∞

0

T ′VE
2dη

)
=

2λσ̆0αT

µ
v∞

(
1 + 2

∫ ∞

0

T ′

T

dVE

dη
dη

)
,

(3.51)

derived by multiplying (3.48) by VE , integrating from zero to infinity, and matching the408

O
(
x̂−5/12

)
terms of (3.41) with (3.30), using (3.24) and (3.29). The numerical values of409

σ̆1 are shown in table 1. They are all negative, thus indicating decaying perturbations.410

Similar to the eigenvalues σ̆0, the effect of Mach number is very small for subsonic411

conditions, while in the supersonic regime σ̆1 grows in absolute value as compressible412

effects intensify as the Mach number increases.413

The no-slip condition is now satisfied, but we still need to require that the ML solution414

respect the condition VE → 0 for η → ∞. By requiring the solution to be bounded as415
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the free stream is approached, condition (3.26) gives VE = C2, where C2 is an undefined416

constant determined by the numerical solution. An outer layer OL must therefore be417

introduced to allow VE to vanish as η → ∞. Introducing the mean-flow simplification for418

η → ∞, i.e., F → η−β and T = 1, into (3.19), (3.20), (3.22), and (3.23) we find UE = 0,419

TE = 0, WE = 0, and PE = 0, respectively. We then expand (3.10) as420

ū = ŭG−2/5 +O
(
G
−3/5

)
, τ̄ = τ̆G−2/5 +O

(
G
−3/5

)
, p̄ = p̆G2/5 +O

(
G
1/5
)
. (3.52)

Substituting these expansions into the Y equation (2.11) and neglecting terms ≪ G
−2/5,421

the equation is balanced if ηOL ∼ G
1/5 (2x̆)

−1/2
. It follows that the new O(1) wall-normal422

coordinate for the OL is423

y0 = G
−1/5 (2x̆)

1/2
η. (3.53)

From (2.9) and (3.52), the scaling in the OL for y0 = O(1) is424

q̄ =
{
G
−3/5ū0, v̄0, G

−1/5w̄0, G
1/5p̄0, G

−3/5τ̄0

}
, (3.54)

where q̄(x̆, y0) = {ū, v̄, w̄, p̄, τ̄}(x̆, y0). Substituting (3.54) into the LUBR equations (2.9)-
(2.13) and taking the limit η → ∞ gives the OL system

C⌉ (2x̆)1/2
∂v̄0
∂y0

+ w̄0 = 0, (3.55)

X| ∂ū0

∂y0
= 0, (3.56)

Y| v̄0
2x̆

+
∂v̄0
∂x̆

+
1

(2x̆)
1/2

∂p̄0
∂y0

= 0, (3.57)

Z| ∂w̄0

∂y0
− k2z p̄0 = 0, (3.58)

E⌋ ∂τ̄0
∂y0

= 0, (3.59)

where, in order to satisfy the boundary condition VE → 0 as η → ∞, ū0 and τ̄0 must be425

set to zero. The solution to (3.55)-(3.59) is426

{p̄0, w̄0, v̄0} =
{
g′0, k

2
zg0, |kz|g0/ (2x̆)

}
e−|kz|y0 , (3.60)

where427

g0(x̆) = x̆γ+1/2
[
VE,∞ +O

(
x̆−5/12

)]
eσ̆(x̆) (3.61)

and VE,∞ = VE (η → ∞) is determined by solving (3.24) numerically.428

3.3. Stage III. Fully developed regime: x̂ = O(1)429

As the instability develops further downstream the local boundary-layer thickness δ∗

becomes of the same order as the spanwise wavelength λ∗
z, i.e., δ

∗ = O(λ∗
z), and the

spanwise viscous diffusion and the spanwise pressure gradient are at work. At this location
the Görtler vortices are fully developed (Wu et al. 2011) with x̆ = O

(
G
2/5
)
, i.e., x̂ = O(1),

ηOL = O(1) and the OL merging with the ML. Stage III is therefore only composed of the
ML and the VS. Equations (3.41), (3.42), and (3.52) suggest that the solution in the fully
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developed regime can be expanded in the WKBJ form (Wu et al. 2011)

q̄ =
{[

G
−1/2u0, v0, w0, G

1/2p0, G
−1/2τ0

]
+

G
−1/6

[
G
−1/2u1, v1, w1, G

1/2p1, G
−1/2τ1

]
+ ...

}
eG

1/2
∫ x̂ σ̂(x)dx, (3.62)

where430

σ̂(x̂) = σ̂0 + G
−1/6σ̂1 + ..., (3.63)

and the second term of orderO(G−1/6) takes into account the effect of the VS. Substituting
(3.62) into the LUBR equations (2.9)-(2.13) gives the system at leading order for x̂ =
O(1) and η = O(1),

C⌉ σ̂0u0 −
T ′

T 2
v0 +

1

T

∂v0
∂η

+ w0 − σ̂0
F ′

T
τ0 = 0, (3.64)

X| σ̂0F
′u0 +

F ′′

T
v0 = 0, (3.65)

Y| 2F ′

(2x̂)
1/2

u0 + σ̂0F
′v0 −

F ′2

(2x̂)
1/2

T
τ0 +

1

2x̂

∂p0
∂η

= 0, (3.66)

Z| σ̂0F
′w0 − k2zTp0 = 0, (3.67)

E⌋ σ̂0F
′τ0 +

T ′

T
v0 = 0. (3.68)

We can rearrange (3.64)-(3.68) to find

∂2v0
∂η2

− 2T ′

T

∂v0
∂η

+

[
2F ′′T ′

F ′T
− F ′′′

F ′
− 2x̂k2zT

2 + (2x̂)
1/2 k2z

σ̂2
0

(
2F ′′T

F ′
− T ′

)]
v0 = 0,

(3.69)

subject to the boundary conditions

η = 0⌉ v0 = 0, (3.70)

η → ∞⌋ v0 → 0. (3.71)

Note that v0 vanishes as η → ∞ since no outer layer is needed to take the wall-normal431

velocity to zero like in stage II. Equation (3.69), also derived by Dando & Seddougui432

(1993), is solved with the same method used to solve (3.24) and the EV system (2.28)-433

(2.32). In the limit x̂ → 0 the solution in the fully developed regime of stage III must be434

consistent with the solution of the asymptotic stage II. The dominant balance in (3.69)435

shows that, in order for all the terms except the third term in the brackets to remain436

O(1), σ̂0 = O
(
x̂1/4

)
and, from the exponential in (3.62),437

∫ x̂

σ̂0(x)dx ∼ 4

5
x̂5/4, (3.72)

which is consistent, at leading order, with the exponential in (3.41).438

Changing the Mach number affects the boundary-layer thickness δ∗99, i.e., the wall-439

normal location where U∗ = 0.99U∗
∞, and η through the mean temperature T . We440

therefore use the dimensionless wall-normal coordinate y99 ≡ y∗/δ∗99 when comparing441
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Figure 3: The effect of the Mach number on σ̂
(1)
0 (left) and detail of the graph on the left

in the region x̂ ≪ 1 for comparison with stage II (right). Inset: the wall-normal location
of GV-vortices (right) for stage III.

results at different Mach numbers. Figure 3 (left) shows the growth rate of the pertur-442

bation along the streamwise direction for the first eigenvalue σ̂
(1)
0 . As the Mach number443

increases, its stabilizing effect begins closer to the leading edge. Up to M = 2, the growth444

rate at x̂ ≈ 15 converges to a constant. The wall-normal location of the vortices, shown445

in the inset of figure 3 (left), decreases as the Mach number increases. However, for M > 3446

and high enough x̂ the location of the vortices asymptotically approaches a constant447

value. Figure 3 (right) demonstrates that for x̂ ≪ 1 the growth rate (3.63) from stage III448

asymptotically matches the growth rate (3.17) from stage II.449

In stage III, as for the asymptotic eigensolution regime of stage II, a VS has to be450

introduced to guarantee that the no-slip condition at the wall will be satisfied because it451

is found that u0 → − (σ̂0T0)
−1

as η → 0. Substituting (3.62) into the X equation (2.10)452

and balancing the convection and the diffusion terms in the limit η → 0, the new O(1)453

wall-normal scaling variable, proportional to the VS thickness, becomes454

ζIII = G
1/6

B̂
−1 x̂1/3η, (3.73)

where B̂(x̂) ≡ [µ0/ (2λσ̂0T0)]
1/3

. A comparison with (3.29) shows that, by fixing G and B̂,
if x̂ increases the VS becomes thinner more rapidly in stage II

(
O
(
x̂−5/12

))
than in stage

III
(
O
(
x̂−1/3

))
since ζII and ζIII are of order one. The value of B̂(x̂) approaches a constant

for x̂ > 5. From (3.73) it can be noticed that, in order to maintain ζIII = O(1), η must
increase when G increases, i.e., the VS thickness is larger for flows over strong curvature.
Substituting (3.62) into the LUBR equations (2.9)-(2.13) and balancing the convection
and diffusion terms gives the expansion of the flow in the VS,

q̄ =

{
G
−1/2ub, G

−1/6
B̂x̂−1/3vb, wb, G

−2/3
B̂x̂−1/3pb, G

−1/2τb

}
eG

1/2
∫ x̂ σ̂(x)dx, (3.74)

where q̄(x̂, ζIII) = {ū, v̄, w̄, p̄, τ̄}(x̂, ζIII). By substituting (3.74) into the LUBR equations
(2.9)-(2.13), we recover the system of equations for x̂ = O(1) and η → 0,

