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RANDOM WALKS ON HOMOGENEOUS SPACES AND DIOPHANTINE
APPROXIMATION ON FRACTALS

DAVID SIMMONS AND BARAK WEISS

ABSTRACT. We extend results of Y. Benoist and J.-F. Quint concerning random walks
on homogeneous spaces of simple Lie groups to the case where the measure defining the
random walk generates a semigroup which is not necessarily Zariski dense, but satisfies
some expansion properties for the adjoint action. Using these dynamical results, we study
Diophantine properties of typical points on some self-similar fractals in R?. As examples,
we show that for any self-similar fractal X < R¢ satisfying the open set condition (for
instance any translate or dilate of Cantor’s middle thirds set or of a Koch snowflake),
almost every point with respect to the natural measure on K is not badly approximable.
Furthermore, almost every point on the fractal is of generic type, which means (in the
one-dimensional case) that its continued fraction expansion contains all finite words with
the frequencies predicted by the Gauss measure. We prove analogous results for matrix
approximation, and for the case of fractals defined by Mobius transformations.

1. OVERVIEW

The purpose of this paper is twofold: to prove new results about random walks on
homogeneous spaces, and to apply these results, as well as previously known results, to
questions about the Diophantine properties of typical points on various fractals. In this
section we state and discuss illustrative special cases of our results, postponing the most
general statements, and postponing as well the definitions of the terms appearing in the
theorems.

Theorem 1.1. Let t > 2 and d = 1 be integers, let G = SLg1(R), A = SLg11(Z), and
X = G/A, and let m be the G-invariant probability measure on X derived from Haar
measure on G. For eachi=1,...,t, firc; > 1, y; € R?, and O; € SO4(R), and let

_ ciO; yi -
hz—|: 0 Ci_d:|EG (Z—l,...,t).

Assume that y, = 0 and that the vectors ys, ...,y span R Fiz py,...,py > 0 with

pr+ - +p =1, and let p = Z;lplﬁi (where §; is the Dirac mass on Edif{l,...,t}

centered at i). Then for any x € X and for u*N-a.e. (iy,is,...) € EN, the sequence
{hznhnx . neN}

15 equidistributed in X with respect to m; i.e. the sampling measures %25;01 Ohiy iy
converge to m as N — oo in the weak-* topology.

Theorem 1.1 is modeled on groundbreaking work of Yves Benoist and Jean-Francois
Quint. In [5], they obtained the same conclusion under the assumption that the Zariski

closure H of the group generated by supp(u) coincides with G, whereas in Theorem 1.1 H
1
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is not semisimple and could be solvable Following their strategy, and using many of their
results, we first show that m is the unique behavior of almost every random path, starting
at an arbitrary initial point z. Theorem 1.1 is a special case of one of our main results
on random walks on homogeneous spaces, namely Theorem 2.1. In contrast to the work
of Benoist—Quint as well as earlier work in this domain, the hypotheses of these theorems
involve expansion properties for the adjoint action of elements of supp(u). These properties
cannot be detected solely from algebraic properties of the group H.

We use these results to study a question which has attracted considerable attention re-
cently: understanding the Diophantine properties of a typical point on a fractal. Regarding
this, we have the following:

Theorem 1.2. Let K < RY be the limit set of an irreducible finite system of contracting
similarity maps satisfying the open set condition, let s = dimy (K), and let ux denote the
restriction to IC of s-dimensional Hausdorff measure. Then px-a.e. o € K is not badly
approximable, and is moreover of generic type.

The class of fractals appearing in Theorem 1.2 contains such standard examples of self-
similar sets as Cantor’s middle thirds set (or any image of it under an affine map), the
Koch snowflake, the Sierpinski triangle, etc. Regarding these and more general fractals,
and natural measures supported on them, it was previously established that they give zero
measure to the set of very well approximable numbers/vectors but contain many (in the
sense of Hausdorff dimension) badly approximable points. The measure of the set of badly
approximable points in such sets was considered by Einsiedler, Fishman, and Shapira [12].
They showed among other things that in case K is Cantor’s middle thirds set, pi-a.e.
a € K is not badly approximable. They used the invariance of I under the x3 map and
their proof relied on deep dynamical results of Lindenstrauss [33]. Our proof relies on the
self-similar structure of K, and improves on [12] in several respects: by establishing that
« is typically of generic type, and by extending the result to a general class of fractals in
every dimension.

The fractals in Theorem 1.2 are limit sets of iterated function systems (IFSes) consisting
of similarities R? — R?. By employing directly results of Benoist and Quint we are also able
to prove similar results for fractals which are limit sets of [FSes of Mdbius transformations,
with the difference that the usual notions of Diophantine approximation are replaced by
analogous notions for Diophantine approximation with respect to a Kleinian group. We are
also able to treat measures supported on fractals other than the Hausdorff measures, and
to discuss additional Diophantine properties, including the setup of matrix Diophantine
approximation, Dirichlet improvability, intrinsic approximation on spheres, and more.

The paper is divided into two parts. In the first we establish our results for random
walks on homogeneous spaces, and in the second we apply these results to Diophantine
approximation. The first part is completely independent of the second part but relies
heavily on work of many authors, and in particular on the work of Benoist and Quint. The
second part can be read independently of the first, provided one is willing to accept three
dynamical results: Theorems 10.1 and 10.4, which are proven in Part 1, and prior results
of Benoist and Quint, summarized as Theorem 10.2.
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Part 1. Random walks on homogeneous spaces
2. MAIN RESULTS — STATIONARY MEASURES AND RANDOM WALKS

Let u be a probability measure on a group G. A measure v on a G-space X is called p-
stationary if SG gxvdu(g) = v. Clearly, every G-invariant measure v is u-stationary for every
probability measure ¢ on GG. For a general action of a group on a compact space, invariant
measures need not exist, but p-stationary measures always exist. An understanding of
all the stationary measures for an action leads to a very detailed understanding of the
action (see e.g. [16, 17, 19]). This is most easily seen when there is a unique stationary
probability measure. Our main result identifies some measures p on G for which there is
a unique stationary probability measure on a homogeneous space X = G/A, and describes
the random paths starting from an arbitrary point.

We need some notation, which will be used throughout the paper. Let G be a unimodular
noncompact Lie group with finitely many connected components, let £ < G be compact,
and let 11 be a compactly supported probability measure on G such that supp(pu) = E. We
will sometimes think of E as an abstract indexing set for elements of (G, in which case we
will think of i as a measure on E and write e — g, for the inclusion map from E to G.
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Let T" and I'" denote respectively the subgroup and subsemigroup of G generated by E.
If Ty, Ty are two subgroups of GG, we say that I'y is virtually contained in I'y if I'y N Iy is
of finite index in I';. Let B denote the infinite Cartesian power EY, and let 8 denote the

Bernoulli measure u®~. For each b = (by,...) € B, let b7 denote the finite word (by, ..., b,)
and write
(1) gop = Gb, " Gby -

Let p*" denote the measure on G obtained as the pushforward of the measure u®" = u®
-+-@u on E™ under the map b — gyn. Let V = Lie(G) be the Lie algebra of G, let SL*(V)
be the group of linear automorphisms of V' with determinant +1, let Ad : G — SL*(V)
be the adjoint representation, and for each d = 1,...,dimG — 1 let V"¢ = /\d V and let
pa : G — SL*(V"?) be the d-th exterior power of Ad. We say that two subspaces Vi, V5 of
V~dare complementary if V24 = Vi + Vo and V) 0 Va = {0}. In §3, following Oseledec, we
will define a subspace of non-mazimal expansion, to be denoted by V,=™% and a subspace
of subexponential expansion, to be denoted by Vfo. These are subspaces of V and of V"¢

respectively, defined for $-a.e. b € B, and depending measurably on b.

Theorem 2.1. Let G, p, and pg : G — SLT(V ) be as above, and suppose that the
identity component of G is simple. Let A be a lattice in G, let X = G/A, and let mx be
the G-invariant probability measure on X induced by Haar measure on G. Suppose that T’
acts transitively on the connected components of X, and that T' is not virtually contained

in a conjugate of A. Assume that for each d = 1,...,dim G — 1, there is a nontrivial proper
subspace W% & V1 such that the following hold:

(I) For every g € supp(u), W*? is py(g)-invariant. For 3-a.e. b€ B, if d = 1 then
W is complementary to V,="* and if d > 1, then V,;=° n W*4 = {0}.

