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New vocabulary is consolidated offline, particularly during

sleep; however, the parameters that influence consolidation

remain unclear. Two experiments investigated effects of

exposure level and delay between learning and sleep on

adults’ consolidation of novel competitors (e.g. BANARA) to

existing words (e.g. BANANA). Participants made speeded

semantic decisions (i.e. a forced choice: natural versus man-

made) to the existing words, with the expectation that novel

word learning would inhibit responses due to lexical

competition. This competition was observed, particularly

when assessed after sleep, for both standard and high

exposure levels (10 and 20 exposures per word; Experiment 1).

Using a lower exposure level (five exposures; Experiment 2),

no post-sleep enhancement of competition was observed,

despite evidence of consolidation when explicit knowledge

of novel word memory was tested. Thus, when encoding is

relatively weak, consolidation-related lexical integration is

particularly compromised. There was no evidence that going

to bed soon after learning is advantageous for overnight

consolidation; however, there was some preliminary

suggestion that longer gaps between learning and bed-onset

were associated with better explicit memory of novel words

one week later, but only at higher levels of exposure. These

findings suggest that while lexical integration can occur

overnight, weaker lexical traces may not be able to access

overnight integration processes in the sleeping brain.

Furthermore, the finding that longer-term explicit memory of

stronger (but not weaker) traces benefit from periods of wake

following learning deserves examination in future research.

& 2019 The Authors. Published by the Royal Society under the terms of the Creative

Commons Attribution License http://creativecommons.org/licenses/by/4.0/, which permits

unrestricted use, provided the original author and source are credited.



1. Introduction
An accumulation of behavioural and neuroimaging research now suggests that sleep is one state that

actively supports the consolidation of a newly encountered word, and specifically, the extent to which

it becomes integrated with existing lexical knowledge [1–4]. Such findings can be explained by

complementary learning systems (CLS) accounts (e.g. [5,6]), which rest on the assumption that periods

of consolidation are required for hippocampal memory traces to be reactivated and reach long-term

neocortical systems. Despite this overnight emergence of lexical integration being commonly reported

at the whole group level, the overnight changes are variable and sensitive to individual differences

[7–9] and training and testing environments [10–13]. A systematic evaluation of the parameters that

influence overnight lexical integration is therefore warranted.

1.1. Lexical integration

Once a new word has been successfully integrated into the lexicon, it should behave as an existing word

and compete with its lexical neighbours for recognition. In a series of studies by Gaskell and colleagues

[2,3,14], adult participants were taught novel spoken items (e.g. CATHEDRUKE) that overlapped

phonemically with existing words (e.g. CATHEDRAL). Engagement of the novel words in lexical

competition was tested by asking participants to make speeded decisions about the presence or the

absence of a pause inserted near the offset of the existing word. It was hypothesized that if

CATHEDRUKE became lexically integrated, then the uniqueness point of CATHEDRAL (the point in

the left-to-right phonemic sequence at which it diverges from other words) should shift towards its

offset, thus increasing lexical activity at the pause and delaying pause detection [14]. The findings

indicated that lexical competition effects did emerge, but typically only after a delay including sleep

[3,14,15]. Furthermore, Dumay & Gaskell [3] administered a free recall task both immediately after

training and 12 h later: participants were significantly better at recalling the novel words at the 12 h

test, but only if they had slept. Together, these results fit with computational theories that argue for a

dual system of word learning to guard against ‘catastrophic interference’ (e.g. the CLS account; [6,16]).

Such theories propose that novel word forms are initially stored using hippocampal mediation,

allowing for rapid learning of new forms and linking to appropriate lexical knowledge. In order to

fully integrate this new mapping into the lexicon, the mediating role of the hippocampus is

transferred to the neocortex, via a more enduring process that may require sleep [17,18]. It should be

acknowledged, however, that sleep-associated delays in the emergence of lexical competition may

depend upon the training conditions and the test of lexical competition that is used [11–13].

A smaller but parallel literature has studied the acquisition and integration of written words. Bowers

et al. [19] trained adults on a series of novel words (e.g. BANARA) that were derived from existing words

(e.g. BANANA). As all existing words were ‘hermit’ words (i.e. words with no orthographic neighbours

derivable via the substitution, deletion, transposition or addition of a single letter), it was thought that the

integration of the novel word into the lexicon should have the effect of altering the neighbourhood size of

the existing word from zero to one. Using a semantic categorization task, where speeded decisions were

made to the existing word (e.g. is the word a natural or artefact item), findings were akin to the effects

seen with pause detection tasks in spoken word learning studies. That is, response times for accurate

responses on the semantic categorization task were significantly slower to the words with a new

neighbour in comparison with control hermit words without a newly learned neighbour. This effect

was observed on the day after training, but not immediately after training, again suggesting a role of

offline consolidation in orthographic lexical integration (although cf. [20] for an alternative account).

Wang et al. [21] further showed that the orthographic lexical competition effect was evident after a

period of sleep (i.e. for participants trained in the evening and tested the next morning), but not after an

equivalent period of wake (for participants trained in the morning and tested the same evening). Just

like the spoken word literature, though, there are conditions in which sleep-associated enhancements

have not been documented, such as when encoding involves ‘fast mapping’ [10].

1.2. Understanding individual differences in lexical integration

An important next step in this line of research is to determine the factors that influence the course of

lexical integration and the conditions in which sleep is important. This study focused on the impact

and interaction of two key variables—the delay between learning and sleep and the level of encoding.
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A large body of research suggests that what ensues in the minutes to hours that immediately follow

new encoding has an impact on the retention of that new information [22–26]. Preliminary steps have

also been made to study the influence of the simple passing of time between learning and sleep on

declarative memory consolidation (e.g. paired-associate learning). This research suggests that newly

encoded memories are subject to interference and forgetting during wake [27] and that sleeping

shortly after learning has a pronounced benefit relative to time spent awake for both verbal [28,29]

and non-verbal declarative memory [30].

The conclusion that sleeping soon after learning always aids retention has been challenged by one

study showing that a delay between learning and sleep (i.e. 4 h), in comparison to immediate sleep or

wakefulness, can enhance declarative memory retention in adults [31]. Therefore, in some cases, it may

be possible that a period of wakefulness allows for additional processing in order to strengthen the

memory trace to an optimal level for sleep-related effects (consistent with claims that a certain level of

performance is required for sleep effects to emerge; [32]). Furthermore, significant delays between

learning and sleep often occur in the sleep conditions of typical sleep–wake experiments (e.g. 3–4 h

in Gais et al. [28], which in fact is comparable to the ‘delayed’ condition in Alger et al. [31]), and often

the precise delay is not reported. Thus, a more systematic evaluation of the effect of time between

encoding and subsequent sleep on memory consolidation is needed. To this end, this study compared

the effects of time between learning and nocturnal sleep on both the explicit retention and the lexical

integration of visually presented novel words.

We also explored the influence of encoding on overnight lexical integration. It has been shown that

improved performance on a motor learning task (adaptation to a systematic directional error on cursor

movement) not only correlates with an increase in slow-wave activity (SWA) during intervening sleep,

but that this increase in SWA is correlated with enhanced performance following sleep ([33], for

comparable findings in mice and rats, see [34,35]). Similarly, using three different measures of

declarative memory, Tucker & Fishbein [36] showed that adults who napped following training

showed clear sleep-dependent performance benefits compared to non-napping controls; however, this

was only the case for adults who performed in the top half of the sample during training. It was

argued that ‘subjects that demonstrate greater facility to learn each of the tasks are better equipped

physiologically to benefit from sleep-related mnemonic processes’. It should be acknowledged,

however, that other studies have found that sleep consolidation benefits are greater at intermediate

[32] or even weaker levels of performance [27,37,38]. Despite these inconsistencies (which are probably

a consequence of specific task demands), the data lead to the prediction that an individual’s encoding

experience is likely to be an important predictor of how well sleep facilitates memory making.