C⌉ σ̂0ub +
1

T0
v′b + wb = 0, (3.75)
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X| σ̂0 (ζIIIub − u′′
b ) +

1

T0
vb = 0, (3.76)

Y| p′b = 0, (3.77)

Z| λσ̂0 (ζIIIwb − w′′
b )− k2zT0pb = 0, (3.78)

E⌋ τ ′b = 0, (3.79)

where the prime ′ indicates the derivative with respect to ζIII. The equations are similar455

to the asymptotic eigensolution equations (3.31)-(3.35) and therefore vb satisfies the456

Airy equation (3.36) along with the boundary conditions (3.37) and (3.38). A composite457

solution for the streamwise velocity uc can be constructed from the solution in the ML458

and VS, i.e., u0 and ub, respectively, as459

uc = u0 + ub − ucom, (3.80)

where460

ucom = lim
η→0

u0 = lim
ζIII→∞

ub = − 1

σ̂0T0
(3.81)

is the common solution.461

The streamwise velocity ub is computed by integrating (3.76) through the method of462

variation of parameters with the known velocity vb as the forcing term. The solution is:463

ub(ζIII) = C1Ai+ C2Bi− Ai

∫ ζIII

0

f Bi

W
dζ̄III + Bi

∫ ζIII

0

f Ai

W
dζ̄III, (3.82)

where Ai = Ai(ζIII) and Bi = Bi(ζIII) are the two linearly independent solutions of the464

Airy equation, f(ζIII) = vb(ζIII)/(σ̂0T0) and W(ζIII) = Ai Bi
′ − Bi Ai

′ is the Wronskian.465

The constant C2 = −0.2061 is found first by numerically imposing the outer boundary466

condition (3.81) as the term proportional to C1 vanishes as ζIII → ∞. Once C2 is known,467

the constant C1 = 0.3571 is found by imposing the first of (3.37). The resulting solutions468

ūb, ū0, and ūc for M = 0.5 and M = 3 are displayed in figure 4. These results confirm that469

as the Mach number increases, but still remaining an order-one quantity, the vortices470

tend to move towards the wall when G ≫ 1. The requirement of a very high G value471

in figure 4 arises from the inner coordinate being proportional to G
1/6 in (3.73) and is472

necessary to guarantee that the VS is thinner than the ML. The composite solution follows473

the inner VS solution near the wall and the outer ML solution away from the wall.474

The viscous correction for x̂ = O(1) and η = O(1) is found by substituting the
expansion (3.62) into the LUBR equations (2.9)-(2.13) and collecting the O

(
G
−1/6

)
terms

for u1, v1, w1, p1, τ1 in (3.62),

C⌉ σ̂0u1 −
T ′

T 2
v1 +

1

T

∂v1
∂η

+ w1 − σ̂0
F ′

T
τ1 − σ̂1

F ′

T
τ0 + σ̂1u0 = 0, (3.83)

X| σ̂0F
′u1 +

F ′′

T
v1 + σ̂1F

′u0 = 0, (3.84)

Y| 2F ′

(2x̂)
1/2

u1 + σ̂0F
′v1 +

1

2x̂

∂p1
∂η

− F ′2

(2x̂)
1/2

T
τ1 + σ̂1F

′v0 = 0, (3.85)

Z| σ̂0F
′w1 − k2zTp1 + σ̂1F

′w0 = 0, (3.86)
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Figure 4: Normalized profiles of the streamwise velocity perturbation for M = 0.5 (left)
and M = 3 (right) from the eigensolution of stage III at G = 1015 and x̂ = 1. Insets: details
of the solutions near the wall.

E⌋ T ′

T
v1 + σ̂0F

′τ1 + σ̂1F
′τ0 = 0, (3.87)

from which the equation for v1 is derived

∂2v1
∂η2

− 2
T ′

T

∂v1
∂η

+

[
2
F ′′T ′

F ′T
− F ′′′

F ′
− 2x̂k2zT

2 +
2 (2x̂)

1/2
k2z

σ̂2
0

F ′′T

F ′
− (2x̂)

1/2
k2z

σ̂2
0

T ′

]
v1 =

2 (2x̂)
1/2

k2z σ̂1

σ̂3
0

(
2
F ′′T

F ′
− T ′

)
v0, (3.88)

along with its boundary conditions

η = 0⌉ v1 = B̂ x̂−1/3v∞, (3.89)

η → ∞⌋ ∂v1
∂η

→ 0. (3.90)

As for the asymptotic eigensolution regime, the boundary condition for η → 0 stems from
the matching with the ML solution. Applying the solvability condition to (3.88) gives

(
1 + 2

∫ ∞

0

T ′

T

∂v0
∂η

dη

)(
2λσ̂0T

µ

)−1/3

x̂−1/3v∞ =

− 2 (2x̂)
1/2

k2z σ̂1

σ̂3
0

(∫ ∞

0

T ′v20dη − 2

∫ ∞

0

F ′′T

F ′
v20dη − 2

∫ ∞

0

F ′′T

F ′
v20dη

)
. (3.91)

The eigenvalue σ̂1 can either be calculated from the solvability condition or from the475

numerical integration of (3.88).476

3.4. Stage IV. Wall layer regime: x̂ ≫ 1477

It has been shown by Hall (1983) and Wu et al. (2011) for the incompressible case that,478

contrary to the Klebanoff modes generated over flat plates, Görtler vortices move towards479

the surface as they develop downstream in the limit x̂ ≫ 1 (δ∗ ≫ λ∗
z). It will be shown480

in §4 that this is true only up to M ≃ 3. For M > 3, the perturbation initially tends to481
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concentrate near the wall, but then, as x̂ increases, it moves to the core of the boundary482

layer. Following the work of Wu et al. (2011), the eigenvalue problem for the inviscid483

regime (3.69) can be simplified in the limit x̂ ≫ 1 and η → 0. From the simplifications484

of the mean flow near the wall and introducing a new WL variable ζ̂III = (2x̂)
1/2

ηT0 to485

cancel the dependence on x̂, (3.69) simplifies to486

∂2v0

∂ζ̂2III
−
(
1− 2

ζ̂IIIσ̂2
0

)
k2zv0 = 0. (3.92)

This equation is the same as for the incompressible case and has a set of eigenvalues487

σ̂0 = (kz/n)
1/2

, with n = 1, 2, 3, ... (Denier et al. 1991). Applying the same procedure to488

(3.88), we find that σ̂1 = O
(
x̂1/6

)
for x̂ ≫ 1 and η → 0, which implies that, referring to489

(3.63), the viscous correction terms for the growth rate at η = O(1) become of leading490

order as the flow evolves to x̂ = O(G).491

For x̂ ≫ 1, we investigate the flow at x̂ = O (G), where the viscous correction term492

becomes of leading order. The streamwise and wall-normal variables rescale as493

x̃ =
x̂

G
, ζIV = (2x̃)

1/2
ηG1/2T0, (3.93)

respectively. From an order of magnitude analysis of the LUBR equations (2.9)-(2.13)494

the flow expands as495

q̄ =
{
ũ0, ṽ0, G

1/2w̃0, G
1/2p̃0, G

1/2τ̃0

}
eG

3/2
∫ x̃ σ̂(x)dx, (3.94)

where q̄(x̃, ζIV) = {ū, v̄, w̄, p̄, τ̄}(x̃, ζIV). Substituting (3.94) into the LUBR equations (2.9)-
(2.13) and using the near-wall approximations for the mean flow, the system of equations
for x̂ = O(G) becomes

C⌉ σ̂ũ0 + (2x̃)
1/2 ∂ṽ0

∂ζIV
+ w̃0 +

[
ikxR

T
− λζIVσ̂

(2x̃)
1/2

T 2

]
τ̃0 = 0, (3.95)

X|
[
−ikxR+

ζIVσ̂

(2x̃)
1/2

λ

T
+ k2zµT

]
ũ0 − µT

∂2ũ0

∂ζ2IV
+

λ

T
ṽ0 −

λµ′

(2x̃)
1/2

∂τ̃0
∂ζIV

= 0, (3.96)

Y| ζIV
x̃

λ

T
ũ0 +

[
ζIVσ̂

(2x̃)
1/2

λ

T
− ikxR+ k2zµT

]
ṽ0 − µT

∂2ṽ0
∂ζ2IV

+
T

(2x̃)
1/2

∂p̃0
∂ζIV

−

[
(ζIVλ)

2

(2x̃)
3/2

T
+

σ̂µ′λ

2x̃
+

ζIVσ̂µ
′λ

(2x̃)
2 +

σ̂µλ

6x̃T

]
τ̃0 +

[
ikxRµ

3 (2x̃)
1/2

+
ζIVσ̂µλ

6x̃T

]
∂τ̃0
∂ζIV

= 0,

(3.97)

Z|
[

ζIVσ̂λ

(2x̃)
1/2

T
− ikxR+ k2zµT

]
w̃0 − µT

∂2w̃0

∂ζ2IV
− k2zT p̃0 = 0, (3.98)

