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ABSTRACT

Comparative methods allow researchers to make inferences about evolutionary

processes and patterns from phylogenetic trees. In Bayesian phylogenetics,

estimating a phylogeny requires specifying priors on parameters characterizing the

branching process and rates of substitution among lineages, in addition to

others. Accordingly, characterizing the effect of prior selection on phylogenies is an

active area of research. The choice of priors may systematically bias phylogenetic

reconstruction and, subsequently, affect conclusions drawn from the resulting

phylogeny. Here, we focus on the impact of priors in Bayesian phylogenetic inference

and evaluate how they affect the estimation of parameters in macroevolutionary

models of lineage diversification. Specifically, we simulate trees under combinations

of tree priors and molecular clocks, simulate sequence data, estimate trees, and

estimate diversification parameters (e.g., speciation and extinction rates) from these

trees. When substitution rate heterogeneity is large, diversification rate estimates

deviate substantially from those estimated under the simulation conditions when not

captured by an appropriate choice of relaxed molecular clock. However, in general,

we find that the choice of tree prior and molecular clock has relatively little

impact on the estimation of diversification rates insofar as the sequence data are

sufficiently informative and substitution rate heterogeneity among lineages is

low-to-moderate.

Subjects Computational Biology, Evolutionary Studies

Keywords Phylogenetic comparative methods, Birth–death process, Diversification rates,
Molecular clock, Yule process

INTRODUCTION
Statistical comparative methods use phylogenetic trees to gain insight into macroevolutionary

patterns and processes (Felsenstein, 1985; Harvey & Pagel, 1991; O’Meara, 2012;

Rabosky, 2016; Harmon, 2018). Branch lengths and node ages provide information about

the rate of lineage accumulation through time (Nee, May & Harvey, 1994; Nee, 2006;
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Ricklefs, 2007; Pyron & Burbrink, 2013) and are instrumental in characterizing the

underlying processes generating global patterns of biodiversity (Schluter & Pennell,

2017). A typical workflow uses a point estimate of a phylogenetic tree or a distribution of

trees to estimate macroevolutionary parameters, such as the rate of lineage accumulation

(speciation) or extinction, which are often compared across groups to provide

insight into diversification rates and the tempo of evolution (Nee, Mooers & Harvey,

1992; Magallón & Sanderson, 2001; Alfaro et al., 2009; Rabosky, 2014). However,

parameter estimates are dependent on the tree from which they are inferred

(Felsenstein, 1985). Most inference procedures assume that a tree is estimated without

error, but, because branch lengths are fundamental to estimates of diversification

parameters, uncertain phylogenies can be expected to yield uncertain estimates.

Several studies have focused on the causes of parameter misestimation when fitting

diversification models to trees (Nee, May & Harvey, 1994; Barraclough & Nee, 2001;

Revell, Harmon & Glor, 2005; Cusimano & Renner, 2010; Rabosky, 2010;

Moore et al., 2016), and a handful have evaluated uncertainty in phylogenetic estimation

explicitly in the context of estimating diversification rates from phylogenies under

specific simulation conditions (Revell, Harmon & Glor, 2005; Wertheim & Sanderson,

2011; Marin & Hedges, 2018).

Theoretical advances have expanded the scope of phylogenetic comparative methods

for studying diversification. Historically, models only assumed a constant rate of lineage

diversification or extinction (Nee, May & Harvey, 1994). More modern approaches

utilize phylogenies to determine where and/or when shifts in the rates of speciation and

extinction take place (see Pyron & Burbrink, 2013) or estimate rates that depend on

species’ traits (Maddison, Midford & Otto, 2007; FitzJohn, Maddison & Otto, 2009;

FitzJohn, 2010).

It has been shown that phylogenetic uncertainty and error in tree estimation can

directly impact the results of diversification studies. For example, Revell, Harmon & Glor

(2005) demonstrated that underparameterization of the model of nucleotide sequence

evolution as part of the process of phylogenetic estimation can produce apparent

slowdowns in the rate of diversification as quantified by Pybus & Harvey’s (2000) gamma

statistic. Additionally, errors in branch lengths (Wertheim & Sanderson, 2011) and

biased taxonomic sampling can both affect estimates (Höhna, 2014). Taken together,

these studies suggest that phylogenetic error can affect the estimation of diversification

rates.

