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Abstract: 
Müller Glia (MG), the radial glia cells of the retina, have spectacular 
morphologies subserving their enormous functional complexity. As early as 
1892, the great neuroanatomist Santiago Ramon y Cajal studied the 
morphological development of MG, defining several steps in their 
morphogenesis [1,2]. However, the molecular cues controlling these 
developmental steps remain poorly understood. As MG have roles to play in 
every cellular and plexiform layer this review discusses our current 
understanding on how MG morphology may be linked to their function, 
including the developmental mechanisms involved in MG patterning and 
morphogenesis. Finally, uncovering the mechanisms governing glial 
morphogenesis, using transcriptomics and imaging, may provide shed new 
light on the pathophysiology and treatment of human neurological disorders.  
 
 
Highlights:  

 MG have intricate morphologies amongst the neural layers of the retina  
 MG are patterned in a “tiled” configuration amongst the neurons  
 The mature MG morphology requires contact inhibition via homotypic 

interactions  
 Imaging and transcriptomics are key to identifying mechanisms of MG 

development  
 
 
 
Introduction  
Glial cells are a morphologically diverse group of cells in the nervous system. 
Each glial cell type is morphologically specialised to perform critical roles in 
the regulation of the structure, development, and physiological function of the 
nervous system [3]. Glial cell dysfunction has been associated with several 
neurological disorders [4] and may even precede cognitive dysfunction in 
neurodegenerative disease [5,6]. Radial glia are mostly known for their role in 
cortical development where they serve as primary progenitor cells capable of 
generating neurons, astrocytes, and oligodendrocytes [7]. In 1851, Heinrich 
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Müller observed “radial fibers” in the retina. These turned out to be the first 
images of a neuroglia and were later renamed Müller glia (MG) in his honour 
[8]. MG have a variety of retinal specific functions, including developmental 
[9], physiological [10-14], structural [12,15,16] and even optical [12,17-19]. 
MG have also been implicated in many retinal diseases [20,21] and have the 
ability to regenerate the retina in some vertebrate species [22,23]. Despite the 
abundance of knowledge about MG, we know surprisingly little about the 
developmental processes that govern their morphology and pattern in the 
retina.  
 
The genesis of the MG   
During embryogenesis, the retina is generated from radial cells called retinal 
progenitor cells (RPCs) [24]. Retinogenesis culminates with these RPCs 
being depleted after producing five main types of neuron and the MG. MG are 
specified near the end of RPC lineages [24,25]. In fact, MG begin their 
postmitotic lives greatly resembling RPCs with simple apical and basal 
process attached to the outer and inner limiting membranes of the retina, 
respectively (Figure 1) [15,26]. It seems possible that after the RPC lineage, 
MGs arise as a “default” without undergoing irreversible cell fate 
determination [9], and thus inherit the bipolar radial morphology from the 
parent RPC. This idea is supported by the remarkably similar transcriptional 
profile between RPCs and MG [27,28] and time-lapse observations of single 
RPCs in a clone, in which one cell will up-regulate Notch signaling, maintain 
the radial morphology and differentiate into a MG cell [15].  
 