E⌋
[
k2z
Pr

µT − ikxR+
ζIVσ̂λ

(2x̃)
1/2

T

]
τ̃0 −

µT 2

Pr

∂2τ̃0
∂ζ2IV

= 0. (3.99)

These equations could be rearranged to eliminate w̃0 and ṽ0. The boundary conditions496
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are ũ0 = ṽ0 = τ̃0 = 0 for ζIV = 0 and ũ0, ṽ0, τ̃0 → 0 for ζIV → ∞. Finally, for x̃ = O(1)497

and from the boundary-layer thickness δ∗ = O
(
(ν∞x∗/U∗

∞)
1/2
)
, we find that δ∗/λ∗

z =498

O
(
G
1/2
)
, identified by Denier et al. (1991) as the most unstable regime for incompressible499

Görtler flow.500

3.5. Summary of physical results emerging from asymptotic analysis501

From the asymptotic analysis in the limit G ≫ 1, we can infer the following physical502

properties:503

• as in the incompressible case, the unbalance between pressure and centrifugal forces504

triggers the Görtler instability at a streamwise location x̂ = O
(
G
−2/5

)
, i.e., when both505

the wall-normal and the spanwise pressure gradients are active in the wall-normal and506

spanwise momentum equations, respectively;507

• in stage II, i.e., where the boundary-layer equations describe the flow as the spanwise508

viscous diffusion effects are negligible, increasing the Mach number causes:509

◦ the boundary-layer perturbation to intensify, as shown by the eigenvalues in table510

1;511

◦ the perturbation to shift away from the wall;512

• in stage III, i.e., further downstream where the flow is described by the boundary-513

region equations because the spanwise viscous diffusion and the spanwise pressure gra-514

dient are at work:515

◦ the growth rate decreases slightly downstream, as shown in figure 4;516

◦ increasing the Mach number has a stabilizing effect on the growth rate, which is517

more intense in supersonic flow conditions, as figure 4 shows;518

◦ for M = O(1), the vortices move towards the wall as the Mach number increases, as519

shown in figure 3 and figure 4;520

◦ we have obtained a composite asymptotic solution, whose near-wall part is fully521

viscous and adiabatic, while the part in the boundary-layer core is inviscid.522

4. Numerical results523

In §4.1, we first present the results based on the LUBR equations, which are valid for524

the entire evolution of the boundary-layer perturbation. We then discuss the comparison525

between the LUBR results with the results obtained through the EV framework valid for526

x̂ ≫ 1 in §4.2 and the asymptotic results (ASY) valid for G ≫ 1 and x̂ = O(1) in §4.3.527

In §4.4, the LUBR results are compared qualitatively with the DNS results by Whang &528

Zhong (2003).529

4.1. Unsteady boundary-region results530

Using the LUBR equations, we investigate the dependence of the evolution of com-531

pressible Görtler vortices on four main parameters, i.e., the Mach number, the Görtler532

number, the ratio of the disturbance wavelengths in the free stream, and the frequency.533

In order to obtain realistic results, this parametric analysis is based on wind tunnel data534

of compressible flows.535

4.1.1. Effect of Mach number536

The effect of the Mach number is investigated while keeping a constant unit Reynolds537

number R∗u = U∗
∞/ν∗∞. As the free-stream mean velocity U∗

∞ changes, it directly affects538

both M and R
∗
u, p

∗
∞ affects R∗u through ν∗∞, whereas T ∗

∞ modifies M through the speed of539

sound a∗∞ = a∗∞(T ∗
∞) and changes R∗u through ν∗∞. The Reynolds number R∗u is thus kept540
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Figure 5: Influence of pressure p∗∞ and temperature T ∗
∞ on the subsonic Mach number

(left) and on the kinematic viscosity ν∗∞ of air (right) for R∗u = 13 · 106 m−1. The points
in the two graphs correspond to the same flow conditions.

constant by selecting the correct combination of U∗
∞, T ∗

∞, and p∗∞ as the desired M is541

achieved. Figure 5 shows the influence of the free-stream temperature and pressure on542

the subsonic Mach number (left) and the free-stream kinematic viscosity (right).543

This approach has been used in several wind tunnel studies. Laufer (1954) conducted544

experiments in the supersonic wind tunnel of the Jet Propulsion Laboratory in the545

range 1.4 < M < 4, with R
∗
u = 13.3 · 106 m−1 and a free stream dominated by vortical546

disturbances. No information on the pressure and temperature conditions was given in547

their article. Flechner et al. (1976) studied transitional boundary layers in the transonic548

tunnel at NASA Langley Research Center and maintained the stagnation temperature549

at 322 K. Three different Mach numbers M = 0.7, 0.8, 0.83 were investigated through a550

change in the free-stream dynamic pressure while keeping R
∗
u = 13.1 ·106 m−1. This wind551

tunnel was equipped with a control system that allowed independent variation of Mach552

number, stagnation pressure, and temperature. We consider the cases of steady vortices553

(frequency f∗ = 0) in conditions similar to the experimental configuration of De Luca554

et al. (1993), i.e., with spanwise wavelength λ∗
z = 8 ·10−3m, corresponding to R = 1273.2,555

and radius of curvature r∗ = 10m, corresponding to G = 206.4. The Mach number is556

limited to M 6 4 to maintain valid the assumptions of ideal gas and constant Prandtl557

number. The dimensionless wall-normal coordinate y99 ≡ y∗/δ∗99 is used when comparing558

results at different Mach numbers.559

The maximum along y99 of the amplitude of the streamwise velocity perturbation560

|ū(x̂)|max ≡ max
y99

|ū(x̂, y99)| as a function of x̂ is shown in figure 6 (left) for different Mach561

numbers. For x̂ = O(1), increasing M decreases the growth rate, i.e., the kinematic Görtler562

vortices (GV-vortices) become more stable, especially for supersonic flows. This confirms563

the asymptotic results for stage III. This is true only sufficiently downstream from the564

leading edge where the Görtler instability is fully developed and δ∗ is comparable with565

λ∗
z. In the early stages of the streamwise-velocity perturbation where instead the spanwise566

viscous diffusion is negligible, the effect of the Mach number is reversed as shown in the567

inset of figure 6 (left). This confirms the theoretical results for stage II. The stabilizing568

effect of the Mach number when δ∗ = O(λ∗
z) is in accordance with early studies utilizing569

linearized theories for the primary instability (Hammerlin 1961; Kobayashi & Kohama570

1977; El-Hady & Verma 1983; Spall & Malik 1989; Hall & Malik 1989; Wadey 1992). The571
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Figure 6: The effect of the Mach number on the maximum streamwise velocity
perturbation (left) and the maximum temperature perturbation (right) for a steady flow
at R = 1273.2, G = 206.4 and ky = 1.

most unstable Görtler vortices are therefore incompressible. However, this is true only572

during the initial stages of the evolution as the recent experimental study by Wang et al.573

(2018) showed that transition to turbulence is achieved more rapidly for compressible574

Görtler vortices compared to the slower transition of incompressible Görtler vortices575

because the secondary instability of nonlinearly evolving vortices is more intense in the576

compressible case.577

In addition to GV-vortices, compressibility effects generate thermal Görtler vortices,578

hereinafter called GT-vortices. They originate due to the velocity-temperature coupling579

within the boundary layer even in the absence of free-stream temperature disturbances,580

similar to the thermal Klebanoff modes over a flat plate (Ricco & Wu 2007). Figure581

6 (right) reveals that the temperature perturbations also grow exponentially and are582

more stable sufficiently downstream, i.e., their growth rate decreases, as the Mach583

number increases. However, thanks to our receptivity framework we notice that in the584

proximity of the leading edge, where δ∗ is smaller than λ∗
z, the temperature perturbations585

increase much more significantly with the Mach number than the velocity perturbations.586

We further note that the stabilizing effect of the Mach number occurs much further587

upstream for the GV-vortices than for the GT-vortices. Since further downstream the588

growth rate decreases with increasing Mach number, temperature perturbations for lower589

Mach number become dominant when x̂ is sufficiently high. This reversed influence of590

compressibility caused by the growing presence of spanwise viscous diffusion along the591

streamwise direction was also detected on thermal Klebanoff in the presence of wall heat592

transfer (Ricco et al. 2009). None of the previous theoretical frameworks could trace593

the evolution of the velocity and the temperature perturbations from the leading edge594

and observe this effect of spanwise diffusion because local EV approaches were utilized595

without considering the influence of the base-flow receptivity to external disturbances on596

the evolution of the Görtler vortices.597

The location of the maximum value of the perturbation amplitude is monitored to598

evince the wall-normal position of the Görtler vortices. Early studies by Kobayashi &599

Kohama (1977), El-Hady & Verma (1983), and Ren & Fu (2015) show that the vortices600

lift away from the wall as the Mach number increases, although through EV approaches601

they could not trace the evolution of the vortices from the leading edge because the602
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Figure 7: The effect of the Mach number on the wall-normal location of GV-vortices (left)
and GT-vortices (right) for a steady flow at R = 1273.2, G = 206.4 and ky = 1. Inset:
Boundary-layer thickness based on λ∗

z = 8 · 10−3m.

