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Abstract

In this study, the optimal layout of the principal structural members forming a building frame are sought, considering both

gravity and lateral loads. The plastic design layout optimization formulation is used, considering the multiple load cases

arising from the requirements of a well-known structural design code. The superposition approach is shown to be applicable

to the three primary load case problems involved. It is found that the optimal layouts identified differ from those obtained

when bracing is sought for a pre-existing frame, already designed to resist gravity loads. A significant finding is that a

parameter related to the difference in vertical and lateral loads to be applied in the applicable load cases is a key factor

determining the optimal layout of frame members. Since applicable load cases are design code dependent, this also indicates

that optimal layout will be strongly influenced by choice of design code. Simple benchmark problems and a practical

building design example are used to illustrate the concepts explored.

Keywords Layout optimization · Topology optimization · Building frames · Multiple load cases

1 Introduction

Ensuring adequate resistance to lateral loads is central to

the design of any building. When designing a building,

structural engineers normally rely on codes of practice,

which generally require that several separate load cases are

considered. Often the load case which involves application

of the maximum lateral load includes design gravity loads

which are not at their maximum value. This is because it

is considered improbable that maximum gravity loads will

coincide with, say, maximum wind loads. As a result, in

many bracing optimization studies, it is first assumed that

the sizes of the main columns and beams in a structural

frame are determined by consideration of gravity load cases

(only), and that these members will have sufficient strength

to play their required roles in resisting lateral loads without

needing to be resized; this scenario has been considered by

various workers (e.g. Kim et al. 1998; Liang et al. 2000;

Responsible Editor: YoonYoung Kim

� Matthew Gilbert

m.gilbert@sheffield.ac.uk

1 Department of Civil and Structural Engineering, University of

Sheffield, Mappin Street, Sheffield, S1 3JD, UK

Terán-Gilmore and Coeto 2011; Stromberg et al. 2012), and

was recently considered in more detail by Lu et al. (2018).

There are in contrast relatively few examples of what may

be termed ‘holistic’ optimization of the structural frame,

in which all load cases are considered when identifying

the locations and sizes of members forming the frame of

a building. This runs contrary to recent practice in the

field of structural engineering, where, for example, diagrid

exoskeleton frames are increasingly being used to resist

both vertical and lateral loads.

Considering previous research involving the holistic

optimization of building frames, Chan et al. (1995)

considered multiple gravity and wind load combinations

from the American Institute of Steel Construction standard

when performing the size optimization of members

forming a 50-storey building frame. Burry et al. (2005)

simultaneously applied lateral and gravity loading in a

shape optimization problem for a pre-defined structure,

whilst Moon et al. (2007) considered diagrid bracing

systems, using the angles between bracing members as

parameters to be varied in order to optimize the lateral

stiffness of the structure. In addition to these academic

studies, optimization has been used in the practical design

of landmark structures. For example in the design of the

diagrid structure for the Swiss Re (‘Gherkin’) building in

London, a parametric optimization scheme was used to

http://crossmark.crossref.org/dialog/?doi=10.1007/s00158-019-02283-x&domain=pdf
http://orcid.org/0000-0003-4633-2839
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design the external form to resist gravity and wind loading.

Instead of using prescribed joint positions, the external form

was defined by a small number of parameters, enabling

a complex geometric model to be manipulated rapidly

(Foster and Partners 2005). For the design of the visually

striking CCTV headquarters building in Beijing, an iterative

optimization process was used in the design of the bracing,

adding or removing diagonals to meet the strength and

stiffness requirements associated with a Level 1 earthquake

(Carroll et al. 2008).

Whilst these studies have yielded interesting findings, it

appears that no rigorous academic studies of the holistic

frame layout design problem have been conducted to date, in

which the locations and sizes of principal members forming

a building frame are sought. Addressing this is the main

driver for the present study. Both theoretical and numerical

layout optimization approaches are used to identify optimal

framing systems capable of withstanding gravity loads only

and also combined gravity plus lateral loading scenarios.