Bayesian methods of phylogenetic inference produce posterior distributions of trees,

and, therefore, diversification rates can be estimated across such distributions to quantify

uncertainty. The use of Bayesian approaches in phylogenetics has increased in recent

years due in part to the availability of software, including Bayesian Evolutionary Analysis

by Sampling Trees (BEAST) (Drummond et al., 2012) and MrBayes (Ronquist et al., 2012).

BEAST is a Java application that has seen widespread use in the phylogenetics

community due to its ease-of-use, intuitive graphical user interface, and implementation of

a number of phylogenetic and population genetic models. BEAST may also be run

from the command line and can leverage GPU hardware, facilitating phylogeny
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reconstruction on high-performance computing architectures. Users can specify an

analysis by passing options from the command line or through a GUI to a bundled

application, BEAUti, which produces the XML input file required for BEAST. In a typical

analysis, this XML defines models of sequence evolution, a choice of branching model

(i.e., tree prior), and a choice of molecular clock, among other possible configurations.

The impact that the choice of priors governing the molecular clock and branching

process (or “tree prior”) in molecular phylogenetics is an active area of research.

Commonly used tree priors for inference among multiple species are the Yule (1925) and

birth–death (BD; Kendall, 1948; Nee, May & Harvey, 1994; Gernhard, 2008; Stadler, 2013)

models, whereas coalescent-based priors are suitable for phylogenetic and population

genetic studies within a single species (Kingman, 1982; see Drummond et al., 2002, 2005).

Here, we focus on the Yule and BD models. The Yule model is the simplest of a

group of continuous-time branching processes; it has one parameter, l, the instantaneous

per-lineage rate of speciation, that is constant across the tree. The BD model is also a

continuous-time process but includes a probability that a lineage will go extinct (and,

therefore, leave no descendants). This model has two parameters, l and m,

the instantaneous per-lineage rates of speciation and extinction, both of which are constant

across the tree in their original characterizations. In practice, many approaches re-

parameterize the model using r = (l - m) and ε = (m/l), the net diversification rate

and relative extinction rate, respectively. In general, estimates of r have greater precision

than ε (Nee et al., 1994;Nee, May &Harvey, 1994; FitzJohn, Maddison & Otto, 2009). Upon

selecting these tree priors when using BEAST, a prior distribution (technically, hyperpriors

in a hierarchical Bayesian context) must be specified on l or on r and ε for Yule or BD,

respectively.

Diversification rates can be estimated from phylogenies using likelihood-based

approaches that rely on branching times (see Stadler, 2013). As a result, it is reasonable to

assume that different branching models could have an impact on diversification rate

estimates by virtue of altering branch lengths. Several studies have explored the impact of

the tree prior on the resulting phylogenetic estimates. As part of an investigation of relaxed

clock models, Ho et al. (2005) identified an impact of the choice of birth and death

rate upper bounds in concert with the fraction of lineages sampled, particularly with

respect to internal branches. Furthermore, in Ritchie, Lo & Ho (2017), the authors explore

the impact of Yule and BD (and, additionally, coalescent) tree priors in the context of the

multispecies coalescent to determine whether prior misspecification has an impact

on phylogenetic accuracy. Through simulations and applications to empirical datasets,

they concluded that phylogenies are not substantially affected by tree prior

misspecification. However, node times may be influenced by the choice of prior in

combination with among- and within-lineage sampling. Additionally, Brown & Yang

(2010) found that, for shallow phylogenies, nodes depths are generally robust to the choice

of prior. However, they concluded that a Dirichlet prior, in contrast to BD, produces

more reasonable estimates as the depth of the phylogeny increases.

In addition to priors for branching process parameters, Bayesian phylogenetic analysis

also requires the specification of a particular model for rates of evolution across the tree.

Sarver et al. (2019), PeerJ, DOI 10.7717/peerj.6334 3/17

http://dx.doi.org/10.7717/peerj.6334
https://peerj.com/


For example, BEAST gives users the choice of using a strict (global) molecular clock or an

uncorrelated log-normal (UCLN) relaxed molecular clock, among other flavors of local

clocks (Drummond et al., 2012). The strict clock assumes a constant, global rate of

sequence evolution across the tree (Zuckerkandl & Pauling, 1962), while the UCLN relaxed

clock assumes branch-specific rates are drawn from a discretized log-normal distribution

independently for every branch in the tree (Drummond et al., 2006). Hyperpriors are

placed on the mean rate of evolution for the strict clock and the mean and standard

deviation of the log-normal distribution for the UCLN relaxed clock. As the name implies,

the UCLN molecular clock assumes that rates of evolution are not correlated among

branches. This is in contrast with approaches commonly used to scale phylogenies after

estimation, such as the penalized likelihood approach implemented in r8s

(Sanderson, 2003) or treePL (Smith & O’Meara, 2012), which may inappropriately infer

similar rates among closely-related lineages. However, the effect of selecting uncorrelated

models over autocorrelated models may not always be clear and warrants further

consideration (Ho et al., 2005; Lepage et al., 2007).

