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SUMMARY 

This article  gives an overview of sample size calculations for parallel group and cross-over 

studies with Normal data.  Sample size derivation is given for trials where the objective is to  

demonstrate: superiority, equivalence, non-inferiority, bio-equivalence and estimation to a 

given precision, for different Type I and Type II errors.  It is demonstrated how the different 

trial objectives influence the null and alternative hypotheses of the trials and how these 

hypotheses influence the calculations.  Sample size tables for the different types of trials and 

worked examples are given.  
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1. INTRODUCTION 

Since the first 'modern' randomised clinical trial was reported in 1948 [1], clinical trials have 

become a central component  in the assessment of new therapies. The primary objective of 

any clinical trial is to obtain an unbiased and reliable assessment of a given regimen response 

independent of any known or unknown prognostic factors.   First, by ensuring that the 

patients studied in the various regimen arms are objectively similar with reference to all 

predetermined relevant factors other than the regimens themselves.  Second, by making sure 

that the assessment of the regimen response is independent of a given subject's regimen and 

finally through inclusion of an appropriate control to quantify a given regimen response [2].  

Randomisation is important as it ensures that patients are objectively similar in the regimen 

groups being investigated for any demographic or prognostic factors that either known or 

unknown [3].  Randomisation achieves this by ensuring that each subject has a known chance 

of being given a given treatment in an allocation that can not be predicted [4]. 

Blinding is important as it removes any systematic bias there may be in treatment assessment 

and allocation during the conduct of the trial.  It is important too once the trial has been 

completed during the cleaning and derivation of the data [5].  If there is any knowledge of 

treatment during the cleaning and querying of the data then this knowledge may affect how 

these data are consequently queried and cleaned [3]. 

The choice of an appropriate control is dependent on the objective of the trial being designed.   

For example a non-inferiority or equivalence trial will usually have a control which is active 

if the primary outcome is efficacy.  The different types of trials will be described through this 

paper. 

When planning a trial one essential step is the calculation of a sample size which will give 

the minimum sample size required to meet the given objectives of the study.  Sample size 

issues are important for the planning of clinical trials.  Studies that are either too small or too 
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large may be judged unethical [6]. For example, a study that is too large could have met the 

objectives of the trial before the actual study end had been reached, and so some patients may 

have unnecessarily entered the trial. A trial that is too small will have little chance of meeting 

the study objectives, and patients may be put through the potential trauma of a trial for no 

tangible benefit.  The general approach to choosing sample size will be described in this 

article where a statistic can be assumed to take a Normal form and an estimate of the 

variance of that test statistic is available.  The sections of the paper detail computation of 

sample sizes appropriate for: 

1. Superiority trials. 

2. Equivalence trials. 

3. Non-inferiority trials. 

4. As good as or better trials. 

5. Bio-equivalence trials. 

6. Trials to a given precision. 

A distinction therefore is drawn to emphasise differences in trials designed to demonstrate 

'superiority' and  trials designed to demonstrate 'equivalence' or 'non-inferiority'. This is 

discussed with an emphasis on how differences in the null hypothesis can impact on 

calculations. The ICH guidelines E3 and E9 provide general guidance on selecting the 

sample size for a clinical trial [3, 7].    The ICH E9 guideline states that: 

"The number of subjects in a clinical trial should always be large enough to provide a reliable 

answer to the questions addressed.  This number is usually determined by the primary 

objective of the trial ….The method by which the sample size is calculated should be given 

in the protocol together with any quantities used in the calculations (such as variances, mean 

values, response rates, event rates, differences to be detected)." 
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This paper will go through the methods of sample calculation for studies with the six distinct 

objectives listed above.  The paper will also, under the worked examples, give a brief 

description of how the calculations could be undertaken in the two packages PASS 2000 [8] 

and nQuery 4 [9].  Although PASS 2000 and nQuery 4 are the only packages described in 

detail this does not confer a recommendation as to their use by the author.    

The paper is written on the premise that just two treatments are to be compared in the clinical 

trial and two study designs will be discussed: parallel group  and cross-over designs.    

With a parallel group design subjects are assigned at random to the two treatments to form 

two treatment groups which it is hoped are the same in all respects other than the treatment 

received.   

With a cross-over trial all subjects receive both the treatments but it is the order that subjects 

receive the treatments which is randomised.  The big assumption here is that prior to starting 

the second treatment all subjects return to baseline and that the order which subjects receive 

treatment does not affect their response to treatment.  Cross-over trials can not be used 

therefore in degenerative conditions, where subjects get worse over time.  Also, they are 

more sensitive to bias than parallel group designs [2]. 

Although this paper will concentrate on data that take a Normal form this does not limit its 

scope as trials where the primary endpoint is assumed to be Normal probably account for the 

majority of trials.  Also, the discussion in each section on the null hypothesis for each trial 

and the sample size derivation is generalisable for other types of data.  For superiority trials 

there is work for cross-over [10] and parallel group [11] trials where the data take other 

distributional forms as well as methodologies for parallel group non-inferiority [12] and 

equivalence trials [13] for binary data. 

Conventions for multiple comparisons are not discussed in this paper, although the 

approaches for sample size calculation are applicable once appropriate adjustment has been 
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made.  Koch and Ganksy give an overview of this topic [14] whilst the CPMP have issued 

guidelines [15]. 

Each section of the paper will walk through the derivation of the appropriate sample size 

formulae.  Tables are given in each section which provide sample size estimates using these 

formulae and worked examples are described which use these tables.  Also, within each 

section quick formulae are given which do not necessitate the use of tables for calculations. 

 

1.1.  Estimation of the variance for calculations 

Through out this paper one of the most important components in the sample size calculation is 

the variance estimate used.  This variance estimate is usually estimated from retrospective 

data sometimes from a number of studies.  To adjudicate on the relative quality of the 

variance one should consider the following aspects of the trial from which the variance is 

obtained 

1.  Design:  is the study design ostensibly similar to the one you are designing?  On the basic 

level is the data from a randomised controlled trial  - observational or other data may greater  

variability.  If you are undertaking a multi-centre trial is the variance estimated too from an 

similarly designed trial?  Were the endpoints similar to those you plan to use – not just the 

actual endpoints but was the time relative to treatment of the outcome of interest similar to 

you own? 

2.  Population:  is the study population similar to your own?  The most obvious consideration 

is to ask is whether the demographics were the same but if the trial conducted was a multi 

centre one was it conducted in similar countries?  Different countries may have different types 

of care (e.g. different concomitant medication) and so may have different trial populations.  

Was the same type of patient enrolled (the same mixed of mild, moderate and severe)?  Was it 

conducted covering the same seasons (relevant for conditions such as asthma)? 
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3.  Analysis:  was the same statistical analysis undertaken?  Not just the question of whether 

the same procedure was used for the analysis but were the same covariates fitted into the 

model?  Was the same summary statistics used?  Section 8 details how covariates and 

summary statistics impact on the variance. 

The quality of the variance will obviously influence the strategy of an individual clinical trial -  

it has not been unknown to have next to no data on hand when designing a trial such that the 

range divided by four is taken as a variance estimate.  Depending on the quality of the 

variance estimate (or even if one has a good variance estimate) it may be advisable to have 

some form of variance re-estimation during the trial.  There is a developing literature on this 

topic although this paper will not go into any detail [16, 17, 18, 19, 20, 21, 22, 23, 24]. 
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2. SUPERIORITY TRIALS 

In a superiority trial the objective is to determine whether there is evidence of a statistical 

difference in the comparison of interest between the regimens with reference to the null 

hypothesis that the regimens are the same.  The null (H0) and alternative (H1) hypotheses 

may take the form:  

Ho: The two treatments are not different  with respect to the mean response (BA µµ = ). 

H1: The two treatments are different with respect to the mean response (BA µµ ≠ ). 

In the definition of the null and alternative hypotheses Aµ and Bµ refer to the mean response 

on regimens A and B respectively.  In testing the null hypothesis there are two errors one can 

make: 

I. Rejecting Ho when it is actually true. 

II. Not rejecting Accepting Ho when it is actually false. 

These errors are usually referred to as Type I and Type II errors [25, 26, 27, 28, 29, 30].  The 

aim of the sample size calculation is to find the minimum sample size for a fixed probability 

of Type I error to achieve a value of the probability of a Type II error.  The two errors are 

commonly referred to as the regulator's (Type I) and investigator's (Type II) risks and by 

convention are fixed at rates of 0.05 and 0.10 or 0.20 respectively.  The Type I and Type II 

risks carry different weights as they reflect the impact of the errors.  With a Type I error 

medical practice may switch to the investigative therapy with resultant costs whilst with a 

Type II error medical practice would remain unaltered. 

In general, one usually thinks not in terms of the Type II error but in terms of the power of a 

trial (1-probability of a Type II error) which is the probability of rejecting the Ho when it is in 

fact false.  Key trials should be designed to have adequate power for statistical assessment of 

the primary parameters with a Type I error of 5%.  The power that should be considered as 

standard is 90% with the minimum to be considered for calculations being 80%.  It should be 
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noted though that with 80% power one is doubling Type II error for only a 25% saving in 

sample size. 

For a superiority trial there are two chances of rejecting the null hypothesis and thus making 

a Type I error.  The null hypothesis can be rejected  if BA µµ >  or if BA µµ <  by a 

statistically significant amount.  As there are two chances of rejecting the null hypothesis the 

statistical test is referred to as a two tailed test with each tail allocated an equal amount of the 

Type I error (of 2.5%).  The sum of these tails adds up to the overall Type I error rate of 5%.  

Thus, the null hypothesis can be rejected if the test of BA µµ >  is statistically significant at 

the 2.5% level or the test of BA µµ >  is statistically significant at the 2.5% level. 

The purpose of the sample size calculation is hence to provide sufficient power to reject Ho 

when in fact some alternative hypothesis is true.  One might therefore test that the two means 

are equal, against an alternative that they differ by an amount 'd' [31].  The amount d is 

chosen as a clinically important difference or effect size and is the main factor in determining 

a sample size. Reducing the effect size by half will quadruple the required sample size [32].  

Formally the aim is to calculate a sample size suitable for making inferences about a certain 

function of given model parameter, µ , ( )µf  say.   For data that take a Normal form ( )µf  

will be BA µµ − i.e. the difference in means of two populations A and B.  Now let S be a 

sample estimate of ( )µf .  Thus S is defined as the difference in the sample means.  As one 

is assuming that the data from the clinical trial are sampled from a Normal population, then, 

using standard notation, S~N(( )µf , Var (S) ), giving 

( )
( )

)1,0(~ N
SVar

fS µ−
. 

A basic equation can now be developed in general terms from which a sample size can be 

estimated.  Let Į be the overall type I error level,  with Į/2 of this type I error equally 
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assigned to each tail of the two tailed test, and let 2/1Z α− denote the )( 2/1 α− 100 percentage 

point of a standard Normal distribution. 

Thus, an upper 2-tailed, α -level critical region for a test of ( )µf  =0 is 

( )}SVarS 2/1Z α−> . 

For this critical region one needs to test it against an alternative that ( )µf = d, for some 

chosen d and specified power (1-ȕ) [33]: 

( )SVarZd β−− 1  = ( )SVar2/1Z α− , (2.1) 

where β  is the overall Type II error level and β−1Z is the 100(1-ȕ)% point of the standard 

Normal distribution.  Thus, in general terms for a 2-tailed, α -level test one has: 

Var (S) =  
2

2/11 )Z(Z

2

αβ −− +
d  (2.2) 

where Var (S) will be unknown and depends on the sample size.  Once Var (S) is written in 

terms of sample size, the above expressions can be solved to give the sample size. 

In this section, and throughout the paper for parallel group trials, the assumption will be 

made that the variances in each group are equal i.e. that 2
Aσ = 2

Bσ = 2σ .  This assumption is 

referred to as homoskedasticity.  There are alternative derivations for the case of unequal 

variances [34, 35].  This paper will not go into further detail on this topic.   
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2.1 Parallel Group Trials  

Suppose one wishes to design a two group study where the sample size in the second group, 

nB, can be written as some multiple of the first, nA, (say nB= nA).  Then Var (S) can be 

written in terms of nA and hence equation (2.2) can be solved for nA.  For example, for an 

r:1 Var(S) can be derived as: 

( )
A

2

BA n
.

1

n

2

n

2 σσσ
r

r
SVar

+
=+=     (2.3) 

Where 2σ  is the population variance estimate.  Substituting into equation (2.2) gives [35]: 

( )
dr 2

ZZ)1(r
n

22
2/11

A

σαβ −− ++
= ,    (2.4) 

where nB =rnA.  Note: n=nB + nA is minimised when r = 1.   

When the clinical trial has been conducted and the data has been collected and cleaned for 

analysis it is usually the case that  for the analysis the population variance, 2σ , is considered 

unknown and a sample variance estimate, 2s , is used instead of 2σ .  As a consequence of 

this a t-statistic as a opposed to a Z-statistic is used for inference.   This fact should be 

represented in the sample size calculation rewriting equation (2.4)  so that t- as opposed to Z-

values are used.  Hence, the following equation  should be used: 

dr
n rn

A
A

2

)t(Z)1(r 22
2)1( ,2/11 σαβ −+−− ++

≥  (2.5) 

where nA is now defined as the least integer values that satisfies equation (2.5).  As nA 

appears on both the left and write side of the equation (2.5) it is best to re-write the equation 

in terms of power and then use an iterative procedure to solve for nA: 











−

+
Φ=− −+− 2)1(,2/12

2

)1(
1 rn

A
A

t
r

drn
ασ

β  (2.6) 
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where ( )•Φ  is the defined as the cumulative density function of N(0,1).  Practically one 

could use equation (2.4) for the initial sample size calculation and then calculate the power 

for this sample size using equation (2.7), iterating the sample size up as necessary until the 

required power is reached.  However, when a sample variance is being used in  the analysis 

the power should be estimated from a cumulative t distribution as opposed to a cumulative 

Normal [35, 36, 37].  The reason for this is that by replacing 2σ  with 2s  equation 2.6 

becomes: 











−

+
=− −+− 2)1(,2/12

2

)1(
1 rn

A
A

t
sr

drn
P αβ  

where ( )•P  denotes a cumulative distribution defined below.  This equation can in turn be re-

written as: 














−

+
=− −+− 2)1(,2/122

)1(
1 rn

A

A
t

s

rdrn
P α

σ

σ
β  

by dividing top and bottom by 2σ .  Thus, one has a Normal over a square root of a chi-

squared which by definition is t-distribution.   In fact as the power is estimated under the 

alternative hypothesis, and that under this hypothesis d≠0,  Senn has shown specifically that 

instead of a t distribution the power should be estimated from a  non-central t distribution 

with degrees of freedom nA(r+1)-2 and non-centrality parameter 2)1( σ+rrnA  [35].  Thus, 

equation 2.6 should in fact be rewritten as: 












+
−+−=− −+− 2

2

2)1(,2/1 )1(
  ,2)1(  ,Probt11

σ
β α r

drn
rnt A

ArnA
    (2.7) 

where ( )•Probt  is defined as the cumulative density function of a non central t distribution. 

