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Rapid Communications

Exact exchange-correlation kernels for optical spectra of model systems

M. T. Entwistle and R. W. Godby
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(Received 13 December 2018; published 3 April 2019)

For two prototype systems, we calculate the exact exchange-correlation kernels fxc(x, x′, ω) of time-dependent

density functional theory. fxc, the key quantity for optical absorption spectra of electronic systems, is normally

subject to uncontrolled approximation. We find that, up to the first excitation energy, the exact fxc has

weak frequency dependence and a simple, though nonlocal, spatial form. For higher excitations, the spatial

behavior and frequency dependence become more complex. The accuracy of the underlying exchange-correlation

potential is of crucial importance.

DOI: 10.1103/PhysRevB.99.161102

Time-dependent Kohn-Sham density functional theory

[1,2] (TDDFT) is in principle an exact and efficient theory of

the excited-state properties of many-electron systems, includ-

ing a wide variety of important spectroscopies such as optical

absorption spectra of molecules and solids. However, its appli-

cation is restricted by the limitations of the available approx-

imate functionals for electron exchange and correlation—in

particular, the exchange-correlation kernel, fxc, the functional

derivative of the exchange-correlation potential with respect

to the electron density. To assist the construction of more

powerful approximations for fxc, we calculate the exact fxc

for small prototype systems, and analyze its character, in-

cluding key aspects in which it differs from the common

approximations.

In the Runge-Gross formulation [1] of TDDFT the real

system of interacting electrons is mapped onto an auxiliary

system of noninteracting electrons moving in an effective

local Kohn-Sham (KS) potential vKS = vext + vH + vxc, with

both systems having the same electron density n at all points

in space and time. Many TDDFT calculations are done within

the framework of linear response theory, which describes how

a system responds upon application of a weak, time-dependent

external perturbation. The induced density is described by the

interacting density-response function, the functional deriva-

tive χ = δn/δvext. χ is related to the noninteracting density-

response function of the KS system, χ0 = δn/δvKS, by the

Dyson equation [3,4] χ = χ0 + χ0(u + fxc)χ , where u is the

bare Coulomb interaction. χ0 is to be obtained from a ground-

state DFT calculation. χ can then be used to compute, for

example, the optical absorption spectrum of the system,

σ (ω) = −
4πω

c

∫∫

Im[χ (x, x′, ω)]xx′dx dx′. (1)

In practice, both vxc and its functional derivative fxc must

be approximated. While there have been some successes, the

commonly used adiabatic TDDFT functionals, such as the

adiabatic local density approximation [5,6] (ALDA), often fail

in extended systems. For example, the optical absorption spec-

tra of many semiconductors and insulators are not even qual-

itatively described, with excitonic effects and many-electron

excitations omitted [7,8], and the optical gap underestimated.

Here, approximations for fxc achieve little improvement over

the random phase approximation (RPA), in which fxc is ne-

glected entirely [9]. Attempts to improve approximations for

fxc include exact-exchange methods [10–15], diagrammatic

expansions using perturbative methods [16,17], and adding

long-range contributions [18–21]. Another approach involves

calculations of the homogeneous electron gas [22–26]. Ker-

nels derived from the Bethe-Salpeter equation [27–31] have

had some success, but require a relatively expensive many-

body perturbation theory calculation as their input, and are

outside the KS TDDFT framework.

There have been a limited number of studies conducted on

analyzing the character of the exact fxc, all of which focus on

its frequency dependence. One approach has been to calculate

the exact adiabatic fxc for model systems [32], in order to

investigate its performance upon application and deduce when

memory effects become important. This approach has been

used in simple Hubbard systems [33,34] and extended by

analyzing additional properties, such as the frequency depen-

dence of the full fxc around double excitations. Other research

has explored how this frequency dependence of fxc turns the

single-particle quantities of exact KS TDDFT into many-body

excitations [35] and its behavior for long-range excitations has

been analyzed in order to develop approximate kernels [36].