(IT) For every g € supp(u), Ad(g) acts on W = Wt as a similarity map (with respect
to some fized inner product on W), and

L log [Ad(g) | dya(g) > 0.

(II1) For any d, if a linear subspace L < V"% has a finite orbit under the semigroup
generated by supp(p), then L n W% # {0}.

Then:

(i) The only p-stationary probability measure on X is mx.
(ii) For any v € X, for B-almost every b € B, the sequence (gyr®)nen is equidistributed
with respect to mx.

Theorem 2.1 is modeled on results of Benoist and Quint. Namely, conclusion (i) is
obtained in [4, Theorem 1.1] and conclusion (ii) is obtained in [5, Theorem 1.3] under the
assumption that the Zariski closure H of I' is semisimple with no compact factors. Our
proof of Theorem 2.1 relies heavily on arguments introduced by Benoist and Quint.

Despite the very similar approaches, we do not assume that H is semisimple, but instead
introduce assumptions (I)—(III). As we will see in §3, these assumptions imply that for
any v € V, for almost any b € B, the random sequence of vectors (Ad(gy)v)n=1 become

longer and longer (at a rate independent of v) and are attracted projectively to Wl At
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as n — 0. In other words, W plays the role of a “subspace of maximal expansion” to
which all trajectories get attracted. This crucial observation makes it possible to employ
the “exponential drift” argument of Benoist and Quint and conclude that any stationary
measure v is invariant under a subgroup of W. We note that in our work W is a determin-
istic subspace, whereas the subspace which plays a similar role in the arguments of Benoist
and Quint (which they denote by V4) is a random subspace depending on b.

In the main application of interest in Part 2, the group H which will appear will not
be semisimple, and assumptions (I)—(III) will be satisfied. In fact, (I)—(III) can never be
satisfied when H is semisimple. On the other hand, conditions (I)—(III) do not depend only
on H, but also on the decomposition of V' into expanding and contracting spaces for the
transformations Ad(g) (g € supp(u)). It is possible (e.g. by adapting [3, §3.5]) to construct
examples of measures p for which the group H is solvable and for which both conclusions
of Theorem 2.1 fail.

Alex Eskin and Elon Lindenstrauss have recently announced a far-reaching extension of
the work of Benoist and Quint, which implies Theorem 2.1(i).

We will also need a result which extends the second conclusion of Theorem 2.1 to certain
fiber bundles over X. In the following theorem B = E%, § is the Bernoulli measure ;&%
on B, and T : B — B is the shift map.

Theorem 2.2. Let G be a unimodular connected Lie group, let A be a lattice in G, let
X = G/A, and let mx be the unique G-invariant probability measure on X. Let p be a
compactly supported probability measure on G, let E = supp(u), and let B, 3, T' be as above.
Fiz v € X and suppose that for 3-a.e. be B, the sequence (g )nen s equidistributed with
respect to mx. Let K be a compact group, let mg be Haar measure on K, and letk : 1" — K
be a homomorphism such that the I'-action v(x, k) = (yx, k(y)k) on X x K is ergodic with
respect to mx @ mx. Let Y be a locally compact metric space, f : B — Y a measurable
map, and my = f.p3.
Then for any x € X, for f-a.e. be B, the sequence

(gsp, (gnp), F(TD)),

18 equidistributed with respect to the measure mx @ mg @ my on X x K x Y.

3. RANDOM MATRIX PRODUCTS FOR SEMIGROUPS, AND POSITIVITY

Throughout this section we keep the notation and assumptions of Theorem 2.1. Our goal
will be to describe some consequences of hypotheses (I)—(IIT). We will need more notation.
For each d = 1,...,dim G — 1, we fix an inner product on the vector space V"% and use it
to define a metric on V"¢ and an operator norm on GL(V*%). We denote the projective
space of lines in V"¢ by P(V %), and the Grassmannian space of k-dimensional subspaces
by Grg(V ). The element of P(V"9) corresponding to a point z € V%~ {0} will be
denoted by [z], and the image of a nonzero subspace W < V% in P(V"4) will be denoted
by [W]. We will denote the distance between a vector v € V"% and a subspace W < V4 by
dist(v, W), and the distance between their projectivizations by dist([v], [W]). In the latter
case the distance can be measured with respect to any metric on P(V*?) which induces the
standard topology. This should cause at worst mild confusion.
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The main results of this section are the following three statements. The first should
be compared to [2, Corollary 5.5], the second to [2, Lemma 6.8], and the third to [13,
Lemma 4.1], where the same conclusions are obtained under different hypotheses.
Proposition 3.1. Under assumptions (I)—(III), we have:

a) For every a > 0, there exist co > 0, qo = 1 such that for any v e V ~ {0}, we have

B ({be B:Yq=q, [Ad(gs)v] = co| Ad(ga)|l [v]}) =1 - a.

b) For every a > 0 and n > 0, there exists qo = 1 such that for any v € V ~ {0}, we
have

B({be B:Vq= q, dist ([Ad(gy)v], [W]) <n}) > 1—a.

Proposition 3.2. Under assumptions (1) and (HI), for each d = 1,...,dim(G) — 1, the
only p-stationary probability measure on V" is the Dirac measure 8y centered at 0.

Proposition 3.3. Under assumptions (I)—(I11), there ezxist ng € N and € > 0 such that for
all d, ve V< {0}, and n = ng, we have
1
(2) —flogpd()|d *n()>8
G

n ol

We recall the following:
Theorem 3.4 (Oseledec, [36]). Let G, be as above, let V' be a vector space, and let
p: G — GL(V) be an action. Then there exist k € N, numbers x1 > -+ > xx (called

Lyapunov exponents), and a measurable map which assigns to 3-a.e. b € B a descending
chain of subspaces (called Oseledec subspaces)

V=V 2Vi(®) 2 2 Vi) 2 Vi = {0},

such that for alli=1,... k and v € V;_1(b) \ V;(b),
l n

3) iy 08Pl _

n—aoo n

g

The convergence in (3) is uniform as v ranges over any compact subset of V;_1(b) \ Vi(b).
Furthermore,

(4) > divi = j log | det (p(g))] dy,

where d; = dim V;_y —dim V;, and for B-a.e. b€ B, for all i, we have

() Vi(T'(b)) = p(ge,)Vi(b).
In the sequel, we will denote the subspace V;(b) from Theorem 3.4 by V,=™**. We will
call it the Oseledec space of non-mazimal expansion. Similarly, if jo = max{j =0,...,k :

x; > 0}, then we will denote the Oseledec subspace Vj,(b) by V,=°, and we will call it the
Oseledec space of subexponential expansion.

Fixd=1,...,dim(G) — 1, and consider the special case of Theorem 3.4 occuring when
V =V~ and p = pg. Note that since pg(G) < SL*(V), (4) implies that ¥ | dix; = 0. On
the other hand, since the space W4 is proper and invariant, assumption (I) guarantees
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that y; > 0, from which it follows that x, < 0 and k¥ > 2. In particular we have {0} #
Vb<0 c Vb<max % V/\d.

Proposition 3.5. Under assumptions (1) and (I1), for d = 1, for f-a.e. b e B, for any
compact set C' < V V=" there exists ¢ > 0 such that for all v e C and all n € N, we
have

|Ad(gep )v|| = cl|Ad(ger )]

Proof. We will write A =, B if A, B are two quantities satisfying ¢! < % < ¢ for some
constant ¢ > 1 depending only on G and p. If ¢ (the implicit constant) depends on an
additional parameter p we will write A =, ,, B.