To further aid in these calculations a correction factor of 42/1 α−Z  can be added to equation 

(2.4) to allow for the Normal approximation [38, 11]: 
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( )
42

ZZ)1(r
2/1

22
2/11 ααβ σ −−− +

++
=

Z

dr
nA . (2.8) 

For quick calculations the following formula, to calculate a sample size, with 90% power and 

a two-sided 5% type I error rate, can be used: 

r

r

d
nA

)1(5.10
2

2 +
=

σ
,  (2.9) 

 or for r=1:  

2

221

d
nA

σ
= . 

This, 21/ 2δ  ( σδ /d= )  is a particularly useful result to remember for quick calculations.  

Equations (2.4) and (2.8) are close approximations to equation (2.7), giving estimates only 

one or two lower and thus provide quite good initial estimates.  Table 2.1 gives sample sizes 

using equation 2.7 for various standardised differences ( σδ /d= ).   

 

2.1.1.  Worked Example 

2.1.1.1. Using the sample size tables 

An investigator wishes to design a hypertension trial with equal allocation between groups 

where the clinical effect of interest is a reduction in blood pressure, compared to control, of 

8mmHg (d).  The expected standard deviation in the population in which the trial is to be 

undertaken is 40mmgHg (σ ).  Thus, the standardised difference equates to 

20.040/8/ === σδ d .  With the Type I and Type II errors fixed at 5% and 10% equation 

2.8 gives a sample size of 526.  Using this sample size to initiate iterations in Equation 2.7 

one gets the following steps: 

Iteration n  Power 
1  526  0.8993 
2  527  0.9004 
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Thus, the sample size required is 527 subjects in each arm of the trial and a total sample size 

of 1054.  Alternatively one could look up the standardised effect of 0.20 in table 2.1 which 

gives the same sample size. 

If the trial was designed with an unequal allocation of 2:1 (r=2) in favour of the control then 

one would required 395 subjects on the control arm and 790 in the investigation arm; a total 

sample size of 1185 patients. 

 

2.1.1.2.  Repeated using sample size software 

To do the same calculations in nQuery one would need to click on File/New for Goal tick 

Means, Number of Groups tick Two and Analysis Method tick Test.  Then select Two-

sample t-test.  There is an additional tick box depending whether wanted to have an equal or 

unequal sample size.  Above is the dialogue box that subsequently comes from nQuery and 

the entries required to repeat the calculations given in Table 2.1.  nQuery also returns a 

sample of 527 patients per group for an equal allocation ratio and 395 and 790 if the 

allocation ratio is 2:1 
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To repeat the calculations in PASS one needs to highlight Means and then t-test: 2 Groups.  

PASS gives a sample size of 526 one less than nQuery and Table 2.1 for equal allocation but 

gives the same sample sizes for an allocation ratio of 2:1.  More details of the dialogue boxes 

of PASS  will be given in the worked example of the next sub section on cross-over trials. 

 

2.2 Cross-over trials 

For the analysis of cross-over trial data this paper will concentrate on the case where an 

analysis of variance is the primary analysis (with a model with terms for subject, period and 

treatment).  The additional assumption is that one is undertaking an AB/BA cross-over trial 

although the methodology described can be extended to a pair wise comparison in a multi-

period cross-over trial (with appropriate adjustment to the degrees of freedom).  With the 

analysis of variance approach the within subject residual errors are assumed to be sampled from 

a Normal distribution.  This approach is equivalent to the period adjusted t-test which will be 

described on section 2.2.1 [35]. 

 

2.2.1.  Paired t-tests and period adjusted t-tests 

The difference between a period adjusted t-test and a standard paired t-test is that for a paired t-

test one simply places the observed individual effects on the two treatments in two columns – 

ignoring any treatment ordering.  For each subject a treatment difference is calculated and 

consequently a mean of these differences, d  (equivalent to a difference in the treatment means 

BA µµ − ), and a n an estimate of the population  standard deviation of the differences ds .  The 

test statistic is thus dsnd .  This is compared to the t distribution on n-1 degrees of freedom.    

In comparison for a period adjusted t-test for each treatment sequence (AB or BA) a mean 

difference is calculated,  ABd  (equivalent to BA µµ − ) and BAd  (equivalent to AB µµ − ).  
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Assuming that there is equal  allocation to each sequence, 2nnn BAAB == , and the within 

sequence variances, 222
ddd sss

BAAB
== , are the same then the mean difference of interest, 

2)( BAAB dd − , has the variance nsnns dABABd
22 4)11( =+ .   Thus, the test statistic is 

( )
ns

dd

d

BAAB −21
 

which is compared to the t distribution on n-2 degrees of freedom. 

If there is truly no period effect then,   

( ) ( )
dd

ABBA

d

BAAB

s

nd

nsns

dd
≈

−−−
≈

− )()(2121 µµµµ
 

and thus one would have an equivalent test to a paired t-test but with one less degree of 

freedom. 

 

2.2.2. Sample Size Calculations 

To estimate a sample size for a cross-over trial as well as quantifying the within subject 

estimate of the difference in treatment means that is of interest ( i.e. the effect size), one needs 

an estimate of the within- (intra-) subject standard deviation wσ . The within-subject standard 

deviation is taken from the residual line of an ANOVA model and quantifies the expected 

variation among repeated measurements on the same individual [10].   

Note that the within subject variability estimates from an ANOVA, model is related to the 

variability about the difference from a paired t-test through the following result 22 2 wd σσ = . 

With an estimate of both the within subject standard deviation and the effect size equation (2.2) 

can again be solved as per a parallel group study: 

( )
d

n w

2

ZZ2 22
2/11 σαβ −− +

= , (2.10) 
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where n here is the total sample size.  Note that the allocation ratio has not been used as per 

equation (2.4) as in a cross-over trial the meaning of r here would be the allocation ratio to each 

treatment sequence AB and BA.  The assumption here is that an equal number of subjects will 

be assigned to each sequence.  For unknown variance one can rewrite equation (2.10) as: 

d
n w

2
)t(Z2 22

2n ,2/11 σαβ −−− +
≥ , (2.11) 

 where n now is the least integer value that satisfies equation (2.11).  In turn equation (2.11)  

can be rewritten in terms of power to solve iteratively for n: 











−Φ=− −− 2,2/12

2

2
1 n

w

t
nd

ασ
β  . (2.12). 

Similarly to parallel group trials, when the population variances is unknown, under H1: d≠0  

the Type II error (and hence the power) should be calculated  under the assumption of a non-

central t distribution with degrees of freedom n-2 and non-centrality parameter 22 2 wnd σ  

[35].  Thus, equation 2.12 can be rewritten as: 
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Again to solve for n in the same manner as for a parallel group study one can add a 

correction factor of 22/1 α−Z  to equation (2.10) to allow for the Normal approximation, and 

use this for initial calculations in equation (2.13) [38]: 
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For quick calculations one can adapt equation (2.10) for the calculation of sample sizes 

(estimated with 90% power and a two-sided 5% type I error rate): 
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d
n wσ
= .   (2.15) 
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Equations (2.14) and (2.15) give slightly lower results than equation 2.13.  Table 2.2 gives 

sample sizes using equation (2.13) for various standardised differences (σδ /d= ).  The 

total sample for a cross-over trial  are nearly equivalent to that for one arm of a parallel group 

study, for each standardised difference (δ ).  The slight differences are accounted for by the 

different degrees of freedom used in equations (2.7) and (2.13).  Practically, though, they are 

the same.   

It should be noted that the standardised differences in Tables 2.1 and 2.2 represent different 

quantities.  The within- subject variance in a cross-over trial can be derived from 

)1(22 ρσσ −=w  - where 2σ is the population variance from a conventional parallel group 

design and ρ  is the Pearson correlation coefficient estimated between two measures on the 

same subject.  For a relatively modest correlation of 0.5, the within-subject variance would be 

half the population variance, and as a consequence for an equivalent mean difference the 

standardised difference would be 40% larger in a cross-over trial compared to a parallel group 

study.  Parallel group and cross-over trials will only have an equivalent standardised difference 

for a zero correlation. 

 

2.2.3.  Worked Example 

2.2.3.1. Using the sample size tables 

An investigator wishes to design a hypertension trial similar to that in Section 2.1.1.  The 

clinical effect of interest is a reduction in blood pressure compared to control of 10mmHg 

(d).  The expected within-subject standard deviation in the trial population the trial is 

expected to be half that of the between-subject standard deviation at 20mmHg (wσ ).  Thus, 

the standardised difference is 50.020/10/ === wd σδ .  For the Type I and Type II errors 

fixed at 5% and 10% respectively Table 2.3 gives a total sample size of 86.  
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2.2.3.2.  Repeated using sample size software 

For the sample size calculations in PASS and nQuery the assumption is that instead of doing an 

analysis of variance for the final analysis a paired t-test would be undertaken.  As described in 

Section 2.2.1. for studies with paired data, one must specify the standard deviation of the 

difference of the outcome variable measured on the two treatments and the standard deviation 

of the difference can be calculated from the within subject standard deviation from the result 

wd σσ 2= .  Thus, for a paired t-test the standard deviation of the difference, dσ , should be 

used instead of the within subject standard deviation and one should therefore replace 2 2
wσ  

with 2
dσ  in each of equations 2.10 to 2.15 and adjust the degrees of freedom to n-1 in equations 

2.12 and  2.13. 

To repeat the calculations in PASS one selects Means and then T-Test: 1 Group.  The 

following dialogue box and consequent output then comes up: 
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The mean difference is still the same as in the worked example, 10, but the standard deviation 

for the calculations is now 20*2 =28.28.  PASS gives the sample size as 86 as per table 2.2. 

To do the same calculations in nQuery one would need to click on File/New for Goal tick 

Means, Number of Groups tick One and Analysis Method tick Test.  Then select Paired t-test.  

nQuery too returns a sample size of 86. 

By looking at the two dialogue boxes for nQuery (given earlier for the parallel group case) 

and PASS one can see the two approaches to calculations in the two packages.  nQuery works 

like a spread sheet where the inputs are entered into a column with the answer (i.e. the sample 

size) given at the bottom of the column.  If one wishes to do several sample size calculations 

then one needs to fill in several columns.  PASS works by entering the inputs into dialogue 

boxes with the answer going to separate window.  One can enter several values into each 
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input, for example for  Mean one can enter "5, 10, 15" or "5 to 15 by 5", and PASS will output 

the sample sizes for  different values (or combination of values)  in one Output window.  
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3.  EQUIVALENCE TRIALS 

In certain cases the objective of a clinical trial is not to demonstrate superiority but to 

demonstrate that two treatments have no clinically meaningful difference, i.e. that they are 

clinically equivalent.  The null (H1) and alternative (H0) hypotheses for such equivalence 

trials take the form:  

H0: The two treatment differences are different with respect to the mean response (BA µµ ≠ ). 

H1: The two treatments are not different  with respect to the mean response ( BA µµ = ). 

Usually these hypotheses are written in terms of a clinical difference, d. and become: 

H0: dBA −≤− µµ  or dBA +≥− µµ . 

H1:  dd BA +<−<− µµ . 

These  hypotheses are an example of an intersection-union test (IUT), in which the null 

hypothesis is expressed as a union and the alternative as an intersection.  In order to conclude 

equivalence, one needs to reject each component of the null hypothesis.  

Note that in an IUT, each component is tested at level α giving a composite test which is also 

of level α [39].   

A common approach with equivalence trials to test each component of the null hypothesis 

with a t test - called the Two One-Sided Test (TOST) procedure. In practice, this is 

operationally the same as constructing a (1-2α)100% confidence interval for f ( )µ  where 

equivalence is concluded provided that each end of the confidence interval falls completely 

within the interval ),( dd +−  [40].  This is because the (1-2α)100% confidence interval is 

excluding two regions each of size α, each of which must simultaneously preclude (-d, +d).  

Hence, the overall significance level is α. 
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Figure 1 highlights how equivalence can be demonstrated through confidence intervals and 

Figure 2 demonstrated  how confidence intervals are used to test the different hypotheses in 

superiority and equivalence trials. The special case of bioequivalence is covered in Section 6. 

ICH E10 [41] goes into some detail in the description of equivalence trials, and the related 

non-inferiority trials (discussed in Section 4) whilst ICH E9 and E3 discuss the appropriate 

analysis of such trials [3, 7]. 

In this section the sample size formulae will initially be derived 

i)  For the general case of inequality between treatments (i.e.( ) ∆=µf )  

ii)  Adopting the same notation and assumptions as in Section 2  

iii)  Under the assumption that the equivalence bounds –d and d are symmetric about zero 

This section will then move on to the special case of no treatment difference replacing (i) 

with: 

i)  For the special case of no mean difference (i.e. f ( )µ  = 0). 

  

3.1. General case 

As with Section 2: 

( )
)1,0(~

)(
N

SVar

fS µ−
, 

Hence, the( )α21− 100% confidence limits for a non-zero mean difference would be: 

SVarZS α−+∆− 1 , 

To declare equivalence the   lower and upper confidence limit  should  be  within ±d: 

( ) dSVarZS −>−∆− −α1  and ( ) dSVarZS <+∆− −α1 . (3.1) 
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Thus, by extending the arguments for superiority trials, for the two one sided test procedure 

(TOST) with this critical region there are two opportunities against an alternative to have a 

Type II error for some chosen d and power (1-β) 

Var(S)Var(S)-d- and Var(S))( 1111 21 αβαβ −−−− =∆=−+∆ ZZZSVarZd . (3.2) 

where 1β  and 2β are the Type II errors associated with each one sided test from the TOST 

procedure and 21 βββ += .  Hence, 

( ) ( ) αβαβ −−−− −
∆−

=−
∆−−

= 1111 21
 and Z

SVar

d
ZZ

SVar

d
Z  (3.3) 

 

3.2. Special case of no treatment difference. 

For the special case of no treatment difference 0=∆  can be entered into (3.1).  Thus, with 

the TOST procedure the Type II error for some chosen d and power (1-β) will come from 

Var(S)Var(S)-d- and Var(S))( 1111 αβαβ −−−− ==− ZZZSVarZd . 

Hence, 

( ) αβ −− −= 12/1 Z
SVar

d
Z , 

giving: 

2
2/11 )(

2
)(

βα −− +
=

ZZ
dSVar .  (3.4) 

 

3.3. Type I and setting the equivalence limit 

3.3.1. Choice of Type I error 

Strictly speaking when undertaking two simultaneous one tailed tests setting α=0.05 would 

maintain an overall Type I error rate of 5%.  However, the choice of the Type I error is a 
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controversial issue.  The convention for equivalence trials is to set the Type I error rate at 

half of that which would be employed for a two sided test used in a superiority trial i.e. 

α=0.025.  That is, giving a Type I error rate of 2.5% [3].  However, setting the Type I error 

rate for equivalence trials at half that for superiority trials could be considered to be 

consistent.  This is because although in a superiority trial one has a two sided 5% 

significance level in practice for most trials in effect what one has is a one sided investigation 

with a 2.5% level of significance.  The reason for this is that one usually has an investigative 

therapy and a control therapy and it is only statistical superiority of the investigative therapy 

that is of interest. 

Through the rest of the sections on equivalence and non-inferiority trials the assumption will 

be that α=0.025 and that 95% confidence intervals will be used in the final statistical 

analysis.  This issue will be discussed again in the section on Bioequivalence. 