While the radial morphology of MG is striking, perhaps even more impressive 
are the extensive specialised processes that emanate from the central stalk to 
make connections with neurons and blood vessels. Once the MG is specified 
to the glial fate the nucleus undergoes an apical to basal migration to its’ 
characteristic position between bipolar and amacrine cells in the inner nuclear 
layer [15]. Then, MG cells begin to elaborate processes into several retinal 
layers. Recently, Wang et al. [26] carried out a high-resolution analysis of MG 
morphology in the mouse retina using mosaic analysis of membrane bound 
proteins. This included the characterisation of the fine processes of MG cells. 
In this analysis it was shown that MG have symmetric branching from the 
central stalk in each layer and feature differing morphologies between layers. 
These domains are specialised for specific functions related to the specific 
neurons and synapses in each layer, as well as the blood vessels and other 
glial cells that they contact in each retinal layer [29]. Each MG cell has at least 
five domains within the retina [26] (Figure 1 ): 1) a basal oriented process that 
forms an endfoot on the extracellular matrix of the inner limiting membrane, 2) 
fine processes emanating from the MG core that contact synapses of the 
inner plexiform layer, 3) a cell body that is positioned amongst bipolar and 
amacrine cell neurons in the inner nuclear layer, 4) additional processes that 
contact synapses in outer plexiform layer, 5) an apical stem process that 
elaborates around photoreceptor cell bodies with the apical microvilli 
extending to photoreceptor inner segments. These domains can vary greatly 
between vertebrate species depending on scotopic or photopic specialisations 
of the retina supporting the idea that distinct morphologies are required for 
different functions [11]. Cajal showed that there are many species-specific 
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differences in these domains (Figure 2 ), while the overall MG morphology 
remains conserved [1,2].   
 
The radial morphology and supportive functions of the MG cell are reliant on 
the establishment and maintenance of apicobasal polarity during 
development. Polarity is set up in the retina during development from signals 
conferred by the basement membranes, where initially RPCs and later the 
MG are attached [30]. Defects in these polarizing signals, such as laminins, 
result in disruption of MG polarity and lead to abnormal physiology due to the 
misexpression of functional enzymes within MG domains [30,31]. Once 
polarity is established in the MG cell, the localization of intrinsic polarity 
factors play an important role in maintaining this radial morphology. For 
example, the zebrafish P50 dynactin mutant results in a mislocalisation of 
apical determinants leading to a loss of MG apical processes and displaced 
cell bodies [32]. Furthermore, loss of Crumbs1, a protein necessary for the 
formation of adherens junctions at the apical pole, with consequences for the 
surrounding neurons and blood vessels reminiscent of the human disease 
Retinal Telangiectasia [33,34].  
 
Patterning of MG 
One of the most obvious features of MG anatomy is their even spacing or 
“tiling” within the retina [26,35] (Figure 3 ). This tiling results in specific MG 
domains containing minimally overlapping processes around the surrounding 
neurons. Tiling is seen in astrocyte domains in many regions of the 
mammalian brain [36,37]. Interestingly, tiling differs between brain regions 
and species, as different classes of astrocytes have varying levels of overlap 
between their spatial domains [38]. “Brainbow” studies in the mouse retina 
have shown there is minimal overlap between MG cell processes at several 
retinal layers, including in the plexiform layers, with each MG occupying 
unique territories [26]. Repulsive homotypic interactions between glia have 
been described for mammalian astrocytes [36] and oligodendrocytes [39], 
leading to the idea that these interactions may be a patterning mechanism 
employed by many types of glia during tiling. To test if this mechanism exists 
in MG, Williams et al. used laser ablation to remove a small number of MG 
cells from the embryonic zebrafish retina [35]. This ablation resulted in a gap 
in the tiled pattern, including a loss of glial processes within the IPL. Shortly 
after ablation the neighbouring MG processes move into the voided territory 
and filled the hole [35]. This indicates that neighbouring MG cells actively 
repel each other via contact inhibition and carve out their respective spatial 
territories via homotypic interactions (i.e. MG to MG). While the positioning of 
MG processes clearly relies on specific interactions, the MG cell body does 
not seem to conform to the same constrains. Wang and colleagues used cell 
labelling and modelling to show that the spatial organisation of MG cell bodies 
appears to be random, with no extrinsic input from neighbouring MG other 
than the physical restrictions inferred by the surrounding cells [26]. Thus, it 
remains unclear whether and how homotypic interactions are acting to sculpt 
overall MG morphology and tiling in the retina during development. The 
signals conferring this repulsive interaction between neighbouring MG cells 
are also completely unknown. In fly astrocytes, FGFs and their receptors 
regulate glial morphology amongst neuronal synapses and overall 
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morphology by controlling dynamic homotypic interactions between them to 
establish their tiled domains [40]. It is unknown if similar mechanisms 
translate to vertebrates. 
 