Fix v e V V=™ By assumption (I), we can write v = m;(v) + my (v), where m(v) €

V,=™* and my (v) € W N {0}. Then by Theorem 3.4, we have

| Ad(gg )i ()|

0
| Ad(ge )w (0] e

and thus [Ad(gy)v|| =xpw |[Ad(gen)mw (v)|. Moreover, by assumption (II) we have
IAd(ger )mw (V)| =x v [Ad(gen)|w|. In both cases the implicit constant can be taken to be
uniform for v in a compact subset of V' . V,;=™®, Choose a basis {e;}&" of V consisting
of elements which do not belong to V,=**. By the same logic, we have [Ad(gsr)e;| =xp
|Ad(gen )|w | for each i. Thus [Ad(gsn)v| =x s [Ad(gsr)|w] =« [Ad(gsr)|, where for each

fixed b, the implicit constant is uniform on compact subsets of V' ~\ V=™, U

Proposition 3.6. Under assumptions (1) and (II), for d = 1, for -a.e. b € B, for all
ve V VS we have

dist (Ad(gb{» v, W)

R Adlgg)] oo
and hence
(7) dist ([Ad(gb?)v], [W]) — 0.

For fized b, the convergence is uniform for v in a compact subset of V . V=",

Proof. By assumption (I), we can choose w € W such that v —w € V,;=**. Again by (I),
we have Ad(gyv)w € W for all n. Thus for any 0 < & < x1 — x2, we have

dist(Ad(gey )v, W) < [|Ad(gep)v — Ad(gsp )w| = [Ad(gey) (v — w)
— 0 (et = o (JAd(giy)]).

This establishes (6). Equation (7) and the final assertion follow from combining with
Proposition 3.5. 0

Proposition 3.7. Assume that (I) and (III) hold, and fix d = 1,...,dim(G) — 1 and
v eV {0}. Then we have v ¢ V;=° for B-a.e. be B, and if d = 1 then v ¢ V,="% for
[-a.e. be B.
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Proof. The proofs for d = 1 and d > 1 are identical, exchanging everywhere V<0 for 1/ <max
and py for Ad. For concreteness we prove the assertion for d = 1. Fix v € V \ {0}, and let
(** # 0,1 denote the pushforward of ® under the map b] — [Ad(gy; )v], or equivalently the

pushforward of p** ® 8}, under the map (g, [v]) — [Ad(g)v]. For each N > 1, let

1Nfl
- *i*(')*v
VN N;]u [v]»

which is a probability measure on the compact space P(V'). By the equivariance property
(5), for all n and b} € E", for f-a.e. b' € B we have

Ad(gpp)v e Vy™™ <= ve Vb?llf,lax.

A straightforward induction and Fubini’s theorem imply that for all ¢ > 0, we have

| i asw = [ w s s ase),

B
and hence, for all N > 1, we have

B({be B:ve Vi) = f 510y (V=) A (b)

- | iy aso).

We need to show that (8) is zero. Applying the Lebesgue dominated convergence theorem
to the functions b — vy ([V,;™*]) < 1, it suffices to show that for f-a.e. b € B, we
have vy ([V,""*]) —n—xn 0. Suppose the contrary. Then there exist ¢ > 0 and a set
By © B with (By) > 0, such that for each b € By, there is a subsequence Ny — 00 with
vn, ([V,=™*]) = €. We can further assume that By is contained in the set of full f-measure
which appears in assumption (I). Let V' = V,=m® for some by € By, let (Ni)ren be the
corresponding subsequence, and let v, be a weak-* limit point of the sequence (vn, )gen.
Then vy, is p-stationary and satisfies v, ([V']) = €. According to the ergodic decomposition
theorem for stationary measures (see e.g. [19, §3]), there is an ergodic component v/, of
vy satisfying v/, ([V']) > 0. Let £ < dimV be the smallest number such that some
k-dimensional subspace of V' is given positive measure by v/ . Then any two distinct k-
dimensional subspaces of V' intersect in a measure zero set, so v/, acts as an additive atomic
measure on the set of all such subspaces. Since finite atomic stationary ergodic measures
are supported on finite sets invariant under the semigroup, there exists a finite supp(u)-
invariant collection of subspaces {Ly, ..., L,} whose union contains the support of /.. Now
by assumption (III), each of the subspaces L; intersects W nontrivially. So by assumption
(I), L; n V' & L; is of dimension strictly less than k, and thus v/ ([L; n V']) = 0. So
v, ([V']) = 0, a contradiction. O

(8)

Proof of Proposition 3.3. Fix a > 0 to be specified below. By Proposition 3.7, for each
v € V74 {0} there exist g9 = g¢(v') and By = By(v') < B such that 3(By) = 1 —« and for
all b € By, dist([v'], [V,=°]) = &. Choose &,(v') € (0,0(¢)). Then there is a neighborhood
U = Uy of [v'] in P(V"9) such that for all b e By(v') and v € V4~ {0} with [v] e U, we
have dist([v], [V;=°]) = &1(v'). Since the projective space P(V"9) is compact, there exist a
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finite cover {U;, ..., Uy} of P(V*4), a finite collection {Bj, ..., By} of subsets of B such that
B(B;) = 1—afor all j, and £; > 0 such that for all j = 1,...,k, be B;, and v e V¥ {0}
with [v] € U;, we have dist([v], [V,;="]) = e;.

Choose x > 0 strictly less than the smallest positive Lyapunov exponent of V%, By the
uniformity in Theorem 3.4, for each j there exists n; such that for all n > n;, v e V24 {0}
with [v] € U;, and b € B;, we have

lpalgey vl = e™|v].
Let N = max;n;. For each v e V"4~ {0} and n > N let
S =S ={b € E" : [ palgsp)v]| = €™*[v]}-

Note that if [v] € U; and b € B; then b} € S,,,, for all n = N. Since B(By(v;)) = 1 — a we
obtain that u®"(S) > 1 — «. Thus we find:

1 pa(g)v n 1 lpa(gep)vll . en/in
—Llog LG (9) = ﬁf log =———— dp®"(b])

[l

n ol
1 n i3 1 — — n n

>1 j log(e™) du®" + ~ j log | pa(gn) |~ dp®(05)
nJs n Jegn s

WV

1 B
E[“ —a)ny —anlog max | lpa(g) ']

gesupp(p

=(1—a)x —alog max |[pa(g)~"].
gesupp(p)

To finish the proof, choose a small enough so that the last expression is a positive number
independent of v. O

Proof of Proposition 3.1. Fix a,n > 0. By Proposition 3.7 and a compactness argument
similar to the one used in the proof of Proposition 3.3, there exists £ > 0 such that for all
veV ~ {0},

B({be B :dist([v], [V,m"*]) = ¢}) = 1 — /2.
Now for each b € B, let N(b) be the smallest integer with the following property: for
all v € V such that dist([v], [V;="*]) > € and for all n > N(b), we have |Ad(gy)v| =
ﬁHAd(gb?)H |lv| and dist([Ad(gsn )v], [W]) < 5. Then by Propositions 3.5 and 3.6, N (b) <
o for f-a.e. b e B. Therefore there exists Ny such that

B({be B: N(b) < No}) =1 — a/2.

Now fix v € V \. {0}. For all b € B such that dist([v], [V;~™**]) = ¢ and N(b) < Ny, and for
all n = Ny, we have |Ad(gsr)v| = NLOHAd(gb?)H |lv| and dist([Ad(gsn)v], [W]) < n. These
facts demonstrate (a) and (b) respectively. O

Proof of Proposition 3.2. Let v be a u-stationary probability measure on V'~ which is not
equal to the Dirac measure dy, let Z = B x V% let A = B ® v, and let

Y = {(byv)e Z:v¢ V)
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According to Proposition 3.7, A(Y) = 1. Define T : Z — Z by T'(b,v) = (Tb, pa(gs, )v)-
Since v is p-stationary, A is T-invariant. By the definition of Y, for every (b,v) € Y we
have | pa(gyr )v| — 0. Let t > 0 be large enough so that A(Yp) > 0, where

Yo ={(bv) e Y : v <t}.

Then for all (b,v) € Yy, for all n large enough we have T”(b, v) ¢ Yp, and we get a contra-
diction to the Poincaré recurrence theorem. 0

The following observation will also be useful.

Proposition 3.8. Under assumptions (I) and (I1), the subspace W = W™ = V = Lie(G)
1s abelian, and in particular is a subalgebra.