 

3.3.2.  Choice of Equivalence Limit 

The discussion on equivalence limits in this section can also be generalised to non-inferiority 

trials discussed in the proceeding section.  As with the choice of the Type I error the setting 

of the non-inferiority/equivalence limit is a controversial issue.  The equivalence limit is 

defined as the "largest difference that is clinically acceptable, so that a difference bigger than 

this would matter in practice" [42].  This difference also cannot be "greater than the smallest 

effect size that the active (control) drug would be reliably expected to have compared with 

placebo in the setting of the planned trial" [41].   

However, beyond this there has not much formal guidance.  Jones, Jarvis, Lewis et al [40] 

have recommended that the choice of limit be set at half the expected clinically meaningful 

difference between the active control and placebo.  There are no hard regulatory guidance 

although the CPMP [43] in a concept paper state that for non-mortality studies it may be 
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acceptable to have an equivalence limit "of one half or one third of the established superiority 

of the comparator to placebo, especially if the new agent has safety or compliance 

advantages" 

The definition of the acceptable level of equivalence or non-inferiority is made therefore with 

reference to some retrospective comparison to placebo [44, 45, 46].  In this context the 

definition of the non-inferiority and equivalence limits should address steps of the form [45, 

46]. 

1.  One must be confident that the active control would have been different from placebo had 

one been employed. 

2.  One should be able to determine that there is no clinically meaningful difference between 

investigative treatment and the control. 

3.  Through comparing the investigative treatment to control one should indirectly be able to 

determine that it is superior to placebo. 

Steps 1. and 3. are important as there is a view that non-inferiority and equivalence trials 

reward "failed" studies i.e. if one conducted a poor trial where it would not have been 

possible to demonstrate the control to be superior to placebo then a poor investigative therapy 

may slip through comparison to this control.  However, Julious and Zariffa [2] point out that 

this may not be the case as poor studies are poor for most objectives due to their higher 

statistical variability. 

In summary therefore one can infer that the clinical difference used for the limits of 

equivalence and non-inferiority will be smaller than the difference used for placebo 

controlled superiority trials.  There is no generic definition for its setting – its definition will 

need to be defined on a study by study basis with consultation with the appropriate agencies. 
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3.4.  Parallel group trials 

3.4.1. General case. 

For equivalence trials the sample size cannot be derived directly for the general case where 

the expected true mean difference is not fixed to be zero.  This is because the total Type II 

error is the sum of the Type II errors associated with each one-tailed test.   

As is the case with superiority trials Var(S) can be defined as : 

( )
A
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BA
n

.
1

n

2

n

2 σσσ
r

r
SVar

+
=+= .     (3.5) 

From this (and the fact that 21 βββ += ), equation (3.3) can be used to derive the power 

(and Type II error): 
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To obtain the required sample size equation (3.6) until a sample size is reached which gives 

the required power (Type II error ).  For unknown variance equation (3.6) can be re-written 

as: 
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As with superiority trials it is best to use a non-central t-distribution to calculate the Type II 

error and power.  From a non-central t-distribution the power can be calculated using the 

following formula [37, 47, 48] 

( ) ( )12)1(,122)1(,1 ,2)1(,Probt-,2)1(,Probt1 ττβ αα −+−+−=− −+−−+− rntrnt ArnArn AA
, (3.8) 

where 1τ and 2τ are non centrality parameters defined as: 
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For quick calculations (and to provide an initial value for the sample size in the iterations), an 

estimate of the sample size can be obtained from the following equation 

( )
( )2

2
11
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)(

)1(

dr

ZZr
n

BA

A −−

++
= −−

µµ
σ αβ .        (3.9) 

This provides reasonable approximations for the sample size when the mean difference is 

greater than zero ( 0>− BA µµ ),  and approaches d.  For very quick calculations (for 90% 

power and Type I error of 2.5%),  the following formula can be used: 
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or for r=1: 
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3.4.2. Special case of no treatment difference. 

For the special case of no treatment difference ( 0=− BA µµ ), equation (3.5) can be 

substituted into equation (3.4) to obtain a direct estimate of the sample size 
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For unknown variance equation (3.12) can be as 
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Where nA is the smallest integer value to satisfy equation (3.12).  Equation 3.13 can in turn 

be rewritten to give power in terms of the sample size: 
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Similarly to equation (3.8), under the assumption of a non-central t-distribution, the power 

can be derived from 

( ) 1,2)1(,Probt21 2)1(,1 −−+−=− −+− τβ α rnt ArnA
,                   (3.15) 

where τ is defined as 

2)1( σ
τ

+

−
=

r

rdnA .  

For quick calculations (for 90% power and Type I error of 2.5%),  the following formula can 

be used: 

rd

r
nA 2

2 )1(13 +
=

σ
,   (3.16) 

or, for r=1, 

2

226

d
nA

σ
= .   (3.17) 

 

It is worth noting here the difference between equations 3.16 and 3.17 and those given earlier  

equations 3.10 and 3.11.  There is a difference in the coefficients (10.5 and 21 for equations 

3.10 and 3.11 respectively and compared to 13 and 16 for equations 3.16 and 3.17) which is 

due to the non-symmetric allocation of the Type II error if the population mean is non zero.   

Table 3.1 gives sample sizes using equation 3.8 for various standardised equivalence limits 

( σδ d= ) and standardised mean differences, assuming equal allocation between groups. 
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3.4.3.  Worked example 

3.4.3.1. Using the sample size tables 

An investigator wishes to design a pain trial where the objective is to demonstrate 

equivalence between two treatments.  The largest clinically acceptable effect for which 

equivalence can be declared is a change in visual analogue scale (VAS) assessed pain of 

10mm (d).  There is to be equal allocation between groups.  The true mean difference 

between the treatments is thought to be zero and the expected standard deviation in the 

population in which the trial is to be undertaken is 50mm (σ ).  Thus, the standardised 

equivalence limits are  20.050/10/ ±=±=±=± σδ d .  For the Type I and Type II errors 

fixed at 2.5% and 10% respectively Table 3.1 gives a sample size of 651 patients in each arm 

of the trial. 

Suppose the true mean difference is thought to be 2mm.  This equates to 20% of the 

standardised equivalence limits and would inflate the sample size to 827 patients in each arm 

of the trial. 

 

3.4.3.2.  Repeated using sample size software 

To repeat the calculations in PASS one needs to select Means and then Equivalence-Means.  

The dialogue box below details the entries required to repeat both calculations in the worked 

example.   One typographical issue to note is that PASS does not distinguish between 

bioequivalence and equivalence trials which as will be highlighted Section 6 are two 

difference concepts and so as a result PASS has as the heading in the output box 

"Bioequivalence Means Power Analysis" 
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PASS gives a sample sizes respectively 651 and 827 respectively for the case of no treatment 

difference and a treatment difference of 2mm.  The same as table 3.1.  

To repeat the calculations in nQuery  one would need to click on File/New, for Goal tick 

Means, Number of Groups tick Two and Analysis Method tick Equivalence.  Then select 

Two one-sided tests (TOST) for two group or cross-over.  nQuery too gives the same answers 

as table 3.1 for the two cases in the worked example.   

 

3.5. Cross-over trials 

The methodologies and assumptions for an equivalence trial with a cross-over design 

are the same as those for parallel group trials .  This subsection will therefore only go 

briefly through the sample size calculations. 
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3.5.1. General case. 

The power (and Type II error) can be estimated from 

( ) ( )
1

2

)(

2

)(
1 12

2

12

2

−












−

+−
Φ+













−

−−
Φ=− −− αα σ

µµ
σ
µµ

β Z
nd

Z
nd

w

BA

w

BA . (3.17) 

For unknown variance equation (3.17) can thus be re-written as 
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and under the assumption of a non-central t-distribution the power [Owen, Diletti et al, Chow 

et al) the power can be estimated from  

( ) ( )12,122,1 ,2,Probt-,2,Probt1 ττβ αα −−−=− −−−− ntnt nn , (3.19) 

where 1τ and 2τ are defined as 
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For quick calculations one could use:  
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for sample size estimation and for very quick calculations (for 90% power and Type I error of 

2.5%),  one can use the following formula: 
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3.5.2. Special case of no treatment difference. 

For the special case of no treatment difference ( 0=− BA µµ ), a direct estimate of the sample 

size can be estimated from 
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which, with unknown variance, can be re-written as 
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Equation 3.23 can in turn be re-written in terms of power for a given sample size 
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which in turn (under the assumption of a non-central t-distribution), can also be rewritten as:  

( ) 1,2,Probt21 2,1 −−−=− −− τβ α nt n ,                   (3.25) 

where τ is defined as 

22 w

dn

σ
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= ,. 

For quick calculations (for 90% power and Type I error of 2.5%),  the following formula,  

can be used: 

2

226

d
n wσ
= .   (3.26) 

The quick equations give reasonable estimates of the sample size, underestimating the 

sample size by just one or two subjects, and thus provides reasonable initial values for 

equations (3.19) and (3.25).  Table 3.2 gives sample sizes using equation 3.19 for various 

standardised equivalence limits ( σδ d=  ) and mean differences. 
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3.5.3 Worked example 

3.5.3.1. Using the sample size tables 

An investigator wishes to design a pain trial similar to that in Section 3.4.3.1.  Again the 

largest clinically acceptable effect for equivalence to be declared is a change in visual 

analogue scale (VAS) assessed pain of 10mm (d)  and the true mean difference between the 

treatments is thought to be zero.  The expected within-subject standard deviation in the trial 

population is 20mm ( wσ ).  Thus, the standardised equivalence limits equate to 

50.020/10/ ±=±=±=± σδ d .  For the Type I and Type II errors fixed at 2.5% and 10%, 

respectively, Table 3.2 gives a total sample size of 106 patients in the trial. 

If the true mean difference is thought to be 2mm, equating to 20% of the standardised 

equivalence limits,  the sample size would be inflated to a total of 135 patients in the trial. 

 

3.5.3.2.  Repeated using sample size software 

To do the same sample size calculations in nQuery one would need to click on File/New, for 

Goal tick Means, Number of Groups tick Two and Analysis Method tick Equivalence.  Then 

select Two one-sided tests (TOST) for two group or cross-over.  For equivalence trials 

nQuery does not use dσ , as it does for superiority trials, or wσ , as used in equation 3.9 but a 

new variance 2wσ , as described in the right hand dialogue box below under the heading 

"Suggestion".  One rational for using this variance is that nQuery does not give the total 

sample size but the sample size per sequence (assuming one has two sequences AB and BA).  

By using 2wσ  for the variance estimate (and by giving the sample size per sequence) it 

enables nQuery to use the same formula (equation 3.8), for sample size calculations for both 

cross-over and parallel group trials.  This is because the degrees of freedom about the t 
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statistic in  equation (3.8) will be correct for both cross-over and parallel group trials using 

the nomenclature of sample size per sequence. 

 

The dialogue box below gives the entries to repeat the sample size calculations in nQuery 

 

For the equivalent sample sizes to those given earlier for no mean difference and a mean 

difference of 2 nQuery gives a sample size per treatment sequence of 53 and 68 respectively 

or 106 and 136 in total.   Taking account of rounding nQuery gives the same results for the 

total sample size as table 3.2.  To do the same calculations in PASS one needs to select 

Means and then Equivalence-Means.   the dialogue box is the same as that in Section 3.4.3.2.  

Now instead of "Parallel Group" though in the "Design Type" box one elects "Crossover" 
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It is worth noting that for the variance PASS uses 2
wσ  (and not 22

wσ  as with nQuery) but 

like nQuery it does give the sample size per sequence.  PASS gives the same sample size per 

sequence as nQuery. 

There is an issue with the approach of nQuery and PASS in calculating the sample size per 

sequence as this is assuming that one is investigating just 2 treatments in just 2 sequences 

(BA and AB).  If one was simultaneously investigating 3 treatments say one may have 6 

sequences.  Another issue is that  even if just two treatments are being investigated one may 

be applying a replicate design as described in Section 6.3.3 where again more than two 

sequences may be being used.  It is more optimal therefore to calculate the total sample size 

and divide this by the number of sequences to get the sample size per sequence rather than 

vice versa. 
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4.  NON-INFERIORITY TRIALS  

For certain trials the objective is not to demonstrate that two treatments are different or 

equivalent but rather to demonstrate that a given treatment is clinically not inferior compared 

to another.  The null (H0) and alternative (H1) hypotheses for non-inferiority trials may take 

the form:  

H0: A given treatment is inferior with respect to the mean response. 

H1: A given treatment is non-inferior with respect to the mean response. 

As with equivalence trials these hypotheses are written in terms of a clinical difference, d,   

which equates to the largest difference that is clinically acceptable [42]: 

H0: dBA −≤− µµ  . 

H1:  dBA −>− µµ . 

In the context of non-inferiority trials –d is know as the non-inferiority limit.  Please see 

discussion in section 3.3.2 as to its definition.  ICH E3 and E9 go into detail on the analysis 

of non-inferiority trials whilst ICH E10 discusses the definition of d [3, 7, 41].  

In order to conclude non-inferiority, one needs to reject  the null hypothesis. In terms of the 

equivalence hypotheses in Section 3 this is equivalent to testing just one of the two 

components of the TOST procedure.  Thus, non-inferiority trials reduce to a simple one-sided 

hypothesis and test. In practice, this is operationally the same as constructing a (1-2α)100% 

confidence interval and concluding non-inferiority provided that the lower end of this 

confidence interval is greater than  –d.   

Usually non-inferiority trials (like equivalence trials) compare the investigative therapy to an 

active control.  Statistically they could be considered a special case of equivalence trials.  

However, operationally non-inferiority trials are more often conducted since it is only the 

lower equivalence (now non-inferiority) limit that is usually of interest.  For a non-inferiority 

trial a mean difference a long way from -d, in a positive sense, is not a negative outcome for 
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the study.  Please see also the discussion on "as good as or better trials" for the context of 

non-inferiority studies with superiority studies. 

Figure 3 highlights how non-inferiority can be demonstrated through a confidence interval 

and Figure 2 shows how confidence intervals are used to test the different hypotheses in 

superiority, equivalence and non-inferiority trials. 

Adopting the same notation and assumptions as in Section 3 but with ( ) ∆−=µf  and the 

non-inferiority bound set at –d, the lower ( )α21− 100% confidence limit is 

SVarZS α−−∆− 1 .  (4.1) 

To declare non-inferiority the lower end of the confidence interval should lie above –d: 

( ) dSVarZS −>−∆− −α1 . (4.2) 

For this critical region  one therefore requires  a ( )β−1 100% chance that the lower limit lies 

above –d i.e.:  

Hence:   

( )
 11 αβ −− −

∆+−
= Z

SVar

d
Z , (4.3) 

giving: 

( )
2

11

2

)(
)(

βα −− +
∆−

=
ZZ

d
SVar . (4.4) 

 

4.1.  Parallel group trials 

As with superiority  and equivalence trials Var(S) can be defined as 

( )
A

r

r
SVar

n
.