In this Rapid Communication, we explore the properties

of exact xc kernels, including full spatial and frequency de-

pendence, in order to inform the development of improved

approximate functionals. We employ our iDEA code [37]

which solves the many-electron Schrödinger equation exactly

for small, one-dimensional prototype systems [38,39]. From

the many-electron eigenstates of the system we calculate the

exact χ using the Lehmann representation,

χ (x, x′, ω) =
∑

m

[

〈0|n̂(x)|m〉〈m|n̂(x′)|0〉

ω − (Em − E0) + iη
+ c.c.(−ω)

]

,

(2)

where |0〉, E0, |m〉, and Em are the ground state and its energy,

and the mth excited state and its energy, respectively, n̂ is the

density operator in the Heisenberg picture, and η is a positive

infinitesimal. χ has poles at the excitation energies of the
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FIG. 1. Two interacting electrons in a harmonic potential. The

inset shows the electron density (solid blue), along with the external

(dotted-dashed green) and exact Kohn-Sham (dashed purple) poten-

tials. In the main panel, the absorption spectra (detailing the first

excitation) of the exact and Kohn-Sham systems, along with the

RPA and ALDA approximations. We check that the calculated fxc

is correct by solving the Dyson equation and comparing the resultant

absorption spectrum (short-dashed black) with the exact.

system, Em − E0. It is convenient to calculate Im(χ ), with

Re(χ ) following from the Kramers-Kronig relations [40,41].

As is customary, we replace η with a small positive number,

to broaden the absorption peaks for ease of viewing.

We then determine the exact KS potential through our

reverse-engineering algorithm [42]. From the exact KS or-

bitals, we calculate the exact noninteracting density-response

function,

χ0(x, x′, ω) =
∑

i, j

( fi − f j )
φ∗

i (x)φ j (x)φ∗
j (x′)φi(x

′)

ω − (ε j − εi ) + iη
, (3)

where the φi and εi are the exact solutions to the Kohn-Sham

equations of ground-state DFT, and fi is the Fermi occupation

(0 or 1) of φi.

The Dyson equation may be manipulated into an expres-

sion for fxc,

fxc = χ−1
0 − χ−1 − u, (4)

but the inverses of χ and χ0 are not well defined. For instance,

a spatially uniform perturbation of any angular frequency

induces no change in density, so both χ and χ0 have a

zero eigenvalue and therefore a zero determinant. To over-

come this, we find a pseudoinverse of χ using truncated

singular-value decomposition, discarding those eigenvectors

with eigenvalues smallest in magnitude, which we term the

eigenvalue cutoff. This procedure is repeated for χ0, discard-

ing the same number of eigenvectors. From the modified re-

sponse functions a kernel fxc is now well defined. We confirm

the validity of this procedure by verifying that the calculated

fxc, together with the unmodified χ0, closely reproduces the

unmodified χ via the Dyson equation. Additionally, we en-

sure that the zero-force sum rule is obeyed—a well-known

property of the exact fxc [43].
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FIG. 2. The real part of the exact fxc of the harmonic well system:

(a) in the adiabatic limit (ω = 0), and (b) at the first excitation

(ω = 0.25). (c) fxc has a rather simple nonlocal dependence, which is

similar to the negative of the Coulomb interaction u. Here we focus

on fxc at ω = 0.25. Inset: We observe fxc to have strikingly weak

ω dependence up to the first excitation (vertical line). We illustrate

this by plotting its value (solid red) at a point along the main diagonal

(x = x′) which corresponds to the peak in electron density in the inset

of Fig. 1 (x = 1.7 a.u.).

We begin by considering a system of two interacting

electrons confined to a harmonic well potential (ω0 = 0.25

a.u.), where ω0 is the angular frequency of the well (inset of

Fig. 1). We compute the exact optical absorption spectrum of

the system [44], with the first excitation at ω = ω0 (Fig. 1).