As with tree priors, the choice of molecular clock could also be expected to affect

diversification rate estimates a priori by impacting branch lengths. Lepage et al. (2007)

compare several clock models and show that clock choice can impact the estimates of

divergence times. Furthermore, they find that clock misspecification can have a

larger impact than the choice of branching prior. Previous work has also shown that

relaxed clock models produce reasonable estimates of rates when substantial rate variation

is not observed (Ho et al., 2005).

From the results outlined above, there is reason to believe that the choice of priors can

affect the estimation of diversification parameters by virtue of altering the distribution of

branch lengths. This has been explored specifically in several studies. For example, the

effects of tree reconstruction on diversification rate estimates were studied byWertheim &

Sanderson (2011). This study focused on trees generated only under a Yule process

with a range of l values. The authors simulated sequences under a simple model

of sequence evolution (HKY85), and trees were estimated using BEAST assuming a strict

clock and narrow prior or range of prior widths on the root age. Their study assessed

the impact of sequence length and nodal calibrations on estimating posterior distributions

of l, and they found that increasing sequence length leads, as expected, to narrower

95% highest posterior density credible intervals of speciation rates. Additionally, broader

calibration priors were shown to increase posterior widths of these estimates. It is plausible

that forcing estimation of a tree under a particular branching process (such as a Yule

process) may impact estimates if the true generating process was different (such as a BD

process); this could systematically affect diversification parameter estimates.

Since branch lengths play an important part in estimating diversification parameters,

it is also the case that a mismatch of clock models could similarly affect results.

Whereas previous work describes a relationship between parameter estimation and

misspecification of the model of nucleotide sequence evolution during phylogenetic

estimation (Revell, Harmon & Glor, 2005), as well as sequence length and nodal

calibrations (Wertheim & Sanderson, 2011), no studies to our knowledge have directly
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focused on the impact of tree priors and choice of molecular clocks combined

(but see Condamine et al., 2015 for comparisons among Yule and BD priors using

an empirical dataset). Additionally, a recent study by Duchêne, Hua & Bromham (2017)

emphasizes the importance of appropriately accommodating among-lineage molecular

rate variation when inferring diversification rates, both of which may be correlated

through underlying evolutionary processes. This study simulated datasets under a variety

of diversification conditions with a constant background extinction rate and stressed

the importance of accurately capturing variable substitution rates as part of reconstructing

the phylogeny.

Following a Bayesian statistical philosophy, ideally priors should be selected which

reflect a priori knowledge about the data being explored. However, such knowledge may

not always be available for each study of interest, especially in non-model systems.

It may be possible to use reasonable defaults as selected by an application of choice;

however, there is no guarantee that results will always be accurate. One way to tackle this

may be to select uninformative (i.e., broad) priors under the assumption that there is

enough signal in the data to produce reliable estimates. This can be assessed by performing

a parallel analysis sampling only from prior distributions and comparing results to real

data or through posterior predictive simulations (Gelman et al., 1995; Huelsenbeck

et al., 2001). An alternative approach may be to select the most parameter-rich models with

the hope that more complex patterns in the data will be captured and modeled

appropriately. However, as the number of parameters increases, issues could arise

with overfitting and identifiability, necessitating the use of model selection for comparison

of fit. Here, this study is motivated by the observation that phylogenetics, sensu lato,

is complex, and the uninitiated may resort to using defaults assigned in tutorials or

documentation. At least one other study has explicitly mentioned this (Condamine et al.,

2015), referencing selection of a Yule tree prior as suggested in an early BEAST tutorial.