1 2σ+
= , 

which can be substituted in to equation (4.4) (replacing ∆  with BA µµ − ) giving a direct 

estimate of the  sample size  
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σ αβ .     (4.5) 

Re-writing equation (4.5) to give power for a give sample size results in: 
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The equivalent formula to (4.6), in the case of unknown variance is 
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As with the sections on equivalence and superiority trials when the population variance is 

unknown it is best to calculate the power under the assumption of a non-central t-distribution 

[37]:  

( )τβ α ,2)1(,Probt11 2)1(,1 −+−=− −+− rnt ArnA
, (4.8) 

where τ is defined as 

( )
2)1(

)(

σ

µµ
τ

+

−−
=

r

rnd ABA  . 

For quick calculations (for 90% power and Type I error of 2.5%),  the following formula, 

similar to equation (2.9) can be used: 

( ) rd

r
n

BA

A 2

2

)(

)1(5.10

−−
+

=
µµ
σ

.        (4.9) 

In the case of r=1 (4.9) resolves to: 

( )2
2

)(

21

d
n

BA

A −−
=

µµ
σ

.        (4.10) 

Equations 4.9 and 4.10 are equivalent to equations 3.10 and 3.11 for the case of a non zero 

mean difference i.e. for 0>− BA µµ .  The quick equations give reasonable estimates of the 
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sample size, although with slight underestimation.  Table 4.1 gives sample sizes using 

equation 4.8 for various standardised non-inferiority limits ( σδ d=  ) and standardised mean 

differences assuming equal allocation between groups.   

One important feature to highlight in tables 4.1 and 4.2 is the asymmetric effect on the sample 

size of different values for the true mean difference.  In equivalence trials as there are two  

margins when one moves away from a zero mean difference - in any direction - the sample 

size is inflated.  However, in non-inferiority trials the sample size is inflated only if the true 

mean difference moves towards the non-inferiority margin.  If it is expected that the true mean 

difference is in favour of the comparator regimen (compared to control) then the sample size 

is significantly reduced.  

The asymmetric effect of the mean difference on the sample size should be considered when 

designing non-inferiority trials as even only a small expected mean difference in favour of the 

comparator could have a marked effect on the sample size. 

 

4.1.1.  Worked example 

4.1.1.1. Using the sample size tables 

An investigator wishes to design an hypertension trial where the objective is to demonstrate 

that one treatment (an investigative therapy) is non-inferior to another (a standard therapy).  

As with the worked example in Section 3.2.3 the largest clinically acceptable effect to be 

able to declare non-inferiority is a change in blood pressure of 10mmHg (d).  The true mean 

difference between the treatments is thought to be zero with an expected standard deviation 

in the trial population of 40mmHg (σ ).  There is to be equal allocation between groups. 

Thus, the standardised non-inferiority limits equate to 25.040/10/ −=−=−=− σδ d .  For 

the Type I and Type II errors fixed at 2.5% and 10% respectively Table 4.1 gives a sample 
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size of 338 patients in each arm of the trial.  The quick formula (equation 4.10) gives 336 

patients in each arm. 

Suppose, though, that one believes that the investigative therapy is a little superior to the 

standard such that the true mean difference is thought to be 2mmHg.  This inflates the 

distance one expects the mean to be away from the non-inferiority margin  by 20% and as a 

consequence reduces the sample size to required to 235 patients in each arm of the trial. 

 

4.1.1.2.  Repeated using sample size software 

To do non-inferiority sample size calculations in nQuery one would need to click on 

File/New, for Goal tick Means, Number of Groups tick Two and Analysis Method tick 

Equivalence.  Then click on Equivalence of Two Means.   

Note that nQuery does not refer to these calculations as non inferiority but equivalence.  

However, it is clear from the instructions and the definition of the null hypothesis given in 

nQuery that the calculations are for a Non-inferiority trial (see the definition of the null 

hypothesis in the dialogue box below).  The entries nQuery dialogue box are given below. 
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For the same calculations in the worked example nQuery returns sample sizes that are the 

same as Table 4.1. 

PASS can not do non-inferiority calculations.  However, for the special case of no treatment 

difference one can get PASS to do the required calculations by going into the Equivalence 

dialogue box described in the worked examples in Section 3 and setting the Type II error to be 

twice what it should be - for example 0.20 for a non-inferiority Type II error of 0.10.  With 

this trick equation (3.15)  will give the same results as equation (4.8).  With this trick PASS 

calculates the sample size to be 337. 

Alternatively in PASS one could use the dialogue box for a superiority trial and a two group t-

test described in Section 2.  Now instead of setting the Type II error to twice what is required,  

one sets the Type I error to be twice what is required for the two sided alternative hypothesis 
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i.e. to 5% (note PASS also has the one sided alternative hypothesis too where one could use 

2.5%).  With this trick equation 2.7 would resemble equation 4.8.  Now instead of entering 

non-inferiority limits one should enter distance of the true mean to the non-inferiority margin 

in the "Mean 2 (Mean of Group 2)" box.  Thus, in the worked example for no mean difference 

enter 10 and for a mean difference of 2 enter 12.  With the trick described PASS returns 

sample sizes of 337 and 234 respectively for mean differences of 0 and 2.  Each sample size is 

1 below the sample size given in Table 4.1 and by nQuery.   

 

4.2.  Cross-over trials 

The equivalent sample size formula to equation (4.5) for cross-over trials is 
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which when re-written in terms of power becomes 
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The equivalent formula for unknown variance is 
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As with parallel group designs it preferable to calculate the power (and Type II error) under 

the assumption of a non-central t-distribution and thus equation 4.13 is rewritten as [37]:  

( )τβ α ,2,Probt11 2,1 −−=− −− nt n , (4.14) 

where τ is defined as 

( )
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=  . 
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For quick calculations (for 90% power and Type I error of 2.5%),  the following formula can 

be utilised: 

( )2
2

)(

21

d
n

BA −−
=

µµ
σ

.        (4.15) 

As with parallel group estimation the quick equations give reasonable, although slightly 

underestimates of the sample size.  Table 4.2 gives sample sizes using equation 4.14 for 

various standardised equivalence limits ( σδ d=  ) and standardised mean differences 

assuming equal allocation between groups. 

 

4.2.1.  Worked example 

4.2.1.1. Using the sample size tables 

An investigator wishes to design a cross-over hypertension trial similar to that in Section 

4.1.1 with the same clinically acceptable effect of non-inferiority of 10mmHg (d).  The true 

mean difference between the treatments is also thought to be zero and the expected within 

subject population standard deviation is 20mmHg (σ ).  Thus, the standardised non-

inferiority limits equate to 50.020/10/ −=−=−=− σδ d .  For the Type I and Type II errors 

fixed at 2.5% and 10% respectively Table 4.2 gives a total sample size of 87 patients in the 

trial. 

If the true mean difference is thought to be 2mmHg the sample size would be reduced to a 

total of 61 patients in the trial 

 

4.2.1.2.  Repeated using sample size software 

To do non-inferiority sample size calculations in nQuery one would need to click on 

File/New, for Goal tick Means, Number of Groups tick One and Analysis Method tick 
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Equivalence.  Then click on Paired t-test for Equivalence Means.  The following dialogue box 

given below then comes up. 

 

It is worth noting the changing of gears in nQuery here.  For superiority trials the assumption 

was the final analysis would be with a paired t-test, thus, a standard deviation of the difference 

was used in the calculations and a total sample size given.  For equivalence trials it was 

assumed that the final analysis would be an analysis of variance, thus, the within subject 

standard deviation (all be it divided by root two) was used in the calculations and a sample 

size per sequence given.  Now for non-inferiority trials nQuery is back to the approach of 

superiority trials (despite the fact that non-inferiority is more akin to equivalence than 

superiority trials in concept) assuming that a paired t-test will be used in the final analysis.  

For the example give earlier for no mean difference (and a standard deviation of the difference 
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of 28.28) nQuery returns a total sample size of 86, one awry from table 4.2, but for a mean 

difference of 2 nQuery gives a total sample size of 61 which agrees with table 4.2. 

As with parallel group trials given earlier PASS does not do non-inferiority sample size 

calculations for cross-over trials.  However, using the trick of using the equivalence dialogue  

box described in the worked example in Section 4.1.1, for no treatment difference PASS gives 

44 patients per sequence or 88 total. 

Using the "One Sample T-Test" dialogue box for superiority trials (described in section 2.2.3) 

entering 12 and 10 in the "Mean 1 (Alternative)".  For mean differences of 0 and 2 

respectively PASS calculates the sample sizes to be 86 and 61.  
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5.  "AS GOOD AS OR BETTER" TRIALS 

For certain clinical trials the objective is to demonstrate either that a given treatment is 

clinically not inferior or that it is clinically superior when compared to the control i.e. that the 

treatment is "as good as or better" than the control.  In non-inferiority trials two null and 

alternative hypotheses are investigated.  First the non-inferiority null and alternative 

hypotheses: 

H0: A given treatment is inferior with respect to the mean response. 

H1: The given treatment is non-inferior with respect to the mean response. 

If this null hypothesis is rejected then  a second null hypothesis can be investigated: 

Ho: The two treatments have equal effect with respect to the mean response. 

H1: The two treatments are different with respect to the mean response. 

Practically these two null hypotheses are investigated through the construction of a 95% 

confidence interval to investigate where the lower (or upper as appropriate) bound lies.  

Figure 2 highlights how the two separate hypotheses for superiority and non-inferiority are 

investigated. 

It should be noted that "As good as or better" trials are really a sub-category of either 

superiority or non-inferiority trials.  However, in this article these trials are put into a 

separate section to highlight how as good as or better trials combine the null hypotheses of 

superiority and non-inferiority trials into one closed testing procedure whilst maintaining the 

overall Type I error.  

To introduce the closed testing procedure this section will first describe the situation where a 

one-sided test of non-inferiority is followed by a one-sided test of superiority.  The more 

general case where a one sided test of non-inferiority is followed by a two sided test of 

superiority is then described. 
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In describing as good as or better trials this paper draws heavily on the work of Morikawa 

and Yoshida [49].  The CPMP  have recently issued a points to consider document [42]. 

 

5.1. A test of non-inferiority and a one sided test of superiority 

The null (H1o) and alternative (H11) hypotheses for a non-inferiority trial can be written as: 

H1o: d−≤− BA µµ . 

H11: d−>− BA µµ . 

which alternatively can be written as: 

H1o: 0BA ≤+− dµµ . 

H11: 0BA >+− dµµ . 

Whilst the corresponding null (H2o) and alternative (H21) hypotheses for a superiority trial 

can be written as: 

H2o: 0BA ≤− µµ . 

H21: 0BA >− µµ . 

What is clear from the definitions of these hypotheses is that if H2o is rejected at the α level 

then H1o would also be rejected.  Also, if H1o is not rejected at the α level then H2o would 

also not be rejected.   This is because BABA µµµµ −≥+− d .  Hence, both H1o and H2o are 

rejected if they are both statistically significant; neither H1o and H2o are rejected if H1o is not 

significant; and only H1o is rejected if only H1o is significant.   

Based on these properties a closed test procedure can be applied to investigate both non-

inferiority and superiority whilst maintaining the overall Type I error rate without α 

adjustment.  To do this the intersection hypothesis 00 H1H2 ∩ is first investigated which, if 

rejected, is followed by a test of H1o and H2o.  In this instance 000 H1H1H2 =∩  and so both 

non-inferiority and superiority can be investigated through the following two steps [49]. 
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1. First investigate the non-inferiority through the hypothesis H1o.  If H1o is rejected then 

H2o can be tested.  If H1o is not rejected then the investigative treatment is inferior to the 

control treatment. 

2. If H2o is then rejected in the next step one can conclude that the investigative treatment is 

superior to the control.  Else if H2o is not rejected then non-inferiority should be 

concluded. 

 

5.2. A test of non-inferiority and a two sided test of superiority 

The null (H3o) and alternative (H31) hypotheses for a two sided test of superiority can be 

written as: 

H3o: BA µµ = . 

H31: BABA or  µµµµ >< . 

These hypotheses are equivalent to two one-sided tests at the α/2 level of significance 

(summing to give an overall type I error of α) through the investigation of H2o against the 

alternative of H21 and the following null and alternative hypotheses: 

H4o: BA µµ ≥ . 

H41: BA µµ < . 

In applying the closed test procedure in this instance it is apparent that the intersection 

hypothesis 00 H3H1 ∩  is always rejected as it is empty and so both H1o and H3o can be 

tested.  Due to there being no intersection the following steps can be applied steps [49]: 

1. If the observed treatment difference is greater than zero and H3o is rejected then H1o is 

also rejected and one can conclude that the investigative treatment is statistically superior 

to control. 
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2. If the observed treatment difference is less than zero and H3o is rejected and H1o is not 

then the control is statistically superior to the investigative treatment.  If H1o is also 

rejected then the investigative drug is worse than the control but is not inferior 

(practically though this may be difficult to claim). 

3. If H3o is not rejected but H1o is, then the investigate drug is non-inferior compared to the 

control. 

4. If neither H1o nor H3o are rejected then one must conclude that the investigative 

treatment is inferior to control.  

Note that when investigating the H1o and H3o hypotheses, H3o  will be tested at a two sided Į 

level of significance whilst H1o  will be tested at a one sided Į /2 level of significance.  Thus, 

the overall level of significance is maintained at Į. 

 

5.3.  Worked example and other considerations 

To calculate the sample size required for an as good as or better trial one should apply the 

methodologies described in Sections 2 (Superiority) and 4 (Non-inferiority).   

Supposed an investigator wished to design a  parallel group trial to investigate a one sided 

test of non-inferiority and a two sided test of superiority trial.  The trial will be designed 

about a standardised clinically meaningful difference (for superiority) and a standardised non 

inferiority margin of 0.25.  The Type I error is fixed at 5% for the test of superiority and 

2.5% for the test of non-inferiority, whilst the Type II error is fixed at 10%.   From Table 2.1 

for superiority one would require 338 patients in each arm.  Whilst from table 4.1 for non-

inferiority, assuming no treatment difference, again one would required 338 patients per arm.  

Note that here one is making the (probably unrealistic) assumption that the standardised non-

inferiority limit and the standardised difference are the same.   
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On the face of it then one can switch between non-inferiority and superiority whilst 

maintaining the Type I error for no great cost in the sample size.  However, if in the example 

above, there was anticipated to be a true mean difference between the two groups against the 

investigative therapy.  If this mean difference equated to 20% of the standardised non-

inferiority limit it would inflate the sample size, mutatis mutardis,  to 527 patients per arm. 

A more realistic scenario to the one described in the worked example is one where the non-

inferiority margin is a fraction of the clinically meaningful difference (see Section 3.3.2).  

The sample size required to investigate non-inferiority would hence be a factor more than 

required to investigate superiority - the factor being the ratio of the clinically meaningful 

difference over the non-inferiority margin squared.   

For as good as or better trials  (given that one is also investigating superiority), it may be 

appropriate to power for  non-inferiority (as this will usually be the large sample size 

estimate) but assuming a small difference between the two groups in favour of the 

investigative therapy (see section 4 and tables 4.1 and 4.2) 

A further consideration in as good as better trials is the choice of data set to have as primary -  

the intent to treat (ITT) or per protocol (PP) data set.   