Additionally, we compute the absorption spectrum of the

exact Kohn-Sham system, in which the absorption frequency

is slightly too low (≈0.01 a.u.). We also calculate the RPA and

ALDA absorption spectra, in which the RPA and ALDA [45]

kernels are combined with the exact χ0. This last point pro-

vides a strong reminder of the challenge of fxc: starting from

the exact Kohn-Sham orbitals, a much better absorption peak

is obtained by ignoring the induced changes in the Hartree

and xc potentials (χ0) than by accounting for the first exactly

and either neglecting (RPA) or approximating (ALDA) the

second. This highlights the importance of obtaining a good

approximation to the ground-state xc potential vxc, which

leads to χ0.

We now turn to the spatial characteristics of fxc (Fig. 2).

Typically, several different choices of the eigenvalue cutoff

yield kernels fxc with varying degrees of spatial structure, all

of which essentially yield the correct χ from the exact χ0

as set out above. Of these, we select the eigenvalue cutoff

161102-2



EXACT EXCHANGE-CORRELATION KERNELS FOR … PHYSICAL REVIEW B 99, 161102(R) (2019)

−5.0

−2.5

0.0

2.5

5.0

x
(a

.u
.)

ω = 0

−5.0

−2.5

0.0

2.5

5.0

x
(a

.u
.)

ω = 0.245

−5.0−2.5 0.0 2.5 5.0

x (a.u.)

−5.0

−2.5

0.0

2.5

5.0

x
(a

.u
.)

ω = 0.255

ω = 0

ω = 0.236

−2

−1

0

1

2

−5.0−2.5 0.0 2.5 5.0

x (a.u.)

ω = 0.246

−2

−1

0

1

2

Re(χ) Re(χ0)

−0.4

−0.2

0.0

0.2

0.4

FIG. 3. The exact χ and χ0 in the harmonic well system: Left:

Re(χ ) at ω = 0 and on either side of the transition at 0.250. Right:

Re(χ0) at ω = 0 and on either side of the transition at 0.241. Re(χ )

and Re(χ0) exhibit remarkably similar spatial structure.

with the largest magnitude, resulting in the smoothest possible

spatial structure without detriment to the exact absorption

spectrum (Fig. 1). We observe that while fxc has real and

imaginary parts (see later), the real part alone is sufficient

to reproduce the position and weight of the first excitation

(ω = ω0). Figures 2(a) and 2(b) show Re( fxc) at ω = 0 and

ω0, respectively. The behavior of fxc away from the diagonal,

x �= x′, represents the kernel’s nonlocality, and it is evident

that this is fairly simple in nature; analysis [Fig. 2(c)] shows it

to be similar to the negative of the Coulomb interaction, with

which it therefore tends to cancel in the expression for χ . The

ω dependence of fxc up to the first excitation is seen to be

extremely weak, as observed in other model systems [33–35].

We analyze this more closely in the inset to Fig. 2(c).

To gain insight into these observations, we analyze the

exact χ and χ0. Figure 3 shows Re(χ ) and Re(χ0); up to

the first excitation, these exhibit strong, but closely similar,

ω dependence. The similarity arises in part from the exact

many-electron wave function being well approximated by

the exact Kohn-Sham wave function [46], which reflects the

dominance of exchange (including self-interaction correction)

in the harmonic potential system [47]. Therefore χ−1 and

χ−1
0 largely cancel, so that fxc is similar to −u, with weak

ω dependence.