external forcing due to the free-stream disturbances plays a crucial role there. This effect603

of compressibility on Görtler vortices was also noticed by Spall & Malik (1989), Hall & Fu604

(1989), and Wadey (1992). Previous studies have shown that in the limit of large Mach605

number the vortices move into a log-layer near the free stream. However, as we focus on606

M = O(1), this lifting effect of the Mach number is not intense enough and the vortices607

are confined in the core of the boundary layer. Thanks to our receptivity framework,608

we can follow the wall-normal location of the GV-vortices and the GT-vortices as they609

evolve from the leading edge. Figure 7 confirms that by increasing the Mach number the610

GV-vortices (left) and the GT-vortices (right) occur at larger wall-normal locations. The611

influence of Mach number is stronger on the GV-vortices than on the GT-vortices and the612

GT-vortices are positioned closer to the free stream than the GV-vortices. The increase of613

boundary-layer thickness δ∗99 with the Mach number is also shown in the inset of Figure614

7 (right).615

As shown by Hall (1983) and Wu et al. (2011), incompressible Görtler vortices move616

closer to the surface as they evolve downstream and they become confined in the wall617

layer region. This behavior persists in the compressible regime as long as M < 3. For M > 3618

the vortices are not confined near the wall but they evolve in the core of the boundary619

layer. The asymptotic results of stage III, based on the assumption G ≫ 1, cannot capture620

this behavior because vortices tend to shift towards the wall as G increases for any Mach621

number when M = O(1).622

Figure 8 shows the streamwise velocity perturbation profiles (left) and the spanwise623

velocity perturbation profiles (right) for M = 2 and M = 4. Both the streamwise and the624

spanwise velocity profiles show that the perturbations move towards the wall for M = 2625

and remain confined in the boundary-layer core for M = 4. For this higher Mach number,626

the velocity gradient at the wall tends to zero as x̂ increases, generating a near-wall region627

where the flow is largely unperturbed. Consequently, for M > 3 the wall-shear stress of628

the perturbation is not a sound indicator for the growth of thermal Görtler vortices,629

while it is effective in the incompressible regime (Hall 1983, 1990). Temperature profiles630

behave similarly to the streamwise velocity profiles and their peak shifts slightly towards631

the free stream (not shown).632
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Figure 8: Influence of the Mach number, M = 2 ( ) and M = 4 ( ), on the
normalized profiles of the streamwise velocity perturbation (left) and the spanwise
velocity perturbation (right) for a steady flow at R = 1273.2, G = 206.4 and ky = 1.
Numbers in the parenthesis correspond to the streamwise location x̂.

M = 0 M = 0.5 M = 2 M = 3 M = 4

G = 206.4 0.083 0.083 0.08 0.095 0.099
G = 412.8 0.052 0.052 0.048 0.049 0.053
G = 825.6 0.033 0.033 0.031 0.031 0.032

Table 2: Streamwise locations x̂β for different values of the Görtler number and the Mach
number for a steady flow with R = 1273.2 and ky = 1.

4.1.2. Effect of Görtler number633

In the context of steady vortices, we now analyze the effect of the Görtler number634

on the evolution of perturbations for M = 2 and M = 4. Keeping R = 1273.2, radii of635

curvature r∗ = 5m and r∗ = 10m give G = 412.8 and G = 206.4, respectively.636

The evolution of the perturbation is characterized by the parameter β(x̂) ≡637

d2|ū(x̂)|max/dx̂
2 (Viaro & Ricco 2018). Klebanoff modes, for which β < 0 due to638

their algebraic growth, first develop near the leading edge. When curvature effects639

become important the Klebanoff modes turn into Görtler vortices at a streamwise640

location x̂β where β = 0 and starts growing with β > 0. The effect of the Görtler and641

Mach numbers on x̂β is shown in table 2. The location x̂β decreases as the Görtler642

number increases for all the Mach numbers and for subsonic conditions there is no643

Mach number influence. For supersonic conditions and low enough Görtler number, x̂β644

increases with the Mach number, but x̂β becomes independent of the Mach number in645

supersonic conditions if the Görtler number is sufficiently large.646

Klebanoff modes contribute to the initial growth of the perturbation and, for suf-647

ficiently small Görtler numbers, i.e., G < 50 for M = 4, they stabilize after a certain648

streamwise location, as shown in figure 9. Only when G is large enough the instability649

is characterized by the more energetic Görtler vortices. This is confirmed by the recent650
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Figure 9: The effect of the Görtler number G on the maximum streamwise velocity
perturbation (left) and temperature perturbation (right) for a steady flow with M = 4,
R = 1273.2 and ky = 1.
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Figure 10: The effect of the Görtler number G on the wall-normal location of GV-vortices
at M = 2 (left) and M = 4 (right) for a steady flow with R = 1273.2 and ky = 1.

experimental study of Wang et al. (2018) where for low G values only weak streaky651

structures are present and the centrifugal instability is detected only at higher Görtler652

numbers. Figure 9 also shows that, as the Görtler number increases, GT-vortices (right)653

are more unstable than GV-vortices (left) at M = 4.654

The location of GV-vortices is shown in figure 10 for M = 2 (left) and M = 4 (right).655

When the Görtler number increases the vortices move closer to the wall whereas when656

the Mach number grows they move away from the wall. High Mach number flows tend657

to behave more similarly to the flat-plate scenario.658

The influence of the Mach number changes as the Görtler number increases. The659

asymptotic analysis reveals that for G ≫ 1 an increase of the Mach number makes the660

vortices move towards the wall. This was also noticed by Dando & Seddougui (1993)661

and it is confirmed by the LUBR results for high Görtler numbers. Table 3 schematically662

shows that, when x̂ is held fixed and the subsonic or mildly supersonic Mach number663

increases, the vortices shift towards the boundary-layer core only when G = O(1). In664
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M G x̂ Vortex dynamics

≈ 1 ↑ O(1) O(1) → boundary-layer core

≈ 1 ↑ ≫ 1 O(1) → wall

≈ 1 ↑ O(1) → wall

< 3 O(1) O(1) ↑ → wall

> 3 O(1) O(1) ↑ → boundary-layer core

Table 3: Influence of G, M, and x̂ on the location of the Görtler vortices. Upward arrows
(↑) indicate increasing values and horizontal arrows (→) denote the vortices moving
towards the wall or the boundary-layer core.

addition, the position of the vortices as x̂ increases is affected by the Mach number being665

smaller or larger than 3 for G = O(1), as shown in figure 7.666

Figure 11 (top) shows the streamwise velocity and temperature perturbation profiles at667

different streamwise locations. These profiles highlight the unperturbed near-wall regions668

for M = 4 caused by the GV-vortices and the GT-vortices moving towards the free stream.669

The peaks in the profiles experience only a minor shift towards the wall as the Görtler670

number increases due to the high Mach number. Like for the Mach number effects,671

the influence of the Görtler number increases as the solution evolves downstream. The672

wall-normal velocity perturbation and the spanwise velocity perturbation represent the673

weak crossflow of the Görtler instability. These profiles, shown in figure 11 (bottom) for674

different values of G, demonstrate that even though the free-stream vortical disturbance675

decreases exponentially in the streamwise direction, as described by (2.16) and (2.17),676

the perturbations inside the boundary layer soon become self-sustained when curvature677

effects become significant. The wall-normal velocity profiles present a single peak at η ≈ 2678

whereas the spanwise velocity profiles, which are more affected by G, show the double-679

peak characteristic of the longitudinal counter-rotating GV-vortices. As in the case of the680

streamwise perturbation velocity, the solution for x̂ = 0.06 differs only slightly from the681

flat plate one, proving that the influence of curvature is still weak. The confinement of682

the GV-vortices for into the core of the boundary layer is also visible from the crossflow683

velocity profiles of figure 11 (bottom).684

Previous studies have investigated how changes of the Görtler number affect the685

solution as the Mach number increases. The EV approach of El-Hady & Verma (1983)686

demonstrates that Görtler vortices are more sensitive to changes in the Görtler number as687

the Mach number grows. On the contrary, we show that Görtler vortices are less sensitive688

to changes in the curvature as the Mach number increases (e.g., refer to figure 10), which689

is in agreement with the results of Spall & Malik (1989).690

4.1.3. Effect of the free-stream wavelength ratio691

The effect of the free-stream wavelength ratio ky = λ∗
z/λ

∗
y can only be studied through692

the receptivity formalism because ky only appears in the initial and free-stream boundary693

conditions, i.e., equations (2.20)-(2.24) and (2.14)-(2.19), respectively. Figure 12 shows694

the effect of ky on the streamwise perturbation velocity (left) and the wall-normal location695

of the GV-vortices (right) for M = 4 and G = 206.4. The weak effect of ky increases at higher696

Mach numbers (not shown). The flow becomes slightly more stable as ky increases, with697
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Figure 11: The effect of the Görtler number G, G = 0 ( ), G = 206.4 ( ) and G = 412.8
( ), on the normalized profiles of the streamwise velocity perturbation (top left), the
temperature perturbation (top right), the wall-normal velocity perturbation (bottom left)
and the spanwise velocity perturbation (bottom right) for a steady flow at R = 1273.2,
M = 4 and ky = 1. Numbers in the parenthesis correspond to the streamwise location x̂.

the most unstable configuration achieved for ky = 0. The growth rate of the streamwise698

velocity becomes nearly constant for sufficiently high x̂. When the flow is more stable as699

ky increases, the vortices initially tend to shift towards the wall but their wall-normal700

position becomes independent on ky at sufficiently high values of x̂, as shown in figure 12701

(right). Contrary to the effect of Mach number and Görtler number, the influence of ky702

on the wall-normal position of the vortices decreases as the streamwise location increases.703

Spall & Malik (1989) also noted that, for different initial conditions, the growth rates704

converged at sufficiently high scaled wavenumbers, i.e., sufficiently downstream, and that705

this convergence occurs closer to the leading edge as the Görtler number increases. The706

normalized streamwise velocity and the temperature profiles experience no significant707

variations as ky changes whereas the profiles of the crossflow velocities vary with ky but708

only at small streamwise locations (not shown).709
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wall-normal location of GV-vortices (right) for a steady flow at R = 1273.2, G = 206.4 and
M = 4.

