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SUMMARY  

This article gives an overview of sample size calculations for a single response and a comparison of 

two responses in a parallel group trial where the outcome is binary.  Sample size derivation is given 

for trials where the objective is to demonstrate: superiority, equivalence, non-inferiority and 

estimation to a given precision.  For each type of trial the null and alternative hypotheses are described 

as well as how the impact these have on the sample size calculations.  For each type of trial the 

calculations are highlighted through worked examples.  Sample size tables for the different types of 

trials and worked examples are given to assist in future calculations.  
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1. INTRODUCTION  

An essential step in planning a trial is the calculation of a sample size which will give 
the minimum numbers required to meet the objectives of the study.  We have already 
given a tutorial for the case where the endpoint is anticipated to have a Normal 
distribution [1]. This paper extends this work to discuss the situation where the primary 
endpoint is binary. A review of sample size formulas for the comparison of proportions 
has been published before [2]; this paper expands and updates that review. 

Having as good an estimate as possible of the required sample size is important as 
studies that are either too small or too large may be judged unethical [5]. For example, 
a study that is too large could have met the objectives of the trial before the actual study 
end had been reached, and so some patients may have unnecessarily entered the trial 
and have been randomised to a therapy that can already be proven to be suboptimal.  
Conversely a trial that is too small may have little chance of meeting the study 
objectives, and patients may be entering a trial for no tangible benefit.  The general 
approach to choosing sample size will be described in this article where the primary 
endpoint can be assumed to be binary and an estimate of the treatment response on at 
least one of the arms is available.  The sections of the paper detail computation of 
sample sizes appropriate for: 

1. Superiority trials. 

2. Equivalence trials. 

3. Non-inferiority trials. 

4. As good as or better trials. 

5. Trials to a given precision. 

As in our earlier paper [1] a distinction is drawn between trials designed to demonstrate 
'superiority' and trials designed to demonstrate 'equivalence' or 'non-inferiority'. We 
emphasise how differences in the null hypothesis can impact on calculations as well as 
in the estimation of the treatment response under the null and alternative hypothesis 
[3]. The ICH guidelines E3 and E9 provide general guidance on selecting the sample 
size for a clinical trial [6,7].     

Using worked examples, we will also give a brief description of how the calculations 
can be undertaken in  two popular packages PASS 11 [8] and nQuery 7 [9].   

The paper is written on the premise that one or two treatments are to be compared in a 
parallel group trial with a single binary outcome.  Each section of the paper will 
describe the appropriate sample size formulae.  Tables are given in each section which 
provide sample size estimates using these formulae and worked examples are described 
which use these tables.  Also, within each section some quick approximate formulas 
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are given which do not require the use of tables for calculations. We assume that the 
reader is familiar with the concepts of Type I and Type II errors (and power) as 
discussed in an earlier tutorial article [1] and numerous books including [3-4]. 

 

2. SINGLE PROPORTION 

In studies with a single binary response Aπ  there are two types of hypothesis that can 

investigated depending on whether the objective of the trial is to show the response is 
greater than or less than some hypothesised value - as in the null (Ho ) and alternative 
(H1) hypothesis below 

H0: The treatment has an effect in terms of the absolute risk being less or equal than 
some pre-specified value ( HA ππ ≤ ). 

H1: The treatment has an effect in terms of the absolute risk being greater than some 
pre-specified value ( HA ππ > ). 

Alternatively 

H0: The two treatments have equal effect with respect to the absolute risk difference (

HA ππ = ). 

H1: The two treatments are different with respect to the absolute risk difference (

HA ππ ≠ ). 

Even if we have a two (or more) arm trial we may still wish to investigate an hypothesis 
for a single arm.  For example the primary endpoint may be  clinical  based on a 
continuous scale but we may wish also to show that for a particular adverse event  the 
proportion of events on the investigative treatment arm Aπ  can be proved (at a given 

level of significance) to be less than some a priori set clinically important absolute risk 
i.e. HA ππ ≤ . 

We will concentrate on the situation of a randomised controlled trial where there is a 
need to assess a single arm of the trial but without reference to the control - such as in 
an assessment of adverse events [12].  A way of investigating a single binary response 
would be to obtain a best estimate of the absolute risk for the investigative treatment 
and then see if the upper bound (or lower bound depending on the null hypothesis) of 
the 95% confidence interval for this response excludes the clinically important risk.  
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2.1. Confidence Interval Calculation 

It is worth considering the calculation of confidence intervals for a single binary 
response before describing the sample size calculations.  There are number of ways of 
a calculating a confidence interval [13].  Here we will concentrate on just two: the 
Normal approximation approach and the exact method.  The Normal approximation is 
the most common approach for calculating confidence intervals. However, for rare 
events the Normal approximation may not hold and exact methods should be applied 
instead. 

 

2.1.1. Normal Approximation  

Under the Normal approximation the confidence interval for a single proportion is 
defined as 

(1)  )(21 pseZp α−± ,   

where p is the estimated response from the trial, npppse )1()( −= , 2/1Z α−  the 

)( 2/1 α− %  point of the standard Normal distribution 

and α  the level of statistical significance (α =0.05 would give 95% confidence 
intervals). This method is referred to as the Wald method [13].   

 

2.1.2. Exact Confidence Intervals  

The confidence interval calculations described as "exact" confidence intervals are also 
known as Clopper-Pearson confidence intervals [14].  These confidence intervals are 
calculated by summing each of the tail probabilities from the binomial distribution, 
given the observed number of cases (k) for the sample size (n).  Therefore, defining the 
individual cell probabilities as 

(2)  )()1()Pr( knk pp
k

n
kX −−








== , 

the lower limit of the confidence interval is calculated as the largest value of p such 
that the lower tail area of the cumulative distribution is no more than α/2.   Likewise 
the upper limit is calculated as the smallest point where the cumulative distribution 
equals or exceeds 1-α/2.  Formally, the lower point of a confidence interval is defined 
as the maximum value pL such that 

(3)  2/)1( )(

0

α≤−






 −

=
∑ in

L
i
L

k

i
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whilst the upper point is defined as the minimum value pU such that, 

(4)  2/1)1( )(

0

α−≥−






 −

=
∑ in

U
i
U

k

i

pp
i

n
. 

An alternative approach to calculate exact confidence intervals would be to use the link 
between binomial and beta distributions [15-16].  From this the lower bound is  defined 
as 

(5)  ( )kknBETAINVpL ,1,211 +−−−= α , 

and upper as 

(6)  ( )knkBETAINVpU −+−= ,1,21 α .  

Here, α is the level of statistical significance (α =0.05 would give 95% confidence 
intervals), k the number of events observed  n the sample size on the investigative 
treatment arm and ( )•BETAINV  refers to the cumulative distribution function of a Beta 

distribution.  The upper and lower bounds calculated from (5) and (6) will provide 
range of plausible values that the population proportion is likely to be within. The 
theoretical rationale behind using the Beta distribution is more complicated than for 
standard Normal approximation calculations.  However, operationally they are easy to 
calculate and can be calculated in most statistical packages.  The ( )•BETAINV  notation 

given in this paper is taken from the computer package SAS. 

Identical confidence intervals can also be obtained using the link between the F 
distribution and the binomial distribution although with a more complicated 
nomenclature [13,15,16].  This link will not be discussed further.  

 

2.2. One Tailed or Two Tailed? 

The question of whether to calculate one or two tailed confidence intervals is not 
straightforward [17].  It depends on whether we wish to provide an estimate of the 
plausible range for the true value (two tailed) or a value which you are confident will 
not be exceeded by the true value  (one tailed).   

For rare events we are often interested in a one tailed confidence interval such that a 
(upper) one-tailed (1-α %) bound is estimated from 

(7)  ( )knkBETAINV −+− ,1,1 α   

This one tailed confidence interval will give estimate of the proportion for a given 
number of events k in n subjects which is unlikely to be exceeded by the true population 
proportion.   
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The emphasis in this paper, however, will be on two tailed confidence interval 
estimation i.e. using (5) and (6).  As we are only interested in one tail of the 95% 
confidence interval this would be equivalent to a one tailed confidence interval but with 
α  set at 2.5%. 

 

2.3. Sample Size Calculation 

To calculate the sample size for an anticipated response Aπ  which we wish to assess 

as being less than (or greater) then a hypothesised value Hπ  the following Normal 

approximation result could be used [18] 

(8)  
[ ]

( )2
2

2/1-1 )1(Z)1(Z

HA

HHAAn
ππ

ππππ αβ

−

−+−
= − . 

This sample size calculation would be consistent with a Normal approximation being 
used for the confidence interval.  Here, Į and β  are the overall Type I and Type II 

errors level.  

An alternative equation  is 

(9)  
[ ]

( )2
2

2/1-1 ZZ)1(

HA

n
ππ

ππ αβ

−

+−
= − . 

where 2/)( HA πππ += .  Equation (9)  gives similar answers to equation (8) for Aπ  

< Hπ  but gives a slightly larger sample size for Aπ  > Hπ . 

Table 1 gives sample sizes from (8) for various values of Aπ  > Hπ . For  Aπ  < Hπ  

replace Aπ  by Aπ−1  and Hπ  by Hπ−1 . 

 



8 
 

Table 1.  Sample size calculations for a one arm trial for a single binary response 
using the Normal approximation for 90% power and a 95% confidence interval 
for an alternative hypothesis of HA ππ >  using (8). 