This can be demonstrated succinctly through a simple

model, in which we take Eqs. (2) and (3), and replace the
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FIG. 4. The top inset shows χ for a simple model without spatial

dependence and a single excitation at ω = 1; the bottom inset shows

the near cancellation (solid green) between Re(χ−1) (dashed red) and

Re(χ−1
0 ) (dotted dark red), where χ0 has an excitation at 0.9, causing

fxc to exhibit weak ω dependence. In the main panel, two further

excitations at ω = 2 and 3 have been included, to show that Re(χ−1)

passes through zero between excitations, which leads to a nonzero

Im( fxc), as does the corresponding feature in χ−1
0 (not shown).

spatially dependent numerators (the oscillator strengths) with

scalars. Specifically, we consider a system with a single exci-

tation at ω = 1, set the numerator equal to 1, and let η = 0.05

(top inset of Fig. 4). We do the same for the Kohn-Sham

system, but choose the excitation to occur at ω = 0.9. By

taking their inverses, we calculate Re(χ−1
0 − χ−1), which is

the ω-dependent part of Re( fxc) in Eq. (4), and find this to be

small in amplitude and have a fairly weak ω dependence up to

the first excitations (bottom inset of Fig. 4). The inclusion of

higher excitations, and taking the limit η → 0, change little at

these low frequencies.

Including higher excitations in the model χ causes Re(χ )

to pass through zero between excitations. At these points

Re(χ−1) also passes through zero, and Im(χ−1) peaks sharply

(Fig. 4). As Im( fxc) = Im(χ−1
0 − χ−1), we find that the

fxc in our simple model only has an imaginary component

when χ or χ0 passes through zero between excitations, and

hence is completely real up to the first excitations (as η → 0).

This supports our finding in the harmonic well system, in

which Im( fxc) was very small up to the first excitations, and

Re( fxc) was sufficient to reproduce the peak in the absorption

spectrum.

We now consider a system whose absorption spectrum

includes higher excitations—two interacting electrons in a

softened atomiclike potential (top inset of Fig. 5). As in the

harmonic well system, the absorption spectrum of the exact

Kohn-Sham system is slightly too low for the first excitation

(Fig. 5). Again, we find fxc to be dominated by its real

part and nearly ω independent, while exhibiting relatively

simple spatial structure, up to and including the first excitation

[Fig. 6(a)]. The second excitation does not appear in the

absorption spectrum, and so we move to the third excitation,

which is much smaller in amplitude than the first, and once

more observe the peak in the Kohn-Sham system to be slightly

161102-3
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FIG. 5. Two interacting electrons in an atomiclike potential.

The top inset shows the electron density (solid blue), along with

the external (dotted-dashed green) and Kohn-Sham (dashed purple)

potentials. In the main panel, the absorption spectra of the exact

and Kohn-Sham systems; the bottom inset shows the third excitation

(fourth in the KS system) in more detail, which is the next to appear

after the first excitation.

below but still very close to the exact (bottom inset of Fig. 5).

Again, the closeness between the two peaks arises from the

strong similarity between χ and χ0. In order to reproduce this

excitation, a smaller eigenvalue cutoff is required, leading to

higher spatial frequencies in fxc [48] [Fig. 6(b)].

For the atomlike system, we have investigated the extent to

which local kernel approximations for fxc may be meaningful.

As we have observed fxc to largely cancel with u at low

ω, we choose to focus on the Hartree exchange-correlation

kernel fHxc = fxc + u which is more local. We incorporate the

nonlocal parts of fHxc by projecting them onto a local kernel

[49]. We find this largely corrects the difference χ0 − χ , and

hence the position of the peak in the absorption spectrum, for

the first excitation, but fails to correct the height of the peak.

Such a local kernel is completely inadequate to describe the

third excitation.
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FIG. 6. The real part of the exact fxc of the atomlike system:

(a) at the first excitation (ω = 0.045), and (b) at the third excitation

(ω = 0.119). As in the harmonic well system, we find fxc to be nearly

ω independent and exhibit a relatively simple spatial form up to the

first excitation. However, a more complex spatial structure is needed

to capture higher excitations.