The intent to treat population is the patient population evaluated on the basis of the treatment 

regimen patients were planned to receive as opposed to the actual treatment given.  As a 

consequence "subjects allocated to a treatment group"  are "followed up, assessed and 

analysed as members of that group irrespective of their compliance to the planned course of 

treatment"  [3]. 

The per protocol is patient population is the "subset of subjects who complied with the 

protocol sufficiently to ensure that these data would exhibit the effects of treatment according 

to the underlying scientific model" (ICH, E9). 



 56 

 For a superiority trial the primary data set would be that based on ITT data set; for a non-

inferiority trial the primary data set would be both the PP and the ITT data set [42]. 
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6.  ASSESSMENT OF BIOEQUIVALENCE 

Earlier in the paper calculations were given where the objective of the trial was to 

demonstrate that the two therapies are clinically equivalent.  In an equivalence trial the 

comparators may be completely different, in terms of route of administration or even actual 

drug therapies, but the objective is to investigate whether they are clinically the same.  

However, in bioequivalence trials the comparators are ostensibly the same - the 

manufacturing site may have moved or a formulation altered slightly for marketing purposes.  

Bioequivalence studies are therefore conducted to demonstrate that two formulations of a 

drug have similar bioavailability i.e. does the same amount of drug get into the body for each 

formulation.   The assumption in bioequivalence trials is that if the two formulations have 

equivalent bioavailability then one can infer that they have equivalent effect for both efficacy 

and safety.  The pharmacokinetic bioavailability is therefore a surrogate for the clinical 

endpoints.  

Equivalent bioavailability will be concluded if the drug concentration by time profiles for the 

test and reference formulations are super-imposable, see Figure 4 for an example.  Through 

determining that the two profiles are super-imposable one can conclude that the two 

formulations are clinically the same. 

In bioequivalence studies, therefore,  one can determine in vivo whether the two formulations 

are bioequivalent by assessing the concentration time profiles for the test and reference 

formulations [50].  This is usually done by assessing if the rate and extent of absorption are 

the same, where the pharmacokinetic parameter AUC (area under the concentration curve) is 

used to assess the extent of absorption and the parameter Cmax (maximum concentration) is 

used to assess the rate of absorption.  Figure 4 gives a pictorial representation of these 

parameters.  If the two formulations are bioequivalent then they can be switched without 

reference to further clinical investigation and can be considered inter-changeable. 
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The null and alternative hypotheses are similar to those for equivalence studies: 

Ho: The test and reference formulations give different drug exposures ( )RT µµ ≠ . 

H1: The test and reference formulations give equivalent drug exposure ( )RT µµ = . 

Similarly to other types of trials the objective of a bioequivalence study is to test the null 

hypothesis to see if the alternative is true.  The 'standard' bioequivalence criteria is to 

demonstrate that average drug exposure on the test is within 20% of the reference on the log 

scale [51, 52, 53].  Thus, the null and alternative hypotheses can be rewritten as: 

Ho: 80.0≤RT µµ  or 25.1≥RT µµ . 

H1: 25.180.0 << RT µµ . 

Two comparator formulations can thus be declared bioequivalent if it can be demonstrated 

that the mean ratio is wholly contained within 0.80 to 1.25.  To test the null hypothesis two 

one-sided tests at the 5% level are constructed to determine whether  80.0≤RT µµ  or 

25.1≥RT µµ .  If neither of these tests hold then the alternative hypothesis can be accepted 

of 25.180.0 << RT µµ .  As one is performing two simultaneous tests on the null 

hypothesis, both of which must be rejected to accept the alternative hypothesis, the type I 

error is maintained at 5%.  The convention is to represent the two one-sided tests as a 90% 

confidence interval around the mean ratio of RT µµ which neatly summarises the results of 

two one-tailed tests. Figure 5 highlights how average bioequivalence between two 

formulations can be demonstrated through 90% confidence intervals. 

A test formulation of a drug can therefore said to be bioequivalent to its reference 

formulation if the 90% confidence interval for the ratio test:reference is wholly contained 

within the range 0.80 to 1.25, for both AUC and Cmax.  As both AUC and Cmax must be 

equivalent to declare bioequivalence there is no need to allow for multiple comparisons.   
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For certain indications other parameters, such as Cmin (defined as the minimum 

concentration over a given period) or Tmic (defined as time above a minimum inhibitory 

concentration over a given period), may also need to be simultaneously assessed. 

Note that the criteria for acceptance of bioequivalence may vary depending on factors such as 

which regulatory authority's guidelines are being followed and the therapeutic window of the 

compound being formulated and so the 'standard' criteria may not always be appropriate. 

The methodology described in this section can also be applied to other types of in vivo 

assessment such as the assessment of a food [54], drug interactions [55, 56] or special 

populations [57, 58].  The criteria for acceptance for other types of in vivo assessment  may 

vary depending on either the guidelines [54] or an  a priori clinical assessment [55, 56]. 

It may be worth noting the statistical difference between testing for equivalence and 

bioequivalence with reference to investigating the null hypothesis.  In equivalence trials the 

convention is to undertake two one-sided tests at the 2.5% level which in turn are represented 

by a 95% confidence interval; in a bioequivalence trial two one-sided tests at the 5% level are 

undertaken, which are represented by a 90% confidence interval.  Thus, in bioequivalence 

trials the overall type I error is maintained at 5% twice that of equivalence trials where the 

overall type I error is maintained at 2.5%. 

As bioequivalence studies are usually designed as crossover studies.  This section thus  

concentrates on this design first. 

 

6.1.  Justification for log transformation 

The concentration-time profile for a one compartment intravenous dose can be represented by 

the following equation: 

( ) Aec(t) t-λ= , 
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where t is time, A is the concentration at t=0 and λ is the elimination rate constant [59]. It is 

evident from this equation that a drug concentration in the body falls exponentially at a 

constant rate λ.   

A test and reference formulation would be super-imposable when (t)c (t)c RT = .  On the log 

scale this is equivalent to ( ) ( ) RRTT -Alog -Alog λλ = , which for  RT λλ = (a priori one 

would expect this to be true) becomes ( ) ( )RT Alog Alog = .  Thus, on the log scale the 

difference between two curves can be summarised additively.  Indeed it is upon this scale that 

such pharmacokinetic parameters as the rate constant, λ, and the pharmacokinetic half life, 

21t  ( λ2logt 21 = ), are derived [59].  This rationale also follows for the summary statistics 

used to measure exposure (AUC) and absorption (Cmax) as well as the variance estimates 

[59, 60].  From these arguments  the standard assumption for pharmacokinetic data is that 

they follow a log Normal distribution with the default being to analyse loge(AUC) and 

loge(Cmax). Any differences on the loge scale (test-reference) are then back-transformed to 

obtain a ratio on the original scale.  It is this back transformed ratio and its corresponding 

90% confidence interval that are used to assess bioequivalence. 

 

6.2.  Rational for using coefficients of variation 

As discussed in the previous sub-section all statistical inference for bioequivalence trials are 

undertaken on the log scale and back transformed to the original scale for interpretation.  

Thus, the within-subject estimate of variability on the log scale is used both for inference and 

sample size estimation.  However, for the interpretation of the mean effect on the original 

scale it is optimal to have a measure of variability also on the original scale.  A measure of 

variability that could be used is the Coefficient of Variability (CV) as this parameter is not 

scale dependent.  Now, for log-Normally distributed data the following exact relationship 
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between the CV on the arithmetic scale and the standard deviation, ı, on the log scale holds 

[48, 59]: 

( )    1
2

−= σeCV , 

For small estimates of 2σ  [ 30.0<σ ] the CV can be approximated by: 

σ≈CV . 

Thus, both the measure of effect and its variability can both be interpreted on the 

original scale.   

The derivation of this is result is based on the following relationships for the log-

Normal distribution [59]: 
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6.3 Cross-over trials 

Calculations for two expected mean responses are described for the special case where the 

true mean is expected to be unity  and the general case when the true mean ratio is not fixed 

to be unity ( 1=RT µµ ).  Although the calculations for the special case are more straight 

forward, it is recommended that even if one expects a priori the mean ratio to be unity, 

where practical, one should consider calculating sample sizes under the assumption of a 

small mean difference (of 5% say) as the power of a study is very sensitive to the assumption 

about the mean ratio (as  a mean ratio of 1≠RT µµ  is closer to one of the boundaries, 80 to 

1.25 say, and so it is more difficult to demonstrate bioequivalence).  

 

6.3.1 General case 

The derivation of the sample size is similar to that for equivalence trials i.e. for the general 

case where the expected true mean ratio is not expected to be unity the sample size cannot be 

directly derived.  Instead one has to iterate until a sample size is reached which gives the 

required Type II error (and power).  Thus, to calculate the power for the bioequivalence 

acceptance limits of (0.80, 1.25) , the following formula can be used: 
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where wσ  is the within-subject variability on the log scale and n is the total sample size.  For 

unknown variance equation (6.1) can be re-written as 
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As with superiority, equivalence and non-inferiority trials, when the population variance is 

not being used it is best to calculate the power using a non-central t-distribution, as outlined  

by Owen  [47, 48]:  
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( ) ( )12,122,1 ,2,Probt-,2,Probt1 ττβ αα −−−=− −−−− ntnt nn , (6.3) 

where 1τ and 2τ are non centrality parameters: 
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An estimate of the sample size for RT µµ  greater than unity can be obtained from the 

following equation: 
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which can be used to provide an initial value for the iterations.  This equation provides 

reasonable approximations for 1≠RT µµ , especially when the mean ratio becomes large 

relative to (0.80 to 1.25).  This is because in such circumstances most of the Type II error 

comes from one of the two one sided tests.  For quick calculations (for 90% power and a 

Type I error of 5%),  the following formula can be used: 
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Obviously for true ratios less than unity log(1.25) should  be replaced by log(0.80). 

 

6.3.2. Special case of the ratio equalling unity 

For the special case where the expected true mean difference is expect to be unity the sample 

size can be directly derived from the following formula. 
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For unknown variance equation 6.6 can be re-written to give the sample size: 
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In turn this can be re-written as: 
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Estimating the power from a non-central t-distribution, equation 6.3 can be re-written to 

( ) 1,2,Probt21 2,1 −−−=− −− τβ α nt n ,                  (6.8) 

where τ is the non centrality parameters defined as 

( )
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)8.0log(
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σ
τ = . 

Equation 6.6 can be used to obtain initial estimates of the sample size to use in Equation 6.8.  

For quick calculations for 90% power, 5% Type I error rate and a 20% acceptance criteria on 

the log scale one could use: 

 2433 wn σ= . (6.9) 

This formula gives sample size estimated within 1 or 2 of equation 6.8.  Table 6.1 gives 

sample size estimates using equation 6.3 for different CVs, mean ratios and acceptance 

criteria 10% (0.90 to 1.11), 15% (0.85 to 1.18), 20% (0.80 to 1.25) etc for a Type I error rate 

of 5% and 90% power.   

 

6.3.3. Replicate Designs  

For compounds with high variability the standard AB/BA can require relatively large sample 

sizes, especially if the mean ratio is not expected to be unity.  Designs which can partially 

overcome this problem are  replicate cross-over designs. Through adding an extra period arm 

to the study, such that the sequences are say ABB/BAA, the sample size is reduced by 25% 
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compared to a standard AB/BA design.  An additional two periods and sequences say of 

ABBA/BAAB,  can reduce the sample size by 50% [61].  The reasons for these reductions 

are due to the fact that the variances used in the contrast of the means in the final analysis are 

halved for a 4 period replicate design and reduced by 25% for a 3 period replicate design. 

Note replicate designs may not be practical for certain compounds, for example those with a 

long half life, but it is a possible solution for compounds with high pharmacokinetic 

variability. 

Another type of replicate design is a two period replicate design AA/AB/BA/BB.  This 

design allows for an intra-subject estimate of variability for a given compound without 

increasing the number of periods beyond two.  To consider the effect such a design has on 

the sample size one must consider the derivation of the total variance 

222
wb σσσ += ,      

where 2
wσ  is the within-subject component of variation and 2bσ  is the between subject 

component of variation.  Both these variance components can be estimated from previous 

cross-over trials with the test and reference compounds.  See section 8 for a detailed 

description.  Now suppose 

22
wb kσσ =  

it can be shown, assuming an equal allocation to each sequence, that the sample size required 

for a two period replicate design can be derived by multiplying the sample size for standard 

AB/BA design as follows: 

BAABBBBAABAA n
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k
n //// *

1

12








+
+

= . 

Where BAABn /  is the sample size derived from (6.3) The derivation number of this formula 

comes initially from imagining that the AB/BA and AA/BB sequences are from a cross-over 

trial and a parallel group trial respectively with n/4 subjects assigned to each sequence.  For 
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each sequences the following total variance can thus be derived for the "parallel group" 

sequences: 

nn

22 44 σσ
+  

If these sequences were from a parallel group study one would effectively take the average of 

the two sessions to compared A and B and so from equation 8.2.4 given later in the chapter: 

2222
wb σσσ +=  

and with 22
wb kσσ =  this the variance becomes: 

2)12(4 wk σ+  

which equals 1w  say. 

Now for the "cross-over" AB/BA sequences, the total variance can be derived as: 

n
w
24σ

 

which equals 2w  say.  Now to combine the cross-over and parallel sequences into one overall 

variance one could use the following formula borrowed from meta-analysis methodology 

[62]: 
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Thus, the overall variance is: 
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From any of the sample size formulae given in this paper it is evident that one increases the 

sample size in direct proportion to any increase in the variance.  If one is planning  a simple 

AB/BA cross-over trial the overall variance would be nw
22σ .  Thus, the ratio of the 

variances is thus: 
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and so the increase in sample sizes for doing a replicate cross-over is 
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and the equation given earlier. 

To verify this result 10,000 simulations for a fixed sample size of 48 and for various k were 

undertaken.  Each simulation simulated AB/BA and AB/BA/AA/BB cross-over.   The 

analysis for each simulation was done with all subjects entered into PROC MIXED with 

subject entered as random.  The table below gives the results: 

k 

1

12

+
+

k

k
 

Simulation 

2 1.67 1.65 
4 1.80 1.78 
6 1.86 1.85 
8 1.89 1.88 
10 1.91 1.90 
 

What is evident both from the table above and the equation is that a two period replicate 

design will always require more subjects than a standard AB/BA requiring the same sample 

size only for k=0.  However, no matter how larger k becomes it will only require twice as 

many subjects at most.  This is because as k becomes large virtually all the information, in 

the comparison of the mean ratio, comes from the AB/BA sequences and with twice as many 

subjects there will be as many people in these sequences as in a standard AB/BA design. 
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6.3.4. Use of quick formulae to estimate the sample size of a bioequivalence trial 

In this section on bioequivalence trials, as with the other sections, equations have been given 

which allow for quick calculation of the sample size.  In absolute terms these formulae 

throughout the paper have been consistent – being at most just one or two off the sample 

sizes provided in the tables.  For large trials such small differences may be considered minor 

– moving the  sample size from 526 to 527 in the worked example in Section 2.1.1.  