 Hπ  

Aπ  0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50 0.55 0.60 0.65 
 

0.70 
 

0.75 
 

0.80 
 

0.85 
 

0.90 
0.10 264                  
0.15 79 438                 
0.20 40 122 589                
0.25 25 59 158 718               
0.30 17 35 74 189 825              
0.35 12 24 43 87 214 912             
0.40 10 17 29 50 97 233 977            
0.45 8 13 20 33 56 105 248 1022           
0.50 6 10 15 23 36 60 111 257 1045          
0.55 5 8 12 17 25 38 62 114 261 1047         
0.60 4 6 9 13 18 26 40 64 115 259 1028        
0.65 3 5 7 10 14 19 27 40 63 113 252 988       
0.70 3 4 6 8 11 14 19 27 40 62 109 240 927      
0.75 2 4 5 6 8 11 14 19 27 38 59 103 222 845     
0.80 2 3 4 5 7 8 11 14 19 25 36 55 94 200 742    
0.85 2 2 3 4 5 7 8 10 13 17 23 33 49 82 171 617   
0.90 1 2 3 3 4 5 6 8 10 12 16 21 28 42 68 137 471  
0.95 1 2 2 3 3 4 5 6 7 8 10 13 17 23 32 51 96 301 

 

Using a binomial distribution an estimate of the power can be obtained from equations 
(10) and (11) [19] 

(10)  jN
A

j
A

q

j j

n −

=

−






∑ )1(
0

ππ  

where q is the largest integer of k such that 

(11)  αππ ≤−






 −

=
∑ jN

H
j

H

k

j j

n
)1(

0

 

Table 2 gives the sample sizes estimate from (10) and (11).  As with Table 1 for  Aπ <

Hπ  replace Aπ  by Aπ−1  and Hπ  by Hπ−1 .  It should be noted that here Aπ Hπ>  

and Aπ < Hπ  do not quite give symmetric results.  There were seven instances where 

the sample size calculated for Aπ Hπ>  was slightly higher than the sample size 

estimates “equivalent” for Aπ < Hπ .  These are shown (with the sample size for Aπ

Hπ> ) as superscript entries}.  
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Table 2.  Sample size calculations for a one arm trial for a single binary response 
using a binomial distribution for 90% power and a two sided significance level of 
5% for an alternative hypothesis of HA ππ >  using equation (10) and (11) 

Superscript entries are shown when ʌA and ʌH are swapped and the results differ.  

 Hπ  

Aπ  0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50 0.55 0.60 0.65 
 

0.70 
 

0.75 
 
0.80 

 
0.85 

 
0.90 

0.10 316                  
0.15 102 492                 
0.20 55 149 641                
0.25 38 75 183 768               
0.30 27 49 90 212 870              
0.35 18 34 56 103 237 949             
0.40 16 23 39 60 112 255 1021            
0.45 14 20 26 42 66 116 266 1066           
0.50 12 15 20 30 42 70 121 274 1080          
0.55 8 13 16 22 31 44 71 125 273 1082         
0.60 7 10 14 18 22 32 46 72 121 275 1059        
0.65 6 9 11 13 18 24 33 47 69 124 265 1017       
0.70 6 8 10 11 15 18 23 30 46 68 117 252 950      
0.75 5 7 9 9 12 13 17 23 32 44 64 111 231 863     
0.80 5 5 6 8 9 11 14 17 21 31 39 59 99 207 764    
0.85 5 5 6 6 7 8 10 11 15 19 27 36 55 87 180 632   
0.90 5 5 5 5 6 8 9 9 13 14 19 21 32 45 73 143 484  
0.95 5 5 5 5 5 5 7 7 8 9 10 15 18 25 35 51 100 301 

 

Comparing Table 1 with the equivalent values in  Table 2 we can see that equation 8) 
estimates the sample size to be smaller than equations (10) and (11).  This difference 
in the sample size is due to two reasons. Firstly, Fisher’s Exact tests is more 
conservative than the asymptotic test and so requires a large sample size for a given 
significance level and power. Secondly, because of the discrete nature of the binomial 
distribution it may be impossible to get an exact type I and Type II error. One can easily 
find the actual significance level and power, for a given sample size, that a binomial 
distribution produces. If these actual values are inserted into (9) we would find results 
comparable to Tables 1 and 2 

For completeness we include the following result which gives the sample size where 
an arcsine transformation (if y=sin(x) then x=arcsin(y)) is applied to the hypothesised 
and anticipated responses [20].  The sample sizes estimated from this result are 
comparable to earlier results and will not be discussed further. 

(12)  
[ ]

( )2
2

2/1-1

)arcsin()arcsin(4

ZZ

HA

n
ππ

αβ

−

+
= − . 
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2.3.1. Worked Example 1 – Sample Size Calculation for a Single Binary 
Response 

An investigator is designing a placebo controlled trial to investigate a new treatment in 
depression.  The sample size for the primary endpoint was calculated to be 525 patients 
per arm. From experience with other compounds for the same indication the adverse 
event rate is anticipated to be around 50% in the trial population   The compound under 
investigation is expected to have a lower adverse event rate of around 40% and the 
investigator wishes to demonstrate using a 95% confidence interval (equivalent to a 
Type I error of 2.5%) and 90% power that the event rate is less than 50%. 

Since ʌA < ʌH we look up 1- ʌA and 1- ʌH  and using the Normal approximation result 
given by equation (8) the required sample size from Table 1 for ʌH=0.5 and ʌA=0.6  is 
estimated to be 259 patients.  Alternatively using the binomial approach, and results 
(10) and (11), Table 2 estimates the sample size to be 275 patients.  As the sample size 
is less than the sample size of 525 patients being recruited the investigator has sufficient 
power for the additional objective. 

In repeating the calculation in PASS we believe there may be an error in the way PASS 
estimates sample size for one binomial proportion. To estimate the sample size on 
PASS you select the menu options Proportions /One Proportion / Test (Inequality) and 
then the icon Test for One Proportion (Proportions).  For this problem, the Alternative 
Hypothesis dialogue can be set to ‘p<p0’ and the Type I error as 0.025.  PASS can 
either estimate the sample size (for a given power) or the power (for a given sample 
size).  PASS estimates the sample size to be 263 patients  

The SAS code that seems to mimic the results in PASS is given in Figure 1.  This 
program will iterate until the first integer sample size has greater than 90% power.   
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Figure 1.  Example SAS code for calculating sample sizes using a binomial 
distribution for the alternative hypothesis of HA ππ > . 

data power1; 

  do ps= 0.10 to 0.95 by 0.05; 

 

     do p0= 0.05 to ps-0.05 by 0.05; 

     flag1=0; k1=0; 

 

        do n=3 to 2000 by 1 until (flag1=1); 

        n1=n; flag2=0;k1=0; 

 

           do k=0 to n by 1 until (flag2=1); 

           prob2=probbnml(ps,n,k); 

           if prob2 gt 0.025 then do; 

           flag2=1; 

           if k ge 1 then do; 

           k1=k-1; 

           prob2a=probbnml(ps,n,k1); 

           end; 

           if k = 0 then do; 

           k1=0; 

           prob2a=probbnml(ps,n,k1); 

           end;end;end; 

 

        prob3=probbnml(p0,n,k1); 

        if prob3 ge 0.90 then do; 

        flag1=1; 

        end;end; 

   output;   

   end;end; 

run; 

 

There is an interesting issue with this programming approach.  Figure 2 gives the power 
for the study for different sample sizes ranging from 250 to 290 patients for the worked 
example of Aπ =0.40 and Hπ =0.50.  We can see from Figure 2 how a power of 90% is 

obtained for a sample size of 263 patients but now we have less than 90% power for 
264 patients!.  In fact it is not until the sample size is 275 that for both this and the 
subsequent sample sizes does power exceed 90%.  The sample size of 275 patients is 
what is given in Table 2 and by Equations 10 and 11.   

The reason why the power ‘zig-zags’ in Figure 2 is due to the discrete nature of the  
binomial distribution.  With additional patients the achievable Type I error may drop 
which may mean that the power to achieve that level of significance falls.  To estimate 
the sample sizes given in Table 2 a program was written so that the iteration will only 
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stop for given integer sample size if it, and sample sizes up to 10 greater, all had greater 
than 90% power.  Figure 3 gives example SAS code for this calculation. 

 

Figure 2.  Power for a given sample size for the case Aπ =0.40 and Hπ =0.50 where 
we wish to show that HA ππ <  with a two-sided 95% confidence interval.   
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Figure 3.  SAS code used to generate Table 2 for calculating sample sizes using a 
binomial distribution for the alternative hypothesis of HA ππ > . 

data power1; 

 do ps= 0.10 to 0.95 by 0.05; 

 

    do p0= 0.05 to ps-0.05 by 0.05; 

    flag1=0; k1=0; 

 

      do n=5 to 2000 by 1 until (flag1=10); 

      n1=n; flag2=0; k1=0; 

 

         do k=0 to n by 1 until (flag2=1); 

         prob2=probbnml(ps,n,k); 

 

         if prob2 gt 0.025 then do; 

         flag2=1; 

         if k ge 1 then do; 

         k1=k-1; 

         prob2a=probbnml(ps,n,k1); 

         end; 

         if k = 0 then do; 

         k1=0; 

         prob2a=probbnml(ps,n,k1); 

         end; end; end; 

 

         prob3=probbnml(p0,n,k1); 

         if prob3 ge 0.90 then do; 

         flag1=flag1+1; 

         end; 

 

         if prob3 lt 0.90 and flag1 ge 1 then do; 

         flag1=0; 

         end; end; 

     n1=n1-flag1+1; 

     output; 

 end; end; 

 run; 
 
 

 

The equivalent calculation in PASS is given below.  Here PASS is run to give the 
sample size for a range of sample sizes from 260 to 280.  PASS now gives a sample 
size of 274 patients. 
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PASS also has two other methods giving sample size estimates for two Normal 
approximation approaches (both with and without  a continuity correction).  Both 
approaches are a little different from (9) (and indeed (8)) in that the variance estimate 
of the treatment effect (under the null or alternative hypothesis) either uses just Aπ  or 

Hπ   and not both (as in (9) and (8)).  For the calculation of the result that uses Aπ  

(termed p hat in PASS) the sample size is estimated to be 251 patients. 

In nQuery to estimate the sample size equivalent to the exact approach given in 
equations (10) and (11) the options Proportions /One /Exact test for a single proportion 
need to be selected.  nQuery does not give the sample size directly but the power for a 
given sample size.  To save doing many iterations, equation  (9) could be used for an 
initial sample size.  nQuery only gives power to 2 decimal places in the calculations 
spreadsheet (actually returns as a percentage equivalent to two decimal places) with 
more significant digits appear at the bottom of the window.  For the spreadsheet the 
power is always rounded down.  Hence, a power of 89.99 will appear as 89% in the 
output.   nQuery gives a sample size of 274 patients.    

To calculate a sample size using a Normal approximation the options Proportions /One 
/One sample Chi-squared test should be ticked.  This result gives a sample size of 259 
patients which agrees with nQuery. 
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2.4. Sample Size Calculation Re-visited – Sample Size Based on 
Feasibility 

2.4.1. Precision Based Approach 

As highlighted in Worked Example 1, in clinical trials the primary objective is usually 
not to estimate a single absolute risk but rather compare an investigative treatment with 
a control for a given objective and endpoint.  The sample size would therefore be 
estimated from the primary endpoint and hence ‘fixed’ with respect to the objective for 
the single absolute risk.  In this context therefore the objective may not be to prove a 
risk is less than some bound but to quantify the likely range of values that the risk could 
plausibly be – through a confidence interval.  