In manipulating encoding and the learning–sleep interval, this study was set up to examine a

potential interaction between these two variables. High levels of exposure during learning have been

found to lead to subsequent lexical competition effects despite a long interval between learning and

sleep [14]. Thus, an interaction between encoding strength and the learning–sleep interval was

predicted, such that items encoded to a higher level may give rise to stronger memory traces that are

less susceptible to interference during wake.

Two experimentswere carried out to investigate the effects of encoding and the learning–sleep interval

on orthographic lexical integration. Lexical competition with neighbouring words (as measured via a

semantic categorization task, following Bowers et al. [19]) was used as a marker of lexical integration,

whereas recognition and recall tests on the novel words were used as measures of explicit retention.

Both experiments incorporated the time between learning and sleep as a continuous predictor, with

Experiment 1 training novel words at standard [19,21] and high levels of exposure and Experiment 2

using a lower level of exposure. An online, web-based data collection procedure was employed via

Qualtrics (Qualtrics, Provo, UT). Unlike previous laboratory-style tests, this procedure allowed a

naturalistic manipulation of time delay which spanned up until participants’ typical bedtimes (cf. [39]).

2. Experiment 1
Experiment 1 (pre-registered at osf.io/zntvp) adopted an encoding procedure known to show sleep-

related benefits in the lexical integration of pseudowords (e.g. BANARA; [21,22]), and using a within-

subjects design, compared this ‘standard’ level of exposure to a more intensive level of exposure. We

tested participants’ memory for these items immediately after learning and again the following day.

In line with previous studies, we predicted an increase in the strength of lexical competition and

improvements in explicit memory after a period of offline consolidation that included sleep. The delay

royalsocietypublishing.org/journal/rsos
R.
Soc.

open
sci.

6:
181842

3



between learning and bedtime onset was manipulated to test the hypothesis that a shorter delay would

lead to greater overnight improvements in lexical competition and explicit memory (although note the

reverse effect could be predicted based on Alger et al. [31]). This effect was predicted to be moderated

by the level of encoding, such that words trained in the more intensive encoding condition would

demonstrate more robust consolidation effects and be less susceptible to a delay between learning and

bedtime.

2.1. Method

2.1.1. Participants

Our pre-registration specified 80 participants. In order to meet this target with usable datasets, 113

monolingual English speakers with no known reading, language, developmental or psychological

disorders were recruited. Participants were students at the University of York aged 18–33 years

(mean ¼ 20.09 years, s.d. ¼ 2.28 years; 16 males) and were paid or received course credits.

Participants took part in two encoding conditions over two consecutive weeks (referred to as Week 1

and Week 2). During both weeks, as pre-registered, they were asked to refrain from caffeine, alcohol and

cigarettes on the day of training and themorning of testing, as is standard for this type of experiment. Non-

compliance was determined as non-attendance, incomplete attendance, completing the tasks at the wrong

time of the day, admitting to drinking caffeine or alcohol, or admitting to smoking. Twenty participants did

not complywith at least one of these instructions inWeek 1, and 29 inWeek 2. Rather than eliminating their

data altogether, their data for the week(s) of non-compliance were removed, leaving the numbers

remaining (Week 1 N ¼ 93; Week 2 N ¼ 84) close to the pre-registered target of 80.

2.1.2. Materials

Stimuli. Eighty hermit words that had no single-letter orthographic neighbours (according to [40]) were

selected (e.g. BANANA) as ‘base’ words for the purposes of creating pseudoword competitors (32 of

which were taken from Bowers et al. [19]). All base words were concrete nouns, ranging in length from

five to seven letters, with a CELEX per-million frequency of 3–38 [41]. Half (40) of the base words were

naturally occurring items (e.g. BANANA) and half were man-made items (e.g. ANCHOR) for the

purposes of the semantic categorization task (see below). Novel pseudowords were constructed by

substituting one internal letter of each base word to form a pronounceable non-word (e.g. BANARA)

[19]. An additional set of 40 words (ranging in length from five to seven letters) was created to be used

as fillers in the semantic categorization task. Each filler word was a concrete noun with a CELEX

frequency ranging between 1 and 492 counts per million. The fillers were a mixture of hermit and non-

hermit words. Two sets of 40 critical words were used for each encoding condition (administered in

two separate, consecutive weeks). For each set of 40 words, each critical word gained a neighbour for

half the participants and remained a hermit word for the other half. Thus, for each encoding condition,

participants learned 20 novel words (10 from the natural category and 10 from the man-made category).

In total, four matched, counterbalanced lists of 20 novel words were created. In addition, for the

speeded recognition task (described below), 40 non-word foils were used. These foils were generated

from five, six or seven letter nouns with a CELEX frequency of 2–710 per million. Similar to the novel

words described above, the non-word foils were devised by substituting one internal letter of the noun

to form a pronounceable non-word (e.g. critical word: TICKET; foil: TILKET).

Sleep measures. The Pittsburgh sleep quality index (PSQI) [42] assessed general sleep quality over the

month preceding participation. This questionnaire is made up of 19 self-rated items, which are used to

form seven component scores: subjective sleep quality, sleep latency, sleep duration, habitual sleep

efficiency, sleep disturbances, use of sleeping medication and daytime dysfunction. The sum of scores

for these seven components yields one global score with a maximum of 21 (mean PSQI global score

for the standard exposure condition ¼ 5.13, s.d. ¼ 2.57, 1–16; mean PSQI global score for the high

exposure condition ¼ 5.30, s.d. ¼ 2.65, 1–16).

2.1.3. Procedure and design

Exposure level was manipulated within participants, with participants completing both standard and

high exposures, spaced one week apart. In each case, participants were tested immediately after

exposure as well as the following morning (Day 1 versus Day 2). As shown in figure 1, order of
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exposure to the standard and high sets was counterbalanced across participants. Participants were

allocated randomly to one of four groups, which determined their time interval between learning and

bedtime (0–1 h, 2–3 h, 4–5 h, 6–7 h) for both of their exposure sessions. This was done to elicit a

wide spread of intervals between exposure and sleep and to allow us to encapsulate the learning–

sleep interval (Delay) as a continuous variable. The learning–sleep interval was defined as the time in

minutes between the end of the training session on Day 1 (determined electronically via the online

experiment package, Qualtrics; Qualtrics, Provo, UT) and the participant’s self-reported bedtime on

Day 1 (recorded by the participant via Qualtrics on Day 2). For the semantic categorization task, there

was an additional within-participants independent variable, Word Type (hermit versus non-hermit).

For the hermit items, the neighbouring pseudoword was not learned and so these acted as a control.

For the non-hermit items, the neighbouring pseudoword was included in the set of words to be

learned, potentially changing the competition environment of the existing word.