Emergence of processes 
In the 1890s, Cajal described the morphogenesis of MG as an inside to 
outside process, as if the MG were splitting apart retinal elements repeatedly 
in this direction [1,2]. As development proceeds, processes first emerge from 
the main shaft of the MG in the inner layers of the retina, later emerging in the 
plexiform and outer nuclear layers (Figure 4 ). Finally, processes associated 
with the outer limiting membrane appear and send descending sheaths of 
process between the outer segments of the photoreceptors [1]. The 
emergence of these different functional domains is one of the least explored 
areas of MG morphogenesis. It is known that MG processes are guided 
directly to the plexiform layers during development [35], where they are 
precisely positioned amongst sublaminae indicating active guidance by 
specific neurons [26]. Synaptic activity may play a role in the tiling of MG 
processes within the plexiform layers. In rabbits, MG elaborate their 
processes in the presence of retinal activity [41]. Similarly in fish, MG 
processes elaborate after retinal specification is complete but just before 
robust vision commences [35]. Prior to the completion of synaptogenesis 
calcium transients are propagated within the MG cell by neurotransmitter 
spillover at the synaptic cleft. As the retina matures and neural connections 
are strengthened these transients recede [42]. This data suggests that MG 
and neurons communicate during development and potentially refine their 
processes controlled by neural activity. This has been noted in the 
hippocampus as astrocytes change their fine processes in response to 
glutamate release and calcium [43]. These data point to neural activity playing 
an active role in MG process sublamination, although the inverse scenario 
doesn’t seem to be true as MG are not required for neurons to sublaminate 
within the plexiform layers [44].  
 
Imaging MG development in vivo  
As described above, the morphology and pattern of MG cells may be sculpted 
by cellular interactions between neurons and glia during development. 
However, the progression of MG morphogenesis and patterning has largely 
been studied in fixed tissues at defined time points [15,26,35,41]. This is 
insufficient to capture any highly dynamic cell contacts that may mould the 
exact position of MG processes in the cellular environment. To study these 
cell interactions in real developmental time requires the use of specific cellular 
markers or vital dyes paired with time-lapse imaging. For example, in vivo 
time-lapse imaging in the zebrafish retina showed that MG are highly dynamic 
both in terms of cell body position and branching [15,35]. Time-lapse studies 
of cultured retina are also fruitful for uncovering these interactions, however 
MG have been reported to lose their morphology and rapidly de-differentiate 
in culture experiments [45-47]. More promising in vitro studies come from the 
advances in retinal organoid cultures that now provide a promising platform 
for both morphological analysis and genetic manipulations in chick, zebrafish, 
mammal and possibly human retinas [48-51]. Pairing one or more of these 
models to advanced imaging, such as confocal or light sheet microscopy, will 
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allow for the characterisation of the specific cell-cell interactions during the 
process of glial patterning and morphogenesis.  
 