In Section 3.5 precision based trials are described where the objective is to quantify the 
risk difference against control.   

For a single risk the precision of the trial can be estimated from 

(13)  
n

ppZ
w

)1(21 −
= −α ,  

where w here is defined as half the width for a confidence interval.  Here, it is assumed 
that both n and p are known.  To estimate a sample size to have a required precision, 
w, about p then the following result could be used. 

(14)  
2

2
2/1 )1(

w

ppZ
n

−
= −α .   

If exact confidence intervals are being used then we can estimate the precision for a 
trial from 

(15) ( ) ( )( ) 2/1,1,21,1,21 −+−−+−+−= kknBETAINVknkBETAINVw αα  

where k is estimated from k=pn.  To estimate the sample size we can iterate on n until 
we get a sample size with the requisite precision for a given p.   

 

2.4.2. Probability of Seeing an Event 

In the context of clinical trials, the results described above may not be readily 
applicable when we wish to quantify a risk particularly if this risk is quite rare, such as 
with an adverse event.  A more appropriate calculation quantifies the probability of 
seeing the event for the finite (and fixed) sample size in the trial. 
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Hence, if the risk for a particular adverse event is p then the probability that k or more 
adverse events will be observed with n subjects can be calculated from 

(16)  ( )∑
−

=

−−







−=
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11
k

x

xnx
k pp

x

n
p  

 

2.4.2.1. Worked Example 2 – Calculating a Probability of Observing an Adverse Event 

A Phase II trial has been designed where the number of patients per arm is 100.  For 
the investigative treatment a number of adverse events are being monitored with 
difference anticipated risks.  Table 3 gives the probability of observing various numbers 
of adverse events for different anticipated population risks. 

From Table 3 we can see that for a risk of an adverse event of 1/1000 we would have 
less than 10% chance of observing at least one adverse event.  Also for a risk of 
1/10,000 we’d have only a 1% chance of seeing at least one adverse event. 

 

Table 3.  Probablilities of observing a given number of adverse events or more (k) 
for given anticipated risks for a sample size of 100 patients. 

 Risk of an Event 
k 0.0500 0.0300 0.0100 0.0050 0.0010 0.0001 
1 0.9941 0.9524 0.6340 0.3942 0.0952 0.0100 
2 0.9629 0.8054 0.2642 0.0898 0.0046 <0.0001 
3 0.8817 0.5802 0.0794 0.0141 0.0002  
4 0.7422 0.3528 0.0184 0.0017 <0.0001  
5 0.5640 0.1821 0.0034 0.0002   
6 0.3840 0.0808 0.0005 <0.0001   
7 0.2340 0.0312 0.0001    
8 0.1280 0.0106 <0.0001    
9 0.0631 0.0032     

10 0.0282 0.0009     

 

We recommend that a table such as Table 3 be calculated for all planned clinical trials. 

If no adverse events are observed the results in Table 3 could be used to put the results 
into some context.  This could be done in context also with the ‘3 over n’ (3/n) rule 
[12].  The 3/n rule gives the approximate upper tail of a one-sided 95% confidence 
interval when zero events are observed and is derived using the Poisson approximation 
to from equation 16).    

Suppose there are no observed instances of a particular adverse event in the trial of 100 
subjects we are describing.  Suppose in the protocol we had stated that for the adverse 
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event we anticipated the population risk to be 1/2000=0/005 and thus that a priori we 
would anticipate that there was a probability of 0.39 of observing at least one adverse 
event.  We could highlight this probability when discussing the result.  Also, we could 
state that, based on the observed trial data, we can rule out a risk of 3/100 (3/n)=0.03 
or 3% or greater. 

 

3. PARALLEL GROUP TRIAL S 

3.1. Superiority Trials 

With a superiority trial the objective is to determine whether there is evidence of a 
statistical difference in the comparison of interest between the regimens with reference 
to the null hypothesis that the regimens are the same.  The null (H0) and alternative 
(H1) hypotheses may take the form:  

Ho: The two treatments are not different ( BA ππ = ). 

H1: The two treatments are different ( BA ππ ≠ ) i.e. either A is superior to B or B is 

superior to A. 

For a two-sided superiority trial there are two chances of rejecting the null hypothesis 
and thus making a Type I error.  The null hypothesis can be rejected if BA pp >  or if 

BA pp <  by a statistically significant amount.  As there are two chances of rejecting 

the null hypothesis the statistical test is referred to as a two tailed test with each tail 
allocated an equal amount of the Type I error (of 2.5%).  The sum of these tails adds 
up to the overall Type I error rate of 5%.  Thus, the null hypothesis can be rejected if 
the test of BA ππ >  is statistically significant at the 2.5% level of significance or the 

test of BA ππ <  is statistically significant at the 2.5% level. 

The purpose of the sample size calculation is hence to provide sufficient power to reject 
Ho when in fact some alternative hypothesis is true  

 

3.1.1. Summarising Clinical Trials with Binary Data  

For a clinical trial where the primary outcome is a binary response the notation is given 
in Table 4 where Ap  and Bp  are the responses anticipated on treatment A and B 

respectively; p  is the average response across treatments; An  and Bn  are the sample 

sizes in each treatment group and n is the total sample size. 
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Table 4. Summary table for a clinical trial with a binary outcome 

 Outcome  
Treatment 1 0 Sample Size 

A 
Ap  Ap−1  An  

B 
Bp  Bp−1  Bn  

Overall Response /()( ABBAA npnpnp += p−1  BA nnn +=  

 

The absolute risk reduction is probably the simplest way of summarising binary data 
which is BA pp − , and this is the scale that we will focus on. 

One drawback of working with the absolute risk difference is that it is bounded by 
(-1, 1).  This bounding can adversely affect inference – especially when both responses 
are near one of the bounds.   

 

3.1.2. Sample Sizes for a Superiority Trial 

For the special case of equally sized arms in the trial the sample size is 

(17)   
( )

( )2
2

121 )1()1()1(2

BA

BBAA
A

ZZ
n

ππ

ππππππ βα

−

−+−+−
= −−

 

(where 2/)( BA πππ += )

 

Since the expressions under the square roots are relatively stable to changes in the ʌ’s, 
this is often simplified to [3,27,28] 

(18)   
[ ] ( )
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−

−+−+
= − . 

The result (18) gives the maximum sample size for the case where 5.0=π  [3].  From 
this fact and within this range for the average response a quick estimate of the sample 
size, for 90% power and two-sided significance level of 5%, can be obtained from the 
following result [3] 

(19)   
( )2

25.5

BA

An
ππ −

= . 

For 80% power and two-sided significance level of 5% the sample size can be estimated 
from [3] 
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(20)   
( )2

4

BA

An
ππ −

= . 

Both of these results will provide conservative “maximum” estimates of the sample 
size. 

For these sample size calculations we have assumed equal allocation to treatment.  For 
fixed allocation to treatment there are extensions to these results [28] and for random 
allocation there are alternative results [29].  In addition we have assumed there will be 
just a single endpoint in the trial.  For calculations with multiple endpoints there are 
alternative calculations [30-32]. 

Sample sizes for selected values of ʌA and ʌB using equation (17) are given in Table 5 

 

Table 5. Sample size estimates using result (17)  for one arm of a parallel group 
trial for various expected outcome responses for a given treatment (ʌA) and 
comparator (ʌB) for a two sided type I error rate of 5% and 90% power 

 ʌB 

ʌA 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 
0.10 582         
0.15 188 918        
0.20 101 266 1212       
0.25 65 133 335 1464      
0.30 47 82 161 392 1674     
0.35 36 57 97 185 440 1842    
0.40 28 42 65 109 203 477 1969   
0.45 23 33 47 72 118 217 503 2053  
0.50 19 26 36 52 77 124 227 519 2095 
0.55 16 21 28 39 54 81 128 231 524 
0.60 14 17 23 30 40 56 82 130 231 
0.65 12 15 19 24 31 41 57 82 128 
0.70 10 12 15 19 24 31 41 56 81 
0.75 8 10 13 16 19 24 31 40 54 
0.80 7 9 11 13 16 19 24 30 39 
0.85 6 7 9 11 13 15 19 23 28 
0.90 5 6 7 9 10 12 15 17 21 
0.95 4 5 6 7 8 10 12 14 16 

 

If we intend to use a continuity corrected chi-squared test in the analysis then (17) and 
(18) could be used to estimate initial values of the sample size which are then increased 
to account for the conservative nature of this test using the following result [28].   

(21)   
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Table 6 gives estimates of the sample size using equations (21) with (17) 

 

Table 6. Sample size estimates using result (17)) with a continuity correction for 
one arm of a parallel group trial for various expected outcome responses for a 
given treatment (ʌA) and comparator (ʌB) for a two sided type I error rate of 5% 
and 90% power  

 ʌB 

ʌA 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 
0.10 622         
0.15 208 958        
0.20 114 286 1252       
0.25 75 147 355 1504      
0.30 55 92 175 412 1714     
0.35 43 65 107 199 460 1882    
0.40 34 49 73 119 217 497 2009   
0.45 28 39 54 80 128 231 523 2093  
0.50 24 31 42 59 85 134 241 539 2135 
0.55 20 26 33 45 61 89 138 245 544 
0.60 18 21 28 35 46 63 90 140 245 
0.65 16 19 23 29 36 47 64 90 138 
0.70 13 16 19 23 29 36 47 63 89 
0.75 11 13 17 20 23 29 36 46 61 
0.80 10 12 14 17 20 23 29 35 45 
0.85 9 10 12 14 17 19 23 28 33 
0.90 8 9 10 12 13 16 19 21 26 
0.95 7 8 9 10 11 13 16 18 20 

 

If the final analysis is to be a Fisher’s Exact test then the sample size calculation is not 
so straightforward.  The sample size is calculated in two stages.  Conditional on the 
number of events observed Ak  in An  subjects on treatment A and Bk  events in Bn  

subjects on treatment B such that BA kkk +=  and BA nnn += , we can use a 

hypergeometric distribution to find the probability of a number of events ki<nA as 
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The P value is defined as the sum of all the ܲ which are  ܲಲ i.e.   
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For the subset of tables where we reject the null hypothesis from (22) we can estimate 
the power under the alternative hypothesis, in equation (24). 
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= −∑∑ ππππ  

Thus for a given Ak , Bk , An  and Bn  we can estimate the power.  Hence, through 

iteration we can estimate the sample size for a given Aπ  and Bπ  for a given nominal 

power.  As for a single binary response discussed earlier in the paper we  need to iterate 
beyond  the sample size achieved  when first a power of 90% is reached.  For the 
programming in this paper the program stopped once a sample size had a power greater 
than 90% and all the sample sizes up to at least 10 subjects more also all had power 
greater than 90%.   