In light of these concerns, we are interested in exploring the choice of tree and

molecular clock priors as part of a simulation study conducted using BEAST with choices

that researchers may naturally select when interrogating their data. Since we already

know that misestimation of the absolute root age of the tree can have dramatic effects on

rate estimates, we focus specifically on the effect of priors on relative branch lengths of

trees. We quantify the effect of tree prior and clock misspecification on subsequent

parameter estimates for diversification models. To accomplish this, we simulate

phylogenetic trees and sequence data under a range of combinations of tree priors and

molecular clock models. We then re-estimate trees and use these reconstructed trees

to calculate maximum likelihood estimates of diversification rate parameters. We compare

these estimates to ones from the original trees to evaluate whether or not priors and clock

models contribute to error in estimating diversification rates.

MATERIALS AND METHODS
We take advantage of existing applications to simulate trees under a variety of conditions,

simulate nucleotide sequence data on these trees, estimate a tree from the nucleotide data,

and estimate diversification rates. The workflow is illustrated in Fig. 1. All scripts are
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written in the R programming language (R Development Core Team, 2018) and are

available on GitHub (https://github.com/bricesarver/prior_simulation_study).

Generation of initial distributions of trees

We simulated trees of two sizes, 25 and 100 taxa, both with a tree depth of five arbitrary

time units. We simulated initial trees using BEAST v1.7.5 with XML input files generated

using BEAUti v1.7.5 (Drummond et al., 2012). DNA sequence data were simulated

using these trees with SeqGen v1.3.2 (Rambaut & Grassly, 1997).

The simulation process itself consisted of two steps. First, a tree prior was selected for

each round of simulations, either Yule or BD. In order to avoid improbable combinations

of parameters such that tree shapes were non-randomly sampled (Pennell, Sarver &

Harmon, 2012), initial parameter values for Nt were fixed and r calculated using the

expectation relating the net diversification rate, the number of taxa, and the tree height:

E Nt½ � ¼ N0e
rt , where Nt is the number of taxa at t, N0 is the initial number of taxa

(2 in this case), r is the net diversification rate (l - m), and t is the height of the tree

(Nee, 2006). Therefore, when Nt = 25, r = 0.5051, and when Nt = 100, r = 0.7824, both with

a tree height of 5. For BD cases, ε was fixed at 0.5.

BEAST requires the specification of a type of molecular clock. For the strict case, the

prior on the clock rate was fixed to a log-normal distribution with a mean of 0.01 and a

standard deviation of 0.5. For the UCLN case, the prior on the mean of the distribution

was of the form U(0.0050, 0.015), and the prior on the standard deviation of the

Select ten trees at random

Simulate a distribu�on of trees using BEAST

Simulate 5000 bp of sequence data

Es�mate trees using BEAST under each

tree prior/clock model combina�on

Analyze posterior distribu�on of trees and

es�mate parameters

BD:Strict BD:UCLN Yule:Strict Yule:UCLN

Compare 

original trees to es�mated

r and λ from 

Figure 1 Simulation workflow. l is the instantaneous speciation rate, and r is the net diversification rate.

Both are estimated for each set of simulation conditions. Full-size DOI: 10.7717/peerj.6334/fig-1
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distribution was set to either U(0.17, 0.18), U(0.25, 1), or U(0.25, 1.75). Together, these

simulations correspond to a low, medium, and high amount of among-lineage substitution

rate heterogeneity.

We then generated a distribution of trees under these conditions using BEAST,

sampling only from the priors. To “fix” a parameter, such as root height, to a given value, a

normal prior was used with a mean equal to the value and a standard deviation of 0.00001.

This prevented BEAST failures using a prior with hard boundary conditions.

Simulation of nucleotide datasets

For each set of parameter values, we generated a posterior distribution of 10,001 phylograms

by sampling from the prior. A total of 10 trees were selected at randomwithout replacement.

5,000 bp of sequence data (see Wertheim & Sanderson, 2011) were simulated under a

GTR+C model of nucleotide sequence evolution with parameters estimated in Weisrock,

Harmon & Larson (2005) for nuclear rRNA (πA: 0.1978, πC: 0.2874, πG: 0.3403, πT: 0.1835;

rAC: 1.6493, rAG: 2.9172, rAT: 0.3969, rCG: 0.9164 rCT: 8.4170, rGT: 1.0; a: 2.3592).

Sequences were simulated using Seq-Gen v1.3.5 (Rambaut & Grassly, 1997) with randomly

generated seeds. Additionally, we simulated datasets of two additional sizes, 2,500

and 10,000 bp, for the 100-taxa, BD:UCLN case to assess the impact of sequence length on

parameter estimates. We expect the accuracy of parameter estimates to improve as the

amount of sequence data increases owing to more accurate estimation of branch lengths.