In summary, we have calculated the exact fxc(x, x′, ω) for

two prototype systems. At low ω, we find the imaginary

component of fxc to be small, with the real part alone sufficient

to reproduce the first excitation. Up to and including the first

excitation, Re( fxc) exhibits strikingly weak ω dependence,

stemming from strong, but closely similar ω dependence

between the interacting and noninteracting density-response

functions, boding well for the applicability of adiabatic ker-

nels. Additionally, Re( fxc) here has a rather simple spatial

form, which is similar to the negative of the Coulomb inter-

action u, indicating that approximations to fHxc may be more

appropriate than those for fxc alone. For higher excitations, fxc

exhibits both additional spatial structure and stronger ω de-

pendence, indicating that more sophisticated approximations

are needed. Throughout, the absorption spectrum of the exact

Kohn-Sham system provides a very good starting point, signi-

fying the crucial importance of an accurate approximation for

the ground-state vxc.

Data created during this research is available from the York

Research Database [50].

We thank Phil Hasnip for helpful discussions.

[1] E. Runge and E. K. U. Gross, Phys. Rev. Lett. 52, 997 (1984).

[2] E. K. U. Gross, J. F. Dobson, and M. Petersilka, Density

Functional Theory of Time-Dependent Phenomena, in Density

Functional Theory II: Relativistic and Time Dependent Exten-

sions, edited by R. F. Nalewajski (Springer, Berlin/Heidelberg,

1996), pp. 81–172.

[3] Matrix multiplication for the spatially nonlocal quantities χ , χ0,

and fxc, and ω dependence, are implied.

[4] M. Petersilka, U. J. Gossmann, and E. K. U. Gross, Phys. Rev.

Lett. 76, 1212 (1996).

[5] A. Zangwill and P. Soven, Phys. Rev. A 21, 1561 (1980).

[6] E. K. U. Gross and W. Kohn, Phys. Rev. Lett. 55, 2850 (1985).

[7] C. Jamorski, M. E. Casida, and D. R. Salahub, J. Chem. Phys.

104, 5134 (1996).

[8] N. T. Maitra, F. Zhang, R. J. Cave, and K. Burke, J. Chem. Phys.

120, 5932 (2004).

[9] V. I. Gavrilenko and F. Bechstedt, Phys. Rev. B 55, 4343 (1997).

[10] Y.-H. Kim and A. Görling, Phys. Rev. Lett. 89, 096402 (2002).

[11] Y.-H. Kim and A. Görling, Phys. Rev. B 66, 035114 (2002).

[12] A. Görling, Phys. Rev. A 57, 3433 (1998).

[13] M. Hellgren and U. von Barth, J. Chem. Phys. 131, 044110

(2009).

[14] A. Ipatov, A. Heßelmann, and A. Görling, Int. J. Quantum

Chem. 110, 2202 (2010).

[15] A. Görling, Phys. Rev. Lett. 83, 5459 (1999).

[16] I. V. Tokatly and O. Pankratov, Phys. Rev. Lett. 86, 2078 (2001).

[17] I. V. Tokatly, R. Stubner, and O. Pankratov, Phys. Rev. B 65,

113107 (2002).

161102-4



EXACT EXCHANGE-CORRELATION KERNELS FOR … PHYSICAL REVIEW B 99, 161102(R) (2019)

[18] S. Botti, F. Sottile, N. Vast, V. Olevano, L. Reining, H.-C.

Weissker, A. Rubio, G. Onida, R. Del Sole, and R. W. Godby,

Phys. Rev. B 69, 155112 (2004).

[19] S. Sharma, J. K. Dewhurst, A. Sanna, and E. K. U. Gross, Phys.

Rev. Lett. 107, 186401 (2011).

[20] P. E. Trevisanutto, A. Terentjevs, L. A. Constantin, V. Olevano,

and F. D. Sala, Phys. Rev. B 87, 205143 (2013).

[21] S. Rigamonti, S. Botti, V. Veniard, C. Draxl, L. Reining, and

F. Sottile, Phys. Rev. Lett. 114, 146402 (2015).

[22] V. U. Nazarov, I. V. Tokatly, S. Pittalis, and G. Vignale, Phys.