The paper is organized as follows: Section 2 describes

the design optimization problem that will be considered and

identifies a key parameter related to the load cases which

turns out to greatly influence the layouts of the optimal

building frames identified; Section 3 describes application

of the techniques described to single and multi-storey

building design examples; Section 4 describes application

to the design of a small office building; finally, conclusions

from the study are drawn in Section 5.

2 Holistic design optimization problem

2.1 Layout optimization

The optimal layouts of discrete members in a framework

can be identified using the layout optimization procedure,

originally described by Dorn et al. (1964). In this procedure,

nodes are laid out in a grid across the design domain,

with all possible interconnections between nodes forming

a ‘ground structure’. The basic single load case ‘plastic’

layout optimization formulation for a two-dimensional truss

problem can be stated as follows:

min V = qT c

subject to Bq = f

q+
i , q−

i ≥ 0, i = 1, ..., m

(1)

where there are m members and n nodes in the

problem, and where V represents the volume of

the structure, qT = {q+
1 , q−

1 , q+
2 , q−

2 , ..., q+
m , q−

m },

cT = {l1/σ
+
1 , l1/σ

−
1 , l2/σ

+
2 , l2/σ

−
2 , ..., lm/σ+

m , lm/σ−
m },

where and li, q
+
i , q−

i , σ+
i , σ−

i represent, respectively, the

length, tensile member force, compressive member force,

tensile stress capacity and compressive stress capacity

of member i. B is a 2n × 2m equilibrium matrix and

f =
{

f x
1 , f

y

1 , f x
2 , f

y

2 , ..., f x
n , f

y
n

}

, where f x
j and f

y
j rep-

resent the component of load applied to node j in the x

and y directions respectively. This problem is in a form

suitable for solution using linear programming (LP); the

adaptive ‘member adding’ solution procedure proposed by

Gilbert and Tyas (2003) can be used to reduce the cost of

the computations involved.

2.2 Practical design considerations

Although it is common when designing a building frame

manually to first design members to resist gravity loads

(i.e. the constituent beams and columns), and to then design

bracing elements, this may not lead to the best design.

For example, it is possible that in the case of a tall,

slender, frame that the design of the columns may be partly

determined by the loads induced in them by the lateral

load. Additionally, decoupling the different load cases in

this way may mean that more optimal ‘holistic’ designs are

missed. Therefore in this paper, all principal load cases are

considered in the optimization.

As stated by Lu et al. (2018), for the design of steel

framed buildings, British Standard 5950-1:2000 suggests

the following load combinations:

p1 : 1.4Gk + 1.6Qk (2a)

p2 : 1.0Gk + 1.2Qk + 1.2Wk (2b)

p3 : 1.0Gk + 1.2Qk − 1.2Wk (2c)

where Gk is the characteristic permanent load, Qk is the

characteristic imposed load and Wk is the characteristic

wind load. (For sake of simplicity notional horizontal forces

are neglected.)

To tackle the resulting design problem, three assumptions

were introduced by Lu et al. (2018):

– Assumption 1: The loads generated in the columns

in load case (2b) and (2c) are always less than those

resulting from load case (2a).

– Assumption 2: Vertical gravity loads are only carried by

the columns in all load cases.

– Assumption 3: The sizes of pre-existing horizontal

members (i.e. floor beams and/or slabs) are dominated

by the gravity load case, (2a), and the axial loads

induced in them by lateral load cases (2b) and (2c) are

small in comparison.