Estimation under tree prior and clock combinations

The resulting NEXUS data files were processed using BEASTifier v1.0 (Brown, 2014).

BEASTifier takes a list of NEXUS files and generates BEAST XML input files under

conditions specified in a configuration file. Each combination of tree priors and clock types

was used for each dataset. For example, the sequences generated using a 100-taxa tree

that is simulated under a Yule tree prior and strict molecular clock ultimately

produced four XML files for analysis: the condition matching the simulation conditions

(i.e., a posterior distribution of trees using a Yule tree prior and a strict clock (1)) and all

mismatch conditions (i.e., a posterior distribution of trees using a Yule tree prior

and a UCLN clock (2), a BD tree prior and a strict clock (3), and a BD prior and UCLN

clock (4)). Each file was then processed using BEAST v1.7.5 (Drummond et al., 2012).

Chains were run for 25,000,000 generations (standard analyses) or 50,000,000 generations

(additional clock and data-size analyses), sampling every 2,500 or 5,000, respectively.

10% of the samples (corresponding to 1,000 sampled trees) were excluded before analysis

as a burn-in. Stationarity was assessed using Tracer v1.6 (Rambaut et al., 2014),

an application for visualizing MCMC traces. A maximum clade credibility tree was

generated for each analysis using TreeAnnotator v1.7.5 assuming median node heights

and a posterior probability limit of 0.5.

Analysis of posterior distributions andmaximum clade credibility trees

We analyzed each combination of the four possible simulation/estimation cases

(Yule:Strict, Yule:UCLN, BD:Strict, and BD:UCLN) and number of taxa (25 or 100).

Sarver et al. (2019), PeerJ, DOI 10.7717/peerj.6334 7/17

http://dx.doi.org/10.7717/peerj.6334
https://peerj.com/


First, each distribution of trees was rescaled to the exact root height of the original tree

using ape (Paradis, Claude & Strimmer, 2004). This was performed to remove any

error associated with estimating overall molecular rates of evolution and the overall age of

the tree, allowing us to focus specifically on effects of priors on relative branching patterns.

Then, for each tree in the posterior, we estimated l and r by maximum likelihood

using the DDD package in R (Etienne & Haegeman, 2012; Etienne et al., 2012).

In addition, we produced lineage-through-time (LTT) plots for each replicate. The LTT

plot of the maximum clade credibility tree produced from each analysis was plotted on the

same graph as the original tree from which the data were simulated. Each plot, then,

consists of LTT plots for the 10 original trees and consensus trees from the corresponding

10 posterior distributions.

RESULTS
When original trees were simulated under a Yule process, all combinations of tree

priors and clocks produced extremely similar estimates to the parameters estimated from

trees on which data were simulated (Fig. 2). Distributions overlapped across all

combinations of tree priors and molecular clocks. Slight deviations from simulated values

are likely attributable to sampling error. The estimates of l and r were consistently

underestimated for the 25-taxa UCLN cases, providing evidence that the number of taxa is

important when among-lineage rate heterogeneity is concerned. However, other

preliminary trials did not show a consistent pattern of underestimation, suggesting that

this pattern results from the 10 trees initially selected for simulation and not a systematic

bias. LTT plots of maximum clade credibility trees indicated that the estimated trees

generally coincide with the original trees, though the Yule:UCLN case showed greater

discordance at nodes deeper in the tree for a small number of replicates (Fig. S1).

This is not surprising given the difficulty of estimating nodes deep in the tree, and it also

helps explain the discrepancy described above.

When trees were simulated under a BD process, estimates were also generally

concordant with the original trees. Medians were nearly identical among many simulation

conditions (Fig. 3), though parameters were underestimated in the UCLN cases.

This discrepancy was either reduced or did not appear to be present in cases assuming a strict

clock. LTT plots revealed that maximum clade credibility trees were, again, approximately

equivalent to the original. There were some exceptions, again in the deep nodes of

the trees, though these did not drastically affect parameter estimation (Fig. 3). As in the Yule

cases, there were no discernable tendencies for parameter estimates to be consistently over

or underestimated relative to the simulated trees in preliminary analyses. However,

estimates of l are biased downward, sometimes drastically. For the 25-taxa cases, l estimates

are close to r, even though they ought to be 2r with ε = 0.5. We hypothesize that estimates of

l should approach 2r as the number of taxa increases. To investigate, we performed

additional simulations, as described above, but with 50, 75, and 125 taxa. Estimates of

l increase with the number of taxa but are still reduced (Fig. S3).

