
This is a repository copy of Using Squeeziness to test component-based systems defined
as Finite State Machines.

White Rose Research Online URL for this paper:
http://eprints.whiterose.ac.uk/145264/

Version: Accepted Version

Article:

Alberto, I., Hierons, R. orcid.org/0000-0002-4771-1446 and Manuel, N. (2019) Using
Squeeziness to test component-based systems defined as Finite State Machines.
Information and Software Technology, 112. pp. 132-147. ISSN 0950-5849

https://doi.org/10.1016/j.infsof.2019.04.012

Article available under the terms of the CC-BY-NC-ND licence
(https://creativecommons.org/licenses/by-nc-nd/4.0/).

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse

This article is distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs
(CC BY-NC-ND) licence. This licence only allows you to download this work and share it with others as long
as you credit the authors, but you can’t change the article in any way or use it commercially. More
information and the full terms of the licence here: https://creativecommons.org/licenses/

Takedown

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

mailto:eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Using Squeeziness to test component-based systems defined as Finite State Machines

Alfredo Ibiasa, Robert M. Hieronsb, Manuel Núñeza,∗

aDepartamento de Sistemas Informáticos y Computación, Universidad Complutense de Madrid, Madrid, 28040, Spain
bDepartment of Computer Science, The University of Sheffield, Sheffield, S1 4DP, United Kingdom

Abstract

Context: Testing is the main validation technique used to increase the reliability of software systems. The effectiveness
of testing can be strongly reduced by Failed Error Propagation. This situation happens when the System Under Test
executes a faulty statement, the state of the system is affected by this fault, but the expected output is observed.
Squeeziness is an information theoretic measure designed to quantify the likelihood of Failed Error Propagation and
previous work has shown that Squeeziness correlates strongly with Failed Error Propagation in white-box scenarios.
Despite its usefulness, this measure, in its current formulation, cannot be used in a black-box scenario where we do not
have access to the source code of the components.
Objective: The main goal of this paper is to adapt Squeeziness to a black-box scenario and evaluate whether it can be
used to estimate the likelihood that a component of a software system introduces Failed Error Propagation.
Method: First, we defined our black-box scenario. Specifically, we considered the Failed Error Propagation that a
component introduces when it receives its input from another component. We were interested in this since such fault
masking makes it more difficult to find faults in the previous component when testing. Second, we defined our notion of
Squeeziness in this framework. Finally, we carried out experiments in order to evaluate our measure.
Results: Our experiments showed a strong correlation between the likelihood of Failed Error Propagation and Squeezi-
ness.
Conclusion: We can conclude that our new notion of Squeeziness can be used as a measure that estimates the probability
of Failed Error Propagation being introduced by a component. As a result, it has the potential to be used as a measure of
testability, allowing testers to assess how easy it is to test either the whole system or a single component. We considered
a simple model (Finite State Machines) but the notions and results can be extended/adapted to deal with more complex
state-based models, in particular, those containing data.

1. Introduction

Software testing [3, 35] is the main validation technique
used to increase the reliability of complex software sys-
tems. Software testing has traditionally been considered
to be an informal technique [18]. However, it is now known
that testing activities can have a formal basis. Formal test-
ing is an active research area [7, 10, 25] and the existence
of several tools that support formal testing has led to the
recognition that the combination of formal methods and
testing facilitates test automation [42].

Failed Error Propagation (FEP) is a situation in which
a faulty statement in the System Under Test (SUT) is ex-
ecuted during testing, the fault corrupts the internal state
of the SUT, but the expected output is observed. Natu-
rally, in order for a statement to be a fault there must be at
least one input under which FEP does not occur. FEP is
a form of fault masking and can reduce the effectiveness of

∗Corresponding author.
Email addresses: aibias@ucm.es (Alfredo Ibias),

r.hierons@sheffield.ac.uk (Robert M. Hierons),
manuelnu@ucm.es (Manuel Núñez)

testing: we might fail to find a fault despite executing the
faulty statement in testing. Empirical studies have shown
that many systems suffer from FEP [4, 33]. For example,
Masri et al. [33] found that in 13% of the programs that
they examined, a total of 60% or more of the tests suffered
from FEP.

Recent work introduced the notion of Squeeziness [4,
13] to capture FEP, with Squeeziness being a measure of
the information (entropy) lost by a channel (the SUT) that
takes input and returns output. The essential idea is that
if the SUT maps two or more inputs to the same output
then this channel (the SUT) can lead to a loss of infor-
mation: if we know the program output then we may not
know the program input that caused this (this is the loss
of information). The motivation for looking at Squeezi-
ness was that FEP can be caused by two program states,
a correct program state and a faulty program state, being
mapped to the same output, which is exactly this type
of loss of information. In experiments, there was a rank
correlation of close to 0.95 between measures of Squeezi-
ness and the likelihood of FEP [4]. In addition, it has
been found that the likelihood of FEP more strongly cor-
relates with Squeeziness than with the Domain to Range

Preprint submitted to Information and Software Technology March 29, 2019

Ratio [13].
The goal of this paper is to adapt the notion of Squeezi-

ness to a black box testing scenario in which a software
system is composed of components and we have models
of these components. We consider the situation in which
we have a component C with model M and this compo-
nent receives a sequence of inputs from another compo-
nent CP .

1 The sequence received by C is an input sequence
for C and an output sequence for CP and might result, for
example, from communications through an internal net-
work, a sequence of method/function calls, or shared stor-
age/memory. We assume that these values (sent by CP

to C) are not directly observed by the tester. Further, C
produces a sequence of outputs that are either observed
during testing or are received by another component. A
graphical representation of this type of systems can be
found in Figure 1. It is entirely possible that CP pro-
duces an unexpected sequence but component C maps the
expected and unexpected sequences to the same output
sequence. If this occurs, C introduces a form of FEP that
makes it more difficult to find faults in CP .

In this paper we concentrate on a particular type of
model, the Finite State Machine (FSM). An FSM has a fi-
nite set of states and transitions between the states, with
each transition having a label: an input/output pair. The
behaviour represented by an FSM is the set of input/output
sequences that label paths from the initial state of the FSM.
One of the main reasons for our interest in the FSM formal-
ism is that it has been widely used as the basis for model-
based testing (MBT). This line of work (MBT from FSM

specifications) started in the 1950s with Moore’s seminal
paper [34], with Hennie [23] later (in the 1960s) introduc-
ing the first FSM based test generation algorithm. Many
FSM based test generation algorithms have since been de-
vised (see, for example [12, 31, 39, 30]). The initial work
was largely in the context of testing hardware, since pro-
cessors are typically specified as FSMs. Since the 1980s
FSMs have also been used in the testing of communica-
tions protocols. More generally, FSMs are used as the basis
for testing a wide variety of systems including embedded
systems [9, 36] and parts of operating systems [19, 20].
Although FSMs do not directly model data, an FSM is typ-
ically extracted from a model (in a richer language) by
either applying an abstraction or expanding out the data
(possibly after applying an abstraction).

In this paper we assume that we have an FSMspecification
of the component C being analysed. In this setting, com-
ponent C can introduce FEP, and so potentially make test-
ing more difficult, if there is a case where a component CP

should send sequence α to C, instead CP sends α′ 6= α to
C, and C produces the same output sequence β in response
to α and α′. Since an FSM receives a sequence of inputs
and produces a sequence of outputs, in our setting, α and

1C might actually receive input from multiple components; allow-
ing this will not affect the underlying approach but complicates the
exposition.

α′ will be potential inputs of C and β will be a potential
output of C. Naturally, since α and α′ are sent to C, and
as we already mentioned, they are not directly observed
by the tester. This situation is illustrated in Figure 2. As-
sume that we want to implement the component Cp given
in the upper part of Figure 2 and that this component will
be paired with component C. In this setting, it will be
difficult to unmask a faulty implementation of Cp, such
as the one shown in the lower part of Figure 2, because
C returns the same response, the sequence z1z1, to the
sequences y1y1 (produced by a correct implementation of
Cp receiving x1x1) and y2y2 (produced by a faulty imple-
mentation of Cp also receiving x1x1). Note, as we already
said, that a tester will not be able to observe whether the
sequence provided to C is y1y1 or y2y2.

Unfortunately, we cannot simply reuse the previous ap-
proach [13] and results; we are considering a different sce-
nario and also a different source of FEP. The following are
the key differences.

1. We are interested in a different type of FEP. Previous
work looked at the FEP within a program: the po-
tential for a program to mask faults within itself. In
contrast, we are interested in the potential for one
program (component) C to mask faults in another
component CP .

2. We are interested in programs that are state-based.
In contrast, previous work looked at programs that
retain no state information (after processing an in-
put). As a result, the input domain of an SUT is the
set of all possible input sequences. This complicates
the underlying theory since:

(a) The input domain is infinite (previous work as-
sumed finite input domains [4]).

(b) We cannot consider arbitrary probability distri-
butions over the set of input sequences.

Regarding the second point, we need to carefully
consider how we can assign probabilities to input se-
quences since, for example, it may not make sense
to have input sequences σ1 and σ2 such that σ1 is
a prefix of σ2 and σ2 is given a higher probability
than σ1.

3. Previous work considered the source code of a pro-
gram and we instead base the analysis on models.
This brings a number of benefits, including the po-
tential to apply the analysis at an earlier stage.

There were several reasons for us reconsidering the pre-
vious decision to base the analysis on the source code. A
first practical concern is that approaches that analyse the
source code are less likely to scale to situations in which
there are multiple components. There is also the issue that
for state-based systems there is a need to reason about the
change in state caused when we execute the SUT with an
input: state-based models make this explicit. Moreover,
the source code of a component might not be available (e.g.
if the development of a component has been outsourced).

2

Cp C
Input Output

Figure 1: Representation of our testing scenario

q1 q5

q0 Cp q3 q4 C q7

q2 q6

x1 x1

x1/y1

x2/y2

x1/y1

x2/y2

y1 y1

y1/z1

y2/z1

y1/z1

y2/z1

z1 z1

q1 q5

q0 Cp q3 q4 C q7

q2 q6

x1 x1

x2/y1

x1/y2

x2/y1

x1/y2

y2 y2

y1/z1

y2/z1

y1/z1

y2/z1

z1 z1

Figure 2: A case of fault masking

Finally, analysis based on models might be applied at an
earlier stage of the development process. Note that de-
tailed state-based models are used in a number of impor-
tant application domains such as automotive and avionic
systems; here the models are typically sufficiently detailed
to be executable and also for code to be automatically gen-
erated from them2. As a result, we chose to consider the
case where we have models of the components and wish to
analyse these models. Note that, as explained above, this
means that our scenario (and source of FEP) differs from
the previous work, as does the entity being analysed.

Although the FSM formalism is relatively simple, we es-
tablish the basis of a framework to test in more complex
black-box contexts because the basis of testing is simi-
lar: we apply a sequence of inputs and decide whether the
observed sequence of outputs is consistent with the spec-
ification of the system [20]. Further, an FSM might repre-
sent the semantics of a model written in a more expressive
language. In addition to extending the notion of Squeezi-
ness to a black box scenario, we evaluated this through
two types of experiments. The first approach used was to
model the component C in terms of the sizes of the inverse
images of the possible output sequences; this was used to
compare the probability of FEP with our proposed metrics
and also the Domain To Range Ratio of C. A weakness of
this approach, however, is that we cannot guarantee that
the simulations correspond to potential FSM models. As
a result, we also carried out experiments using randomly
generated FSMs.

The overall results were encouraging, with there being
a high correlation between our proposed measures and the

2There are a number of widely used tools such as STATEMATE
and STATEFLOW that support this.

probability of FEP. As a result, the proposed measures
could act as testability measures for state-based testing
and have the potential to help direct testing. There are
two practical reasons for the interest in measures associ-
ated with FEP. First, there may be potential to generate
test cases that achieve a given test purpose, such as test-
ing a component CP , and that have a low probability of
FEP. Second, such measures might be used to estimate
testability; we might expect it to be particularly difficult
for testing to find a fault in a component CP that sends its
output to another component C that is likely to introduce
FEP. Measures of testability might be used to direct ad-
ditional testing towards difficult to test areas of a system.

As we have explained, there are several differences be-
tween the original scenario [13] and ours and these include
the type of FEP considered and the entity being analysed.
These differences introduced a number of technical chal-
lenges. First, we had to reshape the definition of Squeezi-
ness because inputs and outputs have a different treatment
in each scenario. In the previously considered white-box
case, a program receives an input (a tuple of values) and
returns an output (again, a tuple of values). Inputs and
outputs were drawn from finite sets allowing, for exam-
ple, the use of uniform distributions. In the scenario that
we consider in this paper, an input is a sequence of input
actions while an output is also a sequence, in this case
of output actions. This leads to two issues, the first of
which is that the ‘input set’ is infinite (it is the set of all
input sequences), as is the ‘output set’. The second issue
is that, even if we bound sequences to make the sets fi-
nite, we cannot define a uniform distribution over the sets
of inputs and outputs because, for example, a prefix of a
sequence should have a higher probability than the whole
sequence.