Here all of these assumptions are removed. This means

that vertical loads can be resisted by any frame member, and

the sizes of the column members may be partly governed by

the lateral load cases.
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Fig. 1 Use of superposition approach to derive the optimization result

of multiple load cases: a three load cases based on British Stan-

dard load case combination, where V = 1.0Gk + 1.2Qk, �V =

0.4Gk + 0.4Qk, �H = 1.2Wk, where Gk, Qk and Wk are, respec-

tively, characteristic permanent, imposed and wind loads; b as a but

with additional dummy load case added to enable the superposition

principle to be applied; c using superposition, the solution to b can be

obtained by superimposing the individual results from four single load

case problems, p1 to p4

2.3 Parameter governing the optimal layout, rVH

Using the British Standard load cases (2a–2c), and with

Assumptions 1, 2 and 3 removed, a parameter governing

the optimal layout can be identified. To establish this,

Rozvany’s work on optimization with multiple load cases

(Rozvany et al. 2014) and the superposition method of

Rozvany and Hill (1978) will be used.

Figure 1a shows a graphical depiction of the load cases

in (2a–2c). Here V is the vertical load in load cases (2b)

and (2c) (i.e. 1.0Gk + 1.2Qk) and �V is the additional

vertical load in load case (1a) (i.e. 0.4Gk + 0.4Qk). Here,

�H is used to represent the difference in horizontal (lateral)

load between the gravity and lateral load cases; since the

horizontal loads in the first load case are equal to zero,

�H = H .

The optimized solution to the problem shown in Fig. 1a

can be obtained using the superposition approach put

forward by Rozvany and Hill (1978). However, this

approach requires there to be 2n load cases, with n being

a positive integer. Following Rozvany et al. (2014), a

fourth, dummy load case p4 can be introduced, comprising

vertical loads V − �V . According to Property 3 in

Rozvany et al. (2014), since �V > 0, the optimized

result for the problems shown in Fig. 1a and b must

be identical. Providing the problem shown in Fig. 1b

satisfies the specific conditions of the superposition

approach, then the optimized solution can be obtained

by superimposing the optimized results of four single

component load cases p1 to p4; see Fig. 1c. Derivation

of the component load cases p1 to p4 is presented in

Appendix 1.

Table 1 Calculation example of parameter rVH, where pi represents

the ith load case

Load case Load type Load magnitude

p1 Vertical load 400 kN

Horizontal load 0 kN

p2 Vertical load 200 kN

Horizontal load 100 kN

rVH (400 − 200)/(100 − 0) = 2
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Using the superposition approach, the optimum structure

for all four load cases can be obtained by superimposing the

optimal layouts for each of the four individual component

load cases. Referring to Fig. 1c, it is obvious that the optimal

layout for load case p1 will be vertical columns running

along the outer edges of the domain. Also, it is obvious

that the optimal layout for load case p4 will comprise no

members at all (since there are no applied loads). Therefore,

the optimal bracing layout can be obtained simply by

superimposing the optimal layouts arising from load cases

p2 and p3, each obtained using the basic single load case

(a)

(b)

Fig. 2 Numerical verification of superposition approach: a example

with rVH = 3; b example with rVH = 6, where rVH is the parameter

governing layout for multiple load case problems. On the left hand

side are optimized results from single component load cases p2 and

p3, see Fig. 1c, and on the right hand side are multiple load case

results. Red and blue bars represent, respectively, members taking

tensile and compressive forces. For the multiple load case results, the

force distribution shown corresponds to the load case with horizontal

(lateral) loads acting from left to right

layout optimization formulation, Eq. (1). As these latter

layouts depend only on �V and �H , a new parameter

rVH = �V/�H can be introduced as the parameter that

controls the form of the optimal layout. Table 1 shows

a sample calculation of rVH. To verify the correctness of

the superposition approach described, solutions were also

obtained for sample problems using the standard multiple

load case LP formulation, as shown in Fig. 2 (details of the

formulation are given in Appendix 2).

The finding that there is a parameter rVH which governs

the optimal layout is significant. Since different design

codes stipulate that different combinations of loads are

involved in the various load cases to be considered, this

indicates that the optimal layout will be strongly influenced

by the choice of design code. This fact is unlikely to have

been anticipated by the code writers.