With low, medium, and high among-lineage substitution rate heterogeneity,

assumptions about molecular rates can have substantial impact on parameter estimates
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(Fig. 4). With low rate heterogeneity, estimates of l and r are similar to the original trees,

but the discordance increases dramatically as the variance in rates among lineages

increases. Trees estimated using an UCLN clock appear to suffer the least, especially

when estimated under the simulation conditions (BD:UCLN). This effect is most

dramatic in the high rate heterogeneity simulations, where the assumption of a

tree-wide constant substitution rate can lead to substantially discordant estimates of both

l and r. Further analysis of each of these simulation conditions indicates a

deviation from a strict clock, as evidenced by posterior estimates of the coefficient

of variation from BEAST on the simulated datasets (95% HPD, low rate hetereogeneity:

[0.157–0.1948]; medium rate heterogeneity: [0.2508–1.1833]; high rate heterogeneity:

[0.2402–2.6596]).
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Figure 2 Yule simulations. The top row of plots (A–D) refers to the 100-taxa cases, whereas the bottom row (E–H) refers to the 25-taxa cases.

Median estimates of l or r, estimated from the 10 original trees, are used as data for each boxplot. The title of each subplot refers to the simulation

conditions. Each combination of tree priors and molecular clocks under which trees are estimated is listed on the x-axis. The distribution of estimates

from the original trees is also displayed. Parameter estimates are generally consistent with the original trees with slight deviations in some cases.
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DISCUSSION
The goal of this study is to determine the impact the choice of tree prior and molecular

clock have on the estimation of diversification rates. We focused our efforts on estimating

l, the rate of lineage accumulation, and r, the net diversification rate, under all

combinations of two tree priors (Yule and BD) and two flavors of molecular clocks

(strict and UCLN). These parameters were selected for investigation because estimating

the relative extinction rate (ε) alone is known to be difficult, and estimates of this

parameter have larger uncertainty (Nee et al., 1994). Estimating the net diversification rate

still provides insight into the effect of extinction across the phylogeny while facilitating a

meaningful comparison among simulation conditions. We found that the combination of

tree prior and clock did not substantially impact diversification parameter estimates.
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Figure 3 Birth-death simulations. The top row of plots (A–D) refers to the 100-taxa cases, whereas the bottom row (E–H) refers to the 25-taxa

cases. The median estimates of l or r, estimated from the 10 original trees, are used as data for each boxplot. The title of each subplot refers to the

simulation conditions. Each combination of tree priors and molecular clocks under which trees are estimated is listed on the x-axis. The distribution

of estimates from the original trees is also displayed. Parameter estimates are highly congruent with the original trees under each set of simulation

conditions. Full-size DOI: 10.7717/peerj.6334/fig-3
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Across our simulation conditions, parameters from trees estimated under all combinations

of tree priors and clocks were concordant with parameter estimates produced from the

trees on which nucleotide data were simulated. However, the fact that estimates of l are

biased downward, sometimes drastically, suggests that estimates of l may be incorrect

when trees are estimated assuming no extinction.

The simulations involving low, medium, and high among-lineage substitution rate

heterogeneity revealed that it is possible for the choice of clock to have a substantial

impact on parameter estimates (Fig. 4). Trees estimated using an UCLN clock

appear to suffer the least, especially when estimated under the simulation conditions

(BD:UCLN). This effect is most dramatic in the high rate heterogeneity simulations,

where the assumption of a tree-wide constant substitution rate can lead to substantially