Proof. Let b € B belong to the subset of full S-measure for which the conclusion of Theorem
3.4 holds. Denote by gy the induced action of gy on the quotient space V/W. Then for
all large enough n, by assumption (I) we have

gy | < Nlgsy lw
and by assumption (II) we have
gz lw ] > 1.
It follows that the eigenvalues of gy all have modulus < ||gyn ||, and by assumption (II),
genlw is normal and its eigenvalues all have modulus equal to [g|w|. Now if wy,w; €
W ® C are eigenvectors corresponding to eigenvalues A1, Ay, then [wy, ws] is either 0 or an
eigenvector with corresponding eigenvalue A\jXo. But since [AiXa| = [gen|wl® > [gsn]w],
the latter case is impossible, so [wy, ws] = 0. O

4. MODIFYING THE ARGUMENTS OF BENOIST—QUINT

In this section we will outline how to prove Theorem 2.1 by adapting the arguments of
Benoist and Quint. A crucial input to the work of Benoist and Quint was some information
on the action of random matrices. We have already proved the analogous results required
in our setup in §3. The other arguments appearing in [2] can be easily adapted to our new
setup. There are many modifications but all of them are minor. A self-contained treatment
would have required many pages, consisting largely of arguments due to Benoist and Quint,
and hence we will simply refer to [2] and take note of which parts of [2] need to be modified
to deal with our setup. This will show that the conclusion of [2, Theorem 1.1] is valid in
our setup, which, as we will see, implies part (i) of our theorem. It will also show that [2,
Lemma 6.3] is valid in our setup, a fact which we will use in the proof of part (ii) of our
theorem.

Proof of Theorem 2.1(i). We begin by comparing Theorem 2.1(i) with [2, Theorem 1.1].
The differences in the statements of the theorems can be summarized as follows:
1. In [2, Theorem 1.1], it is assumed that the Zariski closure H of I' is semisimple
with no compact factors, while in Theorem 2.1(i), for each d = 1,...,dim(G) — 1
we assume the existence of a subspace W < V"4 satisfying (I)-(III).
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2. In [2, Theorem 1.1], it is assumed that G is connected and simple, while in Theorem
2.1(i), we assume only that the identity component of G is simple and that I' acts
transitively on the connected components of X = G/A.

3. The conclusion of [2, Theorem 1.1] states only that the only nonatomic p-stationary
probability measure is my, while the conclusion of Theorem 2.1(i) states that mx
is the only p-stationary probability measure, meaning that there are no atomic pu-
stationary measures. However, in Theorem 2.1(i) we also assumed that I" is not
virtually contained in any lattice conjugate to A.

Regarding (3), in the context of Theorem 2.1(i), the assumption on I' implies that for
all x € X, the orbit I'z is infinite. This in turn implies that X does not admit any atomic
p-stationary measure.

Regarding (2), the only place where the connectedness assumption is used in [2] is in
the proof of [2, Lemma 8.2]. There, it is claimed that [2, Proposition 6.7] implies (a)
that G, = G, but as stated, the conclusion of this proposition gives only (b) that the Lie
algebra of G, is a (nontrivial) ideal in the Lie algebra of G. However, under Benoist—Quint’s
assumption that G is connected and simple, (b) implies (a).

Now suppose that the identity component of G is simple, that I" acts transitively on the
connected components of X = G/A, and that (b) holds. Then G,, contains Gy, the identity
component of GG, and thus since « is fixed by G, it follows that « is a linear combination
of the Gy-invariant probability measures on the connected components of X. Now let o
be the projection of o onto the set of connected components of X. Then «' is p-stationary,
so since a stationary measure on a finite set is invariant, o’ is I'-invariant. Since I' acts
transitively on the connected components of X, it follows that o’ is the uniform measure
and thus that & = mx and G = G,. Thus, the inference from (b) to (a) is valid in our
setting as well and we do not need to assume that G is connected.

Regarding (1), the assumption that H is semisimple with no compact factors is used only
in three places in [2]:

la. Benoist and Quint refer to Furstenberg and Kesten [18] for the proof of [2, Proposi-
tion 5.2]. The reference [18] assumes that H is semisimple with no compact factors.

1b. Benoist and Quint refer to Eskin and Margulis [13] in two places in [2, §6]. The
reference [13] uses the Furstenberg—Kesten theorem on the positivity of the first
Lyapunov exponent [13, Lemma 4.1], which assumes that H is semisimple with no
compact factors. [13] also uses the assumption of semisimplicity directly in the
proof of [13, Proposition 2.7].

lc. The proof of [2, Lemma 6.8] refers to [18] as well as using the assumption that H
is semisimple directly.

Regarding (1c), the only place where [2, Lemma 6.8] is needed is in the proof of [2,
Proposition 6.7], where only the cases V = V"¢ (d = 1,...,dim(G)) are needed. So it
suffices to show that the conclusion of [2, Lemma 6.8] holds for these spaces. Since G is
unimodular, it is obvious that [2, Lemma 6.8] holds for the top-level space V = YV~ dm& ~
R, and for d = 1,...,dim(G) — 1, it is immediate from Proposition 3.2 that [2, Lemma 6.8]
holds for the space V = V4.

Regarding (1b), we begin by observing that Proposition 3.3 implies that [13, Lemma 4.1]
is valid in our setting for the representations (V,p) = (V"4 p4) (d = 1,...,dim(G) — 1).
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Thus the same is true for [13, Lemma 4.2], which is proven directly from [13, Lemma 4.1].
Note that in our context we have H < SL*(V) automatically, so there is no need to derive
it from semisimplicity as is done in the proof of [13, Lemma 4.2].

Now, [13, Lemma 4.2] is used in two places in [2]. First of all, it is used in the proof of
2, Proposition 6.1] as [2, Lemma 6.2]. There, the only case that is needed is the case of
the representation (V,p) = (Lie(G),Ad) = (V™ py) (cf. [2, §6.1]), which is valid in our
context as noted above.

Secondly, [13, Lemma 4.2] is also used indirectly in the proof of [2, Lemma 6.3], which
refers to a construction in [13, §3.2], which in turn depends on [13, Condition A] being
satisfied. Now [13, Condition A] can be paraphrased as saying that the conclusion of
[13, Lemma 4.2] is valid for certain representations denoted by [13] as (V, p;) (not to be
confused with our representations (V"¢ p,)), whose defining property is that for each i
there exists w; € V; such that Stab(Rw;) = P;, where P; is a predetermined “standard”
parabolic subgroup. But in fact, if we let d; be the dimension of the unipotent radical of
P;, then our representation (V"% p, ) has this same property (taking w; to be a volume
form for the unipotent radical), and thus we may take (V;,p;) = (V% pg). Thus, by
Proposition 3.3 we know that [13, Lemma 4.2] is valid for these representations, i.e. that
[13, Condition A] is satisfied in our setup. Note that this proof circumvents the implicit
use of semisimplicity in the proof of [13, Proposition 2.7], where it is assumed that any
H-invariant subspace of a representation has a complementary invariant subspace. This
argument was needed in the original proof because of the hypothesis of [13, Lemma 4.1]
that V' does not have any H-invariant vectors, but since Proposition 3.3 does not have such
a hypothesis, it is not necessary to argue that we can reduce to this case as is done in the
proof of [13, Proposition 2.7].

Regarding (1a), we do not claim that [2, Proposition 5.2] is true in our setting, but we
claim instead that after redefining some notation appropriately, Equation (5.3), Lemma 5.4,
and Corollary 5.5 of [2] are all true in our setting in the case V' = Lie(G). Since these results
are the only results of [2, §5] which are needed in subsequent sections, this shows how to
circumvent the use of semisimplicity occurring in (1a).