3 Examples: simple single andmulti-storey
braced frames

In this section, examples of the relationships between rVH

and the optimal layout are presented for two types of braced

bay, one with loading applied only at the top corners of

Fig. 3 Loads for single- and multi-storey bracing layout optimization

study: a single-storey cases; b multi-storey cases; values of V and H

are given in Table 2



Layout optimization of building frames subject to gravity and lateral load cases

Table 2 Load values of V and H in different load cases, where pi

represents the ith load case; P is a reference load; c is a loading

coefficient, assumed to be 1.35 based on British Standard 5950-

1:2000 load case combinations, see Eq. (2a–2c); rVH is the parameter

governing layout for multiple load case problems (load positions are

shown in Fig. 3)

Load case Load type Load magnitude

p1 V c · P

H 0

p2 V P

H
(c−1)P

rVH

p3 V P

H −
(c−1)P

rVH

the design domain, and the other with the frame split into

square vertical bays with loading at each ‘floor’ level. The

numerical multiple loading layout optimization approach

described in Appendix 2 is used.

3.1 Problem definition

Figure 3 shows the design domain and load and support

conditions for the cases considered in this study. For sake of

simplicity, the aspect ratio of the design domain of all cases

has been fixed to 4:1. Table 2 presents the values of the load

parameter V and H in Fig. 3. In the study, V is kept constant

but the horizontal load H is varied, replicating a changing

external environment. For the vertical load V defined by the

British Standard the ratio of the vertical load in the gravity

and wind load cases can be denoted c, where:

c =
1.4Gk + 1.6Qk

1.0Gk + 1.2Qk

= 1.33 +
0.07Gk

1.0Gk + 1.2Qk

(3)

Therefore, from (3), it is clear that cmin = 1.33 when

Gk = 0 and cmax = 1.40 when Qk = 0. This means that the

horizontal load H equals (c−1)P
rVH

and −
(c−1)P

rVH
in load cases

p2 and p3 respectively, where P is a reference load (see

Table 2). For the examples documented, c has been taken as

1.35, though with checks later undertaken using c = 1.33

and c = 1.40 to verify that the main findings were largely

unaffected by this choice.

The volumes of the optimized layouts are compared with

two other layouts: standard cross bracing and the modified

layout identified by Stromberg et al. (2012). Note that

Stromberg et al. (2012) studied both problems involving

multiple horizontal loads applied through the height of a

building and problems involving only a single horizontal

load applied to the top of a building, the latter resembling

the cantilever problem considered in Section 4.8 of Hemp

(1973). Since the structures obtained in both cases were

found to be similar, the same Stromberg module layout is

used here for both single- and multi-storey problems. (Note

that members are re-sized for each specific case.)

3.2 Optimal layout results

Figures 4 and 5 show the optimal layouts and corresponding

normalized volumes for the single and multi-storey frames

Fig. 4 Single-storey frame example: comparison of volumes and opti-

mized layouts based on British Standard loading with c = 1.35 and

rVH = (0.4Gk + 0.4Qk)/(1.2Wk), where c is the ratio of the vertical

load between load cases (i.e. (1.4Gk + 1.6Qk)/(1.0Gk + 1.2Qk)); all

volumes are normalized against the volumes of standard cross brac-

ing systems; red and blue bars represent, respectively, members taking

tensile and compressive forces when lateral loads are applied from left

to right
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Fig. 5 Multi-storey frame example: comparison of volumes and opti-

mized layouts based on British Standard loading with c = 1.35 and

rVH = (0.4Gk + 0.4Qk)/(1.2Wk), where c is the ratio in vertical

load between load cases (e.g. (1.4Gk + 1.6Qk)/(1.0Gk + 1.2Qk)); all

volumes are normalized against the volumes of standard cross brac-

ing systems; red and blue bars represent, respectively, members taking

tensile and compressive forces when lateral loads are applied from left

to right

described in Section 3.1. Note that simple (pinned) frame

connections have been assumed in the models.