There is a significant body of work on FEP and fault
masking for white-box testing [6, 33, 44, 46] and black-box
testing [21, 37, 38, 45]. As mentioned, previous work has
also defined Squeeziness in a white-box scenario [4, 13].
However, we are not aware of any work that uses an Infor-
mation Theory foundation for addressing FEP in a black-
box context. Naturally, there is work that looks at testing
systems that are composed of components for which we
have FSM models [5, 15, 41] but this previous work has
considered rather different concerns. There has also been
previous work that uses information theoretic measures in
testing. For example, Information Theory has been used
to devise new measures of test diversity [16, 17], with the
potential to either direct test generation towards diverse
test suites or facilitate the development of new test cri-
teria. Another line of work, though not one that uses
Information Theory, aims to find diverse tests where di-
versity refers to the test outputs [2]. It is interesting to
note that recent work found that white-box and black-box
notions of diversity were both effective when searching for
a good order of the test cases in a given test suite (the test
prioritisation problem) [22].

The rest of the paper is organised as follows. In Sec-

3

tion 2 we introduce concepts and terminology used in the
rest of the paper. Section 3 develops our novel information
theoretic measures for FSMs. Section 4 then describes the
empirical evaluation carried out and the results of the dif-
ferent sets of experiments. Finally, in Section 5 we present
our conclusions and some lines of future work.

2. Preliminaries

In this section we present the main definitions and con-
cepts, regarding Finite State Machines (FSMs), that we use
throughout this paper. The material presented in this sec-
tion is based on classical work on testing from FSMs [32].
Most of the concepts are based on the original sources
while some notation is adapted to facilitate the formula-
tion of subsequent definitions.

Given a set A, we let A∗ denote the set of finite se-
quences of elements of A; ǫ ∈ A∗ denotes the empty se-
quence. We let A+ denote the set of non-empty sequences
of elements of A. Ak denotes the set of sequences with
length k ≥ 1. We let |A| denote the cardinal of set A.
Given a sequence σ ∈ A∗, we have that |σ| denotes its
length. Given a sequence σ ∈ A∗ and a ∈ A, we have that
σa denotes the sequence σ followed by a and aσ denotes
the sequence σ preceded by a.

Throughout this paper we let I be the set of input
actions and O be the set of output actions. It is important
to differentiate between input actions and inputs of the
system. In our context an input of a system will be a non-
empty sequence of input actions, that is, an element of I+

(similarly for outputs and output actions).
A Finite State Machine is a (finite) labelled transi-

tion system in which transitions are labelled by an in-
put/output pair. We use this formalism to define pro-
cesses.

Definition 1 We say that M = (Q, qin, I, O, T) is a Fi-
nite State Machine (FSM), where Q is a finite set of states,
qin ∈ Q is the initial state, I is a finite set of input actions,
O is a finite set of output actions, and T ⊆ Q×(I×O)×Q
is the transition relation. A transition (q, (i, o), q′) ∈ T ,

also denoted by q
i/o

−−−−→ q′ or by (q, i/o, q′), means that
from state q after receiving input i it is possible to move
to state q′ and produce output o.

We say that M is deterministic if for all q ∈ Q and
i ∈ I there exists at most one pair (q′, o) ∈ Q×O such that
(q, i/o, q′) ∈ T . In this paper we consider deterministic
FSMs.

We say that M is input-enabled if for all q ∈ Q and
i ∈ I there exists (q′, o) ∈ Q×O such that (q, i/o, q′) ∈ T .

We let FSM(I, O) denote the set of FSMs with input set I
and output set O.

A process can be identified with its initial state and we
can define a process corresponding to a state q of M by
making q the initial state. Thus, we use states and pro-
cesses and their notation interchangeably. An FSM can be

represented by a diagram in which nodes represent states
of the FSM and transitions are represented by arcs between
the nodes. We use a double circle to denote the initial
state.

As usual, we assume that the System Under Test (SUT)
is input-enabled: the SUT should be able to react, some-
how, to any external stimulus. In particular, if the tester
applies an input action at a certain stage, then the system
should be able to provide a response (that is, an output
action). Actually, if an input cannot be applied in a state
of the SUT, then we can assume that there is a response
to the input that reports that this input is blocked and so
an FSM that is not input-enabled can be converted into one
that is. In addition, it has been shown that the problem
of testing from an FSM that is not input-enabled can be
mapped to the problem of testing from an input-enabled
FSM [24, 40]. As a result, the assumption that FSMs are
input-enabled is not a significant restriction. However, we
do not force specifications to be input-enabled. In partic-
ular, all the definitions and results concerning Squeeziness
will not assume input-enableness. As stated in the previ-
ous definition, we consider the case where both specifica-
tions and SUTs are deterministic. This is similar to the
previously explored white-box scenario that assumed that
programs are deterministic.

Our main goal while testing is to decide whether the
behaviour of an SUT conforms to the specification of the
system that we would like to build. In order to detect
differences between specifications and SUTs, we need to
compare the behaviours of specifications and SUTs and
the main notion to define such behaviours is given by the
concept of trace.

Definition 2 Let M = (Q, qin, I, O, T) be an FSM. We use
the following notation.

1. Let σ = (i1, o1) . . . (ik, ok) ∈ (I × O)∗ be a sequence
of input/output actions and q be a state. We say
that M can perform σ from q if there exist states
q1 . . . qk ∈ Q such that for all 1 ≤ j ≤ k we have
(qj−1, ij/oj , qj) ∈ T , where q0 = q. We denote this

by either q
σ

==⇒ qk or q
σ

==⇒ . If q = qin then we say
that σ is a trace of M . We denote by traces(M)
the set of traces of M . Note that for every state q we
have that q

ǫ
==⇒ q holds. Therefore, ǫ ∈ traces(M)

for every FSM M .

2. Let α = i1 . . . ik ∈ I∗ be a sequence of input actions
and q be a state. We define outM (q, α) as the set

{o1 . . . ok ∈ O∗|q
(i1,o1)...(ik,ok)

==========⇒}

Note that if M is deterministic then this set is ei-
ther empty or a singleton. In the last case we will
sometimes write outM (q, α) = o1, . . . , ok.

3. Let q ∈ Q be a state. We define domM (q) as the set

{α ∈ I∗|outM (q, α) 6= ∅}

4

If q = qin then we simply write domM . Similarly, we
define imageM (q) as the set

{o1 . . . ok ∈ O∗|∃i1 . . . ik ∈ I∗ : q
(i1,o1)...(ik,ok)

==========⇒}

If q = qin then we simply write imageM . We denote
by domM,k the set domM ∩ Ik. Similarly, We denote
by imageM,k the set imageM ∩Ok.

Note that if M is input-enabled then for all k > 0 we
have that domM,k = Ik and, therefore, for all α ∈ Ik we
have that outM (q, α) 6= ∅.

3. Squeeziness for FSMs

In this section we show how the notion of Squeeziness
can be adapted to the situation in which we would like to
reason about the FEP introduced by a component C that
has FSM specification M . As previously discussed, such
FEP affects the testing of previous components (compo-
nents that send output to C) since it might lead to a faulty
sequence from a previous component CP being mapped to
the expected output sequence by C.

An FSM M can be seen as a function transforming se-
quences of input actions belonging to domM into sequences
of output actions belonging to imageM . Therefore, we
could say that M receives an input (an element of I∗) and
returns an output (an element of O∗, with the same length
as the input). We define projections of this function: for
a natural number k, we restrict the function to the set of
sequences of input actions that are of length k. In particu-
lar, these projections will allow us to consider finite sets of
inputs (all the sequences of inputs of a certain length). We
also introduce the notion of collision: two inputs collide if
they produce the same output.

Definition 3 Let M = (Q, qin, I, O, T) be an FSM. We
define fM : domM −→ imageM as the function such that
for all α ∈ domM we have fM (α) = β for β such that
outM (qin, α) = {β}.

Let k > 0. We define fM,k to be the function fM∩(Ik×
Ok), where we use the function fM to denote the associated
set of pairs. Let β ∈ imageM . We define f−1

M (β) to be the
set {α ∈ I∗|fM (α) = β}.

Let α1, α2 ∈ I∗. We say that α1 and α2 collide for M
if α1 6= α2 and fM (α1) = fM (α2).

Note that if two sequences of input actions collide then
they must have the same length (otherwise, the returned
sequences of output actions would have different length
and, therefore, cannot be equal). Next we introduce some
notation for random variables and recall the concept of en-
tropy [43] associated with a random variable and Squeezi-
ness [13] of a function. The concept of entropy is a “mea-
sure of the average uncertainty in the random variable. It
is the number of bits on average required to describe the

random variable” [43]. In other words, entropy is a mea-
sure of the amount of information of a given set with a ran-
dom variable ranging over it. The concept of Squeeziness
then is defined as the amount of information lost after the
application of a given function, that is, the difference be-
tween the amount of information (entropy) of the domain
of the function and the amount of information (entropy)
of the range of the function. In a broader sense, we can
consider it to measure the difference between the amount
of information that we have before applying the function
and the amount of information that remains after applying
the function. We are interested in total functions since we
consider input-enabled FSMs3.

Definition 4 Let A be a set and ξA be a random vari-
able over A. We denote by σξA the probability distribution
induced by ξA. The entropy of the random variable ξA,
denoted by H(ξA), is defined as:

H(ξA) = −
∑

a∈A

σξA(a) · log2(σξA(a))

Let f : A −→ B be a total function and consider two
random variables ξA and ξB ranging, respectively, over A
and B. The Squeeziness of f , denoted by Sq(f), is defined
as the loss of information after applying f to A, that is,
H(ξA)−H(ξB).

As we said, Squeeziness represents the amount of infor-
mation lost by a given function. Since we have shown that
FSMs can be seen as functions from a set of sequences of in-
put actions to a set of sequences of output actions, we can
adapt Squeeziness to deal with FSMs. First, we need to de-
fine how inputs are chosen and outputs are returned. We
consider a probabilistic view where a random variable as-
sociated with each set of relevant inputs/outputs is taken
into account. We studied two possible alternatives:

• We associate a random variable with the whole set of
inputs/outputs (that is, a random variable induces
a probability distribution over I∗ and O∗, respec-
tively).

• We associate a random variable with the set of in-
puts/outputs of a certain length (that is, there are
different random variables associated with I1, I2,
. . . , O1, O2, . . .).

In this paper we consider the second approach because
it gives us an incremental procedure to compute a sequence
of consecutive values of Squeeziness so that we can analyse
how the series is evolving. Actually, the input sequence
length used will depend on the amount of testing to be
carried out since this will determine the lengths of the
input sequences that a component is likely to receive. Note

3Recall that a partial FSM can be mapped to an input-enabled
FSM.

5

also that there is potential to use Squeeziness values, for
different input sequence lengths, to inform the choice of
test cases. In other words, we use these values with the
aim of using test cases that minimise the likelihood of FEP
occurring, that is, this approach provides a way to know,
for a given length, if the probability of having FEP, once we
have tested all the possible inputs with the given length,
will be greater than 0 or not. Despite concentrating on
the second approach, we believe that the first approach is
also interesting. We consider the development of the first
approach, and a comparison with the second approach, to
be an interesting line of future work.

We have that domM,k represents the possible inputs of
length equal to k that M can perform (therefore, other el-
ements of Ik have probability equal to zero) and imageM,k

represents the possible outputs of length equal to k that M
can produce after receiving an element of domM,k. There-
fore, defining the random variables that range over each set
as ξdomM,k

and ξimageM,k
, we have that the entropy will be

the amount of information of each set, and the difference
of entropy (that is, H(ξdomM,k

) − H(ξimageM,k
)) represents

the amount of information destroyed by M . This is the
notion of Squeeziness that we use in this paper.

Definition 5 Let M = (Q, qin, I, O, T) be an FSM and
k > 0. Let us consider two random variables ξdomM,k

and
ξimageM,k

ranging, respectively, over the domain and image
of fM,k. The Squeeziness of M at length k is defined as

Sqk(M) = H(ξdomM,k
)−H(ξimageM,k

)

Squeeziness for FSMs is an interesting notion that has
some unexpected properties. For example, it is not mono-
tonic with respect to k. That is, there exist FSMs where
using longer sequences can solve a loss of information pro-
duced by shorter sequences.