The notational changes we want to make to [2, §5] are as follows:

e Instead of choosing P to be a minimal parabolic subgroup of G, we let P be the (not
necessarily parabolic) group of g € G such that Ad(g) preserves W and Ad(g)|w is
a similarity. Note that by assumptions (I) and (II), we have supp(u) < P.

e Instead of letting V' be an arbitrary representation of G, we require V' = Lie(G).

e Instead of letting V{ be the weight space of the largest weight x, we simply let
Vo = W, and instead of letting the family (V})pep be defined by [2, Proposition 5.2],
we let V, = W for all b € B. Note that by the supp(u)-invariance of W, we have
Vi = boVipy for all b € supp(f). Also note that by Proposition 3.8, Vj = W is a Lie
subalgebra, and this is necessary in order for the concept of a flow indexed by V} to
make sense (cf. [2, §6.5]) and in particular to guarantee the existence of conditional
measures with respect to this flow (cf. [2, §6.6]). In Benoist—Quint’s setup, the fact
that Vj is a subalgebra follows immediately from the definition of V.

e Since [2, Proposition 5.2(a)] is not valid for arbitrary representations in our setting,
the existence of a map £ : B — G/P satisfying £(b) = by&(T'b) is not a priori clear.
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In fact, if we had chosen P to be a minimal parabolic subgroup of GG, then it seems
unlikely that such a & would exist in general. However, our choice of P guarantees
that supp(p) < P and thus that the constant function {(b) = [P], where [P] is the
identity coset in G/ P, satisfies £(b) = bo&(T'h) for all b € supp(/3). So we let £ = [P].

e For convenience we choose the section s : G/P — G/U so that s([P]) = [U], where
[U] is the identity coset in G/U, so that s({(b)) = [U] for all b € B. This choice
implies that o(zu,£(b)) = z for all zu e P = ZU and b € B. In particular, we have
0(b) = mz(by) and thus Og(b) = log||Ad(b;)|w| for all b € B. (Note that in [2, (5.2)],
x should be understood as a homomorphism from Z to R defined by the formula
x(ma) = x(a), where me M = K nZ and a € A.)

Using this notation, assumption (II) guarantees that [2, Lemma 5.4] holds in our setup.
Combining assumptions (I) and (II) guarantees that the formula [2, (5.3)] holds. Finally,
Proposition 3.1 guarantees that [2, Corollary 5.5] holds.

To summarize, we have shown that the conclusion of [2, Theorem 1.1] is valid in our
setup, and have shown that it implies part (i) of Theorem 2.1. O

Proof of Theorem 2.1(ii). Suppose first that X is compact. According to Theorem 2.1(i),
the only p-stationary probability measure on X is the G-invariant probability measure mx
induced by Haar measure. According to the so-called “Breiman law of large numbers”
(see e.g. [1, Chapter 2.2]), for all z € X, for f-a.e. b € B, the “empirical measures”
% Zf\il 59% « (IV € N) converge to a p-stationary measure on X as N — oo. Therefore these

measures must converge to mx and we are done.

In the noncompact case we use results from [2, 5]. Denote by X = X U {c0} the one-point
compactification of X. By Theorem 2.1(i), any u-stationary probability measure on X is a
convex combination of my and the Dirac measure at the point at infinity. Using again the
Breiman law of large numbers we know that for any = € X, for f-a.e. b e B, % Zf\il (591)%1
converges to a p-stationary measure v on X. So it suffices to rule out escape of mass, i.e.
to show that v({c0}) = 0. To this end we need to show that for all x € X and £ > 0 there
is a compact set K < X such that

#{i<N:gure K}
lim inf !
N—w N

According to [5, Proposition 3.9], it suffices to prove the existence of a proper function
u: X — [0,00) such that there exist a € (0,1) and C' > 0 such that for all z € X, we have

(9) |, o) autg) < auta) + c.

>1—e.

But this is exactly the conclusion of [2, Lemma 6.3], and as we have argued above, this
conclusion is valid in our setup as well. 0

5. FIBER BUNDLE EXTENSIONS

In this section we will prove Theorem 2.2. This will follow from some results valid in a
more general framework. Let X be a locally compact second countable space, G a locally
compact second countable group acting continuously on X, m a G-invariant and ergodic
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probability measure on X, and p a probability measure on G with compact support £. Let
B=FEN B= E% and 8 = pu®N, B = ®%. We will use the letter T to denote the shift map
on both B and B.

Proposition 5.1. Fiz xy € X, and suppose that for B-a.e. b € B, the random path
(gb?xo)neN 15 equidistributed with respect to the measure m on X. Then for f-a.e. be B,
the sequence

(gb? L5 Tnb) neN
18 equidistributed with respect to the measure m ® 3 on X x B.

Proof. Let C.(X x B) be the space of compactly supported continuous functions on X x B.
We need to show that for f-a.e. b e B, for all ¢ € C.(X x B) we have

1 n—1

10 = ¢ (9320, T) d(m® B).

(10) 3 20 (o) o [ edmen)

It suffices to check that (10) holds for functions ¢ from a countable dense collection of
functions F < C.(X x B); moreover, we can choose F so that for each ¢ € F and for
each (z,b) € X x B, ¢(x,b) depends on only finitely many coordinates of b. Since F is
countable, we can switch the order of quantifiers, so in the remainder of the proof we fix
¢ € F and we will show that (10) holds for S-a.e. b e B. Let N be a number large enough
so that ¢(z,b) depends only on the first N coordinates of b.

For each z € X, let

px(a) = | ol b)ds(o)
B
Then ¢y : X — R is continuous and compactly supported. Let
h(z,b) = ¢(z,b) — px(z).
By assumption, for $-a.e. b € B the random walk (gyn2o)nen is equidistributed with respect

to m, and thus

1n 1
—ZSOX (98; o) —>f px dm = p d(m® p),

XxB

so to complete the proof we need to show that for f-a.e. be B,
1 n—1

(11) —Z h( gbzxo,Tb) — 0.

—00

In what follows we treat b as a random variable with distribution 5. Fix n = 0. If f(b)
is a number depending on b, let E[f(b)|b}] denote the conditional expectation of f(b) with
respect to the first n coordinates of b. Then for all © = 0 we have

i S5 Mg grpzo, TM(d)) dB(d) if i =
E[h<gb’1$07Tb)|b1] —{ SB gbzxo, bis1 - bpd) dB(d) ifi<n

Now consider the random variable

o0
M, € > E[(gy; w0, T'H)[b7].

1=0
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The sum is actually finite since, by the definition of ¢, for all i > n, we have E[h(gy; zo, T*D)[b}] =
0. Also, by the definition of N, for all i < n—N we have E[h(gy; zo, T'D)|b}'] = h(gy; o, T'D).
Therefore

n—1

(12) M, =" h(gyxo, T') + O(1).

1=0

Now by construction, the sequence (M, )nen is a martingale, and it has bounded steps by
(12). It follows that + M, —— 0 almost surely (see e.g. [1, Corollary 1.8 of Appendix]).

n—0o0

Combining with (12) gives (11). O
Using a bootstrapping argument we now obtain a stronger version of Proposition 5.1.

Proposition 5.2. Let the notation and assumptions be as in Proposition 5.1. Lel Y be a
locally compact metric space, let f : B —'Y be a measurable map, and let my = f.(3. Then
for B-a.e. be B, the sequence

(13) (96720, F(T")) e
18 equidistributed with respect to the measure m Q@ my on X x Y.

Proof. By Proposition 5.1, for f-a.e. b € B the random walk trajectory
(14> (gb?l‘o’Tnb)neN

is equidistributed in X x B with respect to m ® 8. Fix £ € N, and let B® = [[°_, F
and B = ®.2_, . We will abuse notation slightly by letting 7' denote the shift map
on all three of the spaces B, B®, and B. In addition we let 7% : B — B® be the
isomorphism defined by the equation T*(b); = by (i = —f), which can be thought of as an
analogue of the /th power of the shift map, although it is not an endomorphism. With these
conventions, applying T* to the equidistributed sequence (14) (where b € B is a 3-typical
point) shows that for y?-a.e. b e B®, the random walk trajectory (14) is equidistributed
in X x BY with respect to m ® . Thus if ¢ : X x B — R is a bounded continuous
function such that ¢(z,b) depends only on z and v*, € B® then for S-a.e. b e B, the
sequence (14) is equidistributed for ¢ with respect to m®3. By choosing a countable dense
sequence of such functions ¢, we can see that for 3-a.e. b € B, the random walk trajectory
(14) is equidistributed in X x B with respect to m ® 3.