All testing sessions were completed online via Qualtrics and QRTEngine [43]. Participants were asked

to carry out the experiment in a quiet environment, free fromdistraction. OnDay 1, participantswere asked

to complete a training phase (described below). Depending on their delay group, participants received

instructions that determined the approximate time to start training (i.e. they were asked to complete the

training roughly 0–1 h, 2–3 h, 4–5 h or 6–7 h before bedtime). Test time was checked and recorded for

each participant. As mentioned, we used Delay as a continuous variable in our analyses (mean Delay

Standard exposure ¼ 203.51 min, s.d. ¼ 139.02 min, 0–525 min; mean Delay High exposure ¼

204.20 min, s.d. ¼ 138.05 min, 0–483 min). Immediately following training, participants completed a

testing phase, which consisted of a psychomotor vigilance test (PVT; to allow us to determine whether

any potential effects of Delay could be attributed to time of day/fatigue), a semantic categorization task

(to measure lexical integration of the newly learned pseudowords), and free recall and speeded

recognition tasks (to measure explicit memory of the novel items). On Day 2, approximately 30–60 min

after waking, participants completed all testing phase tasks again, in the same order as Day 1.

Following Day 2 testing, participants were asked about the activities they took part in between

training/testing on Day 1 and bedtime on Day 1, to allow us to exclude participants who engaged in

activities that might have influenced nocturnal sleep (i.e. napping, drinking alcohol or drinking

caffeine). The PSQI and a series of standard sleep questions regarding bed, sleep and wake time were

also completed. This procedure was repeated approximately one week later (minus the PSQI), when

participants completed the alternate Exposure condition. In Week 2, all participants were given the

same instructions as in Week 1 regarding the approximate time they should complete training prior to
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Figure 1. Experimental procedure. In Week 1, participants were trained on the novel words and immediately tested in accordance

with their delay allocation (0–1 h, 2–3 h, 4–5 h or 6–7 h), before being tested again the following morning. In Week 2, the

same participants completed the alternative Exposure condition (and were instructed to follow the same delay allocation), before

being re-tested on items from Week 1.
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bedtime. Once testing was complete on Day 2 of Week 2, participants were re-tested on the words learned

from Week 1 to explore the maintenance of any effects over a longer time frame.

Training. Novel words were presented on a computer screen via Qualtrics in upper case 28 point Arial

font. Each novel word was presented simultaneously above a text box, and participants were asked to

type out the word as accurately as possible. Following Bowers et al. [19], participants were informed

of incorrect responses, and asked to type the word again until correct. Once typed correctly,

participants were able to click a button to move on to the next word. In the standard exposure

condition, we matched our exposure level to Bowers et al. [19], with each novel word typed 10 times

(total of 10 blocks). In the high exposure condition, the exposure level was doubled (20 blocks). For

each participant, the novel words were presented in a randomized order within each block. As in

Bowers et al. [19], at the end of each block, a full list of the novel words was presented, and the

participants were asked to carefully read through the list.

Testing. Participants were asked to complete a vigilance task, a semantic categorization task, a free

recall task and a speeded recognition task during testing.

Vigilance. Prior to completion of the main experimental tasks, participants completed a PVT (based on

Basner & Dinges [44]). Participants were presented with a cross on the screen after varying interstimulus

intervals (ISIs) and told to respond as quickly as possible by pressing the spacebar. There were 24 trials in

total. Timeouts were set to 1000 ms. ISIs were randomly sampled for each participant from a flat

distribution ranging from 2000 to 8000 ms. A series of partial correlations were conducted to assess

the impact of vigilance at encoding on the relationship between Delay and overnight change in (i) the

competition effect (semantic categorization task), (ii) reaction time (speeded recognition task) and (iii)

accuracy (recall task). The effect of vigilance was explored using both mean reaction time and

percentage of hits to the vigilance task. No significant correlations were found.

Semantic categorization. Participants were asked to classify, as quickly and accurately as possible, each of

the base words and fillers as members of the natural or man-made categories by pressing the Z or M keys

on a computer keyboard, respectively. Eighty items were randomly presented during each testing phase

(40 base words and 40 fillers). Each trial began with a fixation cross displayed for 500 ms, followed by

the target word presented in upper case 28 point Arial font, which was displayed until the participant

responded or a 3000 ms timeout was reached. Ten practice trials preceded the 80 experimental trials.

Feedback was provided during the practice trials; but not during the experimental trials.

Free recall. Participants were asked to type out as many of the novel words as they could remember.

Participants were told that there were 20 words in total. No time limit was given for this task.

Speeded recognition. Participants were presented with the newly learned items intermixed with the

foils. They were asked to decide as quickly and accurately as possible if they had or had not learnt

the presented word by using the Z and M keys on the keyboard, respectively. There were 40 trials in

total (20 novel words and 20 foils). The trial structure (fixation cross, trial times, font type and size)

was the same as that used in the semantic categorization task.

2.1.4. Analysis

Although we had pre-registered an analysis using maximal random effects structures, there is now

increasing awareness of the potential for maximal models to reduce power due to unnecessary

complexity [45]. Therefore, we used a parsimonious approach in line with Bates et al. [46].

Data were analysed using R [47], with models fitted using the package lme4 [48] and figures made

using ggplot2 [49]. Logistic mixed-effects regression models were used to model binary outcomes (free

recall accuracy) and linear mixed-effects models for continuous outcome data (semantic categorization

and speeded recognition reaction times (RT)). Only correct responses were analysed for RT data. For

each dependent variable, a mixed model was fitted, with fixed effects (i.e. all main effects and

interactions) of Exposure (standard versus high), Word Type (hermit versus non-hermit),1 Day (day 1

versus day 2) and Delay. Delay was centred and scaled by subtracting the mean from each value and

dividing by the standard deviation in order to enhance the interpretation of the beta coefficient and to

normalize the spread of scores [50,51]. Categorical predictors were coded using deviation coding to

assess each main effect and interaction independently of other predictors in the model (Day: day

1 ¼ 20.5, day 2 ¼ 0.5; Exposure condition: standard ¼ 20.5, high ¼ 0.5; Word Type: non-

hermit ¼ 20.5, hermit ¼ 0.5). Based on tests of normality, an inverse transformation (21000/RT) was

used to normalize the distribution of RTs [52].

1Word Type was only included in the model for the semantic categorization task.
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We followed the recommendations of Bates et al. [46] for specifying the best-fitting maximal model for

each dependent variable. This procedure involved (i) determining the best-fitting fixed effects structure

from an intercept-only model, (ii) justifying the random intercepts, and (iii) establishing random slopes

for each justified random intercept.

To determine the best-fitting fixed effects structure, a model with a maximal fixed effects structure

and random intercepts only was used. A backwards selection procedure was used [46]. That is, each

interaction within the fixed effects structure was removed one at a time, with the highest order

interactions explored first. At each stage, the model was compared to each previous model, using

likelihood ratio tests to determine any model change using p, 0.2. The threshold of p, 0.2 was used

to guard against anti-conservativity, in line with the recommendations of Barr et al. [53]. Where the

removal of a fixed effect did not affect the model (i.e. p. 0.2), the removal of this fixed effect was

deemed justifiable. In addition, where the removal of a fixed effect was not justified, all lower order

interactions were retained (see osf.io/zntvp). This procedure was repeated until all fixed effects were

analysed and the final fixed effects structure was determined.

To justify the random intercepts, each intercept was removed separately from the final fixed effects

structure and compared to the final fixed effects structure containing all intercepts, using likelihood

ratio tests. As above, a threshold of p, 0.2 was used to indicate justification for model inclusion. For

all analyses within this experiment, there were two random intercepts present; Participant and Item.