Table 7 gives sample sizes for 90% power for a one tailed Type I error of 2.5% - which 
will be taken to be the same as for a two tailed Type I error of 5%. 
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Table 7. Sample size estimates for one arm of a parallel group trial for various 
expected outcome responses for a given treatment (ʌA) and comparator (ʌB) for a 
one sided type I error rate of 2.5% and 90% power assuming Fisher’s exact test 
is the final analysis 

 ʌB 

ʌA 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 

0.10 605         

0.15 188 965        

0.20 108 285 1264       

0.25 62 142 362 1502      

0.30 49 89 175 415 1731     

0.35 33 65 108 202 468 1876    

0.40 30 47 72 118 219 502 2029   

0.45 28 37 55 81 133 235 526 2075  

0.50 19 29 43 59 87 133 243 550 2151 

0.55 18 25 32 47 62 87 125 228 520 

0.60 16 23 26 37 48 67 91 126 228 

0.65 13 17 23 29 38 47 67 94 125 

0.70 10 13 16 23 28 38 47 65 91 

0.75 9 12 17 21 24 29 36 47 58 

0.80 9 11 12 17 20 22 29 33 40 

0.85 8 10 12 15 15 20 22 27 29 

0.90 8 7 10 10 12 15 15 20 20 

0.95 4 7 7 10 10 10 10 12 15 

 

It is interesting to compare Table 6 with Table 7.  The two tables are reasonably 
comparable and so if a Fisher’s exact test is to be considered for the final analysis it 
may be worth estimating the sample size using the more straightforward approach of 
the continuity corrected sample size calculation. 

The programming for Table 7 is quite computer intensive.  A quick estimate of the 
sample size for Fisher’s exact test can be obtained from a simple Normal 
approximation. If, in a study, we actually observed the predicted effect size, with the 
required sample size at significance level Į and power 1-ȕ, then the observed test 
statistic is simply z1-Į+z1-ȕ  For Į of 0.05 and ȕ of 0.10 the one sided P-value would 
actually be 0.00059.  Thus a quick method of obtaining the correct sample size is to 
perform Fisher’s exact test on the given proportions with increasing sample size until 
a one sided P-value of 0.00059 is obtained. The result of this procedure is given in 
Table 10. This quick method is quite useful generally and deserves to be better known. 
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Table 8. Sample size estimates for one arm of a parallel group trial for various 
expected outcome responses for a given treatment (ʌA) and comparator (ʌB) for a 
one sided P-value of 0.059% assuming Fisher’s exact test is the final analysis 

 ʌB 

ʌA 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 

0.10 615         

0.15 204 977        

0.20 113 298 1258       

0.25 74 150 358 1514      

0.30 55 92 179 429 1739     

0.35 42 68 108 205 468 1896    

0.40 37 49 74 124 227 507 2017   

0.45 26 39 55 84 135 237 526 2095  

0.50 23 31 45 59 87 137 243 545 2131 

0.55 21 29 38 49 67 96 143 250 560 

0.60 18 21 31 36 48 66 95 145 251 

0.65 17 20 26 30 40 47 66 95 143 

0.70 15 18 20 25 31 40 51 65 91 

0.75 13 16 18 21 25 30 40 48 61 

0.80 12 12 15 19 21 26 31 36 49 

0.85 12 12 14 15 19 20 26 28 38 

0.90 9 10 12 12 15 18 20 21 29 

0.95 7 9 12 12 15 16 17 18 21 

 

The results in Table 7 and Table 8 are reasonably close.  The advantage of the approach 
in Table 8 is that it is quite easy to program and the SAS code is given in Figure 4 
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Figure 4.  SAS code used to generate Table 8 for calculating sample sizes using 
only the P-value 

data power; 

    do pa=0.10 to 0.95 by 0.05; 

      do pb=0.05 to pa-0.45 by 0.05; 

      flag=0; 

      p=round(10.5*(pa*(1-pa)+pb*(1-pb))/((pa-pb)*(pa-pb)))-1+3; 

        do n=p to 10000 by 1 until (flag=10); 

        ka=round(pa*n); 

        kb=round(pb*n); 

        m=ka+kb; 

        prob=probhypr(2*n,m,n,kb); 

        if prob lt 0.00059 then do; 

        flag=flag+1; 

        end; 

        if prob ge 0.00059 and flag ge 1 then do; 

        flag=0; 

        end; 

        end; 

        n=n-flag+1; 

        output; 

        end;end;run; 

 

 

If we planned to use a mid-P P-value  with Fisher’s Exact Test then Table 9 gives 
sample sizes for 90% power for a one tailed Type I error of 2.5%.  This is calculated 
by amending equation  (22) to become equation (25) 
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Or alternatively 
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The one sided mid-P P value is defined using (23) as the sum of the ܲ which are less 
than ܲ ಲ -1 plus half the value of ܲಲ from (23) 
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Comparing Table 9 to Table 7 we see there are bigger (in absolute terms) differences 
in the sample size estimates for the smallest effect sizes.  The sample sizes estimated 
in Table 9 are closer to those of Table 5. 

 

Table 9. Sample size estimates for one arm of a parallel group trial for various 
expected outcome responses for a given treatment (ʌA) and comparator (ʌB) for a 
one sided type I error rate of 2.5% and 90% power assuming mid-P Fisher’s exact 
test is the final analysis 

 ʌB 

ʌA 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 

0.10 577         

0.15 188 917        

0.20 96 268 1213       

0.25 61 134 341 1478      

0.30 45 82 169 405 1682     

0.35 31 60 102 193 455 1837    

0.40 29 45 67 109 204 489 1979   

0.45 19 33 50 76 122 225 506 2055  

0.50 17 25 33 51 81 127 237 526 2109 

0.55 16 23 29 37 56 83 125 228 520 

0.60 15 16 23 30 45 59 83 126 228 

0.65 10 14 21 26 29 44 59 88 125 

0.70 10 11 16 21 27 35 44 57 81 

0.75 9 10 13 19 21 26 33 42 55 

0.80 9 10 11 14 19 21 26 33 37 

0.85 8 9 9 11 14 16 19 21 26 

0.90 8 6 9 9 9 11 14 16 19 

0.95 4 6 6 6 9 9 9 9 11 

 

We can repeat the quick method used in Table 8 for a mid-P value by replacing the line  

prob=probhypr(2*n,m,n,kb); 

with  

prob=probhypr(2*n,m,n,kb-1)+0.5*(probhypr(2*n,m,n,kb)-probhypr(2*n,m,n,kb-1)); 

in Figure 4.  The sample sizes are given in Table 10 and are reasonably close to those 
of Table 9. 
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Table 10. Sample size estimates for one arm of a parallel group trial for various 
expected outcome responses for a given treatment (ʌA) and comparator (ʌB) for a 
mid-P P-value 0.059% assuming Fisher’s exact test is the final analysis 

 ʌB 

ʌA 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 

0.10 580         

0.15 186 916        

0.20 99 265 1210       

0.25 64 132 333 1462      

0.30 45 81 160 391 1672     

0.35 34 55 95 183 438 1840    

0.40 27 41 64 107 202 475 1966   

0.45 21 31 46 70 116 216 501 2050  

0.50 17 24 34 50 76 123 225 517 2092 

0.55 14 20 27 37 53 80 127 230 522 

0.60 13 16 21 28 39 55 81 128 230 

0.65 10 13 18 22 29 40 57 81 127 

0.70 8 11 14 18 23 30 40 55 80 

0.75 7 9 12 14 18 23 29 39 53 

0.80 6 9 9 14 15 18 22 28 37 

0.85 5 7 7 9 12 14 18 21 27 

0.90 4 7 7 9 9 11 13 16 20 

0.95 3 4 5 6 7 8 10 13 14 

 

3.1.3. Worked Example 3 – Sample Size Calculation for a Parallel Group 
Superiority Trial with  Binary Response 

An investigator wishes to design a placebo controlled trial to investigate a new 
treatment for migraine.  The absolute risk of migraine on placebo over the trial period 
is anticipated to be 50% and it would be clinically worthwhile using the drug if the risk 
was reduced on the new treatment to 40%.  This is a treatment effect of an absolute risk 
reduction of 10%.  The investigator wished to design the study to have 90% power and 
a two sided significance level of 5%. 

The sample sizes using the different methods are given in Table 11. 

To repeat the calculations in nQuery you need select File/New and then under “Make 
Conclusions Using” tick “Proportions”; under “Number of Groups” tick “Two” and 
under “Analysis Method” tick “Test”.  nQuery will then give you three options “Chi-
squared test” which seems to be equivalent to calculation from (17); “Chi-Squared test 
(continuity corrected)” which seems to be based on equation  (17) with (21) and 
Fisher’s Exact test.  The calculations for Fisher’s Exact test are given below.  nQuery 
does not give the sample size for this calculation but rather the power for a given sample 
size.  You then need to iterate the required sample size by hand –remembering not to 
stop just because a sample size gives a power of 90%.  For Fisher’s Exact Test nQuery 
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gave a sample size of 542 patients per arm.  A comparison of the results from nQuery 
with PASS and those in the paper are given in Table 11 

 

 

In PASS to calculate the sample size you need to select “Proportions” and the “Two 
Groups: Independent” and finally “Inequality (Proportions)” .  You can then drop down 
in the dialogue box “Test for” to calculate sample sizes for “Z-test unpooled” 
(equivalent to (18)); “Z-test pooled” (equivalent to (17)); “Z-test cc pooled” (equivalent 
to (17) and (21)) and “Fisher’s Exact Test”.  For Fisher’s Exact Test though the 
calculation is only performed as default if the sample sizes in each arm are both less 
than 100.  If this is not the case, then the continuity corrected calculations (equivalent 
to equations (18) and (21)) are undertaken.   To change the default click on options and 
under “Exact Test Options” reset the “Maximum N1 or N2 for Exact Calculations”, for 
example to 10,000. For Fisher’s Exact test PASS gives a sample size of 533 patients 
per arm. 

There is a similar issue with PASS for two arm trials as for a single arm trial highlighted 
in Figure 2.  Figure 3 highlights how PASS crosses the power boundary of 90% for a 
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sample size of 533 before dropping below it again and re-crossing at 542 patients per 
arm. 