4.1.4. Effect of frequency710

The effect of frequency at two different Mach numbers, M = 0.5 and M = 3, is711

investigated by keeping a constant dimensionless wavenumber κ = kz/(kxR)
1/2 = O(1)712

that, for x̂ = O(1), is representative of the ratio δ∗/λ∗
z = O(1), i.e., the spanwise and713

the wall-normal diffusion effects are comparable. Flows at different Görtler numbers are714

also compared for r∗ = 5m and r∗ = 10m. For the subsonic case the Görtler numbers are715

G = 2494.7 and G = 1247.3, whereas, for the supersonic case, G = 479.4 and G = 239.7,716

respectively. The frequency is scaled as717

F ≡ f∗

R∗u U∗
∞

, (4.1)

where the unit Reynolds numbers are R
∗
u = 11 · 106 m−1 and R

∗
u = 2.18 · 106 m−1 for718

a subsonic case (Flechner et al. 1976) and a supersonic case (Graziosi & Brown 2002),719

respectively. For each Mach number, the effect of frequency is studied by doubling and720

halving a reference frequency from wind tunnel experiments for supersonic and subsonic721

flows. At M = 3, the reference frequency f∗ = 1000Hz (F = 7.5·10−7) comes from the work722

of Graziosi & Brown (2002), which corresponds to the maximum perturbation energy.723

Given that no experiments were found for M = 0.5, the reference frequency f∗ = 250Hz724

(F = 1.32 · 10−7) was inferred from the knowledge of frequencies at very low Mach725

numbers (Boiko et al. 2010b), f∗
max ≈ 20Hz, and at high Mach numbers (Graziosi &726

Brown 2002), f∗
max ≈ 10kHz. This value additionally allows us to compare the same727

frequency, f∗ = 500Hz, in the two Mach numbers considered. The parameters used to728

investigate the effect of frequency are summarized in table 4, along with the estimation of729

the boundary-layer displacement thickness δ∗c = δ∗i +1.192(γ−1)M2x∗
max/R

0.5 (Stewartson730

1964), where δ∗i is the displacement thickness for incompressible flows and x∗
max = 2m.731

Figure 13 shows the stabilizing effect of increasing the frequency on the temperature732

perturbation while keeping a constant radius of curvature r∗ = 5m. The stabilizing influ-733

ence of doubling the reference frequencies is more intense compared to the destabilizing734

effect of halving them, for both Mach numbers and for r∗ = 10m (not shown). The same735

conclusions can be drawn for the maximum velocity perturbation |ū(x̂)|max, which also736

agree with the findings of Hall (1990) and Ren & Fu (2015).737

Frequency plays an important role on the location of Görtler vortices. As the main738
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M G f∗

[Hz] F · 10−7 λ∗

z
[m] R kx · 10−5 κ δ∗

c
[m]

0.5 1247.3 — 2494.7
125 0.66 215 0.3000
250 1.32 0.0029 5157.51 430 0.2125 0.002
500 2.64 860 0.1503

3 239.7 — 479.4
500 3.75 640 0.3000
1000 7.49 0.005 1735.66 1280 0.2125 0.009
2000 14.98 2560 0.1503

Table 4: Flow parameters from wind tunnel data used for the analysis of the unsteady
Görtler instability at r∗ = 5m and r∗ = 10m. Reference cases are in bold.
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Figure 13: The effect of the frequency F on the maximum temperature perturbation for
a plate with r∗ = 5m and ky = 1, at M = 0.5, G = 2494.7 (left) and M = 3, G = 479.4
(right).

effect of increasing the frequency is to move the vortices away from the wall, figure 14739

(left) shows that, even for low Mach numbers, GT-vortices are not confined near the wall740

if the frequency is high enough. At high Mach numbers, the effect of frequency on the741

location of GT-vortices is more intense and starts closer to the leading edge, as shown in742

figure 14 (right). GV-vortices are located closer to the wall with a weaker dependence on743

the frequency than GT-vortices (not shown).744

To summarize, Görtler vortices tend to move towards the boundary-layer core when745

the perturbation is more stable, i.e., as F or M increase, or G decreases. As ky increases,746

the perturbation is slightly more stable and Görtler vortices tend to move closer to the747

wall.748

4.1.5. Growth rate and streamwise length scale of the perturbation749

From the solution of the LUBR equations, the streamwise velocity of the perturbation750

ū = ū(x̂, η) can be used to compute the complex parameter σ = σRe + i σIm as751

σ(x̂, η) =
1

ū

∂ū

∂x̂

∣∣∣∣
η

, (4.2)
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Figure 14: The effect of the frequency F on the wall-normal location of GT-vortices for
a plate with r∗ = 5m and ky = 1, at M = 0.5, G = 2494.7 (left) and M = 3, G = 479.4
(right).
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Figure 15: Influence of η on σRe(x̂, η) for M = 0.5, G = 1247.3, ky = 1, F = 1.32 · 10−7

(left) and M = 3, G = 239.7, ky = 1, F = 7.5 · 10−7 (right).

where σRe is the growth rate and σIm is proportional to the inverse of the streamwise752

length scale. In the EV framework, applying the decomposition (2.25) to (4.2) gives753

σ = σEV(x̂). However, figure 15 shows that the perturbation inside the boundary layer754

grows at different rates at different wall-normal locations η, with the maximum growth755

rate located at η ≈ 2. The dependence on η is more intense closer to the leading edge and756

decreases at large x̂, but, even at large x̂ this effect is still not negligible, especially in757

supersonic conditions. The relative difference ∆σRe between the maximum and minimum758

value of σRe(x̂, η) at x̂ = 10, i.e., ∆σRe = (σRe,max − σRe,min) /σRe,max, is ∆σRe = 7.2% and759

∆σRe = 29.9% for M = 0.5 and M = 3, respectively. This is confirmed by figure 15 (right)760

where the perturbation closest to the wall displays the lowest growth rate.761

The imaginary part of (4.2), σIm(x̂, η), can be used to define the streamwise length762

scale of the boundary-layer perturbation as763

λx,bl(x, η) ≡
2πR

σIm(x̂, η)
, (4.3)
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(left) and M = 3, G = 239.7, ky = 1, F = 7.5 · 10−7 (right).

which, as shown schematically in figure 1, is linked through receptivity to λx, the constant764

streamwise wavelength of the free-stream disturbance. The parameter765

Lx(x, η) ≡
λx,bl

λx
=

kx R

σIm(x̂, η)
(4.4)

can therefore be defined. Figure 16 shows the dependence of Lx on η for M = 0.5 (left)766

and for M = 3 (right). For all cases considered Lx < 1, which means that the streamwise767

boundary-layer length scale is always smaller than the streamwise free-stream wavelength.768

The ratio decreases with x̂ near the leading edge, but then increases as the perturbation769

evolves, i.e., λx,bl approaches λx further downstream. As the Mach number increases Lx770

becomes closer to unity, as shown in figure 16 (right). Increasing the frequency also has771

the same effect (not shown). Therefore, the more unstable the perturbation is, the more772

λx,bl differs from λx.773

4.2. Comparison with results from the eigenvalue analysis774

We now compare the LUBR solution with the solutions of the parallel and non-parallel775

EV equations.776

4.2.1. Growth rate and streamwise length scale of the boundary-layer perturbation777

Figure 17 shows the comparison between the growth rate (left) and the streamwise778

length scale ratio (right) of the LUBR solution and EV solution. The most important779

point is that the receptivity process selects the most unstable modes, which, in the limit780

G ≫ 1, correspond to the first eigenvalues of table 1. The non-parallel EV solution781

(solid circles) is a better approximation for the growth rate and the streamwise length782

scale than the parallel EV solution (empty circles) at η = 2, where the growth rate783

is at its maximum. The parallel and non-parallel EV formulations show the strongest784

disagreement with the receptivity LUBR solution closer to the leading edge, where the785

solution has not yet acquired a modal form. In this region, the non-parallel effects and the786

initial and free-stream boundary conditions thus play a key role in the dynamics of the787

perturbation. In the limit x̂ → 0 the EV solution is invalid, with the growth rate becoming788

negative. Results show a tendency of the EV approach to overestimate the growth rate,789

which is in agreement with the results of Spall & Malik (1989). The agreement between790

the LUBR solution and the parallel EV solution is worse in the supersonic case than in791
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Figure 17: Comparison between the LUBR σRe(x̂, η) ( ) at η = 2, the non-parallel
EV σEV, Re(x̂) ( ), and the parallel EV σEV, Re(x̂) ( ) (left) and comparison between the
LUBR Lx(x̂, η) ( ) at η = 2, the non-parallel EV Lx,EV(x̂) ( ), and the parallel EV
Lx,EV(x̂) ( ) (right), for M = 3, G = 1247.3, ky = 1, F = 1.32 · 10−7 and M = 3, G = 239.7,
ky = 1, F = 7.5 · 10−7.