However, for bioequivalence trials the absolute difference of one or two may equate to a 

large relative difference  as the sample sizes are far smaller.  For example for a CV of 15% 

(cross-over trial design, mean ratio assumed to be unity) table 6.1 gives the sample size as 12 

whilst equation 6.3 returns a sample of 10.  The sample size of 10 subjects equates, from 

equation 6.8, to a Type II error of 17%. 

For bioequivalence trials it is therefore strongly recommended that the sample size tables 

only be used for final sample size estimation with the quick results only used for early ball 

park calculations. 

 

6.3.5.  Worked Example  

6.3.5.1. Using the sample size tables 

A bioequivalence trial to compare a test with reference formulation needs to be designed. 

The standard bioequivalence criteria (i.e. 0.80 to 1.25) will be used to demonstrate that the 

average drug exposure on the test is bioequivalent to the reference i.e. 0.80 to 1.25. The 

within-subject coefficient of variation is expected to be 25% (=CV) and the mean ratio is 

expected to be unity ( 1=RT µµ ).  The CV 25% equates to a within subject SD of 0.2462.  

The study design will be an AB/BA two period crossover.  From Table 6.1 it can be seen that 

one would need at a minimum a total sample size of 28 subjects.  Practically this would 

equate to at least 14 subjects on each sequence (AB and BA).  
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If the test formulation is expected, on average, to have exposures 5% greater than the 

reference ( )05.1=RT µµ  then the total sample size would increase to 36 subjects (or 18 per 

sequence).   

Suppose though instead of an AB/BA design a replicate ABB/BAA or ABBA/BAAB designs 

was being considered for the case where exposures were expected to be 5% greater on test 

compared to reference.  If one adopted a 4 period replicate design then one would multiply 

the total sample size calculated earlier by 0.50 to get 36*0.5=18 subjects in total required.  If 

one adopted a 3 period replicate design then the total sample size calculated earlier should be 

multiplied by 0.75 to get 36*0.75=27 subjects in total required. 

 

6.3.5.2.  Repeated using sample size software 

To repeat the calculations in PASS one needs to select Means and then Equivalence-Means.  

The dialogue box below details the entries required to repeat both calculations in the worked 

example.  

 Note that as discussed in section 3 on equivalence trials PASS does not calculate the total 

sample size but the sample size per sequence – assuming the design is an AB/BA cross-over 

trial 
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This dialogue box highlights one feature of PASS in that it only works on the arithmetic 

scale.  Thus, the bioequivalence limit of 0.80 to 1.25 must be logged and a symmetric limit of 

-22.3 to +22.3 should be used in PASS calculations.  Likewise instead of  using a mean ratio 

of 05.1=RT µµ  one should use 88.4=− RT µµ  instead.   

Another feature to highlight from the output box is that, with the exception of the Type I 

error, Type II error and power, all the default outputs are reported with no decimal places.  

Thus, in the worked example 4.88 is reported as 5 and 22.3 as 22.  This could cause  

problems if someone wished to replicate the results and only had the PASS dialogue box to 

work from.  To amend the default one should click on "Reports" in the PASS output box and 

then amend the number of decimal places required as appropriate.   
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Repeating the calculations in PASS gives the same sample sizes as table 6.1 for mean ratios 

of 1.00 and 1.05. 

To repeat the calculations in nQuery one would need to click on File/New, for Goal tick 

Means, Number of Groups tick Two and Analysis Method tick Equivalence.  Then select 

TOST for ratio of means (log scale) for two group or cross-over.  As may be evident from the 

dialogue box title selected nQuery allows one to do the calculations on the log scale (more 

detail as to what to enter in the dialogue box will be given in the worked example for parallel 

group trials in Section 6.4.3).  As calculations are done the log scale nQuery also uses the 

Coefficient of Variation (CV) for the calculations, although as described for cross-over 

equivalence trials in Section 3.3.3 nQuery does not use wσ  to derive the CV for sample size 

calculations but 2wσ .  nQuery also agrees with table 6.1 for the sample size calculations. 

As noted in the worked example in section 3.3.3 both PASS and nQuery only give sample 

sizes per sequence assuming an AB/BA cross-over trial.  It is in bioequivalence trials where 

this may be an issue as replicate designs with more than two sequences are not uncommon.  

Even for the worked example it is a little awkward   For a true ratio of 1.05 both PASS and 

nQuery returned a sample size of 18 per sequence.   Supposing an ABB/BAA design is to be 

planned one would have to double 18 per sequence to get the total sample size and then 

multiply this by 0.75 to get the total sample size for this design.  The sample size per 

sequence would then be 13.5 (14 rounded up). 
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6.4. Parallel Group Studies 

Although cross-over trials are the 'norm' for the assessment of bioequivalence 

sometimes, particularly with very long half life compounds, these designs are not 

practical.  This section briefly describes the methodology for sample size calculation 

for parallel group bioequivalence trials. 

   

6.4.1 General case 

The power  for a bioequivalence trial with acceptance limits of (0.8, 1.25) is given by 
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where σ  is the between-subject variability on the log scale, r is the allocation ratio and nT is 

the sample size in the test group.  For unknown variance equation (6.10) can be re-written as 
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and under the assumption of a non-central t-distribution the power is estimated from:  
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where 1τ and 2τ are non centrality parameters 
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As with a cross-over trial a direct estimate of the sample size for a mean ratio greater than 

unity can be obtained from the following equation: 
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and for quick calculations (for 90% power and Type I error rate of 5%) : 



 73 

( )2
2

)25.1log()log(

)1(17

−
+

=
RT

T
r

r
n

µµ
σ

.  (6.14) 

If the mean ratio is expected to be less than unity then replace log(1.25) with log(0.80) in 

equations 6.13 and 6.14. 

 

6.3.2. Special case of the ratio equalling unity 

When the mean ratio is expected to be unity the sample size can be directly derived from: 
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For unknown variance equation 6.15 can be re-written as 
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Equation 6.16 can in turn can be re-written as 
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and under the assumption of a non-central t-distribution the power can be derived from 

( ) 1,2)1(,Probt21 2)1(,1 −−+−=− −+− τβ α rnt TrnT
,                  (6.17) 

where τ is the non centrality parameters defined as 
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Equation 6.15 can be used for initial estimates of the sample size to use in 6.17.  For quick 

calculations of the sample size for  90% power, 5% Type I error rate and an acceptance 

criteria on the log scale of 20% one could use 

 rk 2)1(75.10 σ+ . (6.18) 
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Table 6.2 gives sample size estimates using equation 6.12 for different CVs, mean ratios and 

acceptance criteria 10% (0.90 to 1.11), 15% (0.85 to 1.18), 20% (0.80 to 1.25) etc for a Type 

I error rate of 5%, 90% power and an allocation ratio of one.  As with cross-over trials the 

simpler equations provide good estimates for initial calculations. 

 

6.4.3.  Worked Example 

6.4.3.1. Using the sample size tables 

A parallel group bioequivalence trial to compare a test with reference formulation needs to be 

designed using the standard bioequivalence criteria  (i.e. 0.80 to 1.25). The between-subject 

standard deviation is expected to be 0.70 (=σ ) and the mean ratio is expected to be unity 

( 1=RT µµ ).  This standard deviation of 0.70 equates to a between-subject CV of 80%.  

From Table 6.2 a minimum sample size of 216 subjects would be required in each arm. If the 

test formulation is expected, on average, to have exposures 5% higher than the reference 

( )05.1=RT µµ  then the total sample size would be 282 subjects in each arm. 

 

6.4.3.2.  Repeated using sample size software 

To the repeat the calculations in nQuery click on File/New, for Goal tick Means, Number of 

Groups tick Two and Analysis Method tick Equivalence.  Then select TOST for ratio of 

means (log scale) for two group or cross-over.  The dialogue box below gives the entries 

required to repeat the calculations in nQuery.  For the worked example given earlier nQuery 

concurs, giving sample sizes of 216 and 282 for mean ratios of 1.00 and 1.05 respectively. 
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To repeat the calculations in PASS one needs to select Means and then Equivalence-Means.  

For equivalent entries PASS concurs with nQuery and table 6.2. 

 

6.5. Individual and Population Bio-equivalence 

The assessment of bioequivalence as defined in this paper is based on average 

bioequivalence in which only the formulation means are required to be equivalent to declare 

bioequivalence.  New paradigms for bioequivalence based on population and individual 

bioequivalence have also be been proposed [63, 64] for which there are regulatory guidelines 

[52].  These alternative approaches also involve variabilities of the formulations as well as 

their means in the assessment bioequivalence.  This paper will not go into any detail on these 

topics. 
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7.  ESTIMATION TO A GIVEN PRECISION 

In the previous sections of the paper calculations were described for the definitive investigation 

of specific objectives.  However, there are cases when a preliminary, or pilot, investigation is 

conducted to estimate possible effects with view to doing a later definitive study [65, 66].  By 

definition such studies are held early in the drug development (or clinical investigation) 

paradigm.  With estimation studies rather than formally testing  null hypotheses it is more 

informative to give confidence intervals to estimate the unknown f( )µ .   

Recall that ( )α−1 100% confidence interval for f( )µ  has half-width 

( )SVarZw 2/α= .  (7.1) 

Hence, if one is able to specify a requirement for w and write Var (S) in terms of 'n' then the 

above expression can be solved for n as before.   

It should be noted though that if the sample size is based on precision calculations, then the 

protocol should clearly state this as the basis for the size of the study.  

Precision calculations may also be undertaken when the sample size is determined primarily 

by practical considerations.  In such cases one may quote the precision of the estimates 

obtained based on the half-width of the confidence interval, and provide this information in 

the discussion of the fixed sample size.  Again it must be clearly stated in the protocol that 

the size of the study was determined based on practical, and not formal, considerations. 

The estimation approach is also useful where one wishes to estimate possible effect across 

several doses.  The overall context of such a study would be to assist in the selection of a 

dose to carry forward into a later study.  CPMP [15] in their multiplicity guidelines says of 

such studies: 

"Sometimes a study is not powered sufficiently for the aim to identify and recommend a 

single effective and safe dose (or dose range) but is successful only at demonstrating an 

overall positive correlation of the clinical effect with increasing dose.  This is already a 
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valuable achievement….  Estimates and confidence intervals from pairwise comparisons of 

single doses are then used in an exploratory manner for planning of future studies". 

In the context then of an overall clinical development (or investigation) an estimation study 

(or studies) could provide important cumulative evidence of the pharmacological benefit of a 

given drug asset.  These studies can not prove a given affect but can valuably inform studies 

which can. 

 

7.1  Parallel Group Trials 

Defining Var(S) as per equation (2.3) one can solve equation (7.1) to give [36, 67] 
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where nA =rnB and  nA , nB and r are defined as per Section  2. For unknown variance 

equation (7.2) can be rewritten as 
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Equation 7.3 can be solved iteratively to find a value of nA where the left hand side of the 

equation is greater than the right.  An alternative equation to solve for nA would be 
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Equation 7.4 holds as: 
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and hence equation 7.3.  Equation 7.4 is in fact the same as equation 2.6, given in the section 

in superiority trials, but with the Type II error set at 0.5 (although obviously as precision 

trials are not powered they can not have any Type II error).  The practical application of this 

result is given later in the worked example using PASS to calculate sample sizes. 
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To allow for the Normal approximation equation 7.2 can have a correction factor added to 

assist in initial calculations [38]: 
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The following quick formula can be used (assuming one wishes to have a 95% confidence 

interval for the precision estimates): 
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 or for r=1:  
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Table 7.1 gives sample sizes using equation 7.3 for various standardised widths (σδ /d= ).  

The simpler equations slightly (by one or two) underestimate the sample size. 

  

7.1.1 Worked Example 

7.1.1.1. Using the sample size tables 

An investigator wishes to design a pilot safety cardiovascular trial with equal allocation 

between groups where the objective is to estimate any possible effect on QTc of new 

treatment compared to control with precision around the point estimate of ± 5 seconds (w).  

The expected standard deviation in the population in which the trial is to be undertaken is 25 

seconds (σ ).  Thus, the standardised width equates to 20.025/5/ === σδ d . Table 7.1 

gives a  sample size of 194 patients in each arm of the trial. 

If an unequal allocation of 2:1 (r=2) was necessary in favour of the investigative drug  then 

one would required 145 subjects on the control arm and 290 in the investigation arm. 
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7.1.1.2.  Repeated using sample size software 

To do the same calculations in nQuery click on File/New for Goal tick Means, Number of 

Groups tick Two and Confidence Interval.  Then select Confidence interval for difference of 

two means.  The dialogue box below gives the entries required in nQuery. 

 

nQuery gives a sample size of 193 which is one off table 7.1.  This difference could be due to 

rounding error or, as it seems from the nQuery manual [9], nQuery uses equation (7.5) but 

without the correct factor from Guenther [38]. 

PASS does not do these calculations directly.  A trick is to select Means and then T-Test:  2 

Groups (see section 2 and Superiority Trials for a description of the dialogue boxes of this 

form).  In the dialogue box enter 5 as the mean difference and 50% as type II error.  These 

entries would get PASS to use a formula equivalent to equation 7.4 (see the discussion of 

equation 7.4 earlier in this section for the rational for this).   Using this trick PASS returns a 

sample size of 192 per arm. 
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7.2 Cross-over group trials 

Similarly to the parallel group case one can solve equation (7.1) to give 

w

Z
n w

2
2 22

2/1 σα−= ,    (7.7) 

where n is the total sample size. For unknown variance equation (7.7) can be rewritten as: 

2

22
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w

t
n wσα −−≥ ,  (7.8) 

which can be solved iteratively.  Alternatively as with parallel group trials the following 

formula could be used: 
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To allow for the Normal approximation equation 7.7 can amended to have a correction factor 

(Guenther): 
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The following formula can be used for quick calculations (assuming one wishes to have a 

95% confidence interval precision estimates): 

2

28

w
n

σ
= .  (7.11) 

Table 7.2 gives sample sizes using equation 7.8 for various standardised widths (σδ /d= ).  

As with parallel group trials the quick formula slightly under estimates the sample size. 

 

7.2.1 Worked Example 

7.2.1.1. Using the sample size tables 

An investigator wishes to design a cross-over pilot cardiovascular safety study with equal 

allocation to estimate any possible effect on QTc with precision around the point estimate of 
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± 5 seconds (w).  The expected within-subject standard deviation in the population in which 

the trial is to be undertaken is 10 seconds (σ ).  The standardised width equates to 

50.010/5/ === σδ d .  Table 7.2 gives a  total sample size of 34 patients. 

 

7.1.1.2.  Repeated using sample size software 

To do the same calculation in PASS one needs to select Means and then Confidence Interval 

– Mean.  The following dialogue box gives the entries required. 

As with superiority trials in Section 2 the standard deviation required for the calculations  is 

the standard deviation of the difference.  Thus, the standard deviation to use is 

10*214.14 = .  PASS returns a sample size of 34 which is the same as sample size 

obtained from Table 7.2.  However, there is one anomaly in that the precision of 5 entered 
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into the dialogue box has metamorphicised into 4.934 in the output window.  It is not clear 

why this is so. 