 

Figure 5.  Power for a given sample size for the case Aπ =0.40 and Bπ =0.50 for a 

Fishers Exact test for a one-sided Type I error rate of 2.5% from PASS.   

 

 

Neither PASS or nQuery gives sample size estimates for mid-P P-values. 
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Table 11. Comparison of results in paper with nQuery and PASS 

 Current Paper nQuery PASS 
Normal Approximation from (18) 515 N/A 515 
Normal Approximation from (17) 519 519 519 
Continuity Correction from (17) and (21) 539 538 538 
Fisher’s Exact Test 550 542 533 
Fisher’s Exact Test Mid-P 526 N/A N/A 

 

Our results are very slightly larger than those of nQuery for this worked example usingr 
Fisher’s Exact Test.  For the continuity corrected sample size estimation PASS and 
nQuery give a sample size one less than the results in the paper.  We suspect this may 
be due to the steps used for sample size calculation.  For the Normal approximation 
using equation (18) both PASS and nQuery and this paper estimate the sample size to 
be 519 patients per arm.  In actuality this was 518.04 rounded up to 519.  If 519 is then 
used in (21) the sample size is estimated to be 539 patients.  If 518.04 is used instead 
the sample size is 538 patients per arm.  

 

3.1.4 Discussion of the Sample Size Calculations 

There is a maxim that you should analyse your study as you have designed it.  With 
sample size calculations it is the opposite way round – your design should reflect your 
planned analysis.  Hence, if the plan is to undertake a chi-squared test for the primary 
analysis then a sample size calculation should reflect this.  Thus, for both a single arm 
trial and a two arm trial depending on the assumptions for the analysis the planned 
statistical test should be considered [33,34] 

We would recommend that the simple asymptotic approaches described here should be 
used for most sample size calculations.  This does not preclude other approaches being 
used (including maybe simulations) to investigate the sensitivity of the initial 
calculations.   

 

3.2. Non-Inferiority Trials  

In the initial investigation of a new therapeutic intervention for a particular disease, 
randomised trials are conducted against either placebo or a “treated as usual” control 
group. However, when the existing therapy has been established as effective it may 
then be no longer ethical to undertake randomised trials where the control therapy is 
placebo. Instead active-controlled trials are conducted where a new treatment is 
compared to an established treatment with the objective of demonstrating that new 
treatment is non-inferior to this established treatment.  
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For certain trials therefore the objective is not to demonstrate that two treatments are 
different but rather to demonstrate that a given treatment is clinically not inferior 
compared to another.  The null (H0) and alternative (H1) hypotheses for non-inferiority 
trials may take the form:  

H0: A given treatment is inferior with respect to the absolute risk of a response. 

H1: A given treatment is non-inferior with respect to the absolute risk of a response. 

A non-inferiority study is usually planned therefore to detect if the effect of the 
investigative treatment is not much worse than the control treatment defined by a non-
inferiority margin, d.  An assessment of non-inferiority of a new treatment is usually 
performed by comparing the lower tail of 95% confidence interval with the non-
inferiority margin to rule out the inferiority of a new treatment. The threshold setting 
of d is not straightforward and is defined as the largest difference that is clinically 
acceptable such that a larger difference than this would matter in clinical practice [35]; 
a clinical judgement.  This difference also cannot be “greater than the smallest effect 
size that the active (control) drug would be reliably expected to have compared with 
placebo in the setting of the planned trial” [36]; a statistical assessment.  Often the 
margin is defined as some fraction of the active control effect (over placebo) to be 
retained and the control effect is estimated from historical trials as a statistical margin. 
Jones et al [31] recommend that the choice of limit be set at half the expected clinically 
meaningful difference between the active control and placebo as a clinical margin. For 
a binary outcome, the active control effect may be expressed as, the difference or 
difference in the logarithms in the event rates, or the difference in log-odds of the event 
of interest. Generally, the definition of an acceptable level of non-inferiority is made 
with reference to some retrospective superiority comparison to placebo [38-41].  In this 
context we layout the assumptions in a 2-arm non-inferiority trial and the issues with 
the non-inferiority margin [1,37-42].  There are regulatory guidelines on setting the 
non-inferiority margin [45,46]. 

Thus the two hypotheses become: 

H0: dBA −≤−ππ  . 

H1:  dBA −>−ππ . 

In the context of non-inferiority trials –d is known as the non-inferiority limit.   

In order to conclude non-inferiority, we need to reject the null hypothesis.  Thus, non-
inferiority trials reduce to a simple one-sided hypothesis test. In practice, this is 
operationally the same as constructing a (1-2α)100% confidence interval and 
concluding non-inferiority provided that the lower end of this confidence interval is 
greater than  –d.   

To analyse a non-inferiority trial, the following ABC should be considered [47,48]: 
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1. The Assay sensitivity of the active control in both the placebo controlled trials and 
in the active controlled non-inferiority trial exists. 

3.  Bias is minimised through steps such as ensuring that the patient population and the 
primary efficacy endpoint are essentially the same for the placebo-controlled trial and 
the active-controlled trial. 

2. Constancy assumption of the effect of the common comparator. For two trials in 
sequence, Trial 1 and Trial 2, the control effect of Treatment B vs. Placebo in Trial 1 
is assumed to be the same as the control effect of Treatment B vs. ‘Placebo’ in Trial 2  

In addition, to demonstrate that there is no clinically meaningful inferiority of the 
investigative treatment compared to the active control comparator, non-inferiority 
studies often entail an indirect cross-trial assessment. The indirect inference is that 
through comparing the investigative treatment to the control treatment, whether a new 
treatment preserves a fraction of the control effect or is superior to the ‘placebo’ not 
concurrently studied.  

This is an issue, however, in that the estimate of effect over placebo in Trial 1 may 
possibly be overestimated for comparison in Trial 2 due to the placebo responses 
improving over time i.e. placebo ‘creep’. However the lack of constancy of control 
effect prescribed by the placebo ‘creep’ cannot be formally tested [38-44], although an 
educated assessment of constancy violation may help [49].   

To ensure the choice of margin and hence to ensure the study is not biased, the 
following factors are critical in defining the non-inferiority margin:  

i. How should the heterogeneity of the control effect and its variability across 
completed placebo-controlled trials, relative to Trial 1, be incorporated? 

ii.  Should differential weight be given to the response from the most recent studies 
and/or from the studies with smaller effects? 

iii.  What should be the preservation fraction be to account for the placebo ‘creep’?  

From a public health perspective, when undertaking non-inferiority trials what we wish 
to do is to protect the efficacy that has been established with the standard therapy. This 
is as it is described for vaccination trials for example [50].   

Non-inferiority studies are often thought of as trials where there is a need to make an 
indirect comparison with placebo using the active control in the current trial.  Indirect 
comparisons are undertaken when a comparison is made between two regimens where 
the regimens have usually never been given concurrently in any controlled trial 
investigating the same general patient population.  To make comparisons of the 
regimens of interest, common controls from the trials undertaken for these regimens 
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are used.  For example consider Scenario 1 where two trials were conducted with the 
following regimens randomised. 

Trial 1: Placebo and Treatment A, 

Trial 2: Placebo and Treatment B. 

We could use the fact that both regimens have had a trial where they were compared to 
placebo to make comparisons between treatments A to B in the same patient population 
and the same primary efficacy endpoint studied. 

Now consider Scenario 2 where Trial 1 and Trial 2 are conducted in sequence with the 
following set up. 

Trial 1: Placebo and Treatment A,  

Trial 2: Treatment A and Treatment B,  

Treatment A should have been shown to be effective in trial 1 (a placebo-controlled 
trial) in order to launch Trial 2 (an active-controlled trial). In some disease areas, when 
an approved agent becomes the standard of care it may no longer be ethical to conduct 
a placebo controlled trial. Thus, due to ethical constraints, Trial 2 cannot include a 
Placebo arm. In Scenario 2, comparison of A vs. B in Trial 2 is of primary interest, 
sometimes followed by the comparison of Treatment B vs. Placebo to indirectly infer 
efficacy of Treatment B through a cross-trial comparison. 

In Scenario 2 a new treatment is compared to an established treatment with the 
objective of demonstrating that new treatment is non-inferior to this established 
treatment.  

The methodologies for making indirect cross-trial comparisons are available, e.g., [38-
51].  The validity of these methods relies on strong assumptions that often cannot be 
formally tested since treatments are not compared directly within the same trial [43-
44].   

 

3.2.1. Type I and setting the Non-inferiority  Limit  

3.2.1.1.  Choice of Type I error 

Two simultaneous one tailed tests setting α=0.025 would maintain an overall Type I 
error rate of 2.5%.  However, the choice of the Type I error is a controversial issue.  
The convention for equivalence trials is to set the Type I error rate at half of that which 
would be employed for a two sided test used in a superiority trial i.e. α=0.025 [6]. 
Setting the Type I error rate for equivalence trials at half that for superiority trials could 
be considered to be consistent.  This is because although in a superiority trial we use a 
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two sided 5% significance level,  in practice for most trials  what we have is a one sided 
investigation with a 2.5% level of significance.  The reason for this is that we usually 
have an investigative therapy and a control therapy and it is only statistical superiority 
of the investigative therapy that is of interest. 

Through the rest of the sections on equivalence and non-inferiority trials we will 
assume that α=0.025 and that 95% confidence intervals will be used in the final 
statistical analysis.  This issue will be discussed again in the section on Bioequivalence. 

 

3.3.1.2.  Choice of Non-inferiority Limit  

We have already discussed the setting of non-inferiority limits but general the 
following points should be considered: 

1.  You must be confident that the active control would have been different from the 
placebo had one been employed. 

2.  You should be able to determine that there is no clinically meaningful difference 
between the investigative treatment and the control treatment. 

3.  Through comparing the investigative treatment to the control treatment you should 
indirectly be able to determine that it is superior to placebo. 

Steps 1 and 3 are important as there is a view that non-inferiority and equivalence 
(discussed later in the paper) trials reward "failed" studies i.e. if we conducted a poor 
trial where it would not have been possible to demonstrate the control treatment to be 
superior to placebo then a poor investigative therapy may be accepted by comparison 
to this control.  However, Julious and Zariffa [54] point out that this may not be the 
case as poor studies are poor for most objectives as poor studies tend to have higher 
statistical variability and so are less likely therefore to show non-inferiority or 
equivalence. 