Y
u
le

:S
tr

ic
t

Y
u
le

:U
C

L
N

B
D

:S
tr

ic
t

B
D

:U
C

L
N

O
ri

g
in

a
l

0.0

0.5

1.0

1.5

Low Rate Heterogeneity

Y
u
le

:S
tr

ic
t

Y
u
le

:U
C

L
N

B
D

:S
tr

ic
t

B
D

:U
C

L
N

O
ri

g
in

a
l

0.0

0.5

1.0

1.5

Medium Rate Heterogeneity

Y
u
le

:S
t r

ic
t

Y
u
le

:U
C

L
N

B
D

:S
tr

ic
t

B
D

:U
C

L
N

O
ri

g
in

a
l

0.0

0.5

1.0

1.5

High Rate Heterogeneity

Y
u
le

:S
tr

ic
t

Y
u
le

:U
C

L
N

B
D

:S
tr

ic
t

B
D

:U
C

L
N

O
ri

g
in

a
l

0.5

1.0

1.5

2.0

2.5

3.0

3.5

Low Rate Heterogeneity

Y
u
le

:S
tr

ic
t

Y
u
le

:U
C

L
N

B
D

:S
tr

ic
t

B
D

:U
C

L
N

O
ri

g
in

a
l

0.5

1.0

1.5

2.0

2.5

3.0

3.5

Medium Rate Heterogeneity

Y
u
le

:S
t r

ic
t

Y
u
le

:U
C

L
N

B
D

:S
tr

ic
t

B
D

:U
C

L
N

O
ri

g
in

a
l

0.5

1.0

1.5

2.0

2.5

3.0

3.5

High Rate Heterogeneity

r r r

A B C

D E F
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discordant estimates of both l and r. At the same time, investigators could easily avoid

errors associated with using a strict clock by testing for rate heterogeneity in their

sequence data.

The assumption of a single rate of evolution across a tree is often violated and

can severely impair phylogenetic estimation (Shavit et al., 2007; Penny, 2013). This study

assumed rates with a modest amount of heterogeneity, and it appears that a strict

clock produces reasonable results in the face of this violation. In other words, a dataset

with a small to moderate amount of heterogeneity may have rates that are

reasonably captured by a single, global rate. However, it may not be known a priori

whether a dataset has disparate rates of evolution among lineages. It would be advisable,

then, to assume a clock model that has the potential to model heterogeneity more

accurately, and this is partially why the UCLN relaxed clock has seen such widespread

use and success in systematic analyses (Drummond et al., 2006). Furthermore,

should rates of evolution be extreme among some lineages, it would make sense to

attempt to capture any heterogeneity using appropriate priors as opposed to assuming it

is absent. Rate homogeneity among lineages, or the absence of a clock altogether,

may represent a poor prior given our current understanding of molecular biological

processes (Drummond et al., 2006).

There are several caveats to this simulation study. First, our original trees are fully

resolved, and nucleotide sequence data are simulated under parameters estimated from a

quickly evolving nuclear intron. This implies that there will be a large number of

phylogenetically informative sites per individual. Therefore, these trees will be easier to

estimate than those that lack signal and/or contain unresolved nodes. Second, there is no

extreme rate heterogeneity among lineages. Third, the datasets only contain 25 and

100 taxa, each with only 5,000 bp of nucleotide sequence data, following the protocol of

Wertheim & Sanderson (2011). Datasets of this size are considered modest in the current

era of high-throughput sequencing, where the generation of hundreds of thousands

or millions of base pairs of sequence per sample is possible. More sequence data can lead

to more accurate phylogenies, which improves parameter estimates at the expense of

computational speed. It is also reasonable to assume that some systems may be best

explained through more complex models, such as models that specifically assume

multiple, independent diversification rates across a dataset (Alfaro et al., 2009; Rabosky,

2014). Our analyses only assume a single rate of diversification, and this assumption

may be violated in larger datasets with greater levels of taxonomic divergence.

Furthermore, there are families of models that assume shifts in speciation rates across

phylogenies which could be considered (Steel & McKenzie, 2001). Such models can be fit

to identify diversification rate heterogeneity and, therefore, estimate diversification

rates more accurately under complex scenarios. Finally, by fixing root age, we control for

known sources of estimation error that have to do with calibrating molecular evolution

when reconstructing time trees. Careful attention to calibrations is essential to

obtaining diversification rates in units that are meaningful. We reinforce that it is

important to select among models in order to produce accurate, interpretable results

for each dataset.
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CONCLUSIONS
It appears that reasonable parameter estimates can often be achieved regardless of the

prior used for phylogenetic tree shape. Among the cases that we simulated, either

choice of tree prior appears to capture the underlying branching process; the same holds

for molecular clocks with low among-lineage rate heterogeneity. Even in cases with

excessive among-lineage rate heterogeneity, it is generally true that existing methods are

able to detect and account for that rate variation. Overall, we find that the choice of

tree prior and molecular clock has relatively little impact on the estimation of

diversification rates.
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