Now by Lusin’s theorem, for each ¢ € N there exists a compact set K, € B of S-measure
at least 1 — 1/¢ such that f|, is continuous. By the ergodic theorem, for B-a.e. b e B, for
all / € N we have

1 ’ - 1

_ — - - > 1 - —.

n#{z L...,n:The K} — B(K,) =1 ;
Fix b € B such that this is true, and such that (14) is equidistributed. Let ¢ : X x Y — R
be a bounded continuous function, and for each (z,b) € X x B let F'(z,b) = (z, f(b)). Fix
¢ € N. Then ¢oF'is continuous on X x K, and bounded on X x B. Using Tietze’s extension
theorem, let , be a continuous extension of o F|x.x, to X x B such that o] < ¢ -
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Then since we assumed that (14) is equidistributed, we have
I ;
> Y ooy T — [ dme p)
n izl n—00

and thus

lim sup
n—:0o0

%Zw(gbgmo, F(T'0)) ~ J%f? d(m®f*5)'

i=1

n—0o0

. IS i i
<limsup — > (w(gngoyT b) — ¢ o F(gyxo, T b)‘ + J [pe —po Fld(m® B)
=1

<2e =90 Flo BB~ Ky) < 4io]c BB N Ky) —— 0.

Since ¢ was arbitrary, this means that (13) is equidistributed. O

Proposition 5.3. Let G, u, X,m be as before and let T be the subgroup of G generated
by supp(u). Let K be a compact group, mygx Haar measure on K, and k : I' - K a
homomorphism. Let Z = X x K and consider the left action of I' on Z defined by the
formula y(x, k) = (v, k(7)k). Assume that this I'-action is ergodic with respect to mQ@my .
Let mx : Z — X be the projection map onto the first factor, and let v be a p-stationary
measure on Z such that (mx)sv =m. Then v =m® mg.

Proof. There is a right-action of K on Z given by (z,k")k = (x,k'k), and this action
commutes with the left-action of I' on Z. For any measure # on Z and any smooth positive
function ¥ on K such that SK ¥ dmg = 1, we can smooth 6 by averaging with respect to
the K-action:

(15) 01 (A) et L B Ak (k) dmg (k).

Note that if (1;),ey is an approximate identity then §(%s) — 6. Since the I' and K actions
commute and v is p-stationary, so is v¥) for any 1. Since (7x ). = m and the K-action
preserves the first coordinate, we have (7x).v%) = m for all 1.

Since (mx)«v = m, by the Rokhlin disintegration theorem we can write

V= J 0r ® my dm(x)
X

for some measurable map X > z — m, € Prob(K). Here ¢, denotes the Dirac point
measure centered at x. For each « € I', by the definition of the I'-action on Z, we have
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V(6 @ My) = 0y ® K(7)smy. Since v is p-stationary and m is I'-invariant, we have

V= L Ve dpa()
_ L L Ove ® K(7)smg dm(z) du(y)
_ L L 0z ® (7)1, dm(z) du(y)

= [ 8.0 ([ stz aut)) o)

so by the uniqueness of disintegrations we have
(16) My = J K(7)sma-1, du(y)  for m-ae. x e X.
a

Repeating the same considerations for »*), by the uniqueness of disintegrations, we find
that we have a measure disintegration v¥) = { 4, ® mt¥ dm(z) where the probability

measures m” (z € X) are defined via (15) and satisfy

m{¥) = f ﬁ(y)*m(j@lx du(y)  for m-ae. z e X.
G

It follows from (15) that each of the measures m{”) (z € X) is absolutely continuous
with respect to my. Thus we can write dm” = f, dmg, where f, = fi¥) (x € X) are

nonnegative functions in C(K) < L?(K, mg) which satisfy

(17) fz(k) = JG fra(k(Y)7'R) du(y)  for m @ mg-ae. (z,k) e X x K.

Now for fixed ¢, by Jensen’s inequality, for m-a.e. x € X we have

142 = L (k)P dmie (k)
(18) < L f Fra(5(7) R dpa(y) dime (k)
- j 1ol da(),
G

with equality if and only if f,(k) = f,-1.(k(y)"'k) for p @ mg-a.e. (v,k) € I' x K. Here
| - | denotes the norm on L?*(K,mg). On the other hand, since m is I'-invariant we have

| | 1l ant) dmta) = | [ 1l dmie) duto)
X JG GJX
| vt ame) aue)

| fo]* dm(z),

X

Il
[ S
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so for m-a.e. = € X, equality holds in (18), that is, we have m{¥) = H(v)*m(ﬁ)lw for

p®@m-a.e. (v,r) € I' x X. This implies that »(*) is -invariant, and since it is absolutely
continuous with respect to m ® mg, and I' acts ergodically with respect to m ® mg, we
must have v¥) = m @ mg. Taking the limit along an approximate identity, we obtain that
v=m®& mg, as claimed. [

Remark 5.4. See [17, Proof of Theorem 3.4] for a similar argument.

Corollary 5.5. With the assumptions and notations of Proposition 5.3, if almost every
random walk trajectory

(19) (gb;liﬂo)neN
15 equidistributed with respect to m, then almost every random walk trajectory

(20) (gb?xo, /f(gb;l))neN
18 equidistributed with respect to m @ m.

Proof. Let X denote the one-point compactification of X, and let v € Prob(f( x K) be a
weak-* limit of the empirical measures of the sequence (20). By the Breiman law of large
numbers, v is p-stationary, and since (19) is equidistributed, the projection of v to X is
equal to m. So by Proposition 5.3, we have v = m ® mg. (Note that since (7x).v = m,
we actually have v € Prob(X x K) rather than just v € Prob(X x K).) O

Proof of Theorem 2.2. First apply Corollary 5.5 to X and the homomorphism x, and then
apply Proposition 5.2 to X x K and the map f. U

6. EXAMPLES

The purpose of this section is to introduce some situations in which the hypotheses
of Theorem 2.1 are satisfied. We will need some additional information about Lyapunov
exponents in the case of reducible representations. Let V' be a finite-dimensional real vector
space, W < V a subspace, and G a closed subgroup of SL* (V) which leaves W invariant,
so that G acts on V', on W (via the restriction of the G-action on V') and on V /W (via the
induced quotient action):

1 —W—V —V/W—1.

Let © be a compactly supported probability measure on G. We introduce the following
notation for recording the Lyapunov exponents and their multiplicities for an action on
Vi Ly = Zf;l d;0y,, where k, d;, x; are as in Theorem 3.4, and 0, is a formal Kronecker
symbol. Here we think of Ly as a formal sum, so that expressions of the form Ly + Ly /w
make sense.

Lemma 6.1. With the above notation, assume that

(21) inf supp(Lw) > sup supp(Ly w),

i.e. each of the (Lyapunov) exponents of (the action of G on) W is strictly larger than each
of the exponents of V/W. Then

(22) Ly = Lw + Lvw;
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i.e. each of the exponents of W and of V. /W appears as an exponent of V, with the same
multiplicity. Furthermore:

(a) For B-a.e. b € B, W is complementary to V=Y (b), where V=Y (b) denotes the
Oseledec space corresponding to the smallest exponent of W .

(b) If there is a basis for V with respect to which the matrices p(g) (g € E) are all in
upper triangular block form, and the i-th diagonal block is a similarity map with
expansion factor e*'9) | then (after re-indexing) the exponents of V are the same as
the numbers §o; dp (i = 1,..., k), with the same multiplicities.

Proof. Note that assertion (a) is an immediate consequence of (21) and (22), which imply
that the growth rate of any nonzero vector in W is greater than that of any nonzero vector
in V=Y(b), and that dim W + dim V=" (b) = dim V. Assertion (b) follows from (22) by a
simple induction (its special case where the diagonal blocks are 1-dimensional was actually
proven in the original paper [36] as part of the proof of Theorem 3.4).

In order to prove (22), choose b to belong to the full measure subset of B where the
conclusions of Theorem 3.4 are satisfied on all three spaces V, W,V /W. With the natural
notations, fix 1 < i < dim(V /W), consider a vector u in the set (V/W),_1(b) ~ (V/W);(b)
corresponding to the exponent y = XZ(V/W), and let V,, = 7 (span(u)), where 7 : V. — V /W
is the projection map. We claim that y is the minimal exponential rate of growth of a vector
in V,; that is,

(23) X:mm{xgw 1< j <dim(V), Vi(b) AV, # {o}}.