We can therefore infer that the clinical difference used for the limits of equivalence and 
non-inferiority will be smaller than the difference used for placebo controlled 
superiority trials.  There also is no generic definition for its setting – its definition will 
need to be defined on a study-by-study or indication-by-indication basis with 
consultation with the appropriate agencies and experts. 

There are regulatory guidelines for a binary response in the antimicrobial therapeutic 
area where controlled trials are the norm [55,56].  The issues raised from this 
therapeutic area are generic to other therapeutic areas.  
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Table 12. Non-inferiority margins for different control response rates 

 Non-inferiority Margin 
Response Rate  FDA1 CHMP2 

≥90 -10% -10% 
80-89% -15% -10% 
70-79% -20% -10% 

1Food and Drug Authority 2Committee for Health and Medicinal Products (formerly 
Committee for Pharmaceutical and Medicinal Products (CPMP)) 

Table 12 gives the non-inferiority margins for different response rates as recommended 
by FDA  [55] and CHMP [56].  The FDA guidelines are redundant now but they do 
raise interesting points.  What is evident from Table 12 is that whilst the CPMP 
recommend a flat equivalence margin, the FDA margins are a step function according 
to the anticipated control response rate. 

 

3.2.2. Sample Size Calculation  

The issue in calculating the sample size is that under both the null and alternative there 
is a non-zero difference between treatments.  Generally, sample size formulas can be 
thought of as equation (27). 
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where Aπ~  and Bπ~ are estimates of the responses on treatment under the null hypothesis 

used to estimate the variance under this hypothesis.  For non-inferiority trials we have 
that BA ππ ≠  i.e. the two treatments do not have an equal response. As the estimates of 

Aπ  and Bπ  effect the estimate of the variance the definition of the null hypothesis 

hence influences the variance under this hypothesis.  There are a number of ways of 
considering this problem, three of which will now be discussed [3,57-60].  Julious and 
Owen [55] compared the different methods through simulation and within the 
parameters of the simulation recommended the simplest method for sample size 
estimation was to estimate the variance under the null hypothesis simply by replacing 

Aπ~  and Bπ~  with anticipated estimates of the response, Aπ  and Bπ  .  Hence, the variance 

of a single observation under the null hypothesis becomes  
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(29)   )1()1( BBAA ππππ −+− ,  

which is the same as the variance under the alternative. 

For the special case of equal sized groups i.e. BA nn =  , a direct estimate of the sample 

size can be obtained [57]. 
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where Aπ  is the assumed proportion of responses expected in subjects on treatment A 
and Bπ  is the assumed proportion of responses in subjects on treatment B.  Table 13 
gives sample size estimates for 90% power and a type I error rate of 2.5% 

As we discussed with superiority trials, equation (30) could be adapted to give the 
maximum sample size for the cases where 5.0=π  (where 2/)( BA πππ += ) [3].  

Hence, a quick estimate of the sample size, for 90% power and two-sided significance 
level of 5%, can be obtained from the following result 
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While for 80% power and two-sided significance level of 5% the sample size can be 
estimate from  
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Both of these results will provide conservative “maximum” estimates of the sample 
size.  The utility of these results here could be questioned however, as often with non-
inferiority trials the anticipated responses are likely to be high on both treatment arms 
and results (31) and (32) are very conservative outside of the range (0.3, 0.7) for π . 
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Table 13. Sample sizes for a non-inferiority study for 90% power and a type I 
error rate of 2.5% 

  AB ππ −  

Aπ  Limi t -0.05 -0.04 -0.03 -0.02 -0.01 0 0.01 0.02 0.03 0.04 0.05 
0.70 0.05  45845 11325 4993 2784 1766 1214 883 669 522 418 
0.70 0.10 1839 1268 925 703 550 442 362 301 254 216 186 
0.70 0.15 460 378 315 266 228 197 171 150 133 118 105 
0.70 0.20 205 179 157 139 124 111 100 90 81 74 67 

             
0.75 0.05  41537 10222 4491 2495 1577 1080 782 590 459 366 
0.75 0.10 1671 1149 835 632 493 395 322 267 224 190 163 
0.75 0.15 418 342 284 240 204 176 152 133 117 103 92 
0.75 0.20 186 162 142 125 111 99 89 80 72 65 59 

             
0.80 0.05  36178 8856 3872 2141 1345 917 660 495 382 303 
0.80 0.10 1461 1000 723 545 423 337 273 225 188 158 135 
0.80 0.15 366 298 246 207 175 150 129 112 98 86 76 
0.80 0.20 163 141 123 108 95 85 75 67 60 54 49 

             
0.85 0.05  29768 7227 3136 1720 1072 724 516 383 293 229 
0.85 0.10 1209 822 590 441 340 268 216 176 145 121 102 
0.85 0.15 303 245 201 167 141 120 102 88 76 66 58 
0.85 0.20 135 116 101 88 77 67 60 53 47 42 37 

             
0.90 0.05  22308 5336 2284 1234 757 502 351 255 190 145 
0.90 0.10 915 615 436 322 244 190 150 120 97 79 65 
0.90 0.15 229 183 149 122 101 85 71 60 51 43 37 
0.90 0.20 102 87 74 64 55 48 41 36 31 27 24 

 

Sample size estimates using equation (30) are given in Table 13 for the range  0.70 
≤ʌA≤ 0.90 to illustrate the issues with non-inferiority sample size calculations.  Note 
that how for a trial being designed where the new treatment is thought to be a little 
better than control, i.e. AB ππ − >0, the sample size is smaller than for AB ππ − =0.  The 

opposite is true for AB ππ − <0. 

Sample sizes are not given for anticipated responses greater than 0.90 as for high 
response rates the Normal approximation used in the sample size calculations may no 
longer hold.  Our recommendation for sample sizes outside of this range would be to 
estimate the values using alternative methods such as simulation, which we describe 
below.   

Table 14 gives an example of sample size calculations where the control response is 
assumed to be 95% for various non-inferiority limits and true mean differences.  The 
process for the simulation was as follows: 
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1. Simulate a random sample of size n from a binomial distribution, where the 
response rates in the two arms are assumed to be Aπ  =0.95 and Bπ goes from 0.92 

to 0.98. 

2. For the random sample estimate the response rates in  the two treatment arms. 

3. Calculate a 95% confidence interval for the treatment difference BA ππ −  and 

determine if the lower bound excludes the non-inferiority limit 

4. Repeat 1 to 3 a large number of times (here 100,000) and count the number of times 
simulations conclude non-inferiority.  Take this as the power for the sample size. 

5. Repeat 1 to 4 increasing the sample size by 1 until a cut off for the power has been 
reached. 

 

Table 14. Sample sizes for a non-inferiority study for 90% power and a type I 
error rate of 2.5% for a control response rate ( Aπ ) of 95% 

 
AB ππ −  

Limit  -0.03 -0.02 -0.01 0 0.01 0.02 0.03 
0.03  11964 2780 1146 585 336 208 
0.04 12904 3020 1249 655 386 242 156 
0.05 3249 1358 717 424 271 184 129 

 

The sample sizes were simulated beyond 90% power so we could confirm that the study 
with the given sample size and all proceeding sample sizes (up to 10 greater) had 90% 
power.  The confidence intervals for the simulation were calculated using the Wilson 
score method.  This methodology has shown to perform well in simulations and to give 
comparable results to exact methodologies [62].  We assume that the confidence 
intervals in the analysis in the completed study would be the Wilson score ones. 

 

3.2.3. Worked Example 4 – Sample Size Calculation for a Parallel Group 
Non-Inferiority Trial  with  Binary Response 

An investigator wishes to design a trial where the anticipated response rate on the active 
control is 80%.  The investigator also expects an 80% response rate on the investigative 
therapy i.e. they anticipate there to be no true difference between the treatments.  The 
non-inferiority limit is to be set at 10%, the sample size is to be estimated with 90% 
power and a one sided type I error rate of 2.5%. 

From equation (30) the sample size is estimated to be 337 patients per arm.  If the 
investigative response rate was anticipated to be 82% - little better than the control 
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response – then the sample size would be reduced to 225 patients per arm.  Hence, only 
a small difference between treatments can have quite a marked effect on the sample 
size. 

If the investigator thought that the investigative treatment is a little worse, say 78% 
rather than 80% then for the same non-inferiority limit the sample size is increased to 
545 patients per arm.  This demonstrates that a small change in the investigative 
response rate gives a substantial increase in the sample size. 

To undertake the calculation in PASS there are a number of options.  One route is under 
menu to select Proportions/Two Groups: Independent/Non-inferiority [Differences].  
Then in the dialogue screen: for “Test Statistic” select “Z-test Pooled”; for “Non-
inferiority Difference” enter -0.10; For “Actual Difference” enter -0.02, 0 and 0.02; 
and for “Reference Group Proportion” enter 0.80.  Example output from PASS is given 
below.  PASS for this example gives the same sample size estimates as given in Table 
143 

 

In nQuery for “Making Conclusions Using” tick “Proportions”; for “number of 
Groups” tick “Two”; for “Analysis Method” tick “Equivalence” then select “Two 
group test of equivalence in proportions”.  nQuery also agrees with both PASS and the 
sample size estimates from Table 143 for this worked example.  

 

3.3. "As Good as or Better" Trials 

For certain clinical trials the objective is to demonstrate either that a given treatment is 
clinically not inferior or that it is clinically superior when compared to the control i.e. 
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that the treatment is "as good as or better" than the control.  In “as good as or better” 
trials two null are investigated.  First the non-inferiority null hypotheses: 

H0: A given treatment is inferior with respect to the mean response. 

If this null hypothesis is rejected then a second null hypothesis can be investigated: 

Ho: The two treatments have equal effect with respect to the mean response. 

In practice these two null hypotheses are investigated through the construction of a 
95% confidence interval to investigate where the lower (or upper as appropriate) bound 
lies.  Figure 6 highlights how the two separate hypotheses for superiority and non-
inferiority are investigated. 

Figure 6.  An illustration of the difference between superiority, equivalence and 
non-inferiority trials : the dark line in the figure is the confidence interval while 
delta is the non-inferioroty or equivalence limit 

 

 

It should be noted that "as good as or better" trials are really a sub-category of either 
superiority or non-inferiority trials.  However, we have put them into a separate section 
to highlight how they combine the null hypotheses of superiority and non-inferiority 
trials into one closed testing procedure whilst maintaining the overall Type I error.  