Example 1 Consider M , depicted below, where q0 is the
initial state.

q0 q2 q5

q3 q1 q4 q6

i1/o1

i2/o1

i1/o1 i2/o2

i1/o3

i2/o4

We have that the value of Squeeziness for k = 1, as-
suming a uniform distribution of probabilities, is computed
by the following expression

2 ·

(

−
1

2
· log2

(

1

2

))

− (−1 · log2(1)) = log2(2) = 1

because we have |domM,1| = 2 and each input of domM,k

has probability 1
2 while |imageM,1| = 1 and this output has

probability 1. Meanwhile, for k = 2 we have

4 ·

(

−
1

4
· log2

(

1

4

))

− 4 ·

(

−
1

4
· log2

(

1

4

))

= 0

because we have |domM,2| = 4 and |imageM,2| = 4 and

each input or output has probability 1
4 due to the uniform

distribution assumption.
Note that obtaining a value of Squeeziness equal to zero

for a certain value of k does not imply that Squeeziness will
be equal to zero for greater values of k. For example, if we
add to q3, q4, q5 and q6 two outgoing transitions labelled, re-
spectively, by i1/o1 and i2/o1 and reaching a new state q7,
then we obtain a value of Squeeziness greater than 0 for
k = 3.

An important remark concerning random variables as-
sociated with inputs and outputs is that given an FSM M ,
k > 0 and a random variable ξdomM,k

we have that the
probability distribution of the random variable ξimageM,k

is
completely determined. This is because for each element
β ∈ imageM,k we have that

σξimageM,k
(β) =

∑

α∈f−1
M

(β)

σξdomM,k
(α)

The following result is immediate from the definition of
entropy and the previous explanation concerning how the
random variable associated with outputs is determined by
the one corresponding to inputs.

Lemma 1 Let M = (Q, qin, I, O, T) be an FSM and k > 0.
If fM,k is bijective then Sqk(M) = 0.

Next, we present an alternative formulation of Squeezi-
ness. The proof of the following result, given in the ap-
pendix, follows from the partition property of entropy [14]
and the definition of σξimageM,k

in terms of σξdomM,k
. First,

we give an auxiliary result concerning conditional distri-
butions of random variables (the proof is also in the ap-
pendix). In the following, ξ1|ξ2 denotes the conditional
random variable ξ1 given ξ2.

Lemma 2 Let M = (Q, qin, I, O, T) be an FSM and k > 0.
Let us consider two random variables ξdomM,k

and ξimageM,k

ranging, respectively, over the domain and image of fM,k.
We have that H(ξimageM,k

|ξdomM,k
) = 0.

Proposition 1 Let M = (Q, qin, I, O, T) be an FSM and
k > 0. Let us consider two random variables ξdomM,k

and
ξimageM,k

ranging, respectively, over the domain and image
of fM,k. We have that

H(ξdomM,k
) = H(ξimageM,k

)− P(M, ξimageM,k
)

where the term P(M, ξimageM,k
) is equal to

∑

β∈imageM,k

σξimageM,k
(β)·





∑

α∈f−1
M (β)

σξ
f
−1
M

(β)
(α) · log2(σξ

f
−1
M

(β)
(α))





6

A trivial corollary of the previous result provides an al-
ternative definition of Squeeziness where the value is com-
puted in terms of the inverse images partition of the input
space taking into account, as previously explained, that
we have

σξimageM,k
(β) =

∑

α∈f−1
M

(β)

σξdomM,k
(α)

Therefore, we only use the probability distribution on in-
puts given by ξdomM,k

.

Corollary 1 Let M = (Q, qin, I, O, T) be an FSM and k >
0. Let us consider a random variable ξdomM,k

ranging over
the domain of fM,k. We have that

Sqk(M) = −
∑

β∈imageM,k





∑

α∈f−1
M

(β)

σξdomM,k
(α)



 · RM (β)

where the term RM (β) is equal to





∑

α∈f−1
M

(β)

σξdomM,k
(α)

σξdomM,k
(f−1

M (β))
· log2

(

σξdomM,k
(α)

σξdomM,k
(f−1

M (β))

)





The above notion of Squeeziness is parameterised by
the distribution over inputs to the function (and so input
sequences). If we know the actual distribution then we can
use this. If we do not know the distribution then there is
a need to choose one and we now discuss two approaches
to this.

3.1. Maximum entropy principle

In general, it is not possible to know the probabil-
ity distribution that ranges over the inputs. Therefore,
if we want to have an estimation of the different values
of Squeeziness for a given FSM, then we need to make an
assumption about this distribution. There are different
possibilities. For example, we can assume maximum en-
tropy, that is, we choose a probability distribution that
maximises the entropy. If there are no further restrictions,
then maximum entropy is obtained with a uniform distri-
bution [14]. In this case, the weight of a single element of
σξdomM,k

is 1
|domM,k|

. Thus, the weight of the inverse image

of an output β ∈ imageM,k is equal to
|f−1

M (β)|

|domM,k|
. Finally,

Squeeziness under the assumption of having a uniform dis-

tribution over inputs is equal to

Sqk(M)= −
∑

β∈imageM,k





∑

α∈f−1
M (β)

1

|domM,k|





·





∑

α∈f−1
M

(β)

1
|domM,k|

|f−1
M

(β)|

|domM,k|

· log2





1
|domM,k|

|f−1
M

(β)|

|domM,k|









= −
∑

β∈imageM,k

|f−1
M (β)|

|domM,k|

·

(

|f−1
M (β)|

|f−1
M (β)|

· log2

(

1

|f−1
M (β)|

))

= −
∑

β∈imageM,k

|f−1
M (β)|

|domM,k|
· log2

(

1

|f−1
M (β)|

)

=
1

|domM,k|
·
∑

β∈imageM,k

|f−1
M (β)| · log2(|f

−1
M (β)|)

3.2. Maximum loss of information

Another strategy considers the worst case scenario, that
is, we may suppose that the chosen probability distribu-
tion induces the maximum loss of information. In other
words, we look for a probability distribution that max-
imises Squeeziness. This distribution is uniformly dis-
tributed in the largest inverse image of an element of the
outputs and zero elsewhere [13]. Formally, consider β′ ∈
imageM,k such that for all β ∈ imageM,k we have that

|f−1
M (β′)| ≥ |f−1

M (β)|. Then,

σξdomM,k
(α) =







1
|f−1

M (β′)|
if α ∈ f−1

M (β′)

0 otherwise

Using this probability distribution, Squeeziness is de-
fined as follows:

Sqk(M)= −





∑

α∈f−1
M

(β′)

1

|f−1
M (β′)|





·





∑

α∈f−1
M (β′)

1

|f−1
M (β′)|

· log2

(

1

|f−1
M (β′)|

)





= −
|f−1

M
(β′)|

|f−1
M

(β′)|
·
(

|f−1
M

(β′)|

|f−1
M

(β′)|
· log2

(

1
|f−1

M
(β′)|

))

= − log2

(

1
|f−1

M
(β′)|

)

= log2(|f
−1
M (β′)|)

Let us remark that this probability distribution max-
imises Squeeziness because for any other possible distribu-
tion ξdomM,k

we have Sqk(M) ≤ log2(|f
−1
M (β′)|). This result

is an immediate consequence of the following result [13].

7

Lemma 3 Let us consider 2 ·n non-negative real numbers
a1, . . . , an, p1, . . . , pn ∈ IR+. If for all 1 ≤ i ≤ n we have
that a1 ≥ ai and

∑

i pi ≤ 1, then
∑

i(pi · ai) ≤ a1.

An important consequence of this result is that it al-
lows us to define a normalisation of the value of Squeezi-
ness, if needed, so that we can have a concept of normalised
Squeeziness. Later we will see that in the experiments we
explored this normalised Squeeziness, which was obtained
by dividing Squeeziness by the size of the maximum in-
verse domain of any output.

3.3. Domain to Range Ratio vs. Squeeziness

It is difficult to compare Squeeziness with other notions
to compute fault masking because the literature is very
scarce. One of the few notions in this line is the Domain
to Range Ratio (DRR) [46]. In this section we explore how
Squeeziness and DRR relate. In the next section we report
on results of experiments that compared DRR with our
notion of Squeeziness. First, we give the original definition.

Definition 6 Let f : I −→ O be a total and surjective
function. We define the Domain to Range Ratio of f ,

denoted by DRR(f), as |I|
|O| .

Next, we adapt this notion to our framework. Note
that our functions are total and surjective because we re-
strict ourselves to their domains and ranges.

Definition 7 Let M = (Q, qin, I, O, T) be an FSM and k >
0. Let us consider fM,k : domM,k −→ imageM,k. We
define the Domain to Range Ratio for M and k, denoted

by DRR(fM,k), as
|domM,k|

|imageM,k|
.

The next result, whose proof is in the appendix, shows
that this measure is inconsistent with Squeeziness.

Lemma 4 There exist FSMs M1 and M2 and k > 0 such
that DRR(fM1,k) = DRR(fM2,k) but Sqk(M1) 6= Sqk(M2).

There exist FSMs M1 and M2 and k > 0 such that
DRR(fM1,k) < DRR(fM2,k) but Sqk(M1) > Sqk(M2).

4. Empirical Evaluation

In this section we outline the different experiments car-
ried out to evaluate the proposed measure. First, we de-
scribe the experiments that used simulations, that is, in-
stead of FSMs we consider sequences of input/output ac-
tions. Next we explain the experiments that used FSMs.
We conclude the section with an evaluation of the threats
to validity, and how they were addressed, and a discussion
about the obtained results and some of their implications.

4.1. Evaluation via simulations

We outline an evaluation in which we simulated an FSM

by randomly generating the sizes of the inverse images of
the output sequences. We designed the simulation in this
way since it represents the notion of FEP that we consider
in this paper: one in which one component C masks a
fault in another component CP by mapping two potential
output sequences α and α′ for CP (and so input sequences
for C) to the same output sequence β. This scenario corre-
sponds to FEP if, for example, α is an expected (correct)
output sequence for CP and α′ is a possible faulty output
sequence (for CP). Observe that this type of FEP occurs
if and only if α and α′ are both in the inverse image of
the same output sequence β. As a result, in order to rea-
son about the probability of FEP it is sufficient to retain
only the information about the sizes of the inverse images
of output sequences and so we simulate these values (the
sizes of the inverse images of output sequences).

In this section we first introduce a collision measure,
which is the probability of FEP occurring. Although this
collision measure could potentially be used to reason about
FEP, as usual for this type of measure, it is computation-
ally expensive to compute it. Therefore, it is important to
study alternative measures, based on Information Theory,
that are either less computationally expensive or that can
be efficiently estimated. Having defined the collision mea-
sure, we then use experiments with randomly generated
scenarios in order to compare this with our information
theoretic measure and the Domain to Range Ratio.

Research Question 1 Is there a correlation between the
measures defined in this paper and the probability of a com-
ponent introducing FEP through masking incorrect output
produced by earlier components?

4.1.1. Collisions and FEP

In our context, fault masking (FEP) happens when the
expected and faulty input sequences, received from an-
other component, produce the same sequence β of output
actions. If given an FSM M and k > 0 we have that there
exist β ∈ imageM,k such that α, α′ ∈ f−1

M,k(β), with α 6= α′,
then there is a collision and this might hide a fault. Next
we provide a notion to compute the probability of having
a collision.

Definition 8 Let M be an FSM and k > 0. Let imageM,k =

{β1, ..., βn} and for all 1 ≤ i ≤ n let Ii = f−1
M,k(βi) and

mi = |f−1
M,k(βi)|. We have that d =

∑n
i=1 mi is the size of

the input space.
Given a uniform distribution over the inputs, the prob-

ability of α and α′ both being in the set Ii is equal to

pi = mi·(mi−1)
d·(d−1) . We have that the probability of having

a collision in M for sequences of length k, denoted by
PCollk(M), is given by

PCollk(M) =

n
∑

i=1

mi · (mi − 1)

d · (d− 1)

8

Observe that there is potential to use this measure,
PCollk(M), instead of Squeeziness. The problem with us-
ing PCollk(M) is that it is computationally hard to com-
pute. While this also applies to Squeeziness, it has the
advantage of being an information theoretic measure. As
a result, there is potential to draw on Information Theory
research that has devised techniques that either estimate
or bound measures [8, 11]. Note that estimates and bounds
will suffice as long as they are useful - they do not need
to be precise. This is in contrast to some applications of
Information Theory, such as security, in which we require
guarantees. We therefore expect that much smaller sam-
ples should suffice.

Previous work [13] states that PColl can be seen as a
probability of collisions when the probability distribution
over the inputs is uniform. However, it is worth to mention
that the relationship between PCollk(M) and Sqk(M) is
not, in general, monotonic. The proof of the following
result is given in the appendix.

Lemma 5 There exist FSMs M1 and M2 and k > 0 such
that Sqk(M1) < Sqk(M2) but PCollk(M1) > PCollk(M2).

4.1.2. Experimental Results

We now report on simulations that compared PColl,
Sq and DRR. The three measures are defined (assuming uni-
form distributions over the inputs) in terms of the sizes of
the subdomains (f−1

M,k(β)). Our methodology to perform
simulations followed the approach used in the original work
on Squeeziness [13] but used a much wider range of sce-
narios.

