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ABSTRACT

In smart factories, process planning and scheduling need
to be performed every time a new manufacturing order is
received or a factory state change has been detected. A new
plan and schedule need to be determined quickly to increase
the responsiveness of the factory and enlarge its profit. Si-
multaneous optimisation of manufacturing process planning
and scheduling leads to better results than a traditional se-
quential approach but is computationally more expensive
and thus difficult to be applied to real-world manufacturing
scenarios. In this paper, a working approach for cloud-based
distributed optimisation of process planning and scheduling
is presented. It executes a multi-objective genetic algorithm
on multiple subpopulations (islands). The number of islands
is automatically decided based on the current optimisation
state. A number of test cases based on two real-world manu-
facturing scenarios are used to show the applicability of the
proposed solution.
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Applied computing — Industry and manufacturing; « Com-
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KEYWORDS
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1 INTRODUCTION

To remain competitive in a market, smart factories need to
be adapted to small batches and highly customised manufac-
turing [15]. These new conditions require dynamic adaptivity
of the factory with regards to process planning and sched-
uling, governed by enterprise resource planning (ERP) and
manufacturing execution systems (MES) connected to smart
devices (things) [14]. An integrated process planning and
scheduling is triggered after receiving a new manufacturing
order or when a smart factory state change has been detected,
caused by e.g. a thing failure [3]. Typically, the current fac-
tory state is inferred based on the values read from individual
things and sent to an optimisation engine together with the
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new manufacturing order to be allocated and scheduled [1].
The final solution is then sent to the users and/or applied
automatically to things [7, 14].

The optimisation process, usually quite computationally
expensive, is executed on demand at time points difficult to
predict. These busy intervals are followed with intervals with
no significant computational demands. Such on-and-off work-
loads are suitable for public clouds, especially for serverless
execution (aka Function as a Service, FaaS) [3, 15]. FaaS
allows a cloud to run a code without prior server provisioning
or managing. The computational power scales automatically,
is highly available and fault tolerant. The first request can
initially see several seconds response time, but is shorter
than 1s for subsequent requestsl. Using such services is also
economically beneficial as there is no charge for the time
when a code is not running. As FaaS automatically provides
as much capacity as needed and a user is billed based on per-
second capacity consumption and executions, it is suitable for
performing distributed computation with several computing
nodes, especially when the number of these nodes changes
significantly during the execution. An example of such com-
putation can be the Island Model of Genetic Algorithms
(GAs) in which each node hosts a separate subpopulation to
preserve the genetic diversity of the entire population. The
islands exchange some individuals periodically. Typically, the
number of islands is fixed [2], but thanks to serverless exe-
cution, it can be simply scaled up and down based on the
current state of the optimisation process. Such a scheme of
the optimisation can lead to better results in a shorter time.
These features make it suitable for the process planning and
scheduling investigated in this paper.

The proposed method can be applied to a wide range
of smart factories. In particular, it is applicable to both
production of distinct items (i.e. discrete manufacturing)
and production using formulations or recipes (i.e. process
manufacturing). Both these manufacturing branches are ex-
emplified with the real-world use cases provided in this paper.
The industrial partners that formulated these scenarios have

 https://console.bluemix.net/docs/openwhisk/openwhisk__compare.
html



already implemented pilot solutions of the proposed method
and confirmed its advantages.

The main contribution of this paper can be summarised
with the following points:

e proposing two algorithms for determining the num-
ber of islands for multi-objective GAs based on the
temporal state of the optimisation process,

e describing a serverless deployment of the Island Model
of GAs that enhances its scalability,

e presenting two real-world scenarios formulated by ma-
nufacturing companies and their experimental evalua-
tion.

The rest of this paper is organised as follows. After the brief
survey of related works in Section 2, the general architecture
of the developed system is presented in Section 3. The cloud
deployment of the optimisation module is sketched in Section
4. The strategies for determining the number of islands are
proposed in Section 5 and applied to real-world use cases in
Section 6. Finally, the paper is concluded in Section 7.