To introduce the closed testing procedure, we will first describe the situation where a 
one-sided test of non-inferiority is followed by a one-sided test of superiority.  The 
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more general case where a one sided test of non-inferiority is followed by a two sided 
test of superiority is then described. 

This section is given in Julious [1] who gave the calculations for data anticipated to 
have a Normal distribution [1]. This drew on the work of Morikawa and Yoshida [63].  
The CPMP have a ‘points to consider’ document on the topic [35]. 

 

3.3.1. A Test of Non-inferiority and a One Sided Test of Superiority  

The null (H1o) and alternative (H11) hypotheses for a non-inferiority trial can be written 
as:  

H1o: d−≤− BA ππ . 

H11: d−>− BA ππ . 

This can  alternatively be written as: 

H1o: 0BA ≤+− dππ . 

H11: 0BA >+− dππ . 

The corresponding null (H2o) and alternative (H21) hypotheses for a superiority trial 
can be written as: 

H2o: 0BA ≤−ππ . 

H21: 0BA >−ππ . 

What is clear from the definitions of these hypotheses is that if H2o is rejected at the α 
level then H1o would also be rejected.  Also, if H1o is not rejected at the α level then 
H2o would also not be rejected.   This is because BABA ππππ −≥+− d .  Hence, both 

H1o and H2o are rejected if they are both statistically significant; neither H1o and H2o 
are rejected if H1o is not significant; and only H1o is rejected if only H1o is significant.   

Based on these properties a closed test procedure can be applied to investigate both non-
inferiority and superiority whilst maintaining the overall Type I error rate without α 
adjustment.  To do this, the intersection hypothesis 00 H1H2 ∩ is first investigated 

which, if rejected, is followed by a test of H1o and H2o.  In this instance 

000 H1H1H2 =∩  and so both non-inferiority and superiority can be investigated 

through the following two steps [1]]. 
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1. First investigate the non-inferiority through the hypothesis H1o.  If H1o is rejected 
then H2o can be tested.  If H1o is not rejected then the investigative treatment is 
inferior to the control treatment. 

2. If H2o is then rejected in the next step one can conclude that the investigative 
treatment is superior to the control.  Otherwise,  if H2o is not rejected then non-
inferiority should be concluded. 

 

3.3.2. A Test of Non-inferiority and a Two Sided Test of Superiority  

The null (H3o) and alternative (H31) hypotheses for a two sided test of superiority can 
be written as: 

H3o: BA ππ = . 

H31: BABA or  ππππ >< . 

The hypothesis H31 is equivalent to two one-sided tests at the α/2 level of significance 
(summing to give an overall type I error rate of α) through the investigation of H2o 
against the alternative of H21 and the following null and alternative hypotheses: 

H4o: BA ππ ≥ . 

H41: BA ππ < . 

It is apparent that the intersection hypothesis 00 H3H1 ∩  is always rejected as it is 

empty and so both H1o and H3o can be tested.  Due to there being no intersection the 
following steps can be applied : 

1. If the observed treatment difference is greater than zero and H3o is rejected then 
H1o is also rejected and one can conclude that the investigative treatment is 
statistically superior to control. 

2. If the observed treatment difference is less than zero and H3o is rejected and H1o is 
not, then the control is statistically superior to the investigative treatment.  If H1o 
is also rejected then the investigative drug is worse than the control but is not 
inferior (practically though this may be difficult to claim). 

3. If H3o is not rejected but H1o is, then the investigative treatment is non-inferior 
compared to the control. 

4. If neither H1o nor H3o are rejected then one must conclude that the investigative 
treatment is inferior to control.  
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Note that when investigating the H1o and H3o hypotheses, H3o  will be tested at a two 
sided Į level of significance whilst H1o  will be tested at a one sided Į /2 level of 
significance.  Thus, the overall level of significance is maintained at Į. 

 

3.3.3. Non-inferiority versus Superiority Trials  

As non-inferiority trials often use a non-inferiority margin which is set at a fraction of 
the superiority effect of the active control over placebo, the sample size requirements 
for a non-inferiority trial are often perceived as being much greater than that for a 
superiority trial. However the sample size formulae are the same only when the non-
inferiority margin is set to zero.   

If the margin is set to zero it would mean that when we compare two active treatments 
the objective would be to show the lower bound of the 95% confidence interval 
excludes zero – and the investigative treatment is statistically superior to the active 
control.   A non-inferiority margin is usually set at less than zero.  In this case it is 
therefore easier to show a new treatment is non-inferior and, in the active control trial 
context, this requires smaller sample sizes. 

There is a further important distinction between superiority trials and non-inferiority 
trials in that the former use the data ‘as randomized’ and the principle of ‘intention-to-
treat’ For a non-inferiority trial it has been suggested one should analyse the data ‘per 
protocol’ and also ‘as randomised’ as co-primary [35]. This may require that a greater 
number of subjects are recruited. 

The concepts of superiority and non-inferiority are of course inter-related.  Indeed there 
may be instances where instead of designing a study to show an investigative treatment 
is no worse than an active control at the 2.5% level of significance we may wish to 
design a superiority study but at a level of statistical significance greater than the 
nominal 2-sided 5% (1 sided 2.5%).  Such a study would give more assurance as to the 
investigative treatment being no worse than the active control.  CHMP [41] comment: 

“It might be an acceptable approach, in extreme situations, to run a superiority 
trial using a less stringent significance level than P=0.05, weighing up the 
increased risk of a false positive result against the risk of rejecting a drug with 
a valuable efficacy advantage. It might be more acceptable, and easier from an 
ethical perspective, to specify a level of confidence we require in the superiority 
of a drug, than to specify an extra number of deaths that is of no clinical 
importance... 

For example with a data-set where the lower bound of an 85% confidence 
interval (by definition narrower than a 95% interval) touches zero, it might be 
that the 95% interval touches –5. If delta had been defined to be –5 then 
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achieving non-inferiority in this example would correspond to having 
demonstrated superiority at the 15% level of significance” 

Table 15 gives sample sizes for different control response rates and different 
improvements on the investigative treatment, assuming AB ππ > , for various control 

response rates and Type I error rates using result (17).  Results (22) and (24) – exact 
methodology - could also be used for these calculations 

 

Table 15. Sample sizes per group for a superiority study for 90% power and a 
various Type I error rates 

  Significance Level 

Aπ  AB ππ −  0.025 0.050 0.075 0.100 0.125 0.150 0.175 0.200 
0.70 0.02 10820 8818 7624 6766 6090 5534 5058 4642 
0.70 0.03 4758 3878 3354 2976 2678 2434 2224 2042 
0.70 0.04 2648 2158 1866 1656 1490 1354 1238 1136 
0.70 0.05 1676 1366 1180 1048 944 856 784 718 

          
0.75 0.02 9584 7812 6754 5992 5396 4902 4480 4112 
0.75 0.03 4198 3422 2958 2624 2364 2146 1962 1802 
0.75 0.04 2326 1896 1638 1454 1310 1190 1088 998 
0.75 0.05 1466 1194 1032 916 824 750 684 628 

          
0.80 0.02 8086 6592 5698 5056 4552 4136 3780 3470 
0.80 0.03 3520 2870 2480 2202 1982 1800 1646 1510 
0.80 0.04 1938 1580 1366 1212 1092 992 906 832 
0.80 0.05 1212 988 854 758 682 620 568 520 

          
0.85 0.02 6326 5156 4458 3956 3562 3236 2958 2714 
0.85 0.03 2726 2222 1922 1704 1534 1394 1274 1170 
0.85 0.04 1484 1210 1046 928 836 760 694 638 
0.85 0.05 918 748 648 574 518 470 430 394 

          
0.90 0.02 4302 3508 3032 2690 2422 2200 2012 1846 
0.90 0.03 1816 1480 1280 1136 1022 928 848 780 
0.90 0.04 966 788 680 604 544 494 452 414 
0.90 0.05 582 474 410 364 328 298 272 250 

 

3.4. Equivalence Trials  

In certain cases the objective of a clinical trial is not to demonstrate that an investigative 
treatment is superiority or no worse than a control but instead to demonstrate that two 
treatments have no clinically meaningful difference, i.e. that they are clinically 
equivalent.  The null (H0) and alternative (H1) hypotheses for such equivalence trials 
take the form:  

H0:The two treatments are different with respect to the risk difference ( BA ππ ≠ ). 
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H1:The two treatments are not different with respect to the risk difference ( BA ππ = ). 

Usually these hypotheses are written in terms of a clinical difference, d,  and become: 

H0: dBA −≤−ππ  or dBA +≥−ππ . 

H1:  dd BA +<−<− ππ . 

These hypotheses are an example of an intersection-union test (IUT), in which the null 
hypothesis is expressed as a union and the alternative as an intersection.  In order to 
conclude equivalence, one needs to reject each component of the null hypothesis.  Note 
that in an IUT, each component is tested at level α giving a composite test which is 
also of level α [1,3,64].   

A common approach with equivalence trials to test each component of the null 
hypothesis with a t test - called the Two One-Sided Test (TOST) procedure. In practice, 
this is operationally the same as constructing a (1-2α)100% confidence interval where 
equivalence is concluded provided that each end of the confidence interval falls 
completely within the interval ),( dd +−  [37].  This is because the (1-2α)100% 

confidence interval is excluding two regions each of size α, each of which must 
simultaneously preclude (-d, +d).  Hence, the overall significance level is α. 