First, we fixed the size of the input space (denoted by
d) and a maximum subdomain size (denoted by m). Next,
we generated random integers between 1 and m until the
values summed to d; if the sum of the values exceeded d
then the last value was suitably reduced. Once we had
these partitions, we computed the three measures. This
way, d represents the number of different inputs of a fixed
length k that the simulated FSM has and each partition
(each random number) represents one output, whose value
is the number of inputs that are in the inverse image of
this output (i.e. the number of inputs that generate this
output). This process was repeated 200 times for each
pair (d,m) and we computed the Pearson correlation co-
efficient between these 200 values of PColl and the other
two measures. We used 120 pairs with d ranging between
104 and 2 · 109 and m ranging between 102 and 104. We
also computed the Spearman Rank correlation coefficient,
but the results were almost identical, so we will not dis-
cuss these correlation coefficients. For each pair (d,m) we
performed the entire process twice.

The main result is that there is a strong correlation
between PColl and Sq, with all of the values being greater
than 0.96.

We obtained a not so strong correlation between PColl

and DRR, with all correlations being between 0.86 and 0.67.

Input set Maximum Correlation of Correlation of

size size Sq DRR

10, 000 100 0.968366 0.763623
10, 000 100 0.973918 0.783759
10, 000 200 0.973016 0.823959
10, 000 200 0.967349 0.77492
10, 000 10, 000 0.967281 0.71496
10, 000 10, 000 0.966184 0.670497

100, 000 500 0.980028 0.836659
100, 000 500 0.972878 0.769055
500, 000 5, 000 0.95885 0.743651
500, 000 5, 000 0.969437 0.765643

2, 000, 000 5, 000 0.978818 0.810967
2, 000, 000 5, 000 0.964455 0.698505

200, 000, 000 2, 000 0.974498 0.799512
200, 000, 000 2, 000 0.980097 0.843219

1, 000, 000, 000 200 0.978771 0.859822
1, 000, 000, 000 200 0.968844 0.759952
2, 000, 000, 000 5, 000 0.970575 0.807333
2, 000, 000, 000 5, 000 0.965495 0.781112
2, 000, 000, 000 10, 000 0.969172 0.79843
2, 000, 000, 000 10, 000 0.972477 0.783512

Table 1: Representative results from the simulation

Interestingly, the correlation between PColl and DRR, ap-
pears not to change as we increase the size of the input do-
main. This is in contrast to the previous white-box work,
which found that increases in input-domain size led to a
reduction in the effectiveness of all measures used [13].
This is promising since it suggests that effectiveness may
be more robust in the context considered in this paper
and so the measures may be effective in a wider range of
scenarios.

A number of the most representative results can be
found in Table 1 while the full set of results can be found in
the appendix of the paper. Specifically, we have given the
cases that obtain the highest Sq correlation, the highest
DRR correlation, the lowest Sq correlation and the lowest
DRR correlation. Also, we give the cases corresponding to
the smallest scenario (that is, input set size of 10, 000 and
maximum subdomain size of 100) and the largest scenario
(that is, input set size of 2, 000, 000, 000 and maximum
subdomain size of 10, 000). Finally, we have given some
cases in which the Sq and/or DRR values are around the
mean of the values of each measure (Sq and DRR). It is
important to note that when we show a case, we display
the result of both runs, although the result of interest need
not appear on both runs.

As a side note, we performed an additional experiment
but the results were worse than expected. Specifically,
we computed the results also for the normalised version
of Squeeziness that we mentioned in Section 3.2, which is
obtained by dividing Squeeziness by the size of the maxi-
mum inverse domain of any output. However, some of the
correlations obtained were relatively small (see Table 2).
Interestingly, we found very poor correlations for some of
the small input sets, while the corresponding correlations
for Squeeziness were good. Therefore, we decided to no
longer consider this form of normalised Squeeziness during
the rest of our experiments.

9

Input set Maximum Correlation of

lenght size NormalizedSqueeziness

10, 000 100 0.958346
10, 000 100 0.961652
10, 000 200 0.950883
10, 000 200 0.926334
10, 000 5, 000 0.469301
10, 000 5, 000 0.471505
10, 000 10, 000 0.427412
10, 000 10, 000 0.470961
20, 000 10, 000 0.415143
20, 000 10, 000 0.515837

100, 000 500 0.972534
100, 000 500 0.96534
500, 000 5, 000 0.926782
500, 000 5, 000 0.949692

2, 000, 000 5, 000 0.971917
2, 000, 000 5, 000 0.958095

200, 000, 000 2, 000 0.974498
200, 000, 000 2, 000 0.980097

1, 000, 000, 000 200 0.978771
1, 000, 000, 000 200 0.968844
2, 000, 000, 000 5, 000 0.970575
2, 000, 000, 000 5, 000 0.965495
2, 000, 000, 000 10, 000 0.969172
2, 000, 000, 000 10, 000 0.972477

Table 2: Representative results from the simulation with normalized
Squeeziness

4.2. Empirical evaluation using FSMs

In the previous section we reported on the results of
simulations that showed that Squeeziness is related to the
probability of FEP. The simulations represented general
functions, with finite input domains, by giving the sizes
of the inverse images of outputs. However, it is unclear
whether these simulations correspond to functions that can
be described using FSMs and so in this section we report
on the results of experiments that used FSM models. The
experiments were driven by one research question that as-
sessed whether the measure can be used as intended when
we have FSMs.

Research Question 2 When using FSMs, is there a cor-
relation between the measures defined in this paper and the
probability of a component introducing FEP through mask-
ing incorrect output produced by earlier components?

Next we report on the results of an experiment that
assessed this research question. First, we briefly explain
how we generated the (FSMs) used in our experiments.

4.2.1. FSM Generator

In order to perform our experiments we need to gener-
ate FSMs. We developed an FSM generator that randomly
generates FSMs given some parameters.4 The first issue we
solved was to fix the internal representation of FSMs. Since

4All the tools developed to perform the experiments of this paper
are freely available at https://github.com/Colosu/FSTGenerator .

our work is not the first one dealing with FSMs we decided
to review the literature and found the OpenFST library [1].
This library is intended to work with Finite State Trans-
ducers (as its name indicates). These are a kind of FSMs
with an input/output pair in each transition and a weight.
Therefore, we simply ignored the weight. This library also
provides shell commands that we can use, in particular,
to generate the associated binary files and to generate the
topological representation of each FSM as an image.

Once we had a proper representation for our FSMs, we
developed the tool for generating those FSMs. The main
reason for developing this tool was to generate a wide range
of different FSMs that have some specific properties. In
order to have a general tool that can be used in a range of
experiments, we included some basic parameters:

• #Rep: the number of FSMs we want to generate.

• Max States : the maximum number of states an FSM

can have.

• Min States : the minimum number of states an FSM

must have.

• Max Transitions : the maximum number of transi-
tions each state of an FSM can have.

• Min Transitions : the minimum number of transi-
tions each state of an FSM must have.

• #Inputs : the number of inputs.

• #Outputs : the number of outputs.

After setting these basic parameters, the program can
be executed. The execution flow for generating an FSM us-
ing #Rep is given in Algorithm 1. Note that, by construc-
tion, the tool returns connected (all states are reachable
from the initial state) and deterministic FSMs. Also note
that the algorithm allows the construction of FSMs that
have loops.

In order to create input-enabled FSMs with our tool, as
used in our experiment, we simply set Min Transitions =
Max Transitions = #Inputs.

4.2.2. Experimental results

This section describes the results of experiments that
addressed the research question. Similar to Section 4.1,
we compared our measure with the probability of collision,
but this time for the specific FSMs being considered. Recall
that the probability of collision is given by the following
expression:

PCollk(M) =

n
∑

j=1

mj · (mj − 1)

d · (d− 1)

where mj is the cardinality of the inverse image of the
j-th output (i.e. the number of inputs that lead to this
output) and d is the cardinality of the inputs (i.e. the total

10

https://github.com/Colosu/FSTGenerator

Result: #Rep FSMs.
machine = 0;
while machine < #Rep do

Create a folder to save the FSM files;
Set a random number S of states between
Min States and Max States for the FSM;
Choose the state 0 as initial state;
for each state 0 ≤ i < S − 1 of the machine do

Set a random number T of transitions
between Min Transitions and
Max Transitions for the state;
for each transition 0 ≤ j < T of the state
do

if j == 0 then
Set the state i+ 1 as the end of the
transition;

else
Set a random state as the end of the
transition;

end

Set a random input label for the
transition not previously used for
another transition of the state (so FSMs
are deterministic);
Set a random output label for the
transition;
Save this transition to the FSM file;

end

end

Create the binary file that the OpenFST
library uses to interpret FSMs using the FSM

file we created;
Create a pdf image with the FSM topology;
machine ++;

end

Algorithm 1: FSM generation algorithm

number of inputs). Squeeziness was designed to compare
models with the same input domains. In order to facilitate
this task, we used input-enabled FSMs but the results are
essentially the same if we use non input-enabled FSMs (as
long as we consider the same number of input sequences in
all the FSMs). We generated 500 machines with 25 states
and 5 outgoing transitions from each state. We considered
sets of 5 inputs and 5 outputs.

Having generated the FSMs, we computed Squeeziness
and PColl for each FSM. The next step was to randomly
partition the set of FSMs into groups of 10 and compute the
(Pearson and Spearman) correlations (between Squeezi-
ness and PColl) for each group. We used multiple groups
in order to obtain insights into the consistency of the re-
sults. Therefore, we obtained 50 values for each correlation
coefficient. Note that the number of input sequences that
we have to consider grows exponentially with the input
sequence length. As a result of this exponential growth,
and memory limits, we computed the measures for input

Run Pearson Pearson Spearman Spearman

Number Sq DRR Sq DRR

1 0.878449 0.789925 0.915152 0.835599
2 0.769163 0.577342 0.709091 0.527583
3 0.926841 0.836864 0.939394 0.69347
4 0.919335 0.843178 0.890909 0.811444
5 0.888474 0.85478 0.733333 0.71462
6 0.779444 0.56354 0.842424 0.67769
7 0.899583 0.87125 0.927273 0.885083
8 0.895344 0.792316 0.854545 0.877186
9 0.683355 0.46901 0.842424 0.610832
10 0.906801 0.909021 0.830303 0.887425
11 0.56845 0.483205 0.721212 0.592422
12 0.838746 0.834886 0.672727 0.544839
13 0.630317 0.531773 0.793939 0.551174
14 0.410659 0.504509 0.272727 0.355335
15 0.640715 0.56302 0.151515 8.36862e− 18
16 0.73553 0.601444 0.757576 0.549532
17 0.272227 0.160886 0.333333 0.113904
18 0.679269 0.577716 0.50303 0.449199
19 0.505532 0.276551 0.684848 0.334363
20 0.866044 0.856532 0.854545 0.877186
21 0.899159 0.832556 0.890909 0.830399
22 0.273041 0.0300172 0.224242 0.012975
23 0.635755 0.635614 0.830303 0.740844
24 0.907813 0.853587 0.854545 0.889898
25 0.804562 0.694005 0.660606 0.563845
26 0.438958 0.299874 0.6 0.375029
27 0.75262 0.577602 0.563636 0.394771
28 0.900993 0.911372 0.939394 0.885657
29 0.909105 0.863749 0.842424 0.805143
30 0.88053 0.818995 0.527273 0.644304
31 0.864043 0.782816 0.709091 0.664867
32 0.782251 0.763869 0.69697 0.846658
33 0.891232 0.815343 0.709091 0.660696
34 0.707623 0.522515 0.709091 0.486655
35 0.608514 0.549941 0.648485 0.589186
36 0.89894 0.824825 0.963636 0.806406
37 0.680069 0.520374 0.648485 0.555997
38 0.718919 0.528805 0.866667 0.761549
39 0.803944 0.857559 0.575758 0.71462
40 0.749198 0.46362 0.818182 0.635946
41 0.841066 0.416991 0.830303 0.341882
42 0.871523 0.699391 0.709091 0.661358
43 0.841827 0.606074 0.939394 0.905111
44 0.783823 0.706252 0.684848 0.552679
45 0.156226 −0.0418695 0.0545455 −0.12975
46 0.911163 0.819401 0.806061 0.793018
47 0.883863 0.780593 0.878788 0.774176
48 0.711095 0.516978 0.866667 0.603382
49 0.76034 0.434219 0.806061 0.568535
50 0.710906 0.75102 0.672727 0.742155

Table 3: Results from the experiment with 500 FSMs with 25 states.

sequences of length 10.
Similar to the simulations, we obtained positive ex-

perimental results. The results of this experiment can be
found in Table 3. In most cases, the results show a high
correlation between Squeeziness and PColl, with a mean
of 0.745468 for Pearson and 0.715152 for Spearman. This
fact supports the results from the simulations. It is inter-
esting to see that there were a few relatively small values
but it seems likely that these were simply the result of
the randomness in the experiments (we also observe some
higher correlations, up to 0.96). Also, we can see that in
most of the cases the correlation values of Squeeziness are
higher than the ones of DRR, as we saw in the simula-
tions. Specifically, the mean for DRR is equal to 0.634677
for Pearson and equal to 0.611338 for Spearman. These
values are noticeably lower than the ones corresponding to
the correlations between Squeeziness and PColl.