2 RELATED WORK

GA-based optimisation in clouds has been attracting increas-
ing interest from researchers since publication by Di Martino
et al. [2]. In that publication, three parallel architectures
were proposed which were performed at the fitness evalua-
tion, population and individual levels, respectively. All three
architectures applied the popular Map/Reduce programming
model. However, the presented proof-of-concept implementa-
tion employed parallelism at the fitness-evaluation level only.
Consequently, the communication overhead was significant.
In the proposed solution, the population-level parallelism
(Island Model) is employed instead.

The fine-grained level of parallelism has been also applied
to a conceptual workflow in positional paper [13]. In contrast
to [2], the container technology (Docker?) has been used
rather than Google App Engine web framework. That tech-
nology has facilitated large and scalable deployments on a
different infrastructure, focusing on security, consistency and
reliability. In the proposed solution, Docker containerisation
is also performed, but the containers are executed in a server-
less fashion that results in dynamic scalability rather than
setting a fixed number of containers with an optimisation
engine.

Population-level parallelisation has been employed in Ma
et al. [11]. The master node has assigned the individuals
from each generation to the slave nodes based on their load
information and then collected the corresponding fitness
values. The same number of individuals has been sent to a
fixed number of slaves (32, 48 and 64 nodes), where each slave
maintained one island. However, selecting an appropriate
fixed number of islands is difficult and hence the methods
that employ Strategies of Dynamic Subpopulation Number
Control (SDSNC) have been proposed. During their run,
the subpopulations are created and deleted, depending on
the method state. The idea is to increase the number of
subpopulations when the method is stuck and to decrease

2https://www.docker.com/
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Figure 1: Overall architecture of the proposed system

it when the best-found solution is frequently improved. The
examples of such propositions are Classic [8] and Active [12]
SDSNC, proposed for single objective optimization problems.
Both strategies increase the number of subpopulations when
all subpopulations are stuck. The difference between them is
that Classic SCSNC removes the subpopulation when there
is another one investigating the same or a similar part of
solution space size. Active SDSNC removes all subpopulations
except the one containing the global best when the globally
best-found solution is improved. In this paper, both these
strategies are extended to multi-objective optimisation and
used for real-world problems.

Leclerc et al. [9] proposed a cloud-based framework facili-
tating large scale evolutionary experiments. Their framework
provided a master-slave architecture with nodes communicat-
ing via JSON over HTTP. In the proposed approach, JSON is
also used for configuration serialisation, but it is transmitted
over the reliable streaming platform named Kafka. Kafka has
been also used in a simple proof-of-concept genetic algorithm
implementation in [6], but no implementation details nor
experimental results have been provided there. Also, both
these works have not considered a dynamic number of slave
nodes.

The framework presented in [3] has executed a genetic algo-
rithm on several machines in accordance with the serverless
computing paradigm. Such an approach can be considered
pure functional in that there is no state to maintain between
invocations and consequently no server is required to be
instantiated in advance. Consequently, the available comput-
ing resource is practically unbounded and there is no need
for keeping any computation on hold but the payment is
made only for the real computation time of the computing
resources. In this paper, a similar deployment scheme has
been applied, but rather than perform an earlier termination
of the optimisation process, we dynamically scale up the
number of containers performing the optimisation in parallel
to obtain better results in shorter time.

3 SYSTEM ARCHITECTURE AND
PROBLEM DESCRIPTION

The optimisation problems considered in this paper are re-
lated to an integrated process planning and scheduling in
Industry 4.0, where smart plants are expected to manufac-
ture small batches/series of assorted commodities just after
receiving a manufacturing order. In the proposed solution,



the optimisation is performed by Optimisation Engine (OE),
which is a module of a larger system whose overall archi-
tecture is sketched in Figure 1. The optimisation process is
triggered by a smart plant’s state change, that may be caused
by either obtaining a new manufacturing order or by detect-
ing some unexpected plant condition. The latter is possible
by connecting plant devices (things) to the Situation Determi-
nation (SD) module. This module applies a specific use-case
situation model based on a common situation model specified
by an ontology to find out the current situation of products,
machines and/or processes. The SD module extracts relevant
information from the raw data fetched from the things and
forwards them to the Predictive Analytics (PA) module that
applies machine-learning-based techniques to find certain
patterns in that data and predict future parameters of the
manufacturing process.