the subsonic case. The use of the rigorous receptivity LUBR framework becomes therefore792

essential to capture the entire evolution of the perturbations inside the boundary layer.793

4.2.2. Velocity and temperature profiles794

The velocity and temperature EV profiles are compared with the LUBR profiles in795

figure 18 for M = 3. Since the eigenfunctions are obtained to within an arbitrary undefined796

constant, the solutions are normalized by the maximum values at each streamwise797

location to be compared with the LUBR solutions. The non-parallel EV solution approx-798

imates the profiles well for sufficiently high x̂. Under the parallel flow approximation, the799

maximum of the perturbation is slightly shifted upwards and the solution is overestimated800

in the region above the maximum, especially near the leading edge, where the non-801

parallel effects are most significant. As the wall is approached both the parallel and the802

non-parallel EV solutions agree well with the LUBR solution.803

The crossflow profiles shown in figure 19 highlight the limit of the EV solution. Close804

to the leading edge there is a strong influence of the free-stream vortical disturbances805

that cannot be captured by the simplified EV framework. Therefore, a correct analysis806

in this region is only possible when the receptivity of the base flow to the external807

vortical disturbances is considered. The disagreement in the free stream is expected,808

but the solutions do not even match near the wall. The non-parallel EV solution809

begins to approximate the crossflow perturbations well only for sufficiently high x̂. We810

previously demonstrated how the growth rate is not only a function of x̂, as shown by the811

decomposition (2.25), but it does also change with η even for large streamwise locations.812

Similarly, figures 18 and 19 demonstrate that the eigensolutions are not a simple function813

of η but do depend on the streamwise location x̂.814

4.3. Comparison with results from the asymptotic analysis815

The asymptotic exponents σ̆(x̆) in (3.42) denote the earliest growth of the Görtler816

vortices triggered by the external free-stream disturbances. As the instability evolves,817

they turn into the fully developed local eigenmodes σEV(x̂) of (2.25). From (3.62) the818
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Figure 18: Comparison between the LUBR solution ( ), the non-parallel EV solution
( ), and the parallel EV solution ( ) for the streamwise velocity profiles (left) and
temperature profiles (right) at M = 3, F = 7.5 · 10−7, G = 239.73, ky = 1. Numbers
in the parenthesis correspond to the streamwise location x̂.
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Figure 19: Comparison between the LUBR solution ( ), the non-parallel EV solution
( ), and the parallel EV solution ( ) for the wall-normal velocity profiles (left) and
spanwise velocity profiles (right) at M = 3, F = 7.5 · 10−7, G = 239.73, ky = 1. Numbers
in the parenthesis correspond to the streamwise location x̂.

streamwise velocity of the stage III solution multiplied by G
−1/2 can be compared with819

the LUBR streamwise velocity ū. Figure 20 shows that the growth rate (left) and the820

normalized streamwise velocity LUBR profiles (right) tend to the asymptotic solution821

as the Görtler number increases. This is in accordance with the G ≫ 1 limit of the822

asymptotic analysis, although it occurs at very high Görtler and at high x̂.823

4.4. Qualitative comparison with DNS data824

The lack of experimental data for compressible Görtler flows makes it difficult to825

validate our results. We here carry out a qualitative comparison with the DNS data by826
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Figure 20: Comparison between the composite solution ūc from the asymptotic stage III
for G = 1015 ( ) and the LUBR results of the growth rates at η = 2 (left) and of the
normalized streamwise velocity profiles at x̂ = 1 (right) for M = 3.

Whang & Zhong (2003), who first studied the response of a hypersonic boundary layer827

(M = 15) over a concave surface to free-stream vortical and acoustic disturbances. As828

the Mach number in their simulations is much higher than ours, quantitative agreement829

with our moderate supersonic data would not be possible. Nevertheless, our receptivity830

results are useful because they explain the physics of the instability observed by Whang831

& Zhong (2003). In their work, the DNS data are compared with data from the linear832

eigenvalue stability theory. As we have shown, this latter approach cannot fully capture833

the physics of the vortices, especially near the leading edge, where the effect of the free-834

stream perturbation is crucial.835

Figure 21 presents the evolution of the amplitude of the steady streamwise and836

temperature perturbations obtained by Whang & Zhong (2003) (left) and by our LUBR837

simulations (right). Values are normalized by the first peak value of the streamwise838

velocity. The streamwise velocity perturbation and the temperature perturbation evolve839

in similar fashion, showing the initial algebraic growth due to the streaks, followed by840

viscous decay and by the Görtler instability downstream. These three phases have been841

reported by Viaro & Ricco (2018) to occur at sufficiently low Görtler number to detect842

a competing effect between the damping action of the viscous effects and the centrifugal843

instability. Consistently with our results on the effect of Mach number, the temperature844

perturbations become larger and larger than the velocity perturbations as the Mach845

number grows.846

Whang & Zhong (2003) refer to the first growing phase as an early transient growth847

due to leading-edge effects and correctly identify the Görtler vortices as responsible for848

the subsequent instability following the intermediate decay. They also point out that,849

according to the linear stability theory, the region near the leading edge should be850

stable and the growth of disturbances should be absent. All these observations match our851

theoretical predictions. Our eigenvalue analysis indeed predicts decay near the leading852

edge where instead the direct forcing from the free stream creates the transient growth.853

We can then describe the initial growth reported by Whang & Zhong (2003) as the854

thermal and kinematic Klebanoff modes, which are always present from the leading855

edge at every Görtler number (Viaro & Ricco 2018) and are caused by the free-stream856

receptivity, i.e., the continuous action of the free-stream vortical disturbances, and not857

only by a leading-edge effect as stated by Whang & Zhong (2003).858
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Figure 21: Comparison of velocity and temperature perturbations relative to the DNS
data of Whang & Zhong (2003) at M = 15 (left) and the LUBR results at M = 4 (right).
Data are normalized by the peak of the perturbation velocity.
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Figure 22: Comparison of the influence of frequency relative to the DNS data of Whang &
Zhong (2003) at M = 15 (left) and the LUBR results at M = 4 (right). Data are normalized
by the peak value for the steady case.

As we have shown, increasing the frequency has a stabilizing effect on the boundary-859

layer flow. This is consistent with the DNS results by Whang & Zhong (2003), shown in860

figure 22 (left) and compared with our LUBR results in figure 22 (right). For sufficiently861

high frequency, the Klebanoff modes do not turn into Görtler vortices downstream. For862

the cases presented in figure 22 only steady perturbations are subject to centrifugal863

instability.864

5. Conclusions865

For the first time, the evolution of compressible Görtler vortices over streamwise-866

concave surfaces triggered by small-amplitude free-stream disturbances of the gust type867

has been investigated. Although only kinematic perturbations exist in the free stream,868

the boundary layer is populated by both velocity and temperature Görtler vortices that869
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grow significantly downstream through the inviscid unbalance between centrifugal and870

pressure effects.871

We have solved the boundary-region equations to investigate the receptivity of the872

base flow to free-stream vortical disturbances and we have also adopted two eigenvalue873

frameworks, based on the parallel and non-parallel flow assumptions, and a high-Görtler-874

number asymptotic formalism, that has been revelatory of the different stages of evolution875

of the Görtler instability from the leading edge. We have carried out a complete para-876

metric study on the effects of frequency, ratio of free-stream wavelengths, Mach number,877

and Görtler number, focusing particularly on the growth rates, streamwise length scale,878

and location of the velocity and temperature perturbations.879

The crucial point is that both the initial conditions from the proximity of the leading880

edge and the outer free-stream boundary conditions are determined by the oncoming881

free-stream flow. This link is clearly elucidated in mathematical form in the milestone882

essay by Leib et al. (1999), from which the work by Ricco & Wu (2007) and Wu883

et al. (2011) take inspiration. It is evident from the analysis that both conditions play884

a cardinal role in the development and growth of the Görtler vortices. Despite the885

fact that the eigenvalue approach accounts neither for the initial conditions, because886

it is a local approximation, nor for the free-stream forcing, because it is based on an887

homogeneous system, it determines the growth rate and streamwise length scale of888

the vortices with discrete accuracy but only sufficiently downstream from the leading889

edge. The receptivity boundary-region solutions thus eventually match the eigenvalue890

solutions, which occurs when the free-stream disturbance has decayed. However, it is only891

through the rigorous receptivity framework that the amplitude of the Görtler vortices892

can be uniquely computed and linked to the amplitude of the free-stream perturbation893

at each streamwise location. Furthermore and arguably most importantly, the eigenvalue894

formulation leads to completely incorrect results not only in the very proximity of the895

leading edge, but also at locations comparable with the streamwise wavelength of the free-896

stream flow. These streamwise stations may not be close to the leading edge and only the897

receptivity can inform us on where the agreement between the two solutions is of good898

quality. This proves that the inclusion of the correct initial and free-stream forcing is899

essential to compute the flow from the leading edge, especially in supersonic conditions.900