The intercept that contributed most when compared to the final fixed effects model was explored first

when establishing random slopes.

A forward model selection process was used to determine random slopes. Only those main and

interaction effects present in the fixed effects structure were explored. Each main and interaction

random slope was added to the intercept one at a time (again using a criterion of p, 0.2). Random

slopes for main effects were established first. The model with the lowest p-value was selected and

compared against when establishing interaction slopes. This was repeated until no further improvement

( p, 0.2) could be achieved.

The best-fitting models are interpreted as a standard regression model; a positive b coefficient means

that the independent variable showed a positive relationship with the dependant variable. The p-values

were provided by lmerTest [54].

Outlier removal. Accuracy rates were averaged across all days for the semantic categorization task.

Participants with accuracy rates 2.5 standard deviations below the group mean were excluded (n ¼ 1).

For the speeded recognition task, in 14/342 sessions of data, accuracy was substantially and

significantly below chance (mean 6% accuracy, with chance at 50%). Since this task was completed

outside of the laboratory, and a reminder of the response keys was not displayed during trials, it was

assumed that these participants had mistakenly reversed the response key associations. Subsequently,

we re-reversed key assignment in recording their correct and incorrect responses, on a session-by-

session basis. A d-prime calculation was then used to determine participant outliers separately for

each week. Two participants were identified as extreme low outliers in the d-prime distribution for

Week 2 (d-prime cutoff 1.5) and subsequently excluded from the Week 2 analysis. No participants

were excluded for response bias in Week 1.

For both the semantic categorization and speeded recognition tasks, within-subjects outliers were

classed as any trials 2.5 s.d. below a participants’ mean RT. For individual items, accuracy rates across

all days were averaged separately for the semantic categorization and speeded recognition tasks. Items

with accuracy rates 2.5 s.d. below the group mean were excluded (i.e. CHALK was removed from the

semantic categorization task and SPIMER and ULPER were removed from the speeded recognition task).

Qualtrics check. As the experiment was conducted online using QRTEngine, it is advised to check for

server communication delays which could contaminate RT data [43]. In order to analyse this, for each RT

task, the time it takes for a trial screen to disappear was averaged for each participant. If this mean þ 2

s.d. exceeded 2000 ms, the participant was removed from the RT analysis [43]. In the semantic

categorization task, 12 participants were identified as having issues with their server communication.

Four of these were removed from the Week 1 analysis, and eight from Week 2. In the speeded

recognition task, six participants were identified as having issues with their server communication

(four from Week 1 and two from Week 2).

2.2. Results

Descriptive statistics for all main study variables can be found in table 1.
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2.2.1. Semantic categorization (lexical integration)

Accuracy was close to ceiling across all conditions on Day 1 (standard exposure: 93.0+ 4.6% (mean+

s.d.); high exposure: 92.0+ 5.3%) and Day 2 (standard exposure: 93.6+ 4.9%; high exposure: 92.3+

5.2%). A mixed-effects linear model was fitted to the RT data (table 2). RTs were faster overall on Day

2 (875+ 200 ms) than Day 1 (906+191 ms) (figure 2), and responses were faster for hermits (864+

175 ms) than for non-hermits (918+212 ms). Consistent with our hypotheses, Day and Word Type

interacted such that the competition effect (i.e. the RT difference between non-hermits and hermits)

was larger on Day 2 than on Day 1 (figure 2).

Also shown in table 2, there was a main effect of Delay, with shorter intervals between training and

bedtime associated with faster RTs overall. However, there was no main effect of exposure, and removal

of the Delay :Word Type : Day and Exposure :Word Type : Day fixed effects was justified (p, 0.2 for

model comparisons). Thus, the change in lexical competition from Day 1 to Day 2 shown in figure 2

was not related to Exposure condition or Delay. However, there was a significant three-way Delay :

Exposure : Day interaction (figure 3). As discussed, RTs on the whole tended to be about 30 ms faster

Table 1. Experiment 1 mean (and s.d.) RTs for the semantic categorization and speeded recognition tasks (ms) and free recall

accuracy (%).

exposure day

semantic categorization

speeded recognition free recallhermit non-hermit difference

standard 1 888 (167) 926 (177) 38 (97) 755 (184) 45.5 (24.0)

2 845 (169) 926 (257) 82 (154) 740 (153) 49.2 (23.5)

high 1 887 (195) 925 (216) 38 (114) 735 (150) 45.3 (23.0)

2 836 (161) 895 (193) 59 (114) 751 (166) 48.3 (22.6)

Table 2. Experiment 1 predictors of semantic categorization RT performance. Italics denote p, 0.05.

fixed effects b s.e. t p

(Intercept) 21.24 0.02 264.81 ,0.001

Word Type 0.05 0.01 7.30 ,0.001

Delay 0.04 0.02 2.48 0.01

Exposure 20.02 0.01 21.32 0.19

Day 20.05 0.01 24.55 ,0.001

Word Type : Delay 0.01 0.01 1.11 0.27

Delay : Exposure 0.001 0.02 0.09 0.93

Word Type : Day 0.03 0.01 2.58 0.01

Delay : Day 0.01 0.01 0.06 0.54

Exposure : Day 20.002 0.02 20.11 0.92

Delay : Exposure : Day 20.04 0.02 22.37 0.02

random effects variance s.d.

Participant: (intercept) 0.03 0.16

Participant: Day (slope) 0.01 0.09

Participant: Word Type (slope) 0.001 0.03

Participant: Exposure : Day (slope) 0.01 0.12

Participant: Day : Word Type (slope) 0.01 0.07

Item: (intercept) 0.01 0.07

Item: Day (slope) 0.001 0.03
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on Day 2 compared with Day 1. However, the three-way interaction shows that this effect was not

uniform, with shorter delays leading to stronger RT improvements in the standard exposure

condition, but longer delays having the same effect in the high exposure condition.

The Delay : Exposure : Day interaction was not predicted, and given that it does not involve the Word

Type variable, it is of lesser importance for the current purposes. Nonetheless, the main effect of Delay

(i.e. faster RTs for shorter delays) and particularly the interaction might have implications for our ability

to test the influence of Exposure and Delay on the lexical competition effects on Day 2. Previous findings

comparing adults and children suggest that faster RTs are associated with smaller competition effects

[55], so it is important to ascertain whether such differences in RT might mask our ability to see an

influence of Delay on changes in lexical competition across sleep. We tested whether participants’

average RTs to the filler words in the current experiment were associated with their overall increase in

lexical competition between Day 1 and Day 2. There was indeed a modest positive association, but

this captured just 3% of the variation and was not statistically significant (r ¼ 0.174, p ¼ 0.095).

Furthermore, the slope of this non-significant correlation (0.16) would suggest that the effects

illustrated in figure 3 could only influence lexical competition by a few milliseconds. Therefore, we do

not view these effects of Delay to be problematic in terms of impeding our main goal of determining

the influence of Delay on consolidation-related changes in lexical competition.

2.2.2. Speeded recognition

Accuracy was high across all conditions on Day 1 (96.2+6.8%) and Day 2 (93.9+7.5%). A mixed-effects

linear model was fitted to the speeded recognition RT data for correct responses only (table 3). The model

revealed no significant effects.

2.2.3. Free recall

Amixed-effects generalized linear model (mixed logit) was fitted to the free recall accuracy data (table 4).