In order to check the flexibility of our results, we decide

11

Run Pearson Pearson Spearman Spearman

Number Sq DRR Sq DRR

1 0.856654 0.759691 0.839822 0.718795
2 0.799091 0.691343 0.803782 0.710352
3 0.83536 0.720232 0.901224 0.809638
4 0.812958 0.809717 0.733037 0.667405
5 0.637571 0.565636 0.474972 0.439789
6 0.628766 0.550766 0.573304 0.468414
7 0.78118 0.662821 0.829143 0.722609
8 0.648335 0.563561 0.689433 0.607159
9 0.651849 0.52149 0.599555 0.452153
10 0.890877 0.84885 0.866518 0.83724
11 0.822498 0.745911 0.78109 0.776184
12 0.756156 0.648846 0.788654 0.674843
13 0.705051 0.628704 0.751724 0.733294
14 0.812525 0.539454 0.85673 0.580215
15 0.750044 0.522172 0.699221 0.548734
16 0.794857 0.677268 0.866963 0.742223
17 0.761287 0.696498 0.739711 0.695613
18 0.711764 0.700859 0.676085 0.626331
19 0.874628 0.85356 0.777976 0.775392
20 0.916858 0.897105 0.874527 0.792335
21 0.871061 0.902461 0.811791 0.814555
22 0.896291 0.867035 0.822469 0.733963
23 0.815214 0.79039 0.599555 0.478928
24 0.731722 0.642186 0.721913 0.593555
25 0.764644 0.677635 0.826029 0.77864
26 0.624603 0.626964 0.618687 0.585576
27 0.731404 0.558051 0.879422 0.838548
28 0.727717 0.659671 0.725918 0.601497
29 0.828107 0.716817 0.823359 0.673092
30 0.544259 0.319727 0.630256 0.430179

Table 4: Results from the experiment with 900 FSMs with 25 states.

to repeat the experiment with a different configuration.
We generated 900 machines with the same characteristics:
25 states, 5 outgoing transitions from each state and sets
of inputs and outputs with 5 elements. We grouped the
machines in 30 groups of 30 machines per group and re-
peated the experiment. Previously we used groups of 10
FSMs and using larger groups of FSMs allows us to check
our intuition that there should be greater consistency in
the results. The results are shown in Table 4. These re-
sults are slightly better than the previous ones, with a
higher similarity between Pearson and Spearman correla-
tions. In this case, the means of the correlations between
Squeeziness and PColl are equal to 0.766111 for Pearson
and equal to 0.752762 for Spearman; the ones correspond-
ing to DRR are equal to 0.678847 for Pearson and equal to
0.663575 for Spearman. Therefore, the conclusions of the
experiment are similar to the ones obtained in the previous
experiment.

4.3. Threats to Validity

In this section we discuss the possible threats to the
validity of the results of our experiments.

First, we explore threats to internal validity, which con-
sider uncontrolled factors that might be responsible for the
obtained results. In our work, the main threat to internal
validity is associated with the possible faults in the devel-
oped tools, which could lead to misleading results. In order
to reduce the impact of this threat we tested our code with
carefully constructed examples for which we could manu-
ally check the results. In addition, we repeated each ex-
periment that used FSMs in order to check that the results

were consistent and there was no randomisation involved.
Second, we consider threats to external validity, which

concern conditions that allow us to generalise our findings
to other situations. In our work, the main external threat
is the different possible representations of a black-box com-
ponent as an FSM. Such a threat cannot be entirely ad-
dressed since the population of such FSMs is unknown and
it is not possible to sample from this (unknown) popula-
tion. In order to reduce the impact of this threat we used
both a large number of simulations and of randomly gen-
erated FSMs. Note also that the simulations provided sig-
nificant diversity in terms of experimental subjects, with
the role of the FSM-based experiments primarily being to
check that the results extend to the class of functions that
can be represented by FSMs.

Last, we consider threats to construct validity. This is
related to the reality of our experiments, that is, whether
our experiments reflect real-world situations. In our work,
the main construct threat is whether the FSMs used in the
experiments correspond to possible system components.
In order to reduce the impact of this threat, we restricted
our range of FSM samples to connected deterministic ma-
chines. In future work we intend to test with real-world
cases and/or non-deterministic FSMs.

4.4. Discussion

The two sets of results presented in this section were
encouraging. The simulations showed that there is a strong
positive correlation between our notion of Squeeziness and
a measure of the probability of collisions if we simulate
the function computed by a component. As expected, this
correlation was higher than the one that we obtained with
DRR, with this being consistently seen across the 24,000
simulation experiments.

The simulations addressed the suitability of our mea-
sures for a general framework, in which we have a function
that represents the (input/output) behaviour of the com-
ponent of interest. Since we developed the details of the
framework for FSM models we also had experiments that
explored whether similar results hold for functions that can
be represented by FSMs. The results of these experiments
were similar to those previously observed, supporting the
results that used simulations.

Interestingly, the correlations returned were slightly
lower when using FSMs. There are at least three possi-
ble explanations for the differences. First, the experiments
that used FSMs considered a smaller set of scenarios; it may
be that we would observe results similar to those found in
the simulations if we ran many more experiments with a
wider range of FSMs. Second, the simulations may have
used functions that are rather different from those found
when using FSMs. If this is the case then the results might
be better if we use more general types of models as spec-
ifications of components (rather than FSMs). Third, the
differences may result from the simulations using larger
sample sizes (sample size 200) than the experiments with
FSMs (sample size 10). Note that the smaller sample size

12

Run Number Pearson Sq Spearman Sq

1 0.279452 0.333333
2 0.55035 0.309091
3 0.0716533 −0.151515
4 0.77656 0.890909
5 0.622 0.890909
6 0.66114 0.660606
7 0.655833 0.757576
8 0.317683 0.321212
9 0.87951 0.818182
10 0.798106 0.878788
11 0.834614 0.781818
12 0.732538 0.733333
13 0.27344 0.406061
14 0.583361 0.478788
15 0.580003 0.769697
16 0.892117 0.939394
17 0.166601 −0.0909091
18 0.455388 0.50303
19 0.843653 0.660606
20 0.551302 0.672727
21 0.901526 0.927273
22 0.89004 0.842424
23 0.442546 0.393939
24 0.683401 0.50303
25 0.931557 0.757576
26 0.52448 0.321212
27 0.600394 0.539394
28 0.323964 0.284848
29 0.698155 0.684848
30 0.61123 0.672727
31 0.559464 0.745455
32 0.765045 0.454545
33 0.570081 0.430303
34 0.859868 0.878788
35 0.917171 0.878788
36 0.837555 0.721212
37 0.539043 0.490909
38 0.704665 0.660606
39 0.740488 0.878788
40 0.552796 0.527273
41 0.717961 0.757576
42 0.634331 0.6
43 0.563094 0.672727
44 0.749326 0.587879
45 0.877225 0.866667
46 0.584465 0.587879
47 0.716488 0.10303
48 0.392777 0.563636
49 0.866184 0.890909
50 0.597951 0.672727

Table 5: Results from the experiment with FSMs between 10 and 25
states.

used in the FSM experiments (for practical reasons) could
also explain the greater variability observed in the results.

In order to explore the two first possibilities, we re-
peated the FSM experiment with three new sets of FSMs.
This allowed us to consider more scenarios (exactly, 1, 500
additional ones) and to test if increasing or reducing the
generality of the functions represented by the FSMs has any
effect on the correlations.

The first set of samples included FSMs that had between
10 and 25 states, so we place even stronger limits on the
generality of the functions represented. As expected, we
got slightly worse correlations, with only 77% of samples
having correlations greater than 0.5 instead of the 93%
that we got with the initial experiment. That leads to a
mean of 0.6376 for the Pearson correlation and of 0.6092
for the Spearman one. The full results can be found in
Table 5.

The second set of samples considered FSMs that had be-

Run Number Pearson Sq Spearman Sq

1 0.962624 0.951515
2 0.770315 0.624242
3 0.861972 0.769697
4 0.806692 0.660606
5 0.782762 0.745455
6 0.582544 0.842424
7 0.777772 0.781818
8 0.848743 0.793939
9 0.282844 0.309091
10 0.749289 0.660606
11 0.815693 0.587879
12 0.465784 0.527273
13 0.854386 0.866667
14 0.514125 0.478788
15 0.94217 0.90303
16 0.956262 0.90303
17 0.556821 0.539394
18 0.658927 0.478788
19 0.423597 0.478788
20 0.927198 0.866667
21 0.225621 0.515152
22 0.800149 0.769697
23 0.732404 0.769697
24 0.964573 0.90303
25 0.693287 0.563636
26 0.904747 0.612121
27 0.797333 0.684848
28 0.950163 0.842424
29 0.874851 0.793939
30 0.547064 0.709091
31 0.81926 0.866667
32 0.783165 0.878788
33 0.872504 0.866667
34 0.576504 0.50303
35 0.827418 0.915152
36 0.894726 0.781818
37 0.814328 0.406061
38 0.76672 0.890909
39 0.829572 0.648485
40 0.92247 0.951515
41 0.913127 0.806061
42 0.804393 0.781818
43 0.786996 0.866667
44 0.643162 0.612121
45 0.72758 0.721212
46 0.781083 0.757576
47 0.823419 0.915152
48 0.807975 0.818182
49 0.728113 0.793939
50 0.731225 0.769697

Table 6: Results from the experiment with FSMs between 25 and 50
states.

tween 25 and 50 states, slightly increasing the generality
of the functions represented. The results were reasonably
similar to the initial FSM results, in that 91% of samples
had correlations greater than 0.5. However, the results
were arguably a little better since the lowest value was
greater than 0.2 (instead of being negative as in the initial
experiment). That leads to a mean of 0.7577 for the Pear-
son correlation and of 0.7297 for the Spearman one. The
full results can be found in Table 6.

In order to increase the confidence on the validity of our
results when the number of states increase, we performed
an additional experiment where all the FSMs have the same
number of states (75). The values show that 98% of the
results have correlations greater than 0.5, and the lowest
correlation is greater than 0.4. That leads to a mean of
0.844027 for the Pearson correlation and of 0.810182 for
the Spearman one. The full results are provided in Table 7.

The results suggest that correlations will be better if

13

Run Number Pearson Sq Spearman Sq

1 0.872409 0.915152
2 0.744849 0.527273
3 0.910456 0.951515
4 0.943024 0.854545
5 0.828649 0.927273
6 0.837167 0.757576
7 0.797805 0.866667
8 0.89309 0.745455
9 0.46309 0.478788
10 0.94864 0.951515
11 0.951563 0.745455
12 0.973901 0.878788
13 0.973626 0.951515
14 0.991222 0.915152
15 0.862179 0.721212
16 0.92241 0.915152
17 0.796633 0.587879
18 0.991884 0.721212
19 0.649892 0.684848
20 0.897328 0.90303
21 0.783819 0.721212
22 0.653267 0.648485
23 0.865528 0.878788
24 0.819458 0.769697
25 0.829544 0.745455
26 0.800867 0.612121
27 0.764609 0.890909
28 0.896245 0.769697
29 0.738119 0.672727
30 0.893021 0.90303
31 0.91068 0.818182
32 0.937707 0.963636
33 0.834563 0.818182
34 0.750709 0.793939
35 0.564428 0.490909
36 0.937426 0.975758
37 0.936632 0.90303
38 0.89141 0.975758
39 0.745184 0.818182
40 0.835685 0.854545
41 0.847526 0.830303
42 0.961247 0.951515
43 0.890352 0.951515
44 0.951611 0.927273
45 0.944342 0.951515
46 0.870518 0.890909
47 0.913673 0.927273
48 0.545525 0.551515
49 0.741032 0.587879
50 0.896819 0.915152

Table 7: Results from the experiment with FSMs with 75 states.

we increase the generality of the functions represented by
the FSMs, that is, as we consider bigger FSMs. This allows
us to hypothesise that the results corresponding to FSMs
will tend towards the results from the simulations. Also,
as we considered many more scenarios, we can observe
that even after taking into account the bad results of the
experiment with FSMs between 10 and 25 states, 88% of
the cases showed correlations greater than 0.5.

We also performed a small experiment to test what
happens if we increase the sample size, that is, to explore
the third possibility. We increased the sample size from 10
to 20 samples, using FSMs with 25 states from the initial
(FSM) experiments. As expected, we got better correla-
tions, with all the correlations being greater than 0.5. The
full results can be found in Table 8.