It also means that, even if an amplitude were assigned to the eigenvalue solution in order901

to use it for downstream computations and thus somehow bypass the modeling of the902

receptivity process from the leading edge, the shape of the velocity, temperature, and903

pressure profiles would be incorrect. It is unknown at this stage how this mismatch may904

affect the subsequent computation of the nonlinear stages and of the flow breakdown to905

turbulence. All these considerations are of course also true for the incompressible case906

studied by Wu et al. (2011) and for the hypersonic cases at very high Mach numbers,907

which falls outside the scope of the present work.908

The asymptotic analysis based on the limit of high Görtler number is also recipient of909

the same comments devoted to the eigenvalue approach, but it is an extremely powerful910

tool for elucidating the physics of the Görtler instability, for example for distinguishing911

between the inviscid core and the wall-attached thin viscous region, which together lead912

to the construction of an accurate semi-analytical velocity profile. This and other physical913

properties could only be revealed through the asymptotic approach and neither through914

the full receptivity boundary-region approach nor through the eigenvalue approaches. As915

we are driven towards both a thorough physical understanding of the flow and accurate916

flow computations, this trident approach has proved to be an invaluable, and arguably917

indispensable, tool for our receptivity study.918

We of course look forward to high-quality experimental studies on compressible Görtler919
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flows forced by free-stream vortical disturbances, for the primary intent to attain quanti-920

tative comparisons. We recognize that these laboratory endeavors are tasks of remarkable921

difficulty for the achievement of a specified and fully measurable free-stream flow and922

for accurate measurements of the velocity and temperature profiles within the boundary923

layer. The extension of the present work to the nonlinear case and to the secondary924

instability of the Görtler vortices are research avenues of utmost interest that we are925

going to pursue by extending the theoretical frameworks of the nonlinear thermal Kle-926

banoff modes by Marensi et al. (2017) and of the secondary instability of nonlinear927

incompressible streaks by Ricco et al. (2011).928
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Appendix A. Numerical methodology936

We here describe the numerical procedures used for the two theoretical frameworks, i.e.,937

the LUBR framework and the eigenvalue framework. Through a careful grid convergence938

analysis, the numerical results have been compared successfully with the results of Ricco939

& Wu (2007) for the compressible flow over a flat plate and of Wu et al. (2011) for the940

incompressible flow over concave surfaces.941

A.1. Boundary region framework942

The code used to solve the LUBR equations for the orthogonal curvilinear coordinate943

system is a modification of the code used by Ricco &Wu (2007) for a Cartesian coordinate944

system. The code was also modified to introduce the independent variable x̂ instead of945

x̄. The parabolic nature of the equations allows using a marching scheme. The equations946

(2.9)-(2.13), complemented by the boundary conditions (2.14)-(2.19) and the initial947

conditions (2.20)-(2.24), are solved with a second-order finite-difference scheme, central948

in η and backward in x̂. In reference to figure 23, the derivatives of a fluid property949

q(x̂, η) = {u, v, w, τ} are950

∂q

∂η
≈ qj+1 − qj−1

2∆η
,

∂2q

∂η2
≈ qj+1 − 2qj − qj−1

(∆η)2
,

∂q

∂x̂
≈

3
2qi,j − 2qi−1,j +

1
2qi−2,j

∆x̂
.

(A 1)
If the pressure is computed on the same grid as the velocity components, pressure951

decoupling phenomenon occurs. Therefore, the pressure is computed on a grid staggered952

in η as953

p ≈ pj+1 + pj
2

,
∂p

∂η
≈ pj+1 − pj

∆η
. (A 2)

The pressure at the wall does not have to be specified and is calculated a posteriori by954

solving the z-momentum equation at η = 0. Due to the linearity of the equations, the955

system is in the form Ax = b. In a grid with N points along η, A is a (N − 2)× (N − 2)956

block-tridiagonal matrix where each block is a 5×5 matrix associated to the 5 unknowns957

(ū, v̄, w̄, p̄, τ̄). Therefore, the wall-normal index j of the vectors and matrix runs from 1958
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Figure 23: Sketch of the regular grid (black) and staggered grid (gray) used for the
numerical scheme.

through N − 2. The numerical procedure used to solve the linear system is found in the959

book of Cebeci (2002) on pages 260-264.960

A.2. Eigenvalue framework961

The eight first-order EV equations are discretized using a second-order implicit finite-962

difference scheme. The original homogeneous system is solved by enforcing the normalized963

boundary condition f̃ = 1, instead of ũ = 0, at η = 0. The initial guess for the eigenvalue964

σ(x̂) is taken from the LUBR solution and iterated using the Newton’s method until the965

wall boundary condition ũ = 0 is recovered. The eigenvalue code computes the growth966

rate and streamwise length scale of the disturbance, along with the velocity, pressure and967

temperature profiles, at a specified location without starting the computation from the968

leading edge. It is therefore a relatively fast tool if one is interested in the local estimation969

of the solution. However, the eigenvalue approach requires the prior knowledge of an970

initial good guess that must be sufficiently close to the true solution in order for the code971

to converge. The sensitivity to the initial guess depends on the flow parameters, such972

as the Görtler number, the Mach number, the frequency, and the streamwise location.973

The eigenvalue approach may thus be more computationally expensive than the LUBR974

approach, which does not suffer from convergence issues.975

Appendix B. Conditions of validity for initial and outer boundary976

conditions977

In the analysis, the mean wall-normal velocity V is given by the compressible Blasius978

solution (2.7). However, at a fixed location x̂, V tends to a constant as η → ∞, which is979

nonphysical at a large wall-normal distance because the wall-normal velocity must decay980

to zero as the streamwise uniform flow is approached. In the outer region IV, the inviscid981

mean flow is correctly described by an outer streamfunction whose wall-normal velocity982

Vout(x̂, y) → 0 as y → ∞.983

Therefore, the correct wall-normal velocity valid at any wall-normal location is ob-984

tained through a composite solution985

Vc = Vin + Vout − Vcom, (B 1)



44

x̂
1/2 R

η = R

η ≫ 1

η = O(1)

x̂ = O(1)x̂ ≪ 1

(i)

(ii)

(iii)

Figure 24: Regions of validity (i), (ii), (iii) of the compressible Blasius flow in the (x̂, η)-
plane.

where Vin(η) is the compressible Blasius solution and Vcom is the common solution986

Vcom = lim
η→∞

Vin = lim
y→0

Vout. (B 2)

We must therefore identify the ranges of x̂ and η for which the wall-normal velocity is987

rigorously represented by the Blasius velocity Vin, i.e., where Vout ≈ Vcom.988

In (x̂, η)-coordinates, the outer subsonic wall-normal mean velocity is989

Vout =
φc

(2R)
1/2

Re

{[
x̂R

︸︷︷︸
1

+ i(2x̂)1/2
(
1− M

2
)1/2

∫ η

0

T (η̄)dη̄

︸ ︷︷ ︸
2

]−1/2}
, (B 3)

where φc is a constant accounting for the compressibility effects and Re denotes the real990

part. The common solution is991

Vcom =
φc

R(2x̂)1/2
. (B 4)

The condition Vcom ≈ Vout translates to ranges of x̂ and η for which, in (B 3), term 1992

dominates over term 2 . As the mean temperature T (η) = O(1), three cases can be993

distinguished for R ≫ 1:994

(i) x̂ = O(1), η = O(1);995

(ii) x̂ = O(1), η ≫ O(1);996

(iii) x̂ ≪ 1, η ≫ O(1).997

The condition 1 ≫ 2 is automatically satisfied for case (i), it is 1 ≪ η ≪ R for case998

(ii), and 1 ≪ η ≪ x̂1/2
R for case (iii). These results are summarized in figure 24.999

In the supersonic case, the outer mean wall-normal velocity is1000

Vout =
φc

(2R)
1/2

[
x̂R

︸︷︷︸
1

+(2x̂)1/2
(
M
2 − 1

)1/2
∫ η

0

T (η̄)dη̄

︸ ︷︷ ︸
2

]−1/2

, (B 5)
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and the conditions of validity are the same as for the subsonic case.1001

Appendix C. Upstream behaviour of the LUBR equations1002

In the limit of x̂ → 0 the LUBR solution can be obtained analytically for η = O(1) and1003

η → ∞. Summing these two solutions and subtracting their common parts, i.e., the values1004

in the region along η where both solutions are valid, we obtain the upstream perturbation1005

profiles that are uniformly valid for all η (2.20)-(2.24). These profiles provide the initial1006

conditions for the LUBR equations (2.9)-(2.13). Details on this analysis are found in Leib1007

et al. (1999), in which the initial conditions are equivalent, after rescaling in the (x̂, η)1008

coordinates, to the ones here summarized in the following steps:1009

(i) The first step consists in writing the LUBR equations in terms of the variable1010

y(0) = (2x̂)1/2(kxR)
1/2η. (C 1)

in the limit η → ∞. Their solution that matches with the flow in the region IV of figure
1 outside the boundary layer is (Leib et al. 1999)