Molecular analysis of MG morphogenesis 
There have been several molecular pathways identified as key regulators of 
MG fate, including Notch signalling [9]. While Notch is critical for MG fate, it 
does not appear to have any role in overall MG morphogenesis or patterning 
after the cell is specified in the zebrafish [15]. It is therefore necessary to 
begin to uncover the specific postmitotic pathways that guide the various 
aspects of MG morphogenesis. Many novel markers and potential molecules 
involved in MG morphogenesis are being discovered through recent boom in 
sequencing and proteomic technologies. For example, a recent study used 
single cell RNA sequencing to match molecular classification with cell 
morphology and successfully identified several novel markers for each unique 
bipolar subtype in the retina [52]. There are already multiple readily available 
transcriptome data sets for MG [27,28,53-56]. Furthermore, miRNA 
expression profiling and proteomics of have been used to identify a number of 
new MG specific markers [47,57,58]. Microarray studies on developing MG 
have provided large lists of genes that can be used to identify novel markers 
of these cells during development [28,59] and regeneration [53,54]. In many 
of these cases, transcriptomics were carried out at several stages during early 
MG development. However, the time scale of cells selected has not yet been 
correlated to specific stages of MG morphogenesis, which would help suggest 
which molecular pathways are involved in which aspects of MG 
morphogenesis. Importantly, in these studies MG have been treated as a 
single uniform population, however, previous studies have shown that central 
MG, express Pax2 while peripheral MG do not [60,61]. Moreover, the recently 
identified retinal glia of the Drosophila eye share striking morphological and 
molecular characteristics with MG and these too are sub-classed by Pax2 
expression [62,63]. Thus, it will also be beneficial to isolate and compare 
these sub-populations in future studies. 
 Combining the power of genetics, imaging, transcriptomics and genome 
editing capabilities will facilitate great strides in the understanding of glial 
development, including morphogenesis. Transcriptome datasets provide 
many candidate genes or pathways but without functional testing, this 
knowledge is of limited value. The advent of CRIPSRs to conduct reverse 
genetic screens provides a promising tool for future large-scale reverse 
genetic screens in vertebrate models [64]. Any gene shown to have a MG 
morphological defect will almost certainly need to be analysed with time-lapse 
imaging to fully characterise the candidates’ role in glial development. 
 
Conclusions : MG, Astrocytes and neuropathology 
MG have been described as the molecular and functional homologues to both 
radial glia and astrocytes [10,21], leading to the intriguing potential that the 
molecular mechanisms regulating MG shape and patterning may have 
broader implications for the development of many different glia types. An 
important consideration is not only how glial cell morphology is instructed 
during development, but also how is it maintained throughout life and altered 
in the pathology of neurological disease. With age, it has been shown that 
astrocyte domains more than doubled their process territory overlap with their 
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neighbours [65]. Region specific glial morphology and functional defects have 
been noted in several neurological diseases [4,6]. For example, alterations in 
glial cell morphology and organization have been noted in the epileptic brain 
[66]. Intriguingly, after drug treatment the astrocyte domains recede and the 
seizures are reduced [66], but it is unclear which one begets the other. It is 
becoming increasingly accepted the glia may provide opportunities for 
pharmacological intervention in neurodegeneration [5,6]. So perhaps treating 
or preventing glia morphology changes is an important step in limiting or 
reversing the pathology of disease. Thus, the MG cell provides an attractive 
model to identify and understand the molecular mechanisms regulating glial 
cell shape in development and may lead to a better understanding and 
treatment of human disease.  
 
Figure 1. The pattern and morphology of the Müller glia in the retina. A) 
Development of MG (green) from RPCs B) Schematic showing the general 
organization of the vertebrate retina. MG span the entirety of the three neural 
layers from the apical outer limiting membrane (OLM) to the basal inner 
limiting membrane (ILM). The morphology of a single MG (example from 
zebrafish) can be separated into five distinct domains: 1) The basal endfoot 
forming the ILM of the retinal ganglion cell (RGC) layer; 2) the fine processes 
contacting synapses in the inner plexiform layer (IPL); 3) the cell body 
amongst neurons in the inner nuclear layer (INL); 4) the fine processes 
contacting synapses in the outer plexiform layer (OPL); 5) an apical process 
around photoreceptors.  
 
Figure 2.  Species specific Müller glia morphologies . Cajal’s drawings [2] 
of the structural differences between MG from frogs, carp, lizards, chickens 
and cows.  
 
Figure 3.  Müller glia “tile” to form an extensive glial network. MG cells 
have their own unique spatial domains with little to no overlap of glial 
processes in any of them.  
 
Figure 4. Müller glia development . Schematic representation of the 
morphological changes that occur over the course of zebrafish MG 
development [15, 35].  
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