These results suggest that the correlations will improve
if we use larger sample sizes and, in particular, this will
reduce the variability of the results. So, again, we can

Run Number Pearson Sq Spearman Sq

1 0.827858 0.798496
2 0.895008 0.792481
3 0.58499 0.810526
4 0.707372 0.78797
5 0.837989 0.929323
6 0.885698 0.857143
7 0.76128 0.711278
8 0.84805 0.700752
9 0.767311 0.694737
10 0.880905 0.899248
11 0.722467 0.658647
12 0.834103 0.778947
13 0.880195 0.891729
14 0.874195 0.696241
15 0.57377 0.607519
16 0.736536 0.669173
17 0.733254 0.702256
18 0.846274 0.861654
19 0.765341 0.783459
20 0.784864 0.843609
21 0.678806 0.700752
22 0.914889 0.809023
23 0.813506 0.735338
24 0.742288 0.769925
25 0.668486 0.696241

Table 8: Results from the experiment with sample size of 20 FSMs of
25 states.

expect that the results will tend towards the results from
the simulations. Overall, our experiments with FSMs in-
dicate that the measures perform well with FSMs and not
just with simulated functions.

Finally, we did an experiment to show what happens if
we do not assume a uniform distribution over the inputs of
the FSM. In order to do so, we considered the same setup of
our main experiment with 900 FSMs, but this time we used
the Maximum Loss of Information approach explained in
section 3.2 for computing Squeeziness.

The results of this experiment showed lower correla-
tions and can be found in Table 9. The results are unsur-
prising since PColl assumes a uniform distribution over
the inputs of the FSM, that is, these two measures used
different distributions. However, they are still relatively
good, with a mean of 0.646355 for Pearson and of 0.629577
for Spearman. Note that the lower correlations suggest
that techniques that use Squeeziness may be most effec-
tive when we know the true distribution of values.

To conclude, the results suggest that Squeeziness can
be used to estimate the probability of the FEP introduced
by a component. As a result, there is potential to use it
to direct testing in order to avoid components that have a
high probability of FEP. It might also be used as a mea-
sure of testability, with the tester potentially choosing to
use more test cases in situations in which FEP is particu-
larly likely. It would be interesting to explore this further
through additional experiments.

5. Conclusions and future work

It is known that failed error propagation (FEP) can
have a significant effect on testing. Recent work has shown
that an information theoretic measure called Squeeziness

14

Run Number Pearson Sq Spearman Sq

1 0.710801 0.791365
2 0.749008 0.701602
3 0.624626 0.713539
4 0.670041 0.646195
5 0.642364 0.496048
6 0.452779 0.525309
7 0.463446 0.646934
8 0.525565 0.613348
9 0.703414 0.589675
10 0.878989 0.792566
11 0.830456 0.75203
12 0.651943 0.772191
13 0.776044 0.582555
14 0.714373 0.733645
15 0.865138 0.738564
16 0.648421 0.828883
17 0.684968 0.647903
18 0.695542 0.57537
19 0.684215 0.679355
20 0.531623 0.502392
21 0.485815 0.505174
22 0.707509 0.637446
23 0.613067 0.495327
24 0.534643 0.478087
25 0.703643 0.75153
26 0.35483 0.373817
27 0.78047 0.66548
28 0.617858 0.523026
29 0.517789 0.567646
30 0.571259 0.560303

Table 9: Results from the experiment with Maximum Loss of Infor-
mation approach.

strongly correlates with the likelihood of FEP [13]. How-
ever, this work only considered the white-box scenario in
which the SUT simply receives input and returns output;
there is no persistent state. In this paper we adapted the
Squeeziness measure to work with situations in which we
are interested in fault masking. Specifically, we adapted
Squeeziness to the scenario in which we are interested in
the FEP that a component C introduces when it receives
its input from another component CP . We are interested
in this since such FEP makes it more difficult to find faults
in CP when testing. The work also considered the black-
box scenario, in which we base the computations on mod-
els. This has the advantage that the approach is applicable
at an earlier stage (for example, as a notion of testability
that can help inform test planning) and also that the ap-
proach can be used in situations in which the source code
is not available (for example, when development has been
outsourced).

It was not possible to directly reuse the previous notion
of Squeeziness [13] since we considered a different scenario
and also a different source of FEP. In addition, we argued
that in our scenario it makes sense to base the analysis on
models of components rather that the source code: this
should aid scalability and also address the issue that we
might not have access to the source code of a component.
As a result, we addressed a different type of FEP and also
used a different source of information (an FSM specification
rather than the source code).

Having devised a new notion of Squeeziness, for black-
box component-based systems, we carried out experiments
in order to evaluate this measure. These experiments fo-

cused on the capability of the second component to hide
faulty inputs from the first component by giving the ex-
pected outputs. In the experiments, we compared our
measure with a measure of the probability of this hid-
ing/FEP happening (PColl). We used two types of exper-
iments: simulations and experiments with FSMs. In both
cases, we observed a strong correlation between the likeli-
hood of FEP and our measure (Squeeziness). Interestingly,
in the experiments with FSMs we observed a slight improve-
ment when we increased the number of states. This sup-
ports our original hypothesis: our new notion of Squeezi-
ness can be used as a measure that estimates the proba-
bility of FEP being introduced by a component.

The results in this paper have two potential uses. First,
the measure defined might be used as a measure of testa-
bility, allowing one to assess how easy it is to test a system
or part of a system. This might be used as part of the pro-
cess of deciding how much testing is required. In addition,
there is potential to use Squeeziness to direct testing. For
example, we might want to execute a part of the system
with a test case where the probability of FEP (introduced
by another component) is relatively low.

We have several lines for future work. First, we will
explore the previously mentioned potential uses, develop
tools, and evaluate these on case studies. We plan to ex-
plore approximations, most likely based on sampling, and
the trade-off between the cost of sampling (sample size)
and the effectiveness of the estimates. We also intend to
generalise the framework and measures to introduce data
into the models. Finally, we would like to adapt Squeezi-
ness to systems with other features. It is natural to con-
sider how Squeeziness works in systems where decisions
are probabilistically quantified and we will take as initial
step our previous work on formally testing this kind of
systems [28, 29]. Similarly, we would like to consider dis-
tributed systems and how Squeeziness predicts FEP in-
duced by different distributed components. Again, we will
take as initial step our work on the distributed test archi-
tecture [26, 27].

Acknowledgements

We would like to thank the anonymous reviewers for
the careful reading of the paper and the many constructive
comments, which have helped us to further strengthen the
paper.

This work has been supported by the Spanish MINECO-
FEDER (grant number DArDOS, TIN2015-65845-C3-1-
R); the Region of Madrid (grant number FORTE-CM,
S2018/TCS-4314); and the UK EPSRC (grant number In-
foTestSS, EP/P006116/2).

References

[1] C. Allauzen, M. Riley, J. Schalkwyk, W. Skut, and M. Mohri.
OpenFst: A general and efficient weighted finite-state trans-
ducer library. In 9th Int. Conf. on Implementation and Appli-

15

cation of Automata, CIAA’07, LNCS 4783, volume 4783, pages
11–23. Springer, 2007.

[2] N. Alshahwan and M. Harman. Coverage and fault detection
of the output-uniqueness test selection criteria. In 24th ACM
SIGSOFT Int. Symposium on Software Testing and Analysis,
ISSTA’14, pages 181–192. ACM Press, 2014.

[3] P. Ammann and J. Offutt. Introduction to Software Testing.
Cambridge University Press, 2nd edition, 2017.

[4] K. Androutsopoulos, D. Clark, H. Dan, R.M. Hierons, and
M. Harman. An analysis of the relationship between condi-
tional entropy and failed error propagation in software testing.
In 36th Int. Conf. on Software Engineering, ICSE’14, pages
573–583. ACM Press, 2014.

[5] R. Anido, A. R. Cavalli, L. A. Paula Lima Jr., and N. Yev-
tushenko. Test suite minimization for testing in context. Soft-
ware Testing, Verification and Reliability, 13(3):141–155, 2003.

[6] T. Apiwattanapong, R. A. Santelices, P. K. Chittimalli,
A. Orso, and M. J. Harrold. MATRIX: Maintenance-oriented
testing requirements identifier and examiner. In 1st Testing:
Academia and Industry Conference - Practice And Research
Techniques, TAIC PART’06, pages 137–146. IEEE Computer
Society, 2006.

[7] R. V. Binder, B. Legeard, and A. Kramer. Model-based testing:
where does it stand? Communications of the ACM, 58(2):52–
56, 2015.

[8] M. Boreale and M. Paolini. On formally bounding information
leakage by statistical estimation. In 17th Int. Conf. on Infor-
mation Security, ISC’14, LNCS 8783, pages 216–236. Springer,
2014.

[9] C. Braunstein, A. E. Haxthausen, W.-L. Huang, F. Hübner,
J. Peleska, U. Schulze, and L. V. Hong. Complete model-based
equivalence class testing for the ETCS ceiling speed monitor. In
16th Int. Conf. on Formal Engineering Methods, ICFEM’14,
LNCS 8829, pages 380–395. Springer, 2014.

[10] A. R. Cavalli, T. Higashino, and M. Núñez. A survey on for-
mal active and passive testing with applications to the cloud.
Annales of Telecommunications, 70(3-4):85–93, 2015.

[11] T. Chothia, Y. Kawamoto, and C. Novakovic. Leakwatch:
Estimating information leakage from java programs. In 19th
European Symposium on Research in Computer Security, ES-
ORICS’14, LNCS 8713, pages 219–236. Springer, 2014.

[12] T. S. Chow. Testing software design modeled by finite state
machines. IEEE Transactions on Software Engineering, 4:178–
187, 1978.

[13] D. Clark and R. M. Hierons. Squeeziness: An information theo-
retic measure for avoiding fault masking. Information Process-
ing Letters, 112(8-9):335–340, 2012.

[14] T. M. Cover and J. A. Thomas. Elements of Information The-
ory. Wiley Interscience, 1991.

[15] K. El-Fakih, A. Petrenko, and N. Yevtushenko. FSM test trans-
lation through context. In 18th Int. Conf. on Testing Com-
municating Systems, TestCom’06, LNCS 3964, pages 245–258.
Springer, 2006.

[16] R. Feldt, S. M. Poulding, D. Clark, and S. Yoo. Test set di-
ameter: Quantifying the diversity of sets of test cases. In 9th
IEEE Int. Conf. on Software Testing, Verification and Valida-
tion, ICST’16, pages 223–233. IEEE Computer Society, 2016.

[17] R. Feldt, R. Torkar, T. Gorschek, and W. Afzal. Searching for
cognitively diverse tests: Towards universal test diversity met-
rics. In 1st IEEE Int. Conf. on Software Testing Verification
and Validation Workshops, pages 178–186. IEEE Computer So-
ciety, 2008.

[18] M.-C. Gaudel. Testing can be formal, too! In 6th Int. Joint
Conf. CAAP/FASE, Theory and Practice of Software Develop-
ment, TAPSOFT’95, LNCS 915, pages 82–96. Springer, 1995.

[19] W. Grieskamp, Y. Gurevich, W. Schulte, and M. Veanes. Gen-
erating finite state machines from abstract state machines. In
ACM SIGSOFT Symposium on Software Testing and Analysis,
ISSTA’02, pages 112–122. ACM Press, 2002.

[20] W. Grieskamp, N. Kicillof, K. Stobie, and V. Braberman.
Model-based quality assurance of protocol documentation: tools

and methodology. Software Testing, Verification and Reliabil-
ity, 21(1):55–71, 2011.

[21] Q. Guo, R. M. Hierons, M. Harman, and K. Derderian. Im-
proving test quality using robust unique input/output cir-
cuit sequences (UIOCs). Information & Software Technology,
48(8):696–707, 2006.

[22] C. Henard, M. Papadakis, M. Harman, Y. Jia, and Y. Le Traon.
Comparing white-box and black-box test prioritization. In 38th
Int. Conf. on Software Engineering, ICSE’14, pages 523–534.
ACM Press, 2016.

[23] F. C. Hennie. Fault-detecting experiments for sequential cir-
cuits. In 5th Annual Symposium on Switching Circuit The-
ory and Logical Design, pages 95–110. IEEE Computer Society,
1964.

[24] R. M. Hierons. Testing from partial finite state machines with-
out harmonised traces. IEEE Transactions on Software Engi-
neering, 43(11):1033–1043, 2017.

[25] R. M. Hierons, K. Bogdanov, J.P. Bowen, R. Cleaveland, J. Der-
rick, J. Dick, M. Gheorghe, M. Harman, K. Kapoor, P. Krause,
G. Luettgen, A.J.H Simons, S. Vilkomir, M.R. Woodward, and
H. Zedan. Using formal specifications to support testing. ACM
Computing Surveys, 41(2):9:1–9:76, 2009.

[26] R. M. Hierons, M. G. Merayo, and M. Núñez. Implementa-
tion relations and test generation for systems with distributed
interfaces. Distributed Computing, 25(1):35–62, 2012.