When SD detects any relevant plant state change, it trig-
gers the OE module to perform the plant reconfiguration.
The current state is transmitted to OE using a popular dis-
tributed streaming platform named Kafka? in the form of a
message following a well-defined textual protocol. This mes-
sage includes three types of values, each being either numeric
(real or integer) or enumerated: key objectives that shall be
optimised, controlled variables that can be mutated during
the search-based optimisation process and observable values
that carry important information about the plant state, for
example, unavailability of a certain plant resource. After re-
ceiving such a message, OE performs an optimisation process
using an objective function customised for a given plant. In
the considered cases, the objective function is based on the
interval algebra described in [4]. In the proposed solution,
this function is generated automatically based on a factory
description specified by an XML-based format, derived from
the common situation model. Then, the best-found set of the
control variables is returned to SD for applying to the plant.

The functionality of the SD and PA modules, as well
as the appropriate objective function creation from a plant
description, are crucial for the successful plant reconfiguration.
However, all these topics are out of the scope of this paper,
which focuses on the functionality and deployment of OE.

4 CLOUD DEPLOYMENT

One of the most popular techniques facilitating cloud compu-
tation is Docker. Docker creates and executes containers, i.e.,
software units that package up a code and all its dependencies.
The Docker technology separates application dependencies
from infrastructure and hence containers can be executed on
any computer executing Docker Engine. Currently, Docker
Engine can be run locally under Linux and Windows OS,
as well as in data centres and clouds. Several computers
with Docker Engine can be joined in a single cluster with
container-orchestration systems, among which Kubernetes®
is the most popular. Kubernetes clusters are available in all
major cloud facilities, including AWS, Azure, CloudStack,
GCE, OpenStack, OVirt, Photon, IBM Cloud Kubernetes
Service, as well as can be installed locally.

3https://kafka.apache.org/
4https://kubernetes.io/

Due to the convenience of having just a single software unit
executable on virtually any machine, OE has been delivered
in a form of a Docker container. The optimisation process
performed by OE starts after receiving a Kafka message enu-
merating the key objectives, control and observable metrics
and their values. After optimisation, the best found control
metrics assignments are sent back to the SD module, using
the Kafka streaming platform again. Between two consecutive
invocations, OE does not store any information regarding
prior optimisation processes and hence is stateless. Stateless
containers can be executed like functions, in line with the
Function as a Service (FaaS) category of cloud computing
services, also known as serverless execution. There exists a
framework for serverless execution in a Kubernetes cluster
named Fission®. Fission is capable to auto-scale the number
of OE containers in a Kubernetes cluster based on these
containers’ workload. Correspondingly, the workload depends
on the number of islands maintained by an OE container.
As this number is decided dynamically using the strategies
described in the following section, it is expected that the
number of OE containers will automatically scale up and
down. During the creation of a new island, the auto-scaler
in Fission decides whether that island will be maintained by
a new OE container or in one of the already existing OE
containers. In the latter case, the load-balancer in Fission
will select the container with the lowest load.

5 DETERMINATION OF THE NUMBER OF
ISLANDS

In this section, three strategies for island creation and dele-
tion are presented. The number of islands is decided by
a master called manager. A manager calls several slaves to
evolve subpopulations during a certain number of generations,
following the popular Island Model of GAs. Two managers,
ManagerClassic and ManagerActive, decide dynamically on
the number of islands based on the current optimisation state,
whereas the third manager, ManagerStatic, uses a fixed, pre-
defined number of islands and acts as the baseline method.
The idea behind the dynamic managers has been inspired by
their single-objective counterparts from [8, 12].

5.1 ManagerStatic Strategy

After obtaining an optimisation request, ManagerStatic cre-
ates a predefined number, N, of islands. These islands evolve
subpopulations using any multi-objective GA, starting from a
randomly initiated population including P individuals. Dur-
ing each execution, an island evolves I populations. The
manager maintains a Pareto Front approximation, PF', in-
cluding non-dominated® solutions evolved by the islands.
Each island is executed S times. As a single execution is
referred to as stage, the S parameter is called stage param-
eter. PF is updated after each stage and, after S stages, is
returned as the final result of the optimisation process. This
algorithm is outlined in Algorithm 1.