 

3.4.1. Sample Sizes for a Equivalence Trial  

The power for a given sample size can be estimated from 
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To estimate the sample size one iterates (33) on the sample size until the nominal power 
is reached.  Similar to non-inferiority trials discussed earlier, equation (33) uses the 
anticipated responses in the trial to estimate the sample size and similar issues occur 
with respect to estimating the response on the null and alternative hypothesis [3,57,58].  
Table 16 gives the sample sizes for various control response rate and equivalence limit. 
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Table 16. Sample sizes per group for an equivalence study estimated for 90% 
power and a type I error rate of 2.5%  

  AB ππ −  

Aπ  Limi t -0.05 -0.04 -0.03 -0.02 -0.01 0 0.01 0.02 0.03 0.04 0.05 
0.70 0.05 - 45645 11325 4993 2802 2184 2749 4806 10694 42282 - 
0.70 0.10 1839 1268 925 707 585 546 574 680 874 1175 1671 
0.70 0.15 460 378 317 275 252 243 247 265 299 350 418 
0.70 0.20 205 180 161 148 140 137 138 143 152 167 186 

             
0.75 0.05 - 41337 10222 4491 2511 1950 2445 4257 9434 37134 - 
0.75 0.10 1671 1149 835 636 525 488 511 603 771 1032 1461 
0.75 0.15 418 342 286 248 226 217 220 235 264 308 366 
0.75 0.20 186 163 145 133 126 122 122 126 134 146 163 

             
0.80 0.05 - 35978 8856 3872 2154 1664 2075 3592 7910 30934 - 
0.80 0.10 1461 1000 723 548 450 416 434 509 646 860 1209 
0.80 0.15 366 298 248 214 194 185 187 198 222 256 303 
0.80 0.20 163 142 126 115 108 104 104 107 113 122 135 

             
0.85 0.05 - 29568 7227 3136 1731 1326 1639 2809 6124 23684 - 
0.85 0.10 1209 822 590 444 362 332 343 398 500 658 915 
0.85 0.15 303 245 202 173 156 148 148 155 172 196 229 
0.85 0.20 135 117 103 93 87 83 82 84 87 94 102 

             
0.90 0.05 - 22108 5336 2284 1242 936 1136 1911 4075 15383 - 
0.90 0.10 915 615 436 324 260 234 238 271 333 428 578 
0.90 0.15 229 183 150 126 112 104 102 106 114 128 145 
0.90 0.20 102 87 76 68 62 59 57 57 58 61 65 

 

Result (33) can be simplified for the case where there is a non-zero difference between 
treatments such that BA ππ > .  In this instance most of the Type II error comes from 
just one part of (33) and so a direct estimate of the sample size can be estimated by 
rewriting (33) as: 
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The greater Aπ  is relative to Bπ  the nearer AB ππ −  is to the margin and the closer (34) 
becomes to (33).  To illustrate this point   Table 17 estimates the sample sizes from 
(34).  We can see here that the sample sizes approach those of Table 16 as the  
difference between the treatments gets bigger. 
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Table 17. Sample sizes per group for an equivalence study estimated for 90% 
power and a type I error rate of 2.5% estimated directly for a non-zero 
difference between treatments 

  AB ππ −  

Aπ  Limi t -0.05 -0.04 -0.03 -0.02 -0.01 0 0.01 0.02 0.03 0.04 0.05 
0.70 0.05  45645 11325 4993 2784 1766 2732 4806 10694 42282  
0.70 0.10 1839 1268 925 703 550 442 540 676 873 1175 1671 
0.70 0.15 460 378 315 266 228 197 223 256 298 350 418 
0.70 0.20 205 179 157 139 124 111 122 134 149 166 186 

             
0.75 0.05  41337 10222 4491 2495 1577 2430 4257 9434 37134  
0.75 0.10 1671 1149 835 632 493 395 480 599 771 1032 1461 
0.75 0.15 418 342 284 240 204 176 199 227 263 307 366 
0.75 0.20 186 162 142 125 111 99 108 119 131 146 163 

             
0.80 0.05  35978 8856 3872 2141 1345 2062 3592 7910 30934  
0.80 0.10 1461 1000 723 545 423 337 408 506 646 860 1209 
0.80 0.15 366 298 246 207 175 150 169 192 220 256 303 
0.80 0.20 163 141 123 108 95 85 92 100 110 121 135 

             
0.85 0.05  29568 7227 3136 1720 1072 1628 2809 6124 23684  
0.85 0.10 1209 822 590 441 340 268 322 396 500 658 915 
0.85 0.15 303 245 201 167 141 120 133 150 171 196 229 
0.85 0.20 135 116 101 88 77 67 73 79 85 93 102 

             
0.90 0.05  22108 5336 2284 1234 757 1129 1911 4075 15383  
0.90 0.10 915 615 436 322 244 190 223 269 333 428 578 
0.90 0.15 229 183 149 122 101 85 93 102 114 128 145 
0.90 0.20 102 87 74 64 55 48 51 54 57 61 65 

 

For the special case of no anticipated treatment difference the power can be estimated 
from 
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where ( ) 2/BA πππ +=  is interpreted in this instance as the anticipated overall 

response.  Consequently (35) can in turn be rewritten to give a direct estimate of the 
sample size  
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Hence, for the special case of no treatment difference, direct estimates of the sample 
size can be obtained. 
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3.4.2. Worked Example 5 – Sample Size Calculation for a Parallel Group 
Equivalence Trial with Binary Response 

An investigator wishes to design a trial where the anticipated response rate on the active 
control is 80%.  The investigator also expects an 82% response rate on the investigative 
therapy i.e. there is anticipated to be a small difference between the treatments.  The 
equivalence limit is to be set at 10% the sample size is to be estimated with 90% power 
and a one sided type I error rate of 2.5%. 

From Table 16, the sample size is estimated to be 509 patients per arm.  If the 
investigative response rate was also anticipated to be 80%,  the sample size would be 
416 patients per arm.  If the response rate was expected to be 78% then the sample size 
would be estimated to be 548 patients per arm. 

Equivalence trials are quite sensitive to the assumptions around the difference in 
responses especially as any non-zero difference will increase the sample size. 

If we had used result (34) (and Table 17) then we would have estimated the sample size 
to be 506 patients per arm.  A little smaller than our previous sample size estimate. 

To get the sample sizes per arm in nQuery for “Making Conclusions Using” tick 
“Proportions”; for “number of Groups” tick “Two”; for “Analysis Method” tick 
“Equivalence” then select “Two group test of equivalence in proportions (using 
confidence interval” and then “Two sided confidence interval for test minus standard”.  
nQuery does not estimate the sample size directly but instead  undertakes simulations 
to estimate the power for a given sample size.  You then need to iterate to you get the 
requisite power.   

For the worked example nQuery described earlier of investigative and control 
responses of 82% and 80% respectively with 509 patients per arm taken from Table 16 
nQuery estimates the power to be 90%.  For response rates of 80% on both arms nQuery 
again estimates the power to be 89% with 416 patients per arm (417 patients per arm 
gives 90%). Finally for response rates of 78% and 80% nQuery estimates the power to 
be 89% with 548 patients per am (for 550 patients nQuery estimates the power to be 
90%)  

Example nQuery output is given below. 
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To undertake the calculation in PASS there are a number of options.  One route is under 
menu to select Proportions/Two Independent Proportions /Equivalence /Equivalence 
Test for Two Proportions [Differences].  Then in the dialogue screen: for “Test 
Statistic” select “Z-test Pooled”; for “Upper Equivalence Difference” enter 0.10; For 
“Actual Difference” enter -0.02, 0 and 0.02; and for “Reference Group Proportion” 
enter 0.80.  PASS agrees in the main with the sample size estimates taken from Table 
16 except when the  investigative and control responses were 78% and 80% 
respectively where it estimates the sample size to be 549 patients instead of 548 
patients. 

 

3.5. Estimation to a Given Precision  

So far we have discussed specific defined objectives.  However, there are cases when a 
preliminary, or pilot, investigation is conducted to estimate possible effects with a view 
to doing a later definitive study [65-67].  By definition, such studies are held early in 
the drug development (or clinical investigation) paradigm.  With estimation studies, 
rather than formally testing a null hypothesis it is more informative to give a confidence 
interval for  the unknown effect.  
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Precision calculations may also be undertaken when the sample size is determined 
primarily by practical considerations.  In such cases one may quote the precision of the 
estimates obtained based on the half-width of the confidence interval, and provide this 
information in the discussion of the fixed sample size.  Again it must be clearly stated 
in the protocol that the size of the study was determined based on practical, and not 
formal, considerations. 

In the context of an overall clinical development (or investigation) an estimation study 
(or studies) could provide important cumulative evidence of the pharmacological 
benefit of a given drug asset.  These studies cannot prove a given effect but can 
valuably inform studies which can. 

A conservative approach would be to set 5.0=p  as if we do not have any idea of the 

overall response this would give us a maximum estimate of the variance for the absolute 
risk difference and would not be too conservative provided that p  is within the range 

(0.3, 0.7).  Therefore, for a given half confidence interval width, w the following 
condition must be met to obtain the sample size per group 

(37)   
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2
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nA
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Table 18 is derived from equation (37).  Table 18 gives the sample size required for 
different values of the expected mean response across treatment groups, p , and widths 

w.  Two sided 95% confidence intervals are planned in the final analysis.  The mean 
responses, p , given in the table vary from 0.10 to 0.50.  Values greater than 0.50 are 
not given as the sample size required for p =0.60 is equivalent to p =0.40, the sample 
size for p =0.70 is the same as p =0.30 etc.   

 

Table 18. Sample sizes required per group for two sided 95% confidence intervals 
for different values of width, w, for various expected mean absolute responses 

 W 
p  0.025 0.050 0.075 0.100 0.150 
0.10 1107 277 123 70 31 
0.15 1568 392 175 98 44 
0.20 1967 492 219 123 55 
0.25 2305 577 257 145 65 
0.30 2582 646 287 162 72 
0.35 2797 700 311 175 78 
0.40 2951 738 328 185 82 
0.45 3043 761 339 191 85 
0.50 3074 769 342 193 86 
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3.5.1. Worked Example 6 – Sample Size Calculation for a Parallel Group 
Estimation Trial with  Binary Response 

An investigator wishes to design a trial where the average response rate is anticipated 
to be 65%.  The investigator wishes to estimate possible effects with precision of +/-
10% using a 95% confidence interval.   

In Table 18 we use 1- p =0.35 and get the sample size to be 175 patients per arm.   

To undertake the sample sizes in nQuery for “Making Conclusions Using” tick 
“Proportions”; for “number of Groups” tick “Two”; for “Analysis Method” tick 
“Confidence Interval” then select “Confidence for difference in proportions”.  For an 
average response rate of 65% and precision of 10% nQuery agrees with Table 18 and 
estimates the sample size to be 175 patients per arm. 

In PASS to calculate the sample size you need to select “Confidence Intervals” and the 
“Proportions” and finally “Confidence Intervals for Two Proportions [Differences]”.  
For Confidence Interval Width set the value at 20% (note in the paper we use half 
widths); for P2 enter 0.65 and for Confidence Interval Formula Chi-square.  PASS 
gives a sample size of 175 patients per arm. 

 

 

4.  DISCUSSION 

This paper describes sample size calculations when the outcome is binary for a variety 
of study designs. It is important to realise that sample size calculations are ‘a guess 
masquerading as mathematics’. Thus we usually only need an approximate answer, 
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and it is important that some form of sensitivity analysis is carried out to investigate 
what factors are important, and perhaps where more information should be sought. 
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