Firstly, as expected, the optimized bracing can be

observed to always be more efficient (i.e. to consume less

material) than both standard cross bracing and Stromberg

bracing. However, the differences between the normalized

volumes of the different layouts are comparatively small

(maximum difference is 7%). This is partly because the nor-

malized volume includes both the volume of vertical columns

and the volume of interconnecting bracing elements.

Secondly, it is clear that as rVH increases, the optimized

layouts tend to include highly inclined members to transmit

the applied vertical loading more directly towards the

supports. This is at variance with the finding by Lu et al.

(2018), who suggest that there should be a 45◦ intersection

angle between columns and bracing member pairs; however,

this observation only applies if the columns are assumed

to have infinite reserves of strength, which is not the case

here.

Thirdly, it is clear that whilst Stromberg bracing is more

efficient than standard cross bracing when rVH is low, the

situation is reversed when rVH is high. This is a result of

the fact that the shallow inclined members of the Stromberg

bracing layout are most suitable for cases when horizontal

(lateral) loads are significant. In such cases it can be

observed that Stromberg bracing has a much simpler layout

than the optimized layouts, but the associated volume is

only slightly higher. This suggests that Stromberg bracing

provides a very practical solution for cases when horizontal

(lateral) loads are significant.

Fig. 6 Small office building:

plan, after Brettle and Brown

(2009)
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Table 3 Small office building: characteristic actions

Actions on roof Actions on floors

Permanent action 0.9 kN/m2 3.7 kN/m2

Variable action 0.6 kN/m2 3.3 kN/m2

Wind action 89.5 kN 187.1 kN

4 Bracing design of a small office building

Here, the optimization of a four-storey steel frame structure

for a small office building is considered. In this case rVH

was calculated to be 0.68 and 2.33 for the major and minor

wind directions respectively.

Lateral stability of the frame is provided by the presence

of braced bays through the full height of the frame (Fig. 6

shows a typical plan above ground floor level; the height

between floors was 4.5m). Actions applied to this structure

are shown in Table 3. Load cases for a braced bay are here

assumed to be based on British Standard loads, defined in

Eq. (2a–2c). For the sake of simplicity only the wind load

case acting normal to the long side of the building, and the

design of the bracing resisting this load is considered in

the design. The steel has a yield stress of 355MPa in both

tension and compression and an elastic modulus of 205 GPa.

The optimized bracing design is shown in Fig. 7a. To

permit comparison, a conventional design is shown in

Fig. 7c, depicting the bracing layout presented for the

same building by Brettle and Brown (2009). Since the

structure shown Fig. 7a is too complex to be fabricated

using conventional approaches, a more practical alternative

design was also sought. To achieve this the horizontal beams

used in the conventional design (Fig. 7c) were used as pre-

existing members, and a new optimization run. This yielded

the intermediate optimized design shown in Fig. 7b.

To achieve the conventional design shown in Fig. 7c,

Brettle and Brown (2009) kept the sizes of all columns

and bracing members constant throughout the height of

the frame, even though the forces in the members reduce

significantly from ground to top floor. This kind of

rationalization is common in practice. However, to remove

the associated inefficiency, and hence to provide a fair

comparison with the optimized layouts, here the members

were resized, with the chosen sections being the most

efficient H-section column and circular hollow sections

available in the UK (Tata Steel Europe Limited 2016).

To realize the optimized designs shown in Fig. 7a and b a

two-stage process was adopted. Firstly, layout optimization

and geometry optimization were used to find the optimal

layout of the braced bay (the 6m wide four-storey right hand

Fig. 7 Small office building:

a optimized braced bay design;

b optimized design with

pre-existing beams;

c conventional braced bay;

d sections chosen for the

structure shown in b, with

buckling effects considered;

e sections chosen for the

structure in (c), with buckling

effects considered



H. Lu et al.

Fig. 8 Small office building:

visualization of building

incorporating optimized braced

bay shown in Fig. 7b

bay shown in Fig. 6) and associated volume of required

material (these were 0.0900m3 and 0.0976m3 for the layouts

shown in Fig. 7a and b respectively, compared with 0.1032m3

for the layout shown in Fig. 7c). Secondly, in a post-

optimization rationalization step the column and inclined

bracing members were each assigned the most efficient Tata

Steel section to transmit the required load, taking account

of member buckling effects in compression members as

necessary. The total steel masses of the resulting optimized

bracing systems are shown in Fig. 7. The structure shown

in Fig. 7a has the lowest mass, representing a 35% material

saving compared to the conventional design shown in

Fig. 7c (this is greater than the reduction prior to the post-

optimization rationalization, of 13%, which in turn exceeds

the reductions found previously due to the comparative

inefficiency of the layout shown in Fig. 7c).

In addition to the strength of the bracing system, the

stiffness of the frame is also checked. Linear elastic

static analyses were conducted as a post-processing step

for the three cases, considering load case (2b). The tip

displacements for the designs shown in Fig. 7a, b and c were

found to be 55.1 mm, 44.5 mm and 57.7 mm respectively,

which all satisfy the design code requirements (for details

see Appendix 3).

The optimized structure shown in Fig. 7b has a much

simpler layout than the optimized benchmark structure (Fig.

7a) and is more structurally efficient than the original design

proposed by Brettle and Brown (2009). Therefore, the

structure shown in Fig. 7b may provide a fair compromise

between efficiency and practicality in this case. Figure 8

shows a visualization of how this could look in reality.

5 Conclusions

Layout optimization has been used to identify optimal

layouts for building frames. The following conclusions can

be drawn:

1. The optimal layouts obtained using the ‘holistic’

strategy adopted differ from those obtained when

seeking to brace a frame comprising pre-existing

members (e.g. as considered by Lu et al. 2018).

2. For the simple holistic design problems involving

square bays considered, the optimal layouts obtained

were only slightly more efficient than the layouts

incorporating 45◦ cross-bracing or Stromberg bracing

(max. difference = 7%).
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3. When one of the applied load cases involves no lateral

load, the optimal layout was found to be controlled by

a parameter rVH, where rVH =�V /�H and �V and

�H represent respectively the differences in vertical

and horizontal load between the load cases.

4. Since different design codes stipulate different com-

binations of loads are present in the load cases to be

considered, this indicates that the optimal layout will be

influenced by the choice of design code. This outcome

is unlikely to have been anticipated by the code writers.

5. The bracing layout presented by Stromberg et al. (2012)

has been found to be very efficient in cases where the

horizontal load dominates (e.g. rVH < 3). However,

standard cross bracing becomes more efficient when the

vertical load dominates (e.g. rVH ≥ 3).

6. Adopting a holistic design strategy, in which non-

vertical members are allowed to carry gravity loads as

well as act as bracing members, appears to be most

worthwhile in cases where the vertical load dominates

(e.g. rVH ≥ 5).

7. Layout optimization has been applied to the design

of the frame of a small four storey office building

comprising rectangular bays. This led to an uncon-

ventional frame layout and a reduction in the volume

of material required compared with the conventional

layout considered (13% prior to the post-optimization

rationalization).

6 Replication of results

The main findings from this work can be reproduced by

using numerical layout optimization to solve the example

problems described.
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Appendix 1: Application of principle
of superposition

A superposition approach can be used to obtain the opti-

mization solution for multiple load cases via superimposing

the optimization solutions of certain single component load

cases. Hemp (1973) first demonstrated that this approach

could be applied with two arbitrary load cases and it was

later expanded by Rozvany and Hill (1978) to be suitable

for problems with more than two load cases for materials

with equal permissible stresses in tension and compression.