Assume that (23) holds for all uw e (V/W);_1(b) ~ (V/W);(b). Then each such u has a lift
v = v, € 7 !(u) with asymptotic exponential growth rate x; that is, all Lyapunov exponents
of V/W are also Lyapunov exponents of V. It follows from (21) that v, is unique, since if v/,
and v, are two lifts with this property then the vector v/, — v, € W has growth rate strictly
greater than y. From the uniqueness it follows that the map u — v, can be extended to a
linear map from (V/W),;_1(b) to V such that m(v,) = u. In other words, for each Oseledec
space (V/W);_1(b) there is a lifted subspace in V' of the same dimension corresponding to
the same exponent y;. This completes the proof assuming (23).

It remains to prove (23). Let A denote the quantity defined on the right-hand side of
(23), and let g denote the action of a matrix g € G on V/W. Choose an inner product on
V and use it to define norms on V, W,V /W where the latter space is identified with W+.
For each v € V,, ~ W, 7(v) is a nonzero multiple of u, so for any € > 0 and any n large
enough, we have

lgerv] = |Gor(v)] = eX—)m,

Moreover for any v € W N {0}, |gepv| = eX~9" holds for large enough n by (21). This
proves x < A. For the converse, for each n fix v, € V,, such that 7(v,) = v and Gr U € wt.
The identity 7(v,) = w implies that the sequence (v,,)nen is uniformly bounded away from
zero, and since the convergence in Theorem 3.4 is uniform on compact sets, it follows that
for any e > 0, for all sufficiently large n, we have |gyv,| = e=4)" On the other hand, by
the definition of the norms and of y, for all sufficiently large n we have

xX+e)n 60\—5)”_

X > gyl = |gsponl =
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This implies the inequality x > \. 0

6.1. The main example. We now present our main example. It will be used in Part 2 of
this paper to deduce Diophantine results. Let M, N be positive integers, let D = M + N,
let G = PGLp(R) and A = PGLp(Z) (we recall that these are our respective notations for
the quotients of SL;(R) and SL3;(Z) by their subgroups of scalar matrices), and let u be a
compactly supported probability measure on G. At the risk of annoying the reader, in what
follows we will refer to elements of G as matrices, when in fact they are equivalence classes
of matrices modulo multiplication by scalars. Fix inner products on RM and RY, and let
Oy and Oy respectively denote the groups of matrices preserving these inner products (not
necessarily orientation preserving). Let M denote the space of all M x N real matrices.
For each t € R and o € M, let

et/M[M ]M —Q
(24) a; = [ e UNT } , Ug = [ In |-
For each O; € Oy and O, € Oy, let O; @ Oy denote the direct sum of O; and O, i.e.
@)
(25) Ol@ogzl ! 02]‘

Finally, let A ={a;:te R}, K ={O1® Oy : 01 € Oy, O3 € On}, U = {ug : € M}, and
P = AKU. Note that A and K commute with each other and normalize U.

Let V'* denote the Lie algebra of U, that is, V'* consists of those matrices whose (i, j)th
entry vanishes if ¢ > M or j < M. Let H denote the Zariski closure (in G) of the group
generated by supp(u).

Definition 6.2. We say that p is in (M, N)-upper block form if

(i) supp(p) < P, i.e. for all g € supp(p) there exist ay = a; € A, k;, = O @O0y € K,
and u, = uq € U such that g = a,k,u,. In what follows we will write ¢ = 6,(g) and
(ii) The function #; : P — R implicitly defined by (i) satisfies

(26) o= f 01(9) du(g) > 0.
G
(iii) The Lie algebra of H contains V'*.

Theorem 6.3. Let G, A\, u be as above, where p is in (M, N)-upper block form. Then for
each d there is a proper subspace W% < V*9 such that the assumptions of Theorem 2.1
satisfied.

Proof. Tt follows by direct calculation that X is connected and in particular that I' acts
transitively on the connected components of X. It follows from (iii) that I' contains two
elements gy, g with 1 # wu,, and an easy computation (see the proof of Lemma 6.4 below)
shows that the sequence (g;"¢297) has a convergent subsequence but is not eventually
constant. Thus I' is not discrete and in particular is not virtually contained in a conjugate
of A.

Now we construct a subspace W"¢ & V*4 such that assumptions (I), (II), and (III)
hold. We first express the adjoint action of ¢ = aku € P on V = Lie(G) = {6 € Mpxp :
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Tr[6] = 0}. For each 1 < 4,57 < D let E;; denote the matrix with 1 in the (7, j)th entry
and 0 elsewhere. Let Iy = {1,..., M} and I, = {M +1,..., D}. For each j,j € {1,2}, let
Viii» = span(FE;, 4, 141 € I;,,i2 € I,). Finally, let VT =Vj5, VO ={d € Vi1 + Voo : Tr[d] =
0}, and V= = V4.

By (24), each of the spaces V', V~, VY is an eigenspace for Ad(a;) with respective eigen-
values e/M+HN e=(t/M+t/N) "1 The action of Ad(K) preserves V*, V=, V° and we can
equip V' with an inner product which is preserved by the Ad(K)-action. For each u € U
and v e V, we have

{0} ifveV*
(27) Ad(u)p—ve V7 if veV?
VE+ VO ifveV™

Fix d =1,...,dim(G) — 1, and we will define the space W"¢. Let a € Lie(A) be chosen
so that exp(ta) = a; for all t € R. Then the space V"% can be decomposed as the sum of
the eigenspaces of a:

Ad Ad
(28) vot= C—B Vit

XE¥q

where U, is the collection of eigenvalues of the action of a on V¢, and for each y € Uy,
V24 is the eigenspace of Dpg(a) with eigenvalue x (here Dpgy : Lie(G) — End(V) is the
derivative of p, at the identity). We endow the expressions V;;l and V;;l with their obvious
meanings. It follows from the remarks of the previous paragraph that for all y € Uy,

(A) the spaces Vgxd and V;Xd are invariant under the action of P;

(B) each g € P acts on the quotient space ng/VQf as a similarity with expansion
coefficient ex?1(9):

(C) the action of P on V;;l/ VQ; has only one Lyapunov exponent, namely ¢y, where
¢1 is as in (26). By assumption (ii), we have ¢; > 0.

Indeed, letting v = 55 + & we have ¥y = {—v,0,~}, VM =V Vit = V0 and VA = V-,
and combining with our previous observations demonstrates the case d = 1. The general
case follows by induction.

Now let

(29) Wt =Vil =P Ve

x>0

By (A), W*%is invariant under P, and in particular under H. Since det pg(exp(a)) = 1 but
det pg(exp(a))|wna > 1, W4 is a proper subspace of V4. Since W"! = Vw“i, (IT) follows
from (B) and (C) above.

We now prove (I). To this end we will apply Lemma 6.1 with V = V4 W = W4 and
obtain that W~ is complementary to V<" (b). Then we will show that for S-a.e. be B, if
d = 1, then V<Y (b) = V=% and if d > 1, then V<Y (b) = V;<°.

We claim that for S-a.e. b e B, all the Lyapunov exponents of pg|ly.a are positive. If
d = 1 this is immediate from assumption (ii), while if d > 1 this follows from combining
(C) above with (b) of Lemma 6.1.
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On the other hand, let pg denote the quotient action on V/¢/W"4  Again combin-
ing (C) above with (b) of Lemma 6.1, we see that all the Lyapunov exponents of p; are
nonpositive. In particular (21) holds, and W*? is complementary to V<" (b). Moreover,
since all Lyapunov exponents of W% (resp. on V<Y (b)) are positive (resp. nonpositive),
VW () = Vfo for f-a.e. b € B, and since, in case d = 1, there is only one Lyapunov
exponent on WL we have V;S° = V,=m2% for d = 1. This completes the proof of (I).