To do the same calculations in nQuery click on File/New for Goal tick Means, Number of 

Groups tick One and then Confidence Interval.  Then select Confidence interval for 

difference paired means.  Like PASS nQuery uses the standard deviation of the difference in 

the calculations.  nQuery returns a sample size of 31 subjects three short of table 7.2.  This 

discrepancy could be due to rounding error, or, as with parallel group trials, it could be due to 

nQuery using equation (7.10) but without the correction factor.
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8. DESIGN CONSIDERATIONS 

8.1 Inclusion of Baseline or Covariates 

In the final analysis  of a clinical trial, the effect of treatment on the response of interest is 

often adjusted for predictive factors - such as demographic factors (like gender and age) or 

clinical covariates (such as baseline response) - by fitting them concurrently with treatment in 

the statistical model.   This section will concentrate on the case where baseline is the 

predictive covariate of interest (although the results are generalisable to other factors), the 

design is a parallel group and an analysis of covariance (allowing for the baseline), is to be the 

final analysis.  The CPMP have just issued draft notes for guidance on the design and analysis 

of studies with covariates [68]. 

Frison and Pocock [69] give a variance formula for various numbers of baseline 

measures: 
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Here, ȡ is the Pearson correlation coefficient between observations and p is the 

number of baseline measures taken per individual.  From this equation a series of 

correction factors can be calculated [13] which give the variance reduction (and 

consequent sample size reduction) for different correlations and numbers of 

baselines.  

From equation 8.2.1 it is clear that for fixed numbers of baseline measures the higher 

the correlation the greater the reduction in variance and consequent sample size.  For 

example if three baseline measures were to be taken with the expected correlation 

between baseline and outcome of 0.5, the effect would be to reduce the variance to 

0.6250* 2σ .   However, for the same number of baseline measures if the expected 
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correlation between baseline and outcome was 0.7 then the effect would be to reduce 

the variance to 0.3875*2σ .   

Another result from equation 8.2.1 is that for a fixed correlation it seems that 

although there is incremental benefit with increasing numbers of baselines this 

incremental benefit approximately asymptotes at 3 baselines.  The following table 

demonstrate this giving the correction factors for a fixed correlation between baseline 

and outcome of 0.50 and different numbers of baseline measures. 

 

Number of 
baselines 

Variance 

1 0.7500 
2 0.6667 
3 0.6250 
4 0.6000 
5 0.5833 
6 0.5714 
  

The results in this sub-section demonstrate the importance, when estimating the 

sample size, in taking the variance estimate from the full model where all covariates 

are present.  It also highlights how, if one ignores baseline and covariate information, 

one could potentially be overestimating the sample size. The  variance allowing for 

covariates should therefore be used in the sample size equations given in previous 

sections. 

 

8.2.  Post Dose Measures Summarised by Summary Statistics  

Often in parallel group trials, patients are followed up at multiple time points.    Making use 

of all of the information obtained on a patient has the desirable property of increasing the 

precision for estimating the effects of treatment.  Naturally as the precision is increased the 
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variability is decreased and one consequently needs to study fewer patients in order to 

achieve a given power.   

Suppose one is interested in looking at the difference in the average of all of the post-dose 

measures: 

BABA HH µµµµ ≠= :  verses: 10 , 

where BA µµ  and represent the means of the average post-dose measures in the two treatment 

populations.    

Frison and Pocock [69] explored several other summary measures for multiple post dose time 

points such as the rate of change of a particular endpoint across time.     Diggle, Liang and 

Zeger [70] describe the hypothesis for such a trials.  However, this paper will not got into 

detail on topic.  The simplest approach of just taking the simple average of the post-dose 

assessments for each subject will be described. 

Assuming one has r post-dose measures and that the correlation between these measures is ρ 

the variance can be calculated from  

{ }
r

r ρσ )1(1
Variance

2 −+
= ,     8.2.2 

where 2σ  represents the variance obtained from a trial with a single post-dose measurement. 

When looking at equation 8.2.2 it seems that as the correlation between post-dose measures 

increases the variance and consequent total sample size required increases.  This is because,  

although it may seem counterintuitive, the advantage of taking additional measurements 

decreases as the correlation increases.  This fact is due to how the total variance, 2σ , is 

constructed [71]:   

222
wb σσσ += ,    8.2.3  
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where 2
wσ  is the within subject component of variation (as in cross-over trials) and 2

bσ  is the 

between subject component of variation.    

It is important here to distinguish between the within- (intra-) subject and the between-(inter-) 

subject components of variation. The within-subject component of variation quantifies the 

expected variation among repeated measurements on the same individual. It is a compound of 

true variation in the individual.  Whilst the between-subject component of variation quantifies 

the expected variation of single measurements from different individuals.  If only one 

measurement is made per individual it is impossible to estimate 2
wσ  and 2

bσ  and consequently 

only the total variation, given in equation 8.2.3, can be estimated 

If one knows the between-subject variance and the correlation between measures the within-

subject variance can be derived from: 

22 1
bw σ

ρ
ρσ 






 −
= .   8.2.4 

Following on from this result  the variance that takes account of the number of post dose 

measures can be defined as: 

r
w

b

2
2Variance

σ
σ +=  8.2.5 

Thus, formula 8.2.2 is now actually quite intuitive.  As for constant r the higher the 

correlation, from 8.2.4, the lower the within-subject variance and, from 8.2.5, the lower the 

total variance and consequent sample size.  However, as ȡ increases, and σw falls, the effect 

of taking repeated measures diminishes as σw  already constitutes a small part of the overall 

variance. 

Equation 8.2.2 also gives the incremental benefit of taking additional post dose measures.   

As with taking baselines it seems that although there is incremental benefit with increasing 

numbers of post dose measures this incremental benefit asymptotes at 4 post dose measures.  
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The following table demonstrates this result giving the correction factors for a fixed 

correlation between post dose measures of 0.50 and difference numbers of post dose 

measures measures. 

 

Number of post 
dose measures 

Variance 

1 1.0000 
2 0.7500 
3 0.6667 
4 0.6250 
5 0.6000 
6 0.5833 
  

 

8.3 Inclusion of Baseline or Covariates as well as Post Dose Measures Summarised by 

Summary Statistics 

As noted in the previous section further savings in sample size can be achieved by accounting 

for baseline as a covariate.   Frison and Pocock [69] define an additional variance measure to 

account for the baseline (or multiple baselines) as a covariate and difference numbers of post 

dose measures.  Assuming there are p baseline visits and r post dose visits the variance is 

defined as:  
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9. SUMMARY 

This article walked through the calculations for cross-over and parallel group trials where the 

assumption is that the data are Normally distributed.  The null and alternative hypotheses were 

described for the most common types of trial and it was highlighted how these hypotheses 

impact on sample size derivation.   

For each type of trial, and trial design, a number of formulae were provided.  From quick easy 

to use results to ones which required iteration to find a solution.  It is recommended that the 

more complicated results be used generally and to assist in this recommendation sample size 

tables using these results have been provided. 

Of the different types of clinical trial covered in this paper probably the ones that will become 

more prevalent in the future are non-inferiority or "as good as or better" trials.  To facilitate 

their design greater work needs to be undertaken on defining non-inferiority margins.  At 

present there is only general guidance. 

An aspect of clinical trial design that is likely to grow is that of being adaptive in one's trials.  

An area only briefly mentioned in this paper.  Through being adaptive one could modify one's 

sample size calculations during a trial's course and so optimise the trial's design.  As such 

adaptive methodologies develop sample size calculations for Normal data, one will imagine,  

will be further adapted to accommodate them. 
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 Table 2.1.  Sample sizes for one group, nA (nB=rnA)   in a parallel group study for 

different standardised differences ( σδ /d= ) and allocation ratios for 90% power and a 

two sided type I error rate of 5%. 

 
      Allocation ratios 
                            δ         1           2        3          4 
                          0.05       8407       6306       5605       5255 
                          0.10       2103       1577       1402       1314 
                          0.15        935        702        624        585 
                          0.20        527        395        351        329 
                          0.25        338        253        225        211 
                          0.30        235        176        157        147 
                          0.35        173        130        115        108 
                          0.40        133        100         89         83 
                          0.45        105         79         70         66 
                          0.50         86         64         57         53 
                          0.55         71         53         47         44 
                          0.60         60         45         40         37 
                          0.65         51         38         34         32 
                          0.70         44         33         30         28 
                          0.75         39         29         26         24 
                          0.80         34         26         23         21 
                          0.85         31         23         20         19 
                          0.90         27         21         18         17 
                          0.95         25         19         17         15 
                          1.00         23         17         15         14 
                          1.05         21         15         14         13 
                          1.10         19         14         13         12 
                          1.15         17         13         12         11 
                          1.20         16         12         11         10 
                          1.25         15         11         10          9 
                          1.30         14         11          9          9 
                          1.35         13         10          9          8 
                          1.40         12          9          8          8 
                          1.45         12          9          8          7 
                          1.50         11          8          7          7 
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Table 2.2.  Total sample sizes (n) for a cross-over study for different standardised 
differences ( σδ /d= ) and allocation ratios for 90% power and a two sided type I error 
rate of 5%. 

 
                                            δ           n 
                                           0.05       8408 
                                           0.10       2104 
                                           0.15        936 
                                           0.20        528 
                                           0.25        339 
                                           0.30        236 
                                           0.35        174 
                                           0.40        134 
                                           0.45        106 
                                           0.50         87 
                                           0.55         72 
                                           0.60         61 
                                           0.65         52 
                                           0.70         45 
                                           0.75         40 
                                           0.80         35 
                                           0.85         32 
                                           0.90         29 
                                           0.95         26 
                                           1.00         24 
                                           1.05         22 
                                           1.10         20 
                                           1.15         19 
                                           1.20         17 
                                           1.25         16 
                                           1.30         15 
                                           1.35         14 
                                           1.40         13 
                                           1.45         13 
                                           1.50         12 
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Table 3.1.  Sample sizes (n1) for one arm of a parallel group equivalence study with 

equal allocation (r=1) for different standardised equivalence limits ( σδ d=  )  and true 
mean differences (as a percentage of δ) for 90% power and a type I error rate of 2.5%. 
 

   Percentage Mean Difference 
                    δ      0%   10%   15%   20%   25%                       
 
                   0.05 10397 11042 11915 13218 14960  
                   0.10  2600  2762  2980  3306  3741   
                   0.15  1157  1228  1325  1470  1664   
                   0.20   651   691   746   827   936   
                   0.25   417   443   478   530   600    
                   0.30   290   308   332   369   417    
                   0.35   214   227   245   271   307    
                   0.40   164   174   188   208   235    
                   0.45   130   138   149   165   186    
                   0.50   105   112   121   134   151    
                   0.55    87    93   100   111   125    
                   0.60    74    78    84    93   105    
                   0.65    63    67    72    80    90    
                   0.70    55    58    62    69    78    
                   0.75    48    51    54    60    68    
                   0.80    42    45    48    53    60    
                   0.85    37    40    43    47    53    
                   0.90    34    36    38    42    48    
                   0.95    30    32    34    38    43    
                   1.00    27    29    31    35    39    
                   1.05    25    27    29    31    35    
                   1.10    23    24    26    29    32    
                   1.15    21    22    24    26    30    
                   1.20    20    21    22    24    27    
                   1.25    18    19    21    23    25    
                   1.30    17    18    19    21    24    
                   1.35    16    17    18    20    22    
                   1.40    15    16    17    18    21    
                   1.45    14    15    16    17    19    
                   1.50    13    14    15    16    18    
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Table 3.2.  Total sample sizes (n) for cross-over equivalence study for different 
standardised equivalence limits ( σδ d=  )  and true mean differences (as a percentage 
of δ) for 90% power and a type I error rate of 2.5%. 
 

   Percentage Mean Difference 
                    δ      0%   10%   15%   20%   25%  
 
                   0.05 10398 11043 11916 13219 14961  
                   0.10  2601  2763  2981  3307  3742  
                   0.15  1158  1229  1326  1471  1665  
                   0.20   652   692   747   828   937  
                   0.25   418   444   479   531   601  
                   0.30   291   309   333   370   418  
                   0.35   215   228   246   272   308  
                   0.40   165   175   189   209   236  
                   0.45   131   139   150   166   187  
                   0.50   106   113   122   135   152  
                   0.55    88    94   101   112   126  
                   0.60    75    79    85    94   106  
                   0.65    64    68    73    81    91  
                   0.70    56    59    63    70    79  
                   0.75    49    52    55    61    69  
                   0.80    43    46    49    54    61  
                   0.85    39    41    44    48    54  
                   0.90    35    37    39    43    49  
                   0.95    31    33    36    39    44  
                   1.00    29    30    32    36    40  
                   1.05    26    28    30    33    36  
                   1.10    24    25    27    30    33  
                   1.15    22    23    25    28    31  
                   1.20    21    22    23    26    29  
                   1.25    19    20    22    24    27  
                   1.30    18    19    20    22    25  
                   1.35    17    18    19    21    23  
                   1.40    16    17    18    20    22  
                   1.45    15    16    17    18    20  
                   1.50    14    15    16    17    19  
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Table 4.1.  Sample sizes (nA) for one arm of an parallel group non-inferiority study with 

equal allocation (r=1) for different standardised equivalence limits ( σδ d=  )  and true 
mean differences (as a percentage of δ) for 90% power and a type I error rate of 2.5%. 
 

     Percentage Mean Difference 
                 δ    -25%  -20%  -15%  -10%   -5%   0%    5%    10%   15%   20%   25% 
 
                0.05  5381  5839  6358  6949  7626  8407  9316 10379 11636 13136 14945 
                0.10  1346  1461  1590  1738  1908  2103  2330  2596  2910  3285  3737 
                0.15   599   650   708   773   849   935  1036  1155  1294  1461  1662 
                0.20   338   366   399   436   478   527   584   650   729   822   935 
                0.25   217   235   256   279   306   338   374   417   467   527   599 
                0.30   151   164   178   194   213   235   260   290   325   366   417 
                0.35   111   121   131   143   157   173   192   213   239   270   306 
                0.40    86    93   101   110   121   133   147   164   183   207   235 
                0.45    68    74    80    87    96   105   116   130   145   164   186 
                0.50    55    60    65    71    78    86    95   105   118   133   151 
                0.55    46    50    54    59    64    71    78    87    98   110   125 
                0.60    39    42    46    50    54    60    66    74    82    93   105 
                0.65    33    36    39    43    47    51    57    63    70    79    90 
                0.70    29    31    34    37    40    44    49    54    61    68    78 
                0.75    25    27    30    32    35    39    43    48    53    60    68 
                0.80    23    24    26    29    31    34    38    42    47    53    60 
                0.85    20    22    23    26    28    31    34    37    42    47    53 
                0.90    18    20    21    23    25    27    30    34    37    42    48 
                0.95    16    18    19    21    23    25    27    30    34    38    43 
                1.00    15    16    17    19    21    23    25    27    31    34    39 
                1.05    14    15    16    17    19    21    23    25    28    31    35 
                1.10    13    14    15    16    17    19    21    23    26    29    32 
                1.15    12    13    14    15    16    17    19    21    23    26    30 
                1.20    11    12    13    14    15    16    18    20    22    24    27 
                1.25    10    11    12    13    14    15    16    18    20    23    25 
                1.30    10    10    11    12    13    14    15    17    19    21    24 
                1.35     9    10    10    11    12    13    14    16    17    20    22 
                1.40     8     9    10    10    11    12    13    15    16    18    21 
                1.45     8     9     9    10    11    12    13    14    15    17    19 
                1.50     8     8     9     9    10    11    12    13    14    16    18 
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Table 4.2.  Total sample sizes (n) for cross-over non-inferiority study for different 
standardised equivalence limits ( σδ d=  )  and true mean differences (as a percentage 
of δ) for 90% power and a type I error rate of 2.5%. 
 