Shttps://fission.io/
SA solution in a Pareto Front approximation is non-dominated if it
includes the best value among all the solutions in that front for at
least one objective.



Algorithm 1: Algorithm of Manager Static

inputs : N: initial number of islands;
Npmaz: maximum number of islands allowed;
S': number of stages;
I: number of iterations per stage;
P: number of individuals per island;
outputs : PF: a global Pareto Front approximation maintained by
the manager;

1 PF=0,s=0;
Create N islands with P randomly generated individuals;

for s=1,...,S do
Execute all islands for I iterations;

S NS

Add non-dominated solutions returned from all islands
into PF}

6 Make migrations;
end

7 return PF’;

After each stage, an inter-island migration is performed in
order to exchange partial optimisation results. The migration
is performed in the following way. For each island, another
island is selected randomly and the best individual from that
island replaces the individual with the worst quality. As there
are no constraints imposed on the selection of the migration
source and its destination, the applied island topology is a
fully connected graph. The quality indicator for individuals
is arbitrary (e.g., weighted sum with normalisation) and can
be customised for the considered optimisation problem.

5.2 ManagerClassic Strategy

In contrast to ManagerStatic, the island management strat-
egy adopted by ManagerClassic alters the number of islands
dynamically considering the current state of the optimisation
process in the way outlined in Algorithm 2.

Algorithm 2: Algorithm of Manager Classic
PF =0,s=0;
Create N islands with P randomly generated individuals;

for s=1,...,S do
Execute all islands for I iterations;

oW N =

5 Add non-dominated solutions returned from all islands
into PF};

6 Make migrations;

7 if CI of PF obtained after stage s is higher than that of
stage (s-1) then

| continue;
else
8 Delete islands that meet island deletion criteria;
9 Create one island with P randomly generated
individuals;
end

end
10 return PF’;

After each stage, the quality of the global Pareto Front
approximation, PF, is compared against PF obtained after
the previous stage. The fronts are compared using an arbitrary

comparator indicator (CI). Without loss of generality, a higher
value indicated by the applied CI is assumed to denote a
higher front quality. Hence, if the current PF is characterised
with a higher CI than the global Pareto Front obtained
after the previous step, a solution with a higher quality has
been evolved by at least one island. In such a situation, the
algorithm continues with the subsequent stage. Otherwise, in
Line 8, the manager iterates through the islands sequentially
and removes all the islands for which at least one condition
from the ones given below is satisfied:

e all individuals have the same genotype,

e another island maintains an identical population,

e the population of another island strictly dominates the

population of the considered island” .

The fulfilment of these conditions indicates that the island
population is not likely to contribute to the final result.
Hence, it may be more beneficial to create a new island with
a random population from scratch (Line 9).

Since ManagerClassic monitors periodically the individual
quality in each island which, in turn, influences the lifetime
of the islands, it may be expected that the quality of the
solutions found using this manager will outperform the ones
obtained with ManagerStatic. This intuition will be con-
firmed in the experiments described later in this paper.

5.3 ManagerActive Strategy

Similarly to ManagerClassic, ManagerActive also manages
the number of islands dynamically. However, the island cre-
ation and deletion conditions are different.

Algorithm 3: Algorithm of Manager Active
PF =0,s =0;
Create N islands with P randomly generated individuals;

for s=1,...,5 do
Execute all islands for I iterations;

B N e

5 Add non-dominated solutions returned from all islands to
PF;
6 Make migrations;
7 if CI of PF obtained after stage s is higher than that of
stage (s-1) then
Delete all islands that do not provide new solutions to
PF;

else
Create one island with P randomly generated
individuals;

end
end

—

o return PF

As shown in Algorithm 3, after each stage, ManagerActive
compares the current PF with the one obtained after the
previous stage using a CI (Line 7). In case the PF quality
has improved, the manager browses through the islands and
removes each island which has not evolved any new non-
dominated solution during that stage (Line 8). When no
7 A Pareto Front approximation strictly dominates another if the former

contains at least one solution that has a better value than any solutions
in the latter for all objectives.



island provides a new non-dominated solution, a new island
is created in order to boost the search space exploration
(Line 9).