Rev. B 81, 245101 (2010).

[23] Z. Qian and G. Vignale, Phys. Rev. B 65, 235121

(2002).

[24] C. F. Richardson and N. W. Ashcroft, Phys. Rev. B 50, 8170

(1994).

[25] S. Conti, R. Nifosì, and M. P. Tosi, J. Phys.: Condens. Matter 9,

L475 (1997).

[26] M. Panholzer, M. Gatti, and L. Reining, Phys. Rev. Lett. 120,

166402 (2018).

[27] G. Onida, L. Reining, and A. Rubio, Rev. Mod. Phys. 74, 601

(2002).

[28] L. Reining, V. Olevano, A. Rubio, and G. Onida, Phys. Rev.

Lett. 88, 066404 (2002).

[29] F. Sottile, V. Olevano, and L. Reining, Phys. Rev. Lett. 91,

056402 (2003).

[30] G. Adragna, R. Del Sole, and A. Marini, Phys. Rev. B 68,

165108 (2003).

[31] A. Marini, R. Del Sole, and A. Rubio, Phys. Rev. Lett. 91,

256402 (2003).

[32] M. Thiele and S. Kümmel, Phys. Rev. A 80, 012514 (2009).

[33] F. Aryasetiawan and O. Gunnarsson, Phys. Rev. B 66, 165119

(2002).

[34] D. J. Carrascal, J. Ferrer, N. Maitra, and K. Burke, Eur. Phys. J.

B 91, 142 (2018).

[35] M. Thiele and S. Kümmel, Phys. Rev. Lett. 112, 083001 (2014).

[36] N. T. Maitra and D. G. Tempel, J. Chem. Phys. 125, 184111

(2006).

[37] M. J. P. Hodgson, J. D. Ramsden, J. B. J. Chapman, P.

Lillystone, and R. W. Godby, Phys. Rev. B 88, 241102(R)

(2013).

[38] We perform calculations for systems of two spinless electrons

interacting via the appropriately softened Coulomb repulsion

[51] u(x, x′) = (|x − x′| + 1)−1, and work in Hartree atomic

units: me = h̄ = e = 4πε0 = 1.

[39] See Supplemental Material at http://link.aps.org/supplemental/

10.1103/PhysRevB.99.161102 for the parameters of the model

systems, and details on our calculations to obtain converged

results.

[40] D. Pines, Elementary Excitations in Solids: Lectures on

Phonons, Electrons, and Plasmons, Lecture Notes and Supple-

ments in Physics (W. A. Benjamin, New York, 1964).

[41] M. Marder, Condensed Matter Physics (Wiley, New York,

2010).

[42] J. D. Ramsden and R. W. Godby, Phys. Rev. Lett. 109, 036402

(2012).

[43] See Supplemental Material at http://link.aps.org/supplemental/

10.1103/PhysRevB.99.161102 for more details.

[44] For this harmonic well system, at the level of linear response

theory, only one excitation appears in the absorption spectrum.

[45] M. T. Entwistle, M. Casula, and R. W. Godby, Phys. Rev. B 97,

235143 (2018).

[46] We define this as a Slater determinant of the occupied KS

orbitals.

[47] E. Richardson (private communication).

[48] As expected for higher energy excited states.

[49] We fold the nonlocal fHxc with an envelope function that

suppresses the more distant nonlocal parts and projects the

remainder onto the diagonal x = x′.

[50] M. T. Entwistle and R. W. Godby, Data related to “Exact

exchange-correlation kernels for optical spectra of model sys-

tems”, http://dx.doi.org/10.15124/56f576ee-b2de-4ca5-9251-

831bfc3cae6f (2019).

[51] A. Gordon, R. Santra, and F. X. Kärtner, Phys. Rev. A 72,

063411 (2005).

161102-5