ū = 0, (C 2)

v̄ =
ieikxRx̂

(2x̂)1/2 (ky − i|kz|)
[
eiky(2x̂)

1/2η̄−(k2
y+k2

z)x̂ − e−|kz|(2x̂)
1/2η̄

]
+

|kz|
(2x̂)1/2

eikxRx̂−|kz|(2x̂)
1/2η̄

∫ x̂

0

g(x̆)e−ikxRx̆dx̆, (C 3)

w̄ =
eikxRx̂

ky − i|kz|
[
kye

iky(2x̂)
1/2η̄−(k2

y+k2
z)x̂ − i|kz|e−|kz|(2x̂)

1/2η̄
]
+

k2ze
ikxRx̂−|kz|(2x̂)

1/2η̄

∫ x̂

0

g(x̆)e−ikxRx̆dx̆, (C 4)

p̄ = g(x̂)e−|kz|(2x̂)
1/2η̄, (C 5)

τ̄ = 0. (C 6)

The limit of (C 2)-(C 6) for x̂ → 0 represent the first part of the upstream perturbation1011

profiles.1012

(ii) The second step consists in substituting the power series solution1013

q̄(x̂, η) =

∞∑

n=0

(2x̂)n/2
[
2x̂ Un(η), Vn(η),Wn(η), (2x̂)

−1/2Pn(η), 2x̂ Tn(η)
]

(C 7)

for η = O(1) and x̂ → 0 into the LUBR equations (2.9)-(2.13) and equating the terms of
like powers of x̂. We obtain the system of ordinary differential equations for the leading
terms in the power series, n = 0,

C⌉
(
ηcT

′

T
+ 2

)
U0 − ηcU

′
0 −

T ′

T 2
V0 +

1

T
V ′
0 +W0 −

(
FT ′

T 2
+

2F ′

T

)
T0 +

F

T
T ′
0 = 0,

(C 8)

X| (2F ′ − ηcF
′′)U0 −

[
F +

(µ
T

)′]
U ′
0 −

µ

T
U ′′
0 +

F ′′

T
V0 +

[
FF ′′

T
−
(
µ′F ′′

T

)′
]
T0
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− µ′F ′′

T
T ′
0 = 0, (C 9)

Y| P ′
0 = 0, (C 10)

Z|
(
F +

µ′T ′

T
− µT ′

T 2

)
W ′

0 +
µ

T
W ′′

0 = 0, (C 11)

E⌋ − ηcT
′U0 −

2M2(γ − 1)µF ′′

T
U ′
0 +

T ′

T
V0 +

[
FT ′ + 2TF ′

T
− 1

Pr

(
µ′T ′

T

)′

− M
2(γ − 1)F ′′2µ′

T

]
T0 −

(
F +

2µ′T ′

PrT
− µT ′

PrT 2

)
T ′
0 −

µ

PrT
T ′′
0 = 0, (C 12)

and the system of ordinary differential equations for the second-order terms in the power
series, n = 1,

C⌉
(
ηcT

′

T
+ 3

)
U1 − ηcU

′
1 −

T ′

T 2
V1 +

1

T
V ′
1 +W1 −

(
FT ′

T 2
+

3F ′

T

)
T1 +

F

T
T ′
1 = 0,

(C 13)

X| (3F ′ − ηcF
′′)U1 −

[
F +

( µ
T

)′]
U ′
1 −

µ

T
U ′′
1 +

F ′′

T
V1 +

[
FF ′′

T
−
(
µ′F ′′

T

)′
]
T1

− µ′F ′′

T
T ′
1 = 0, (C 14)

Y| P ′
1 =

[
ηc(TF

′ − FT − FT ′) + η2cF
′′T − 4µ′T ′

3

]
U0 +

1

3

[
µ− ηcT

(µ
T

)′]
U ′
0

− ηcµ

3
U ′′
0 +

(
−F ′ − ηcF

′′ +
FT ′

T

)
V0 +

[
F +

4

3

(µ
T

)′]
V ′
0 +

4µ

3T
V ′′
0 − 2µ′T ′

3
W0

+
µ

3
W ′

0 +

[
FF ′ +

F 2T ′

T
+ 3µ′F ′′ − ηc(FF ′)′ + ηcT

(
µ′F ′′

T

)′

− 4

3

(
µ′T ′F

T

)′
]
T0

+

(
ηcµ

′F ′′ − 4µ′T ′F

3T

)
T ′
0, (C 15)

Z| − F ′W1 +

(
F +

µ′T ′

T
− µT ′

T 2

)
W ′

1 +
µ

T
W ′′

1 + k2zTP0 = 0, (C 16)

E⌋ − ηcT
′U1 −

2M2(γ − 1)µF ′′

T
U ′
1 +

T ′

T
V1 +

[
FT ′ + 3TF ′

T
− 1

Pr

(
µ′T ′

T

)′

−M
2(γ − 1)F ′′2µ′

T

]
T1 −

(
F +

2µ′T ′

PrT
− µT ′

PrT 2

)
T ′
1 −

µ

PrT
T ′′
1 = 0. (C 17)

These two systems must be solved by imposing the wall no-slip conditions on the velocity



47

and a null temperature gradient at the wall. The boundary conditions for η → ∞ are
found by expanding (C 2)-(C 6) for x̂ → 0 and η = O(1). It follows that

v̄ → −η − i

2
(2x̂)1/2(ky + i|kz|)

(
η2 + 1

)

+
|kz|

(2x̂)1/2

[
1− |kz|(2x̂)1/2η

] ∫ x̂

0

g(x̆)e−ikxRx̆dx̆+ ... , (C 18)

w̄ → 1 + (2x̂)1/2i (ky + i|kz|) η + k2z

∫ x̂

0

g(x̆)e−ikxRx̆dx̆+ ... . (C 19)

The small-x̂ asymptote of the unknown function g(x̂) must now be found. We do this by1014

matching (C 18) with the large-η limit of V0 in (C 7). Introducing the viscosity-induced1015

transpiration velocity Vc as1016

Vc = − lim
η→∞

(V0 − η), (C 20)

we find that for x̂ → 01017

g(x̂) → − Vc

|kz|(2x̂)1/2
+ g1 + ..., (C 21)

where the constant g1 is unknown at this point. Matching with the solution for pressure1018

(5.31) of Leib et al. (1999) shows that P0 → −Vc/|κ| and P1 → g1 + Vcη for η → 0.1019

After substitution of (C 21) into (C 19) and comparing with the form of the power series,1020

one finds that the boundary conditions for η → ∞ of W0 and W1 are W0 → 1 and1021

W1 → i(ky + i|kz|)η − Vc|kz|, respectively. The boundary conditions on U0 and U1 are1022

also easily found by comparing (5.20) of Leib et al. (1999) and τ̄ = 0 with the power1023

series solution. Therefore, U0 and U1 → 0 for η → ∞. No boundary condition needs to1024

be specified on the vertical velocity component, but the large-η asymptote of V1 is useful1025

for determining the constant g1. Indeed, setting U1 = 0 in the continuity equation (C 13)1026

and using the large-η limit of W1, one finds that for η → ∞1027

V1 = −i (ky + i|kz|)
(
η2

2
− βcη

)
+ Vc|kz|η + c1, (C 22)

where c1 is a constant depending on ky and kz. Matching the above expression with the1028

O((2x̂)1/2) term of (C 18) yields1029

g1 =
2c1
|kz|

+ 2Vcβc +
i

|kz|
(
β2
c + 1

)
(ky + i|kz|). (C 23)

(iii) Finally, comparing (C 7) with the small-x expansion (C 2)-(C 6), we find their
common parts, denoted by vc, wc and pc, as follows:

vc = −η − Vc + (2x̂)1/2
[
− i

2
(ky + i|k|)

(
η2 + 1

)
+ Vc|kz|η +

1

2
|kz|g1

]
, (C 24)

wc = 1 + (2x̂)1/2
[
i(ky + i|kz|)η − Vc|kz|

]
, (C 25)

pc =
P0

(2x̂)1/2
+ g1 + Vcη. (C 26)

REFERENCES



48

Boiko, A.V., Ivanov, A.V., Kachanov, Y.S. & Mischenko, D.A. 2010a Investigation1030

of weakly-nonlinear development of unsteady Görtler vortices. Thermophys. Aeromech.1031
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unsteady Görtler boundary-layer instability on concave wall. Europ. J. Mech. B/Fluids1034

29 (2), 61–83.1035

Boiko, A.V., Ivanov, A.V., Kachanov, Y.S., Mischenko, D.A. & Nechepurenko, Y.M.1036
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of distributed excitation of unsteady Görtler modes by freestream vortices. Eur. J. Mech.1040

- B/Fluids .1041

Cebeci, T. 2002 Convective Heat Transfer . Springer-Verlag, Berlin Heidelberg.1042

Chen, F.J., Malik, M.R. & Beckwith, I.E. 1992 Gortler instability and supersonic quiet1043

nozzle design. AIAA J. 30 (8), 2093–2094.1044

Choudhari, M. 1996 Boundary layer receptivity to three-dimensional unsteady vortical1045

disturbances in the free stream. AIAA Paper 96-0181 .1046

Ciolkosz, L.D. & Spina, E.F. 2006 An experimental study of Görtler vortices in compressible1047
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