When ManagerActive is applied, the lifespan of the island
is usually shorter than the ones with the remaining strategies
since after each stage a certain number of islands is removed
or a new island is created. When a locally optimal solution
has been found and the PF quality has not improved for a
number of stages, ManagerActive maintains more individuals
than the strategies described earlier. Consequently, it is more
probable to find a better solution in such a situation. On the
other hand, if the quality of the global PF improves after each
consecutive stage, ManagerActive keeps removing islands
after each stage regardless of whether the island reached its
local optimum or not. This way even the islands likely to
influence the final solution can be deleted. The experiments in
Section 6 demonstrate the advantages and limitations of this
strategy when applied to real-world optimisation problems.

6 REAL-WORLD MANUFACTURING
PROBLEMS

In this section, a number of optimisation problems originat-
ing from two real-world smart factory use cases is briefly
described and used for evaluating the strategies proposed
earlier in this paper. As written in the previous sections, the
proposed method is agnostic regarding the applied GA or
Pareto Front approximation comparator. In all the experi-
ments, a popular multi-objective GA named MOEA /D [16]
has been applied and the front qualities are evaluated with
the Diversity Comparator Indicator (DCI) [10]. The indi-
viduals with the lowest "makespan" (i.e., the manufacturing
time) in a subpopulation maintained by a particular island
are selected as the migrants. All strategies are executed with
the same parameter set, namely N =5, Nmqz = 10, S =40,
P =50 and I = 20. These values have been chosen after many
experiments based on a set of popular optimisation problems
unrelated to Industry 4.0.

6.1 Process Manufacturing Optimisation
Problem

The first scenario is based on a real-world smart factory rep-
resenting the process manufacturing branch of industry. The
considered factory produces different kinds of paint by mix-
ing certain raw materials, in accordance with the predefined
set of recipes. The main objective is to decrease the total
manufacturing time (makespan) of a given manufacturing
order describing the amount of different paint to be pro-
duced during a certain day. In the factory, there are 9 mixers
(M1-My). Each paint type can be produced using any mixer,
but manufacturing time and the amount of paint produced
during a single manufacturing process depend on the mixer
selection, as shown in Table 1 (the paint type names are in
German). Mixers M1-Ms5 are smaller than Mg — Mg. Among
the larger mixers, Mg and My are faster. It is not possible to
fill any mixer partially with the raw materials. So, in order
to produce an ordered amount of commodities, a multisubset
(i-e. a combination with repetitions) of the recipes needs to be
selected, allocated to the compatible resources and scheduled

in time. As the amount of manufactured paint must be a
sum of multiples of the amounts produced by the appropriate
resources, a certain surplus of a manufactured paint type may
be produced. Storage of such extra paint amount is expensive
and hence the surplus of each paint type shall be minimal.

The considered optimisation problem is then characterised
with multi-objective criteria, as not only the makespan needs
to be minimised, but also the paint surpluses need to be
minimal.

If two recipes allocated to the same mixer and executed sub-
sequently manufacture different paint types, a short sequence-
dependent setup interval of the length provided by the busi-
ness partner is inserted between them. This interval models
the necessary cleaning process time.

The fitness function for the described plant has been gener-
ated automatically from the factory description in the XML
format and injected into OE. OE has been Dockerised and
deployed to a Kubernetes cluster in the way described ear-
lier in this paper. The amounts of ordered paint equal 45,
40, 30, 20 (in tonnes) of “Std Weiss", “Weiss Matt", “Super
Weiss" and “Weiss Basis", respectively. Three managers from
Section 5 have been employed to determine the number of
islands during the optimisation process. The obtained re-
sults are shown in Figure 2. Table 2 details the number of
islands’ creations, deletions and executions during the entire
optimisation process.

Table 1: Process manufacturing example recipes

Recipe Amount of Recipe

Paint . Compatible mixers produced execution

index R X
commodity time

1 {M1, Mo, M3, My, Ms} 5t 90 min.

Std 2 Mg, M7} 10t 60 min.
‘Weiss 3 {Mg, My} 10t 45 min.
4 {M87 Mg} 10t 45 min.

5 {M1, Mo, M3, My, M5} 5t 90 min.

Weiss 6 Mg, M7} 10 t 60 min.
Matt 7 Mg, Mg} 10 t 45 min.
8 Mg, My} 10 t 45 min.