     Percentage Mean Difference 
                 δ    -25%  -20%  -15%  -10%   -5%    0%    5%   10%   15%   20%   25% 
 
                0.05  5382  5840  6359  6949  7627  8408  9316 10380 11637 13137 14946 
                0.10  1347  1462  1591  1739  1909  2104  2331  2597  2911  3286  3738 
                0.15   600   651   709   774   850   936  1037  1156  1295  1462  1663 
                0.20   339   367   400   437   479   528   585   651   730   823   936 
                0.25   218   236   257   280   307   339   375   418   468   528   600 
                0.30   152   165   179   195   214   236   261   291   326   367   418 
                0.35   112   122   132   144   158   174   193   214   240   270   307 
                0.40    87    94   102   111   122   134   148   165   184   208   236 
                0.45    69    75    81    88    97   106   117   131   146   165   187 
                0.50    56    61    66    72    79    87    96   106   119   134   152 
                0.55    47    51    55    60    65    72    79    88    99   111   126 
                0.60    40    43    47    51    55    61    67    75    83    94   106 
                0.65    34    37    40    44    48    52    58    64    71    80    91 
                0.70    30    32    35    38    41    45    50    55    62    69    79 
                0.75    26    29    31    33    36    40    44    49    54    61    69 
                0.80    24    25    27    30    32    35    39    43    48    54    61 
                0.85    21    23    25    27    29    32    35    38    43    48    54 
                0.90    19    21    22    24    26    29    31    35    38    43    49 
                0.95    18    19    20    22    24    26    28    31    35    39    44 
                1.00    16    17    19    20    22    24    26    29    32    35    40 
                1.05    15    16    17    18    20    22    24    26    29    32    36 
                1.10    14    15    16    17    18    20    22    24    27    30    33 
                1.15    13    14    15    16    17    19    20    22    25    27    31 
                1.20    12    13    14    15    16    17    19    21    23    25    29 
                1.25    11    12    13    14    15    16    18    19    21    24    26 
                1.30    11    11    12    13    14    15    16    18    20    22    25 
                1.35    10    11    12    12    13    14    15    17    19    21    23 
                1.40    10    10    11    12    13    13    15    16    18    19    22 
                1.45     9    10    10    11    12    13    14    15    17    18    20 
                1.50     9     9    10    11    11    12    13    14    16    17    19 
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Table 6.1.  Total sample sizes (n) for a bio-equivalence cross-over study for different 

CVs, levels of bio-equivalence  and true mean ratios for 90% power and a type I error 

rate of 5%. 
      Levels of Bio-equivalence 
             CV (%)      Ratio        10%        15%        20%        25%        30% 
 
                 10       0.80                                          43         12 
                          0.85                               48         13          7 
                          0.90                    54         14          8          5 
                          0.95         60         16          8          6          5 
                          1.00         21         10          7          5          5 
                          1.05         55         15          8          6          5 
                          1.10                    40         13          7          5 
                          1.15                               26         10          6 
                          1.20                              104         17          8 
 
                 15       0.80                                          93         23 
                          0.85                              106         26         12 
                          0.90                   119         29         14          8 
                          0.95        132         33         15          9          7 
                          1.00         45         20         12          8          6 
                          1.05        121         31         15          9          7 
                          1.10                    86         25         12          8 
                          1.15                               57         19         10 
                          1.20                              231         36         15 
 
                 20       0.80                                         163         40 
                          0.85                              185         45         20 
                          0.90                   207         50         22         13 
                          0.95        232         56         25         14         10 
                          1.00         78         34         19         12          9 
                          1.05        212         54         24         14         10 
                          1.10                   151         43         20         12 
                          1.15                               99         33         16 
                          1.20                              405         62         24 
 
                 25       0.80                                         251         60 
                          0.85                              284         68         30 
                          0.90                   320         77         33         18 
                          0.95        357         86         37         21         14 
                          1.00        120         52         28         18         12 
                          1.05        326         82         36         21         14 
                          1.10                   232         65         30         17 
                          1.15                              151         49         24 
                          1.20                              625         95         36 
 
                 30       0.80                                         356         85 
                          0.85                              403         96         41 
                          0.90                   454        108         46         25 
                          0.95        507        121         52         29         18 
                          1.00        170         73         39         25         17 
                          1.05        463        116         51         28         18 
                          1.10                   329         92         42         24 
                          1.15                              214         69         33 
                          1.20                              888        135         50 
 
                 35       0.80                                         477        113 
                          0.85                              540        128         54 
                          0.90                   608        145         61         33 
                          0.95        679        162         69         38         24 
                          1.00        227         97         52         32         22 
                          1.05        620        155         67         37         24 
                          1.10                   440        123         55         31 
                          1.15                              287         92         44 
                          1.20                             1190        180         67 
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Table 6.1 (Cont).  Total sample sizes (n) for a bio-equivalence cross-over study for 

different CVs, levels of bio-equivalence  and true mean ratios for 90% power and a type 

I error rate of 5%. 
      Levels of Bio-equivalence 
                         CV (%)      Ratio        10%        15%        20%        25%        30% 
 
                 40       0.80                                         612        144 
                          0.85                              694        164         69 
                          0.90                   780        185         78         42 
                          0.95        871        207         88         48         30 
                          1.00        291        124         66         41         27 
                          1.05        796        198         86         47         30 
                          1.10                   565        157         71         39 
                          1.15                              367        118         56 
                          1.20                             1527        231         86 
 
                 45       0.80                                         760        179 
                          0.85                              861        203         86 
                          0.90                   969        230         97         52 
                          0.95       1082        257        109         60         37 
                          1.00        361        153         82         50         33 
                          1.05        989        246        106         59         37 
                          1.10                   701        195         87         48 
                          1.15                              456        146         69 
                          1.20                             1897        286        106 
 
                 50       0.80                                         919        216 
                          0.85                             1042        246        103 
                          0.90                  1172        277        117         62 
                          0.95       1309        311        132         72         45 
                          1.00        437        185         99         60         40 
                          1.05       1196        297        128         70         44 
                          1.10                   848        236        105         58 
                          1.15                              552        177         83 
                          1.20                             2295        346        128 
 
                 55       0.80                                        1089        256 
                          0.85                             1233        291        122 
                          0.90                  1387        328        138         74 
                          0.95       1550        368        156         84         52 
                          1.00        517        218        117         71         47 
                          1.05       1416        352        152         83         52 
                          1.10                  1004        279        124         68 
                          1.15                              653        209         98 
                          1.20                             2718        410        151 
 
                 60       0.80                                        1266        297 
                          0.85                             1435        338        142 
                          0.90                  1614        381        160         85 
                          0.95       1803        428        181         98         61 
                          1.00        601        254        136         82         54 
                          1.05       1648        409        176         96         60 
                          1.10                  1168        324        144         79 
                          1.15                              759        243        114 
                          1.20                             3162        476        175 
 
                 65       0.80                                        1451        340 
                          0.85                             1644        387        162 
                          0.90                  1849        437        183         97 
                          0.95       2067        490        207        112         69 
                          1.00        689        291        155         94         62 
                          1.05       1888        469        202        110         68 
                          1.10                  1338        371        165         90 
                          1.15                              870        278        130 
                          1.20                             3624        546        200 
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Table 6.2.  Sample sizes (n1) for one arm of a bio-equivalence parallel group study for 
different CVs, levels of bio-equivalence  and true mean ratios for 90% power and a type 
I error rate of 5%. 
      Levels of Bio-equivalence 
                      CV (%)      Ratio        10%        15%        20%        25%        30% 
 
                 30       0.80                                         356         84 
                          0.85                              403         95         40 
                          0.90                   453        108         46         25 
                          0.95        506        121         51         28         18 
                          1.00        169         72         39         24         16 
                          1.05        462        115         50         28         17 
                          1.10                   328         92         41         23 
                          1.15                              213         69         33 
                          1.20                              887        134         50 
 
                 35       0.80                                         476        112 
                          0.85                              540        128         54 
                          0.90                   607        144         61         33 
                          0.95        678        161         69         37         23 
                          1.00        226         96         51         31         21 
                          1.05        620        154         67         37         23 
                          1.10                   439        122         55         30 
                          1.15                              286         92         43 
                          1.20                             1189        179         66 
 
                 40       0.80                                         611        144 
                          0.85                              693        163         69 
                          0.90                   779        184         78         41 
                          0.95        871        207         88         48         30 
                          1.00        291        123         66         40         26 
                          1.05        796        198         85         47         29 
                          1.10                   564        157         70         38 
                          1.15                              367        117         55 
                          1.20                             1527        230         85 
 
                 45       0.80                                         759        178 
                          0.85                              861        203         85 
                          0.90                   968        229         96         51 
                          0.95       1082        257        109         59         36 
                          1.00        361        152         81         49         33 
                          1.05        988        245        106         58         36 
                          1.10                   700        194         87         47 
                          1.15                              455        146         68 
                          1.20                             1896        286        105 
 
                 50       0.80                                         919        216 
                          0.85                             1041        245        103 
                          0.90                  1171        277        116         62 
                          0.95       1309        310        131         71         44 
                          1.00        436        184         98         60         39 
                          1.05       1195        297        128         70         43 
                          1.10                   847        235        104         57 
                          1.15                              551        176         82 
                          1.20                             2295        345        127 
 
                 55       0.80                                        1088        255 
                          0.85                             1233        290        121 
                          0.90                  1387        327        137         73 
                          0.95       1550        367        155         84         52 
                          1.00        516        218        116         70         46 
                          1.05       1416        351        151         82         51 
                          1.10                  1003        278        124         68 
                          1.15                              652        208         97 
                          1.20                             2718        409        150 
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Table 6.2 (Cont).  Sample sizes (n1) for one arm of a bio-equivalence parallel group 

study for different CVs, levels of bio-equivalence  and true mean ratios for 90% power 

and a type I error rate of 5%. 
      Levels of Bio-equivalence 
                      CV (%)      Ratio        10%        15%        20%        25%        30% 
 
                 60       0.80                                        1266        297 
                          0.85                             1434        337        141 
                          0.90                  1613        381        160         85 
                          0.95       1803        427        180         97         60 
                          1.00        601        253        135         82         54 
                          1.05       1647        408        176         96         59 
                          1.10                  1167        323        144         78 
                          1.15                              759        242        113 
                          1.20                             3162        476        174 
 
                 65       0.80                                        1450        340 
                          0.85                             1643        386        161 
                          0.90                  1849        436        183         97 
                          0.95       2066        489        207        111         68 
                          1.00        688        290        154         93         61 
                          1.05       1887        468        201        109         68 
                          1.10                  1337        371        164         90 
                          1.15                              869        277        129 
                          1.20                             3623        545        200 
 
                 70       0.80                                        1641        384 
                          0.85                             1860        437        182 
                          0.90                  2092        494        207        109 
                          0.95       2338        553        234        126         77 
                          1.00        779        328        175        105         69 
                          1.05       2135        529        227        124         76 
                          1.10                  1513        419        186        101 
                          1.15                              984        313        146 
                          1.20                             4100        616        226 
 
                 75       0.80                                        1836        430 
                          0.85                             2081        489        204 
                          0.90                  2341        552        231        122 
                          0.95       2616        619        261        141         86 
                          1.00        871        367        195        118         77 
                          1.05       2390        592        254        138         85 
                          1.10                  1693        469        208        113 
                          1.15                             1101        351        164 
                          1.20                             4588        690        253 
 
                 80       0.80                                        2035        476 
                          0.85                             2307        542        226 
                          0.90                  2595        612        256        135 
                          0.95       2900        686        289        156         96 
                          1.00        966        407        216        131         85 
                          1.05       2649        656        282        153         95 
                          1.10                  1877        520        230        125 
                          1.15                             1220        388        181 
                          1.20                             5086        764        280 
 
                 85       0.80                                        2237        524 
                          0.85                             2535        596        248 
                          0.90                  2852        673        281        149 
                          0.95       3187        754        318        171        105 
                          1.00       1061        447        238        143         94 
                          1.05       2912        721        310        168        104 
                          1.10                  2063        571        253        138 
                          1.15                             1341        427        199 
                          1.20                             5590        840        308 
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Table 7.1.  Sample sizes for one group, nA (nB=rnA) in a parallel group study for 

different standardised widths ( σδ /w= ) and allocation ratios and 95% confidence 

intervals for the precision estimates 
 
      Allocation ratios 
                            δ         1           2        3          4 
                           0.05       3075       2306       2050       1922 
                           0.10        770        578        513        481 
                           0.15        343        257        229        214 
                           0.20        194        145        129        121 
                           0.25        125         94         83         78 
                           0.30         87         65         58         54 
                           0.35         64         48         43         40 
                           0.40         50         37         33         31 
                           0.45         40         30         26         25 
                           0.50         32         24         22         20 
                           0.55         27         20         18         17 
                           0.60         23         17         15         14 
                           0.65         20         15         13         12 
                           0.70         17         13         12         11 
                           0.75         15         12         10         10 
                           0.80         14         10          9          9 
                           0.85         12          9          8          8 
                           0.90         11          8          7          7 
                           0.95         10          8          7          6 
                           1.00          9          7          6          6 
                           1.05          9          7          6          5 
                           1.10          8          6          5          5 
                           1.15          8          6          5          5 
                           1.20          7          5          5          4 
                           1.25          7          5          4          4 
                           1.30          6          5          4          4 
                           1.35          6          5          4          4 
                           1.40          6          4          4          3 
                           1.45          6          4          4          3 
                           1.50          5          4          3          3 

 



 107 

Table 7.2.  Total sample sizes for a cross-over study for different standardised widths 

( σδ /w= ) and 95% confidence intervals for the precision estimates 
 
 

                                            δ           n 
                                           0.05       3076 
                                           0.10        771 
                                           0.15        344 
                                           0.20        195 
                                           0.25        126 
                                           0.30         88 
                                           0.35         66 
                                           0.40         51 
                                           0.45         41 
                                           0.50         34 
                                           0.55         28 
                                           0.60         24 
                                           0.65         21 
                                           0.70         19 
                                           0.75         17 
                                           0.80         15 
                                           0.85         14 
                                           0.90         13 
                                           0.95         12 
                                           1.00         11 
                                           1.05         10 
                                           1.10         10 
                                           1.15          9 
                                           1.20          9 
                                           1.25          8 
                                           1.30          8 
                                           1.35          8 
                                           1.40          7 
                                           1.45          7 
                                           1.50          7 
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Figure 1:  An illustration of average equivalence between two populations 
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Figure 2.  An illustration of the difference between superiority, equivalence and non-

inferiority. 
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Figure 3:  An illustration of average non-inferiority between two populations 
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Figure 4.  An example of pharmacokinetic profiles for a test and reference formulation. 
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Figure 5:  An illustration of average bioequivalence between two formulations 
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