As predicted, the model showed that accuracy was higher on Day 2 (48.8+ 23.0%) than on Day 1 (45.4+

23.4%), but there were no effects of Exposure or Delay.

2.2.4. One-week re-test

Once testing was complete on Day 2 of Week 2, participants were re-tested on the words learned in Week

1. This was to determine whether any effects of encoding or delay on explicit memory of novel words, or

on lexical integration, were present one week after training. It is important to note that there was no
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Figure 2. Semantic categorization mean reaction time (RT, in ms) for each Word Type (non-hermit, hermit) and Day (day 1, day 2).

Error bars represent +1 s.e. of the mean.

royalsocietypublishing.org/journal/rsos
R.
Soc.

open
sci.

6:
181842

9



one-week re-test for the words learned in Week 2. In order to retain power, the re-test data were not

compared to the Week 1 data, as this would halve the number of re-test observations to be analysed.

A mixed-effects linear model was applied to the semantic categorization and speeded recognition RT

re-test data (tables 5 and 6), and a mixed-effects generalized linear model applied to the free recall

accuracy re-test data (table 7). Accuracy was high at follow-up for both the semantic categorization

(90.3+ 7.0) and speeded recognition tasks (91.4+ 9.6), whereas it had decreased in the free recall task

(25.8+ 20.4). There were no main or interaction effects of Exposure evident across any of the tasks at

re-test (tables 5–7).

For semantic categorization RT (table 5), there was a significant main effect of Word Type, such that

responses were faster for hermits (940+ 217 ms) than for non-hermits (1116+324 ms). This suggests that

evidence of lexical integration (i.e. the competition effect) was still present one week following training.

There was no effect of Delay on semantic categorization RT performance at one-week re-test.

There was, however, a main effect of Delay on both speeded recognition RT performance (table 6) and

free recall accuracy performance (table 7) at the one-week re-test. As presented in figures 4 and 5, there

was a negative relationship between Delay and speeded recognition RT, and a positive relationship

between Delay and free recall accuracy. Longer delays were associated with faster and more accurate

responses. These findings provide preliminary suggestion that longer-term retention of explicit novel

word memory might benefit from a longer period of wake following learning in adults.
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Figure 3. Scatterplot showing the correlation between Day Difference score (RTs on day 2 minus RTs on day 1, collapsed across

Word Type condition) and Delay (in min) for each Exposure condition. Shaded areas represent 95% confidence intervals.

Table 3. Experiment 1 predictors of speeded recognition RT performance. Italics denote p, 0.05.

fixed effects b s.e. t p

(Intercept) 21.44 0.02 272.21 ,0.001

Delay 0.01 0.01 0.32 0.75

Exposure 20.01 0.02 20.71 0.48

Day 0.001 0.01 0.12 0.91

Exposure : Day 0.03 0.02 1.29 0.20

random effects variance s.d.

Participant: (intercept) 0.03 0.18

Participant : Day (slope) 0.01 0.09

Participant : Exposure (slope) 0.02 0.13

Participant : Exposure : Day (slope) 0.02 0.15

Item : (intercept) 0.002 0.05

Item : Day (slope) ,0.001 0.03
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2.3. Discussion

In Experiment 1, we first aimed to replicate previous findings that the learning and integration of

orthographic novel words benefits from a period of offline consolidation [19,21]. In addition, we

explored whether these consolidation effects are influenced by the time between learning and sleep,

and exposure level.

Importantly, our results replicated the finding that lexical competition between novel and existing

words strengthens after a period of offline consolidation. This finding is in line with previous studies

that emphasize the role of offline consolidation in enhancing the integration of novel words into the

mental lexicon (e.g. [3,14,15,21,56]) as well as dual memory system theories of word learning (e.g.

[16]). We also found that explicit word knowledge (as captured by a free recall task) improved

overnight. By contrast, recognition speed did not change overnight; while this conflicts with previous

reports of consolidation-related changes in speeded recognition of novel words [2], accuracy was very

high and RT was relatively fast on this task with potentially little room for change.

Counter to previous claims [27–29], there was no evidence that less time awake between learning and

sleep was beneficial for the overnight consolidation of novel orthographic forms in the present adult

sample. Bolstering this conclusion, there was some tentative evidence that better recall and recognition

of the novel words one week after training was associated with more time awake between training

and sleep. Although requiring replication and further investigation, this finding possibly relates to

claims made by Alger et al. [31], where a delay between learning and sleep can enhance declarative

Table 4. Experiment 1 predictors of free recall accuracy performance. Italics denote p, 0.05.

fixed effects b s.e. z p

(Intercept) 20.13 0.13 21.02 0.31

Delay 0.04 0.10 0.41 0.68

Exposure 20.02 0.10 20.20 0.84

Day 0.18 0.05 3.33 ,0.001

Delay : Exposure 20.10 0.11 20.88 0.38

random effects variance s.d.

Participant : (intercept) 1.15 1.07

Participant : Exposure (slope) 0.54 0.74

Item : (intercept) 0.24 0.49

Item : Exposure1 : Delay (slope) 0.03 0.17

Item : Exposure2 : Delay (slope) 0.08 0.28

Table 5. Experiment 1 predictors of semantic categorization RT performance at re-test. Italics denote p, 0.05.

fixed effects b s.e. t p

(Intercept) 21.13 0.03 242.86 ,0.001

Exposure 0.04 0.05 0.83 0.41

Delay 0.02 0.020 0.69 0.50

Word Type 1.12 0.02 6.61 ,0.001

Exposure : Word Type 20.03 0.03 20.89 0.38

random effects variance s.d.

Participant : (intercept) 0.05 0.21

Participant : Word Type (slope) 0.01 0.09

Item : (intercept) 0.002 0.05

Item : Word Type (slope) 0.003 0.06
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memory retention. Alger et al. partly attributed this to increased opportunities for additional processing

of the new stimuli prior to sleep. However, since the recall/recognition advantages for a longer delay

only emerged one week later (and not on Day 2), it is likely that increased opportunities for wake-

based processing in combination with experiencing the items again during the repeat recall/

recognition tests on Day 2 led to the benefits one week later. Chiming with these results, Martini et al.

[57] recently found that a post-encoding rest period led to enhanced memory 7 days later, but only

when an additional recall took place at the end of the first experimental session (see also [58] for

additive effects of intervening retrieval tests). Indeed, it has been argued that recall can trigger

reconsolidation processes and facilitate neocortical integration [59].

Also counter to predictions, there were no effects of exposure level at training on any measure of

word learning. Thus, it is plausible that both the standard and high exposure conditions were

intensive enough to lead to robust representations that were too strong to be susceptible to wake-

based interference or decay. Indeed, sleep consolidation effects have been shown to be reduced for

stronger memory traces [27,36,37]. This is reinforced by participants’ performance on the speeded

recognition task, for which accuracy was at ceiling across all sessions. In Experiment 2 we therefore

re-examined the hypotheses of Experiment 1 using a lower exposure level to test whether time awake

has a stronger effect for more fragile initial memory traces.

3. Experiment 2

3.1. Method

3.1.1. Participants

One hundred and three monolingual English speakers with no reported reading, language,

developmental or psychological disorders took part. Participants were students at the University of

York aged 18–28 years (mean þ 19.33 years, s.d. ¼ 1.58 years; 12 males) and were paid or received

course credits. There was no overlap in participation between Experiments 1 and 2.

Participants were asked to refrain from caffeine, alcohol and cigarettes on the day of training and the

morning of testing. Twenty-five participants reported that they did not comply with these criteria and/or

the task instructions, and were excluded from analysis.