9 {M1, M2, Ms, Ms, M5} 4t 120 min.

Super 10 Mg, M7} 8t 90 min.
Weiss 11 Mg, Mg} 8t 60 min.
12 Mg, Mg} 8t 60 min.

13 {]\4],]\42,1\437 M4,M5} 6t 60 min.

Weiss 14 Mg, M7} 12 t 45 min.
Basis 15 Mg, Mg} 12 ¢ 30 min.
16 Ms, Mo} 12t 30 min.

Table 2: Dynamic islands changes during one optimisation pro-
cess

Manager | Island Executions | Islands Created | Islands Deleted
Static 200 5 0
Active 192 29 19
Classic 137 25 23

As stated earlier, ManagerStatic maintains the same num-
ber of islands (here: N = 5) during each from S = 40 optimi-
sation stages. ManagerActive removes islands not providing
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Figure 2: Number of islands during example execution of op-
timisation using different managers

new globally non-dominated solutions when at least one
island has evolved such a new solution. This situation has oc-
curred in the 9th and 20th stages. This manager also creates
new islands with random individuals when none provides new
globally non-dominated solutions, which is observed between
the 13th and 19th stages. ManagerActive converged at the
24th stage. In the remaining stages, it adds new islands and
finally reaches Nyqz = 10, the maximally allowed number of
islands, after the 33rd stage.

Initially, ManagerClassic has maintained the same num-
ber of islands in the majority of stages before reaching the
19th stage. During these stages, each island has provided new
non-dominated solutions. After the 19th stage, the number
of islands started to decrease as a local optimum has been
reached and the manager removes islands that are less likely
to contribute to the final solution. At that time, new islands
with random individuals are created. This optimisation pro-
cess converges at the 23rd stage. After the convergence, the
manager removes one existing island and adds a new island
with random individuals, as no island improves the quality of
Pareto Front approximation. ManagerClassic executes the
lowest number of islands (137 in 40 stages) in comparison
with the remaining two strategies. It is characterised also with
a higher number of island deletions than ManagerActive.
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Figure 3: Process manufacturing optimisation results by all
managers

The results obtained for the considered optimisation prob-
lem are presented in Figure 3. The primary (blue) vertical

axis is associated with makespans, which are presented as
boxes with a blue frame. Commodity surpluses are labelled
as “discrepancy scores" and associated with the secondary
(black) vertical axis and presented as boxes with black frames.
The magenta boxes show the sum of surpluses of all commodi-
ties for each solution and are also associated with the sec-
ondary vertical axis. As shown in the figure, ManagerStatic
is outperformed by both dynamic stategies as ManagerActive
and ManagerClassic have yielded lower values for all objec-
tives. The results of ManagerActive are outperformed by
ManagerClassic, which has also executed significantly fewer
island.

The Diversity Comparison Indicator (DCI) [10], a quality
indicator commonly applied for assessing the diversity of
Pareto Front approximations in many-objective optimisation,
has been applied to Pareto Fronts approximations obtained
by those three algorithms respectively and returned (O, 0, 1) 8,
which indicates that PF returned by ManagerClassic strictly
dominates PF' obtained by either ManagerActive or Mana-
gerStatic.

As described in Section 5, the rationale behind this ob-
servation is that in ManagerClassic, an island is removed
only if it is less likely to contribute to the final result (e.g.,
converged completely or being strictly dominated). Instead,
ManagerActive deletes an island as long as it is more un-
likely to contribute to the final solution than the remaining
ones. Thus, in general, under identical parameter settings,
ManagerActive can benefit from a larger number of individ-
uals (due to a higher number of islands) while each island
under ManagerClassic is usually run for a higher number of
stages, which is more favourable in the given optimisation
problem.

As the optimisation is performed in a cloud, computational
time and the number of islands influence the monetary cost.
For each optimisation process described above, the price has
been lower than 20$ using Amazon Elastic Container Service
for Kubernetes (Amazon EKS) run on 4-cores instances mb in
the AWS London zone. Due to the lowest number of island ex-
ecution, the optimisation process employing ManagerClassic
has been the cheapest, whereas maintaining a fixed number
of islands in ManagerStatic has been the most expensive
(11$ for ManagerClassic against 15$ for ManagerStatic and
12.1$ for ManagerActive on 4-cores instances mb. xlarge).