Nevertheless, in situations with more than two load cases,

certain conditions need to be fulfilled for the superposition

approach of Rozvany and Hill (1978) to be valid. Rozvany

and Hill’s method involves the replacement of the actual

load cases with associated ‘component’ load cases. In a sit-

uation with four alternative load cases (e.g. p1, p2, p3 and

p4), there exist four component load cases according to the

superposition approach (e.g. p1, p2, p3 and p4) and each of

them could be obtained based on the original four alternative

load cases using (4).

p =
1

4

⎡

⎢

⎢

⎣

1 1 1 1

1 −1 1 −1

1 1 −1 −1

1 −1 −1 1

⎤

⎥

⎥

⎦

p, (4)

where p = {p1, p2, p3, p4} is the vector of component load

cases; p = {p1, p2, p3, p4} is the vector of alternative load

cases.

Rozvany and Hill (1978) demonstrated that, if one of

several specific conditions is met at every point in the design

domain, then the superposition approach can be applied. For

the current problem, which has four load cases, Condition

1 is relevant (referred to as Condition (10c) in Rozvany and

Hill 1978).

Condition 1 requires, at any arbitrary point in the design

domain, the stress generated by at least one of the

component load cases to be zero.

Here, since every point in component load case p4 has

zero stress (e.g. see Fig. 1c), and given the the method used

to obtain component load cases, the superposition principle

is applicable. Thus, the superposition approach has been

used to derive the optimized result in the case considered in

Fig. 1b.

Appendix 2: Multiple load case plastic layout
optimization formulation

The LP plastic truss layout optimization problem formu-

lation for problems involving multiple load cases can be

written as:

min V = lTa

subject to Bqα = fα

a ≥ 0

ai ≥ {q+
i /σ+

i + q−
i /σ−

i }α

{q+
i }α, {q−

i }α ≥ 0

(5)
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where α = 1, 2, ..., M and i = 1, 2, ..., m; and M , m, n

represent, respectively, the number of load cases, members

and nodes of the design problem; V represents total

structure volume, a = {a1, a2, ..., ai}, l = {l1, l2, ..., li},

B is a suitable (2n × 2m) equilibrium matrix, qT =

{q+
1 , −q−

1 , ..., q+
m , −q−

m }, fα is the load case vector, where

fα = {f x
1 , f

y

1 , ..., f x
n , f

y
n }α; and ai, li, q

+
i , q−

i , σ+
i , σ−

i

represent, respectively, the cross section area, length,

tensile force, compressive force, tensile stress capacity and

compressive stress capacity of member i and also {f x
j }α

and {f
y
j }α represent, respectively, the x and y direction

component load applied on node j in load case α.

In the resent contribution, the adaptive member adding

method for multiple load case problems proposed by

Pritchard et al. (2005) has been employed to reduce compu-

tational cost and the geometry optimization rationalization

scheme proposed by He and Gilbert (2015) has been used to

simplify the resulting layouts.

Appendix 3: Influence of secondorder effects

One main function of bracing is to control the second order

effects induced by lateral displacements. Here, the practical

design example described in Section 4 will be considered.

Eurocode 3 (2006) uses a parameter αcr to account for

second order effects. An approximate formula for αcr is

shown in (6). Eurocode 3 stipulates that, using an elastic

analysis, if αcr > 10, then second order effects can be

neglected. If 3 > αcr > 10, then the amplification factor

given in (7) must be applied to the horizontal load. If αcr <

3, then a global second order effect analysis must be carried

out.

αcr =

(

HEd

VEd

)(

h

δH,Ed

)

(6)

Amplification factor =
αcr

αcr − 1
(7)

where HEd is the total horizontal reaction at the bottom of

the storey, VEd is the total design vertical load applied on

the storey, h is storey height and δH,Ed is the horizontal

displacement at the top of the storey, relative to the bottom,

calculated using an elastic analysis.

For each structure shown in Fig. 7 values for αcr can be

obtained for each storey and the minimum of these found.

The minimum αcr values for Fig. 7a, b and c were found

to be 19.20, 27.55 and 23.47 respectively. Since all these

values are larger than 10, then, according to Eurocode 3,

second order effects can be neglected.

In some circumstances αcr may drop below 10. In this

case the amplification factor shown in (7) can potentially be

employed during the layout optimization process to obtain

an acceptable design.
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