Table 6. Experiment 1 predictors of speeded recognition RT performance at re-test. Italics denote p , 0.05.

fixed effects b s.e. t p

(Intercept) 20.14 0.03 249.20 ,0.001

Exposure 20.05 0.05 20.97 0.33

Delay 20.06 0.03 22.23 0.03

random effects variance s.d.

Participant: (intercept) 0.05 0.22

Item: (intercept) 0.003 0.26

Table 7. Experiment 1 predictors of recall accuracy performance at re-test. Italics denote p , 0.05.

fixed effects b s.e. T p

(Intercept) 21.44 0.20 27.19 ,0.001

Exposure 0.08 0.29 0.26 0.79

Delay 0.38 0.15 2.55 0.01

random effects variance s.d.

Participant: (intercept) 1.25 1.12

Item: (intercept) 0.70 0.84
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3.1.2. Materials

The same stimuli and measures used in Experiment 1 were used in Experiment 2. Descriptives of the

PSQI for Experiment 2 were similar to that of Experiment 1 (mean PSQI global score ¼ 5.71, s.d. ¼

2.41, 1–14).

3.1.3. Procedure and design

The procedure and design for Experiment 2 was identical to Experiment 1, with the exception that there

was only one ‘Low’ exposure condition, which had half as many training blocks as the Standard

exposure condition from Experiment 1 (i.e. five blocks in total). The mean Delay was 204 min (s.d. ¼

147) and ranged from 0 to 527 min.

3.1.4. Analysis

Experiment 2 used the same method of analysis as Experiment 1.

Outlier removal. The same principles for data cleaning were applied as for Experiment 1. In the

semantic categorization task, two participants were removed at the outlier removal stage (due to

having accuracy rates 2.5 standard deviations below the mean), and six participants were removed at

the Qualtrics check stage (due to Qualtrics server communication issues). One item was removed due

to having accuracy rates 2.5 standard deviations below the mean (CHALK).

In the speeded recognition task, two participants were excluded due to response bias (identified as

extreme low outliers in the d-prime distribution; d-prime cutoff 1.5), and 4/142 sessions of data had

accuracy scores implausibly below chance (mean accuracy ¼ 11.9%). As in Experiment 1, the response
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Figure 4. Speeded recognition mean inverse reaction time at re-test correlated with Delay collapsed across Exposure conditions. As

Delay gets longer, RTs get faster.
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key correspondence for these sessions was reversed. Six participants were removed due to Qualtrics

server issues. In this task, three items were removed due to having accuracy rates 2.5 standard

deviations below the mean (VELCET, BRETLE and BAMERY).

3.2. Results

Descriptive statistics for all main study variables can be found in table 8.

3.2.1. Semantic categorization (lexical integration)

Accuracy was high across all conditions on Day 1 (92.4+7.1%) and Day 2 (94.3+5.4%). A mixed-effects

linear model was fitted to the semantic categorization RT data (table 9). As seen in figure 6, the model

showed that RT was overall faster on Day 2 (840+167 ms) than Day 1 (904+ 183 ms) and faster to

hermits (861+175 ms) than non-hermits (882+ 180 ms). The removal of the Word Type : Day fixed

effect was justified (model comparison p. 0.2). As such, unlike that seen in Experiment 1, the

competition effect did not increase overnight. Furthermore, Delay had no effect on the semantic

categorization data, either as an interaction or a main effect.

3.2.2. Speeded recognition

Accuracy was again high across all conditions on Day 1 (96.6+6.1%) and Day 2 (94.1+6.4%). A mixed-

effects linear model was fitted to the speeded recognition RT data (table 10). The model showed that RTs

were faster on Day 2 in comparison to Day 1 (table 8 for descriptives).

3.2.3. Free recall

A mixed-effects generalized linear model (mixed logit) was fitted to the free recall accuracy data

(table 11). The model showed that accuracy was higher on Day 2 in comparison to Day 1 (see table 8

for descriptives).

3.2.4. One-week re-test

Similar to Experiment 1, approximately one week after training, participants were re-tested on the words

learned. Unlike Experiment 1, however, as there was only one Exposure condition in Experiment 2, all

participants were trained on only one set of items, which were all re-tested the following week.

Therefore we were able to modify the Day predictor to incorporate 3 levels (Day 1 versus Day 2

versus re-test) without having to reduce the number of observations. As recommended by Schad et al.

[60], Day was coded using a variant of repeated contrasts, allowing us to compare Day 1 versus Day

2 (day 1 ¼ 21/3, day 2 ¼ 2/3, re-test ¼ 21/3), and Day 1 versus re-test: day 1 ¼ 1/3, day 2 ¼ 1/3,

re-test ¼ 22/3).

Accuracy was high at re-test for both the semantic categorization (92.8+ 7.0%) and speeded

recognition tasks (90.5+9.8%), whereas it had slightly decreased in the free recall task (31.9+ 46.6).

As shown in table 12, there was no effect of Delay on semantic categorization RT performance at one-

week re-test. There was, however, a significant main effect of Word Type, such that responses were faster

for hermits (862+ 141 ms) than for non-hermits (893+145 ms). There was also a significant main effect

of Day (1 versus 2), which was also seen in the main analysis (table 9).

As shown in tables 13 and 14, there were no predictive effects of Delay on participant’s performance

on the speeded recognition or free recall tasks at one-week re-test. The significant main effect of Day

Table 8. Experiment 2 mean (and s.d.) RTs for the semantic categorization and speeded recognition tasks (ms) and free recall

accuracy (%). Italics denote p, 0.05.

day

semantic categorization

speeded recognition free recallhermit non-hermit difference

1 894 (175) 914 (191) 20 (137) 759 (102) 32.9 (19.1)

2 829 (169) 851 (164) 22 (113) 735 (124) 40.3 (21.6)
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(1 versus 2) was evident, as in the semantic categorization data, and is consistent with our earlier analysis

(seen in tables 10 and 11).

3.3. Discussion

With a lower level of encoding in Experiment 2, an approximately 20 ms overall lexical competition effect

was found following exposure to novel orthographic competitors, but this effect did not increase

overnight. This compares with the 38 ms effect found after learning in Experiment 1, which increased

to 82 ms the next day. Nevertheless, free recall accuracy and speeded recognition reaction times did

improve after a period of sleep. Thus, while this level of encoding was sufficient for effects of offline

consolidation to emerge for the explicit tasks (recall and recognition), it was not enough, apparently,

to elicit any overnight change in lexical integration. Although previous studies of declarative memory

have shown that weaker memory traces can benefit the most from sleep [27,37,38], it is possible that

in our study the memory trace was too weak to benefit from sleep-associated consolidation,

eliminating any overnight change in lexical integration effects. This is in line with research showing a

lack of sleep-dependent lexical competition effects at low levels of exposure, even in the presence of

Table 9. Experiment 2 predictors of semantic categorization RT performance. Italics denote p, 0.05.

fixed effects b s.e. t p

(Intercept) 21.25 0.02 255.63 ,0.001

Word Type 0.02 0.01 2.60 0.01

Delay 0.02 0.02 0.84 0.41

Day 20.09 0.02 25.81 ,0.001

random effects variance s.d.