6.2 Discrete Manufacturing Optimisation
Problem

The second real-world use case is related to the discrete manu-
facturing process of Wire-cut Electrical Discharge Machining
(WEDM). WEDM is used for shaping parts made of hard
metals by removing unwanted material by using a series of
sparks. One of the electrodes is a wire that is constantly
wound between two spools. As the wire can be used only
once, it is the most expensive consumable in the process.

81n general, each numerical value in a tuple obtained with DCI corre-
sponds to a certain front quality in relation to the remaining fronts
under comparison. These values are upper-bounded with 1 and a higher
value denotes a better relative front quality.



Table 3: Discrete manufacturing example order

Cutti Wire Machine Total
. . utting cost
Par Machine | Manufacturing . cost cost
art . time per
size Way . per part | per part
(min) part
(®) ® |
Small 1 2833.5 28.1 164.0 192.1
Small 2 2956.2 28.1 140.3 168.4
Small 3 3042.1 28.1 147.8 175.9
Small 4 3174.1 30.2 136.8 167.0
Medium 1 2033.5 30.2 242.9 273.1
P1 Medium 2 2156.2 30.2 208.4 238.6
Medium 3 2242.1 41.0 196.1 237.1
Medium 4 2674.1 41.0 189.0 230.0
Large 1 1256.2 41.0 555.9 596.9
Large 2 1633.5 53.7 465.6 519.3
Large 3 1842.1 53.7 427.9 481.6
Large 4 1974.1 53.7 408.4 462.1
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Figure 4: Pareto Front approximations for the considered dis-
crete manufacturing scenario

An example plant is equipped with three WEDM machines
of different sizes: “small", “medium" and “large". The larger is
the machine, the more expensive its usage. In the considered
scenario, 16 metal parts (P1-P16) of different sizes have
been ordered. The part sizes are labelled with the smallest
machine that can manufacture it, so a “small" part can be
manufactured on any machine whereas “large" parts require
the large machine. All parts can be manufactured in one
of four manufacturing ways (MW) that differ in the types
of wire and the machine mode (“eco" or “standard"). An
example of 12 various manufacturing configurations for a
single part is presented in Table 3.

The goal of the considered optimisation problem is to
select a machine to manufacture each part, decide on its
MW and schedule the production in time so that the total
manufacturing cost and the overall makespan is minimised.
In contrast to the previous use case, objectives are explicitly
contradictory since a shorter makespan is obtained on a larger
machine and hence it incurs a higher monetary cost.

Figure 4 presents the optimisation results obtained with the
proposed algorithms using the following parameters: N = 5,
Nmaz =10, S =40, P =50 and I = 20. As shown in this fig-
ure, each proposed strategy yields a set of solutions that are
evenly distributed on the Pareto Front approximation. The
approximation generated by ManagerStatic is characterised
with lower ranges for both the objectives than the approxima-
tions generated with the dynamic strategies. ManagerActive
has yielded a Pareto Front approximation with the largest
ranges with respect to both the objectives. This observation

has been confirmed with the DCI test, which returned values
(0.852,1.0,0.926) for ManagerStatic, ManagerActive and
ManagerClassic, respectively. It can be then concluded that,
in contrast to the previous use case, where the objectives
could be minimised at the same time and ManagerClassic
performed the best, in this use case ManagerActive delivered
results with the highest quality.

The changes in the number of islands during the opti-
misation process are similar to the trends shown in Fig-
ure 2. In case of ManagerActive, the islands are again cre-
ated or removed frequently, reaching the maximal possible
number Npmqz = 10 at the end of the optimisation. With
ManagerClassic, the island number remains stable initially
and decreases gradually at later stages. The objective func-
tion is much simpler than in the previous use case. Hence,
the total computation cost for performing this optimisation
is significantly lower: it is below 0.5$ regardless of the applied
manager when using the same cloud instances as for the
considered process manufacturing problem.