[27] R. M. Hierons, M. G. Merayo, and M. Núñez. Bounded reorder-
ing in the distributed test architecture. IEEE Transactions on
Reliability, 67(2):522–537, 2018.

[28] R. M. Hierons and M. Núñez. Using schedulers to test prob-
abilistic distributed systems. Formal Aspects of Computing,
24(4-6):679–699, 2012.

[29] R. M. Hierons and M. Núñez. Implementation relations and
probabilistic schedulers in the distributed test architecture.
Journal of Systems and Software, 132:319–335, 2017.

[30] I. Hwang and A. R. Cavalli. Testing a probabilistic FSM us-
ing interval estimation. Computer Networks, 54(7):1108–1125,
2010.

[31] Z. Kohavi. Switching and Finite State Automata Theory.
McGraw-Hill, 1978.

[32] D. Lee and M. Yannakakis. Principles and methods of test-
ing finite state machines: A survey. Proceedings of the IEEE,
84(8):1090–1123, 1996.

[33] W. Masri, R. Abou-Assi, M. El-Ghali, and N. Al-Fatairi. An
empirical study of the factors that reduce the effectiveness of
coverage-based fault localization. In 2nd Int. Workshop on
Defects in Large Software Systems, DEFECTS’09, pages 1–5.
ACM Press, 2009.

[34] E. P. Moore. Gedanken experiments on sequential machines.
In C. Shannon and J. McCarthy, editors, Automata Studies.
Princeton University Press, 1956.

[35] G. J. Myers, C. Sandler, and T. Badgett. The Art of Software
Testing. John Wiley & Sons, 3rd edition, 2011.

[36] J. Peleska. Model-based avionic systems testing for the airbus
family. In 23rd IEEE European Test Symposium, ETS’18, pages
1–10. IEEE Computer Society, 2018.

[37] A. Petrenko. Fault model-driven test derivation from finite state
models: Annotated bibliography. In 4th Summer School on
Modeling and Verification of Parallel Processes, MOVEP’00,
LNCS 2067, pages 196–205. Springer, 2001.

[38] A. Petrenko, S. Boroday, and R. Groz. Confirming configura-
tions in EFSM testing. IEEE Transactions on Software Engi-
neering, 30(1):29–42, 2004.

[39] A. Petrenko and N. Yevtushenko. Testing from partial deter-
ministic FSM specifications. IEEE Transactions on Computers,
54(9):1154–1165, 2005.

[40] A. Petrenko, N. Yevtushenko, and G. von Bochmann. Test-
ing deterministic implementations from their nondeterministic
FSM specifications. In 9th IFIP Workshop on Testing of Com-
municating Systems, IWTCS’96, pages 125–140. Chapman &
Hall, 1996.

[41] A. Petrenko, N. Yevtushenko, G. von Bochmann, and

16

R. Dssouli. Testing in context: Framework and test derivation.
Computer Communications, 19:1236–1249, 1996.

[42] M. Shafique and Y. Labiche. A systematic review of state-
based test tools. International Journal on Software Tools for
Technology Transfer, 17(1):59–76, 2015.

[43] C. E. Shannon. A mathematical theory of communication. The
Bell System Technical Journal, 27:379–423, 623–656, 1948.

[44] X. Wang, S.-C. Cheung, W. K. Chan, and Z. Zhang. Tam-
ing coincidental correctness: Coverage refinement with context
patterns to improve fault localization. In 31st Int. Conf. on
Software Engineering, ICSE’09, pages 45–55. IEEE Computer
Society, 2009.

[45] Y. Wang, M. Ü. Uyar, S. S. Batth, and M. A. Fecko. Fault mask-
ing by multiple timing faults in timed EFSM models. Computer
Networks, 53(5):596–612, 2009.

[46] M. R. Woodward and Z. A. Al-Khanjari. Testability, fault size
and the domain-to-range ratio: An eternal triangle. In 12th
Int. Symposium on Software Testing and Analysis, ISSTA’00,
pages 168–172. ACM Press, 2000.

Appendix A. Proofs of the results

Lemma 2 Let M = (Q, qin, I, O, T) be an FSM and k > 0.
Let us consider two random variables ξdomM,k

and ξimageM,k

ranging, respectively, over the domain and image of fM,k.
We have that H(ξimageM,k

|ξdomM,k
) = 0.

Proof: Consider the entropy of the conditional random
variable ξimageM,k

|ξdomM,k
. We have thatH(ξimageM,k

|ξdomM,k
)

is equal to

∑

α∈domM,k

σξdomM,k
(α) · H(ξimageM,k

|ξdomM,k
= α)

If we unfold the second term of the sum we have that the
previous expression is equal to

∑

α∈domM,k

σξdomM,k
(α) ·





∑

β∈imageM,k

γ(β|α)·log2(γ(β|α))





where γ(β|α) = σ(ξimageM,k
|ξdomM,k

)(β|α). We will prove that

all the summands of the previous expression are equal to
zero. Taking into account that M is deterministic we have
that σ(ξimageM,k

|ξdomM,k
) can be either 0 or 1. Using this fact

in the previous expression, we have two cases:

• If σ(ξimageM,k
|ξdomM,k

)(β|α) = 0 then the result obvi-

ously holds.

• Otherwise, that is, σ(ξimageM,k
|ξdomM,k

)(β|α) = 1, we

have that log2(σ(ξimageM,k
|ξdomM,k

)(β|α)) = 0 and, again,

the result holds.

We finally conclude that H(ξimageM,k
|ξdomM,k

) = 0. �

Proposition 1 Let M = (Q, qin, I, O, T) be an FSM and
k > 0. Let us consider two random variables ξdomM,k

and
ξimageM,k

ranging, respectively, over the domain and image
of fM,k. We have that

H(ξdomM,k
) = H(ξimageM,k

)− P(M, ξimageM,k
)

where the term P(M, ξimageM,k
) is equal to

∑

β∈imageM,k

σξimageM,k
(β)·





∑

α∈f−1
M

(β)

σξ
f
−1
M

(β)
(α) · log2(σξ

f
−1
M

(β)
(α))





Proof: By the definition of conditional entropy [14] we
have that H(ξdomM,k

|ξimageM,k
) is equal to

∑

β∈imageM,k

σξimageM,k
(β) · H(ξdomM,k

|ξimageM,k
= β)

Next, we apply the notion of conditional probability and
take into account that ξdomM,k

restricted to ξimageM,k
= β

is the random variable ξf−1
M

(β) ranging over f−1
M (β) and

whose probabilities are equal to

σξdomM,k
(β)

σξdomM,k
(f−1

M (β))

Therefore, we we have that

H(ξdomM,k
|ξimageM,k

= β) =

= H(ξf−1
M

(β))

= −
∑

α∈f−1
M

(β)

σξ
f
−1
M

(β)
(α) · log2(σξ

f
−1
M

(β)
(α))

= −
∑

α∈f−1
M (β)

σξdomM,k
(α)

σξdomM,k
(f−1

M (β))
· log2

(

σξdomM,k
(α)

σξdomM,k
(f−1

M (β))

)

Therefore, the term H(ξdomM,k
|ξimageM,k

) is equal to

−
∑

β∈imageM,k

σξimageM,k
(β) ·





∑

α∈f−1
M (β)

θ(α) · log2(θ(α))



 (A.1)

where θ(α) = σξ
f
−1
M

(β)
(α). If we apply the Chain rule then

we have

H(ξimageM,k
, ξdomM,k

) = H(ξimageM,k
) +H(ξdomM,k

|ξimageM,k
)

where H(ξimageM,k
, ξdomM,k

) is the joint probability of the
two random variables. Taking into account that, applying
again the Chain rule, we also have

H(ξimageM,k
, ξdomM,k

) = H(ξdomM,k
) +H(ξimageM,k

|ξdomM,k
)

Combining the previous equalities we obtain

H(ξimageM,k
) +H(ξdomM,k

|ξimageM,k
)

‖

H(ξdomM,k
) +H(ξimageM,k

|ξdomM,k
)

Finally, by Lemma 2, we have H(ξimageM,k
|ξdomM,k

) = 0

and taking into account the value of H(ξdomM,k
|ξimageM,k

),

17

given in equation (A.1), we obtain the desired reformula-
tion of H(ξdomM,k

). �

Lemma 4 There exist FSMs M1 and M2 and k > 0 such
that DRR(fM1,k) = DRR(fM2,k) but Sqk(M1) 6= Sqk(M2).

There exist FSMs M1 and M2 and k > 0 such that
DRR(fM1,k) < DRR(fM2,k) but Sqk(M1) > Sqk(M2).
Proof: First, let us note that in this proof we assume uni-
form distributions over inputs (and outputs) of the FSMs.
However, the result holds for any probability distribution:
we would only need to slightly modify the definition of the
given machines.

In order to prove the first part of the result, we de-
fine two machines M1 and M2, both with initial state q0,
fulfilling the conditions. Let M1 be the following FSM:

q8 q7 q0 q3 q4

q9 q2 q1 q6 q5

i1/o1

i1/o1

i2/o2 i1/o2

i2/o2i3/o2

i3/o2i1/o2

i2/o2

We have that domM1,2 is equal to

{(i1, i1), (i2, i1), (i2, i2), (i2, i3), (i3, i1), (i3, i2)}

and imageM1,2
is equal to {(o1, o1), (o2, o2)}. On the one

hand we have DRR(fM1,2) = 6/2 = 3 while, on the other

hand, we have Sq2(M1) =
5·log2(5)+1·log2(1)

6 ≈ 1.9349.
Now, let M2 be the following FSM:

q8 q5 q0 q1 q2

q6 q7 q4 q3

i1/o1 i1/o1

i2/o1i3/o1

i2/o2i1/o2

i2/o2 i3/o2

We have that domM2,2 is equal to

{(i1, i1), (i1, i2), (i1, i3), (i2, i1), (i2, i2), (i2, i3)}

and imageM2,2
= {(o1, o1), (o2, o2)}. We have, on the one

hand, that DRR(fM2,2) = 6/2 = 3 while, on the other hand,

Sq2(M2) =
2·3·log2(3)

6 ≈ 1.5849.
In order to prove the second part of the result, let us

consider again two machines M1 and M2, with initial state
q0, and we will show that they fulfil the required condi-
tions. In these machines, we consider that x1, . . . , xn/y
is a shorthand for n different transitions labelled, respec-
tively, by x1/y, x2/y, . . . , xn/y. Let M1 be:

q8 q1 q2 q9

q7 q0 q3

q6 q5 q4

i0, i1/o0
i2, i3/o1

i4, i5/o2

i6, i7/o3
i8, i9/o4

i10, i11/o5

i12, i13/o6

i14/o7 i15/o8

We have that domM1,1 = {i0, ..., i15} and imageM1,1
=

{o0, ..., o8}. Therefore, DRR(fM1,1) = 16/9 ≈ 1.778 while

Sq1(M1) =
7·2·log2(2)+2·1·log2(1)

16 = 0.875.
Finally, let M2 be the FSM:

q10 q1 q2 q3

q9 q0 q4

q8 q7 q6 q5

i15/o9
i13/o7

i0, ..., i6/o0

i12/o6
i10/o4

i11/o5

i7/o1

i8/o2

i9/o3

i14/o8

We have that domM2,1 = {i0, ..., i15} and imageM2,1
=

{o0, ..., o9}. Therefore, DRR(fM2,1) = 16/10 = 1.6 while

Sq1(M2) =
1·7·log2(7)+9·1·log2(1)

16 ≈ 1.2282. �

Lemma 5 There exist FSMs M1 and M2 and k > 0 such
that Sqk(M1) < Sqk(M2) but PCollk(M1) > PCollk(M2).
Proof: First, let us note again that, similar to the proof
of Lemma 4, in this proof we assume uniform distributions
over inputs (and outputs) of the FSMs. Again, if we have
a different probability distribution then we only need to
adapt the definition of the machines so that the result still
holds.

First, we consider M1 with initial state q0:

q0 q1 q2 q3

q7 q5 q6 q4

i1/o1 i1/o1 i1/o1

i2/o1
i2/o1

i1/o1 i2/o2

Second, let M2, again with initial state q0, be:

q9 q8 q0 q1 q2 q3

q10 q11 q7 q5 q6 q4

i1/o1 i1/o1 i1/o1

i2/o1
i2/o1

i1/o1 i2/o2

i2/o1i1/o1

i1/o2
i2/o2

On the one hand PColl3(M1) = 0.5 and PColl3(M2) = 0.4
while, on the other hand, we have Sq3(M1) = 1.1887 and
Sq3(M2) = 1.5849. �

Appendix B. Simulation Results

Here we show the results for the simulation performed
on Section 4.1.