Participant: (intercept) 0.03 0.17

Participant: Day (slope) 0.01 0.11

Participant: Word Type (slope) 0.002 0.04

Item: (intercept) 0.01 0.07

Item: Day (slope) 0.001 0.03
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Figure 6. Semantic categorization mean reaction time (RT, in ms) for each Word Type (non-hermit, hermit) and Day (Day 1, Day 2).

Error bars represent +1 s.e. of the mean.
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good recognition performance [14,61]. It is also consistent with a recent study of children with dyslexia

who showed poorer levels of encoding and no overnight emergence of lexical competition in response to

novel spoken competitors, despite showing overnight improvements in explicit recall [7]. Taken together,

these studies suggest that variations in encoding conditions are an important determiner of overnight

consolidation effects, with lexical integration being particularly susceptible to these variations.

Importantly, with less intensive encoding procedures, the time between learning and sleep did not

influence overnight consolidation. Moreover, unlike Experiment 1, there was no suggestion of a

benefit of increased opportunities for wake-based processing prior to sleep on recall or recognition at

the one-week follow-up. This could be a consequence of lower overall levels of explicit novel word

memory in Experiment 2 relative to Experiment 1, which may have reduced opportunities for explicit

wake-based processing and/or reconsolidation following the Day 2 re-test. In accordance with this, it

is well established that less stable memory representations are more vulnerable to wake-based

interference immediately after their acquisition [62,63].

4. General discussion
This study set out to examine variables that influence the integration of novel orthographic forms, as well

as more standard tests of explicit memory for these forms. Adopting a training procedure known to

show sleep-related benefits in the lexical integration of pseudowords (e.g. BANARA; Bowers et al.

[19]; Wang et al. [21]), we manipulated both exposure level and the time between learning and sleep.

Experiment 1 showed that overnight consolidation of novel orthographic forms (e.g. BANARA) leads

to influences on the processing of existing form neighbours (e.g. BANANA) that are enhanced on the

day after learning. This is largely in line with previous findings [19,21] and lends further support to

claims that the CLS approach to vocabulary learning [16] applies to written as well as spoken word

learning. Under this premise, we suggest that the overnight enhancement of competition effects may

be due to the sleep-dependent benefits of offline consolidation, allowing for the integration of the

Table 10. Experiment 2 predictors of speeded recognition RT performance. Italics denote p , 0.05.

fixed effects b s.e. t p

(Intercept) 21.41 0.02 270.14 ,0.001

Delay 0.01 0.02 0.45 0.66

Day 20.05 0.02 22.73 0.01

Day : Delay 20.03 0.02 21.59 0.12

random effects variance s.d.

Participant: (intercept) 0.02 0.15

Participant: Day (slope) 0.02 0.13

Item: (intercept) 0.01 0.07

Item: Delay (slope) ,0.001 0.02

Table 11. Experiment 2 predictors of free recall accuracy performance. Italics denote p, 0.05.

fixed effects b s.e. z p

(Intercept) 20.72 0.14 25.03 ,0.001

Delay 0.03 0.13 0.21 0.83

Day 0.41 0.09 4.90 ,0.001

random effects variance s.d.

Participant: (intercept) 0.94 0.97

Item: (intercept) 0.50 0.70

Item: Delay (slope) 0.13 0.36
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novel word into the lexicon [3,14,15]. Moreover, we can extend these findings to highlight that such

effects appear to be limited by levels of exposure. Specifically, when exposure was twice the typical

level used in experiments of this type (20 rather than 10 exposures to each novel word), there was no

significant alteration of the overnight boost to the test of lexical integration (Experiment 1). However,

when the encoding opportunity was more limited (five exposures to each novel word), the overnight

strengthening of lexical integration was not observed (Experiment 2). This has potential implications

for individuals with language learning difficulties, for whom lexical integration may be compromised

during sleep, at least partly as a consequence of encoding differences [7].

Intriguingly, the lower exposure limit on consolidation effects for our measure of lexical engagement

was not seen for the more explicit tests of memory for the novel words. That is, overnight improvements

in adults’ ability to recall the novel words were observed at all levels of exposure. There are several

possible explanations for this dissociation. It could be that lexical integration has a higher initial

encoding threshold than simple memory for novel items, or that the explicit tests are more sensitive. It

could also be related to the fact that the tests were repeated with the same items on both days,

leading to retrieval practice effects for the explicit tests (e.g. [64]). Retrieval practice is likely to be of

Table 12. Experiment 2 predictors of semantic categorization RT performance at re-test. Italics denote p, 0.05.

fixed effects b s.e. t p

(Intercept) 21.24 0.02 259.46 ,0.001

Delay 0.02 0.02 0.88 0.38

Word Type 0.03 0.01 4.54 ,0.001

Day (1 versus 2) 20.09 0.02 25.82 ,0.001

Day (1 versus re-test) 0.03 0.02 1.69 0.10

Delay : Day (1 versus 2) 20.004 0.02 20.24 0.81

Delay : Day (1 versus re-test) 20.01 0.02 20.69 0.49

random effects variance s.d.

Participant: (intercept) 0.03 0.16

Participant : Day (1 versus 2) (slope) 0.01 0.11

Participant : Day (1 versus re-test) (slope) 0.02 0.12

Item: (intercept) 0.004 0.07

Item : Day (1 versus 2) (slope) ,0.001 0.03

Item : Day (1 versus re-test) (slope) ,0.001 0.03

Table 13. Experiment 2 predictors of speeded recognition RT performance at re-test. Italics denote p, 0.05.

fixed effects b s.e. t p

(Intercept) 21.40 0.02 272.63 ,001

Day (1 versus 2) 20.05 0.02 22.66 0.01

Day (1 versus re-test) 20.001 0.02 0.03 0.98

Delay 0.002 0.02 0.12 0.91

Delay : Day (1 versus 2) 20.02 0.02 1.08 0.29

Delay : Day (1 versus re-test) 0.03 0.02 1.46 0.15

random effects variance s.d.

Participant: (intercept) 0.02 0.14

Participant : Day (1 versus 2) (slope) 0.02 0.13

Participant : Day (1 versus re-test) (slope) 0.02 0.15

Item: (intercept) 0.01 0.07
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less benefit for the semantic categorization task that underlies the test of lexical integration, given that the

item presented is not the item that has recently been learned and the effect depends on a decrement in

performance (i.e. slower RTs to the test items) rather than an improvement.

In contrast to our initial predictions and previous claims, there were no clear effects of the delay

between learning and bedtime on overnight consolidation. It is possible that pre-sleep–wake effects in

the present and previous studies may be contaminated by time of day effects. Although in the current

study individual training sessions did occur at different times in the day as Delay was dependent on

participants’ own bedtimes, exploration of the vigilance task data showed no impact of attention on

the relationship between Delay and the other dependent variables. Moreover, previous research has

shown that circadian rhythms do not explain differences in test/re-test performance [3,65]. Therefore,

it is unlikely that time of day effects can explain the present findings.

Despite not seeing clear effects of time awake prior to sleep on Day 2 performance in the present

study, we did observe a significant predictive role of Delay at the one-week test, with more time

awake between learning and sleep being associated with better recall and recognition one week later.

As discussed briefly above, this resonates with Alger et al.’s [31] suggestion that increased time awake

leads to increased opportunities for wake-based processing prior to sleep (see also [66]). However, our

data do not directly align with this claim, since we only observed a benefit at one week and not on

Day 2 and we did not observe the same benefit under lower exposure conditions in Experiment 2.