In order to evaluate the characteristics of the proposed
optimisation scheme when applied to larger problems, the
original number of machines, the number of instances of
ordered parts and the number of MWs have been multiplied
by scale factor i = 1,...,10. For example value i = 2, each
part will be produced twice and a table corresponding to
Table 3 would have 24 rows with possible selections of machine
sizes and MWs. The cutting time and costs have not been
scaled. The three managers have been used to optimise 30
randomly generated manufacturing orders. In the majority of
cases (28 out of 30), ManagerActive has performed the best.
ManagerClassic has acted better than ManagerStatic in 27
cases. It may be then concluded, that using ActiveManager is
the most effective for the considered problem. The dynamic
strategies significantly outperform ManagerStatic. These
conclusions were confirmed by Sign Test with the probability
exceeding 99%.
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Figure 5: Makespan optimisation results of the proposed
cloud-based approaches by scaling the problem size

The box plot presenting the optimisation results for make-
span for all the scaled scenarios are presented in Figure 5. The
results follow a slowly increasing trend, which implies that the
majority of the parts are produced in parallel, benefiting from
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Figure 6: Monetary cost optimisation results of the proposed
cloud-based approaches by scaling the problem size

Table 4: DCI of proposed algorithms on scaled discrete man-
ufacturing factory.

i | ManagerStatic | ManagerActive | ManagerClassic
1 0.2 0.747 0.72
2 0.125 0.583 0.417
3 0.217 0.609 0.435
4 0.158 0.842 0.158
5 0.00 0.556 0.444
6 0.043 0.609 0.435
7 0.056 0.889 0.152
8 0.083 0.792 0.208
9 0.00 0.889 0.111
10 0.00 0.952 0.048

the higher number of machines. As expected, ManagerStatic
is outperformed by the dynamic managers in all cases. In
general, ManagerActive has delivered Pareto Front approxi-
mations with a higher diversity than ManagerClassic, which
is easily visible in the figure for ¢ > 7.

In contrast to the makespan, objective “monetary cost" for
the scaled scenarios follows an observable linearly increasing
trend, which is visible in Figure 6. This is inevitable as
the manufacturing of each part is incurred with a certain
cost due to the machine activity and wire usage. For this
objective, the optimisation results also remain predictable
and understandable while scaling the problem size. Table 4
presents the results from the DCI test that again confirms
that ManagerActive is more favourable for this optimisation
problem.

The objective function is computationally less demanding
than in the previous use case. Consequently, even for the
largest considered factory (i.e., for ¢ = 10) the cost of cloud
optimisation is low. To maintain the islands, several EC2
instances in the AWS cloud have been used whose ECU?
ranged from 13 to 68. In average, an execution of a single
stage has lasted 907s and the optimisation has cost less than
10$ on all the considered EC2 instance types.

91 ECU is defined by Amazon as the compute power of a 1.0-1.2GHz
of a server CPU from 2007.

In summary, this section demonstrates the efficiency of
the proposed cloud-based optimisation algorithms via two
integrated process planning and scheduling problems for two
real-world smart factories. We also demonstrated that the
proposed approach is practically feasible with the acceptable
cost incurred for using cloud computing services. From the
results, ManagerClassic is more favourable where objectives
do not conflict with each other (i.e., can be minimised at
the same time) while ManagerActive benefits optimisation
problems that require more individuals during each stage to
list more possible solutions for conflicting objectives.

7 CONCLUSION AND FUTURE WORK

In this paper, two genetic algorithms for multi-objective
optimisation using a dynamic number of islands have been
proposed. The software implementation of these algorithms
has been deployed to a cloud and applied to an integrated
process planning and scheduling for two real-world smart
factories representing the process and discrete manufacturing
branches. The presented experimental results have confirmed
the superiority of the proposed method over the typical
approach using a static number of islands in terms of solution
quality and computation time.

In our future work, we plan to investigate other migration
topologies, e.g. a ring, different from the fully connected
graph used in this paper. Other migration strategies, such as
increasing the number of migrants or the strategy of migrants’
selection and individuals’ replacement will be also evaluated.
The innate barrier imposed after each stage is planned to
be lifted by proposing a fully distributed algorithm for the
subpopulation evolution in the islands. Finally, customised
islands management model and GA operators will be pro-
posed to further improve the optimisation results, similarly
as in [5].
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