18

Input set Maximum Correlation of Correlation of

size size Sq DRR

10, 000 100 0.968366 0.763623
10, 000 100 0.973918 0.783759
10, 000 200 0.973016 0.823959
10, 000 200 0.967349 0.77492
10, 000 500 0.973849 0.828911
10, 000 500 0.973267 0.803445
10, 000 1, 000 0.963235 0.744021
10, 000 1, 000 0.973658 0.804282
10, 000 2, 000 0.969764 0.787121
10, 000 2, 000 0.966409 0.753929
10, 000 5, 000 0.968639 0.778538
10, 000 5, 000 0.968937 0.768205
10, 000 10, 000 0.967281 0.71496
10, 000 10, 000 0.966184 0.670497
20, 000 100 0.969669 0.780648
20, 000 100 0.975364 0.824959
20, 000 200 0.969587 0.778449
20, 000 200 0.971707 0.771526
20, 000 500 0.971942 0.798243
20, 000 500 0.974174 0.792043
20, 000 1, 000 0.971248 0.786153
20, 000 1, 000 0.967574 0.769014
20, 000 2, 000 0.967758 0.770978
20, 000 2, 000 0.975119 0.819613
20, 000 5, 000 0.972733 0.823052
20, 000 5, 000 0.970411 0.780216
20, 000 10, 000 0.960576 0.728561
20, 000 10, 000 0.961688 0.724022
50, 000 100 0.963278 0.74568
50, 000 100 0.975731 0.817716
50, 000 200 0.974623 0.795574
50, 000 200 0.969418 0.746002
50, 000 500 0.966153 0.777624
50, 000 500 0.975947 0.84295
50, 000 1, 000 0.967855 0.76079
50, 000 1, 000 0.967894 0.789061
50, 000 2, 000 0.96735 0.764992
50, 000 2, 000 0.969433 0.804356
50, 000 5, 000 0.97278 0.797072
50, 000 5, 000 0.971647 0.792316
50, 000 10, 000 0.970928 0.779042
50, 000 10, 000 0.963673 0.723346

100, 000 100 0.97475 0.797906
100, 000 100 0.972203 0.799384
100, 000 200 0.972457 0.788938
100, 000 200 0.969988 0.78341
100, 000 500 0.980028 0.836659
100, 000 500 0.972878 0.769055
100, 000 1, 000 0.976104 0.817482
100, 000 1, 000 0.974571 0.820023
100, 000 2, 000 0.971424 0.779667
100, 000 2, 000 0.975182 0.787567
100, 000 5, 000 0.96594 0.762143
100, 000 5, 000 0.96303 0.73042
100, 000 10, 000 0.970134 0.757703
100, 000 10.000 0.96836 0.778925
200, 000 100 0.970841 0.801076
200, 000 100 0.974049 0.798232
200, 000 200 0.971829 0.776558
200, 000 200 0.973847 0.79645
200, 000 500 0.978293 0.822944
200, 000 500 0.96523 0.748004
200, 000 1, 000 0.968757 0.768184
200, 000 1, 000 0.972733 0.808345
200, 000 2, 000 0.971834 0.798966
200, 000 2, 000 0.969003 0.749107
200, 000 5, 000 0.970825 0.760313
200, 000 5, 000 0.969484 0.76873
200, 000 10, 000 0.970044 0.792676
200, 000 10, 000 0.972554 0.788373

Table B.10: First part of the results from the simulation.

Input set Maximum Correlation of Correlation of

size size Sq DRR

500, 000 100 0.97668 0.836037
500, 000 100 0.977493 0.809851
500, 000 200 0.963671 0.743951
500, 000 200 0.974121 0.807426
500, 000 500 0.971647 0.774395
500, 000 500 0.973467 0.800447
500, 000 1, 000 0.976121 0.820915
500, 000 1, 000 0.97081 0.769445
500, 000 2, 000 0.976695 0.803875
500, 000 2, 000 0.973124 0.787502
500, 000 5, 000 0.95885 0.743651
500, 000 5, 000 0.969437 0.765643
500, 000 10, 000 0.971292 0.786862
500, 000 10, 000 0.975993 0.819747

1, 000, 000 100 0.976936 0.811867
1, 000, 000 100 0.971048 0.775681
1, 000, 000 200 0.970973 0.782711
1, 000, 000 200 0.977552 0.839242
1, 000, 000 500 0.972066 0.783899
1, 000, 000 500 0.974367 0.770392
1, 000, 000 1, 000 0.973926 0.79526
1, 000, 000 1, 000 0.974027 0.830407
1, 000, 000 2, 000 0.969736 0.780849
1, 000, 000 2, 000 0.97408 0.805192
1, 000, 000 5, 000 0.970854 0.809975
1, 000, 000 5, 000 0.970388 0.787131
1, 000, 000 10, 000 0.967924 0.778203
1, 000, 000 10, 000 0.970411 0.769844
2, 000, 000 100 0.975097 0.814434
2, 000, 000 100 0.968371 0.768775
2, 000, 000 200 0.974395 0.809679
2, 000, 000 200 0.97463 0.800698
2, 000, 000 500 0.97177 0.790358
2, 000, 000 500 0.970945 0.809109
2, 000, 000 1, 000 0.978102 0.826712
2, 000, 000 1, 000 0.971722 0.810432
2, 000, 000 2, 000 0.969418 0.755382
2, 000, 000 2, 000 0.970523 0.779241
2, 000, 000 5, 000 0.978818 0.810967
2, 000, 000 5, 000 0.964455 0.698505
2, 000, 000 10, 000 0.96991 0.776906
2, 000, 000 10, 000 0.963563 0.781282
5, 000, 000 100 0.971105 0.801428
5, 000, 000 100 0.975811 0.806359
5, 000, 000 200 0.965705 0.734183
5, 000, 000 200 0.975194 0.787636
5, 000, 000 500 0.965762 0.78538
5, 000, 000 500 0.977868 0.816896
5, 000, 000 1, 000 0.970797 0.782857
5, 000, 000 1, 000 0.974245 0.807752
5, 000, 000 2, 000 0.973636 0.783586
5, 000, 000 2, 000 0.972639 0.782383
5, 000, 000 5, 000 0.977712 0.793327
5, 000, 000 5, 000 0.963994 0.708333
5, 000, 000 10, 000 0.972559 0.773815
5, 000, 000 10, 000 0.975021 0.788634

10, 000, 000 100 0.972085 0.801643
10, 000, 000 100 0.96267 0.74051
10, 000, 000 200 0.973476 0.814127
10, 000, 000 200 0.978724 0.817254
10, 000, 000 500 0.968369 0.755809
10, 000, 000 500 0.976646 0.784194
10, 000, 000 1, 000 0.97411 0.792697
10, 000, 000 1, 000 0.970658 0.782375
10, 000, 000 2, 000 0.973856 0.793005
10, 000, 000 2, 000 0.974945 0.782697
10, 000, 000 5, 000 0.975649 0.814614
10, 000, 000 5, 000 0.9663 0.780145
10, 000, 000 10, 000 0.974921 0.808942
10, 000, 000 10, 000 0.974783 0.821714

Table B.11: Second part of the results from the simulation.

19

Input set Maximum Correlation of Correlation of

size size Sq DRR

20, 000, 000 100 0.976361 0.816832
20, 000, 000 100 0.969996 0.785402
20, 000, 000 200 0.966911 0.773231
20, 000, 000 200 0.975891 0.830111
20, 000, 000 500 0.975834 0.80509
20, 000, 000 500 0.971753 0.761665
20, 000, 000 1, 000 0.970692 0.800126
20, 000, 000 1, 000 0.972765 0.780929
20, 000, 000 2, 000 0.975548 0.79739
20, 000, 000 2, 000 0.97661 0.790627
20, 000, 000 5, 000 0.975512 0.81321
20, 000, 000 5, 000 0.969801 0.778989
20, 000, 000 10, 000 0.97061 0.79285
20, 000, 000 10, 000 0.974807 0.823849
50, 000, 000 100 0.972157 0.775908
50, 000, 000 100 0.97394 0.744055
50, 000, 000 200 0.977712 0.825954
50, 000, 000 200 0.964124 0.754767
50, 000, 000 500 0.976058 0.824369
50, 000, 000 500 0.971696 0.792425
50, 000, 000 1, 000 0.968602 0.773925
50, 000, 000 1, 000 0.975643 0.813831
50, 000, 000 2, 000 0.972101 0.80533
50, 000, 000 2, 000 0.96896 0.763188
50, 000, 000 5, 000 0.967312 0.733459
50, 000, 000 5, 000 0.970914 0.792814
50, 000, 000 10, 000 0.974186 0.831489
50, 000, 000 10, 000 0.97075 0.794533

100, 000, 000 100 0.967785 0.791843
100, 000, 000 100 0.973939 0.79906
100, 000, 000 200 0.970936 0.797435
100, 000, 000 200 0.971179 0.792618
100, 000, 000 500 0.965457 0.764338
100, 000, 000 500 0.967388 0.749111
100, 000, 000 1, 000 0.967278 0.762974
100, 000, 000 1, 000 0.975128 0.816993
100, 000, 000 2, 000 0.976852 0.809661
100, 000, 000 2, 000 0.973916 0.811798
100, 000, 000 5, 000 0.964856 0.752126
100, 000, 000 5, 000 0.975177 0.804654
100, 000, 000 10, 000 0.97333 0.797859
100, 000, 000 10, 000 0.979012 0.839706
200, 000, 000 100 0.974298 0.793441
200, 000, 000 100 0.974201 0.817327
200, 000, 000 200 0.973198 0.79773
200, 000, 000 200 0.969628 0.752662
200, 000, 000 500 0.979169 0.843415
200, 000, 000 500 0.975039 0.830218
200, 000, 000 1, 000 0.975452 0.842656
200, 000, 000 1, 000 0.973656 0.81612
200, 000, 000 2, 000 0.974498 0.799512
200, 000, 000 2, 000 0.980097 0.843219
200, 000, 000 5, 000 0.97596 0.81765
200, 000, 000 5, 000 0.973072 0.794025
200, 000, 000 10, 000 0.972525 0.790124
200, 000, 000 10, 000 0.975228 0.812101
500, 000, 000 100 0.97099 0.788888
500, 000, 000 100 0.971083 0.798639
500, 000, 000 200 0.967438 0.779869
500, 000, 000 200 0.977179 0.832308
500, 000, 000 500 0.965965 0.778361
500, 000, 000 500 0.968144 0.764191
500, 000, 000 1, 000 0.974112 0.800833
500, 000, 000 1, 000 0.973997 0.779971
500, 000, 000 2, 000 0.971501 0.782711
500, 000, 000 2, 000 0.970228 0.743784
500, 000, 000 5, 000 0.976165 0.825479
500, 000, 000 5, 000 0.973031 0.779755
500, 000, 000 10, 000 0.969547 0.772517
500, 000, 000 10, 000 0.966348 0.773234

Table B.12: Third part of the results from the simulation.

Input set Maximum Correlation of Correlation of

size size Sq DRR

1, 000, 000, 000 100 0.96974 0.779927
1, 000, 000, 000 100 0.974667 0.824957
1, 000, 000, 000 200 0.978771 0.859822
1, 000, 000, 000 200 0.968844 0.759952
1, 000, 000, 000 500 0.975528 0.799788
1, 000, 000, 000 500 0.972865 0.806221
1, 000, 000, 000 1, 000 0.966998 0.742382
1, 000, 000, 000 1, 000 0.970395 0.795114
1, 000, 000, 000 2, 000 0.96474 0.784384
1, 000, 000, 000 2, 000 0.966843 0.768588
1, 000, 000, 000 5, 000 0.966975 0.753142
1, 000, 000, 000 5, 000 0.969392 0.777797
1, 000, 000, 000 10, 000 0.970387 0.78255
1, 000, 000, 000 10, 000 0.966483 0.741448
2, 000, 000, 000 100 0.968286 0.797514
2, 000, 000, 000 100 0.974423 0.78976
2, 000, 000, 000 200 0.97463 0.779878
2, 000, 000, 000 200 0.969308 0.776731
2, 000, 000, 000 500 0.97068 0.77233
2, 000, 000, 000 500 0.964814 0.741365
2, 000, 000, 000 1, 000 0.977148 0.802956
2, 000, 000, 000 1, 000 0.972999 0.824011
2, 000, 000, 000 2, 000 0.966897 0.756296
2, 000, 000, 000 2, 000 0.967144 0.731439
2, 000, 000, 000 5, 000 0.970575 0.807333
2, 000, 000, 000 5, 000 0.965495 0.781112
2, 000, 000, 000 10, 000 0.969172 0.79843
2, 000, 000, 000 10, 000 0.972477 0.783512

Table B.13: Last part of the results from the simulation.

20

	Introduction
	Preliminaries
	Squeeziness for FSMs
	Maximum entropy principle
	Maximum loss of information
	Domain to Range Ratio vs. Squeeziness

	Empirical Evaluation
	Evaluation via simulations
	Collisions and FEP
	Experimental Results

	Empirical evaluation using FSMs
	FSM Generator
	Experimental results

	Threats to Validity
	Discussion

	Conclusions and future work
	Proofs of the results
	Simulation Results