Thus, it seems plausible that a combination of wake-based processing and the repeat recall/

recognition testing on Day 2 led to enhanced explicit memory one week later (see also [57]), at least

when explicit memory reached a level sufficient to engage such processing. However, further research

is needed to examine this hypothesis specifically.

There are a number of contexts in which it will be important to further explore the effects of the time

between learning and sleep. For instance, it is possible that effects of time awake could be sensitive to

individual differences in prior knowledge. That is, time awake before sleep may be less important in

adults for language learning as they have a strong existing knowledge base to support learning and/

or consolidation which may overcome effects of wake-based interference [9]. Thus, an exploration of

the effects of time awake in adult studies where prior knowledge cannot support task performance to

the same degree would be fruitful (e.g. in studies of word learning that manipulate prior knowledge,

or in studies of spatial declarative memory or sequence learning; see James et al. [9] for a discussion).

Further to this issue, waking time effects may also be developmentally sensitive. In contrast to adults,

it may be that children are more susceptible to wake-based interference as a consequence of lower

levels of existing knowledge and/or protracted hippocampal development [9,67,68]. Research

investigating child versus adult differences thus presents a further important avenue.

We also acknowledge that the less tightly controlled nature of the online testing environment, while

advantageous in many ways, may have meant that participants did not adhere to the task instructions as

well as would have been expected in the laboratory. Certainly, the rate of data loss in the current study

was higher than the amount of data loss we would normally see in our previous lab-based studies.

Nevertheless, online testing permitted a naturalistic exploration of time awake right up until

participants’ typical bedtimes, and was therefore necessary for the current purposes. It is vital,

however, that with online testing becoming increasingly popular, experimenters take appropriate

precautions and comply with the appropriate data checks once testing is complete (see [43]).

Table 14. Experiment 2 predictors of free recall accuracy performance at re-test. Italics denote p, 0.05.

fixed effects b s.e. z p

(Intercept) 20.83 0.15 25.47 ,0.001

Day (1 versus 2) 0.44 0.09 5.05 ,0.001

Day (1 versus re-test) 0.06 0.09 0.63 0.53

Delay 0.01 0.14 0.05 0.96

random effects variance s.d.

Participant: (intercept) 1.09 1.05

Item: (intercept) 0.54 0.74

Item : Delay (slope) 0.16 0.40
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It is also important for us to address the limitation of both experiments in not including a wake

control group. While we can reasonably suppose that the overnight change in lexical competition is

due to consolidation during sleep, it is also possible that wake consolidation could be influential [69].

The closest equivalent to a wake control in the literature is the study of Wang et al. [21]. Their study

used materials and methods very similar to our own, and found that a period of 12 h awake across

the day had no impact on the strength of lexical competition for visually presented words. This

evidence supports our interpretation of our own results as relating to consolidation in sleep, but it

remains possible that implementational differences between the two studies could have been

influential (for example their study was lab-based rather than web-based).

Although a clear overnight increase in lexical competition was evident for Experiment 1, there were

also small competition effects observed on Day 1 in Experiments 1 and 2. This potentially conflicts with

the predictions of the CLS framework (in which lexical integration should require a period of offline

consolidation to emerge), and with previous findings [3,19,21]. One possibility is that these weak Day 1

effects could arise from the generally slower RTs that were obtained in this study, perhaps as a

consequence of the online testing procedure. For example, mean RTs on Day 1 for Hermits were

864 ms (Experiment 1) and 894 ms (Experiment 2) and for Non-hermits, 918 ms (Experiment 1) and

914 ms (Experiment 2); whereas in Bowers et al. [19], who tested participants in the lab, mean RTs on

Day 1 were 730 ms and 747 ms to hermits and non-hermits, respectively. Previous studies have shown

that slower RTs are associated with numerically larger lexical competition effects [55]. This could be

simply because there is greater room for a difference to emerge with slower RTs, and/or because

processing may become more strategic, allowing participants to consciously note the overlap between

novel and existing words. However, there were no correlations between the size of the lexical

competition effects on Day 1 and participants’ mean RTs to the filler items (Experiment 1: r ¼ 0.05, p ¼

0.66; Experiment 2: r ¼ 0.12, p ¼ 0.31). Thus, there was no evidence that slower RTs were accounting for

the weak Day 1 lexical competition effects here. While there was a correlation between lexical

competition on Day 2 and participants’ mean filler RT for Experiment 1 (r ¼ 0.34, p, 0.001), this

correlation was not significant for Experiment 2 (r ¼ 20.07, p ¼ 0.56). Therefore, only where we

observed an overnight emergence of lexical competition (i.e. Day 2, Experiment 1) did participants’ with

slower RTs show larger effects. It is also important to note that slower RTs cannot solely account for the

overnight emergence of lexical competition observed in Experiment 1, since participants’ RTs were

faster on Day 2 than on Day 1. Thus, while slower RTs influenced the size of the competition effect,

they cannot account for the emergence of the effect, which we attribute to the process of lexical integration.

Instead it may be that both visual and spoken word recognition tests of engagement in lexical

competition should not be thought of as all or nothing, as previous results might suggest [14]. In fact,

in the original visual study [19], there was a numerical competition effect of 17 ms at the first test

point soon after exposure. This was not statistically significant, but is similar in size to the significant

20 ms effect that we found in Experiment 2. Therefore, the key test of consolidation-related lexical

integration may not be the presence or the absence of any competition effect, but the size of this

effect, and whether it is enhanced by sleep [21] or is associated with sleep parameters [2,7]. This is in

fact consistent with more detailed accounts of how a CLS model of word learning might operate [16].

As discussed in McMurray et al. [70], the difference between pre-consolidation and post-consolidation

representations of novel words is not one of encapsulation of the new word versus integration with

its lexical neighbours; rather, it is a difference in efficiency of mapping between form and meaning

[16], with hippocampal mediation seen as less efficient, slower and less automatic [71,72].

The latter characterization of novel word competition effects has ramifications for studies that have

used the effect as a measure of immediate lexical integration. Particularly, Coutanche & Thompson-

Schill [10] have used the Bowers et al. [19] methodology as a means of assessing the consequences of

different types of learning. They assessed a ‘fast mapping’ procedure [73] that required participants to

infer the referent of a novel word such as BANARA in the context of a visual display containing a

familiar object and a novel object. In these circumstances, participants should associate the novel word

with the novel object, and this type of association has been argued to be less dependent on the

hippocampus than explicit encoding [73]. Coutanche & Thompson-Schill found that fast mapping but

not explicit encoding led to a visual word competition effect on the same day of testing, which they

took as evidence of lexical integration. While this dissociation is undoubtedly interesting and

potentially important, the inference that fast mapping has led to immediate lexical integration is, in

the light of the above discussion, weakened (see also [74–76] for further discussion of this issue).

In conclusion, this study replicates previous findings that the learning and integration of novel

orthographic forms benefits from offline consolidation. We demonstrate that the integration of novel
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words can be compromised by low exposure conditions, and importantly, once a novel word is

encountered sufficiently to initiate offline integration, there is no further benefit of higher levels of

exposure. Counter to commonly cited claims, there was no evidence that less time awake following

learning was beneficial to the consolidation of novel words in the present adult sample; indeed, there

was some evidence that more time awake following learning can benefit explicit aspects of novel word

memory one week after training (at least under higher exposures conditions). Such findings

emphasize the need to further explore the variables that lead to individual differences in the time

course of lexical integration, to advance our theoretical understanding of novel word learning and

ultimately inform practice.
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