We now prove (IIT). Suppose that {Lq,..., L,} is a finite collection of linear subspaces
of V" which is permuted by the elements of supp(u). Then every element of I' permutes
the elements of {L1, ..., L.}, and thus the same is true of the Zariski closure H. It follows
that the identity component Hy of H preserves the subspaces Ly, ..., L, individually. By
assumption (iii), Lie(H) contains V', and hence Hy contains U. We claim that Hy also
contains A. To see this, recall (see [6, §15]) that any connected real algebraic group has
a maximal R-split solvable subgroup which is unique up to conjugation. Since AU is
a maximal R-split solvable subgroup of P, and it is normal in P, any maximal R-split
solvable subgroup of Hj is contained in AU. Let S < H, be a maximal R-split solvable
subgroup of Hy containing U. If Hy did not contain AU we would have U < S & AU and
thus m4(S) & A, where 7, is the algebraic homomorphism g — a,. Since dim A = 1 this
would imply that 74(S) is trivial. By [?, Prop. 9.3], S is cocompact in Hy, and so we would
get that m4(Hy) is compact. This would contradict the fact that {a, : v € I'} is infinite,
which follows from assumption (ii). Therefore Hy © S = AU, as claimed. To complete the
proof it suffices to show that any nontrivial subspace of V"¢ which is AU-invariant must
intersect W% nontrivially.

Let @ be the parabolic subgroup of G with Lie algebra V°+V ~, and let Vgod = (—DX <0 VXAd
be the direct sum of the a-eigenspaces with nonpositive eigenvalues. It is easy to check
that V2" is Q-invariant, i.e. that ps(Q)VZ = V4. Moreover, since Lie(U) = V* and
Lie(Q) = V° + V~, the product set QU contains a neighborhood of the identity in G and
in particular is Zariski dense in Gg, the identity component of G.

Let L < V"9 be a nontrivial AU-invariant subspace, and assume by contradiction that
L n W™ = {0}. Since L is A-invariant, it can be written as a sum of a-eigenspaces
L =@, Ly, and since L N Wt = {0}, we have L, = {0} for all x > 0 and thus L < VA"
Since V2 is Q-invariant and L is U-invariant, we have p4(QU)L < V4 and thus since QU
is Zariski dense in Gy, we have py(Go)L < V4.

Let L' = span(pq(Go)L) < V4, and let T = Gy be a maximal torus containing A. Then
since L' is Gp-invariant, it can be written as a sum of joint eigenspaces for the p,(T)-action,
ie. L' = @, g L), where ¥ is the set of weights for the action of Gy on L’. The normalizer
of T in G acts on W' by dual conjugation: if g € Ng,(T) then g(L}) = L _,, where g,A
denotes the weight defined by the formula g, A(t) = A(Ad;lt) (t € Lie(T)). Thus, g,¥' = ¥’
for all g € Ng,(T'). In other words, ¥’ is invariant under the Weyl group of Gy. It can
be checked by direct computation that if A € ¥’ is a nonzero weight, then the convex hull
of {g«\ : g € Ng,(T)} contains a neighborhood of the origin. But this implies that there
exists N € U’ such that X'(a) > 0, contradicting that L’ = V4. It follows that ¥’ does not
contain any nonzero weights, i.e. W' = {0}. In particular p4(T") acts trivially on L', and
thus the action of G on L’ has a nontrivial kernel. Since G is simple this means that G acts
trivially on L', and hence L’ is trivial, and therefore so is L. This is a contradiction. O
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We will state a useful lemma for verifying condition (iii) of Definition 6.2. Let exp be the
exponential map from Lie(G) to G, and recall that U = {us : o € M}. Then exp restricts
to a homeomorphism from Lie(U) to U. We denote the inverse of this homeomorphism by
log, i.e. log(u) = u — 1. As before we let I denote the group generated by supp(u).

Lemma 6.4. Retaining the notation of Definition 6.2, suppose that u satisfies (i), and
that there exists go € I' with ug, = 1 and ag, # 1. Then for any g € T', if we write

g = agkyu, = v azk,, then the Lie algebra of the closure of I' contains both log(u,) and

g
log(us).

Proof. Write go = ay ko and let n, — o0 be a sequence such that k;* — 1. Without loss of
generality suppose that £y > 0. Then

—n; —n; n; —n; n;
90" 990" = ag(ko " kgky') (kg™ A n,toUg@nio ko) T agky.

It follows that azk, € T and thus Ug € T'. Applying the same logic to ug in place of g shows
that B
ko™ a0 tgOn,i k' € T

and thus
ko "a_,, okt — 1 .=
lim ~—~ Ztoulga fo 0 = log(u,) € Lie(T).
im0 nito (37 + %)
Since Lie(T) is closed under Ad(ayk,) we obtain log(u}) = Ad(agk,)(log(u,)) € Lie(H) as
well. 0

Proof of Theorem 1.1. We will apply Theorem 2.1, and need to check that assumptions
(I)—(III) are satisfied. Let h; be as in the statement, and write h; = ua;k;, where for
i=1,...,t we have

als 0 _[oi ol _[la ey
‘”_lo c;d]’ki_lo 1]’“1"[0 1|

Then (i) and (ii) of Definition 6.2 are clearly satisfied, and we use Lemma 6.4 and the
assumptions that y; = 0 and span(y; : i = 1,...,t) = R? to verify (iii). Now the argument
of Theorem 6.3 (replacing everywhere PGLp(R) with SLy1(R)) goes through. O

6.2. Another example. Theorem 6.3 can be generalized to k > 2 blocks as follows. Let
$1,..., Sk be positive integers with >;s; = D, and foreach j = 1,..., D, let m; = s;+---+s;
and I; = {m;_1 + 1,...,m;}, with the convention that mo = 0. Then {[; : j = 1,...,k} is
a partition of {1,..., D} into blocks of length s;, 7 = 1,...,k. Let L; = span{e; : i € I;}
and Fj, ;, as in the proof of Theorem 6.3, so that R” = L + -+ L. For ji,j0 € {1,...,k}
let V}, j, = span(E;, 4, i1 € Ij,,i2 € I},), and let VT = @j1<j2 Vi o
We say that p is in upper block form with respect to I, . .., I, if for every g € supp(u) we
can write g = aku for elements a, k, u € G satisfying
(i)’ ais a diagonal matrix, k belongs to the compact group O;, ®---@O;,, and u e V*.
Here @ denotes the direct sum of matrices.
(ii)" For each j = 1,...,k, the restriction of a to L, is the scalar matrix which multiplies
by €9 where 6; : supp(p) — R is a function such that {6; dp > §6; du whenever
i < j. In particular, a, commutes with ky for all ¢’ € supp(p).
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(iii)" The Lie algebra of the Zariski closure of the group generated by {u, : g € supp(u)}
is equal to V.

The generalization of Theorem 6.3 is that if p is in upper block form then assumptions
(I)~(I1I) are satisfied. To see this one defines W' = V;, for d = 1 and for d > 2 one
defines a diagonal matrix a = log(a,) for some g € supp(u), and W% = D, (a)>0 V)% in
the notation of (29). The case d = 1 of condition (III) follows from the irreducibility of
the adjoint representation, and the rest of the arguments in the proof of Theorem 6.3 go
through with minor modifications. We will not be using this result and leave its verification
to the reader.

Part 2. Diophantine approximation on fractals
7. BACKGROUND

We first recall some standard notions from Diophantine approximation (more definitions
will appear further below). A point o € R? is called badly approzimable if there exists
¢ > 0 such that for all p/q € Q%, we have |ga — p| = cq~ %, and very well approzimable
if there exists ¢ > 0 and infinitely many p/q € Q% such that |ga — p|| < ¢~(/%*). The
sets of points with these properties are denoted respectively by BA and VWA. A point is
called well approzimable if it is not badly approximable; all very well approximable points
are well approximable but not vice-versa. It is notoriously difficult to determine whether
specific numbers such as 7 or 2'/% are badly approximable or very well approximable, but
the properties of points typical for Lebesgue measure are well-understood. In particular,
the sets BA and VWA are both Lebesgue nullsets which nevertheless have full Hausdorff
dimension (a fact which shows that the exponent 1/d appearing in both definitions is a
critical exponent at which a transition occurs). Over the last several decades, much work
has revolved around determining what properties are typical with respect to measures other
than Lebesgue measure; e.g. measures supported on fractal sets.

Questions about Diophantine approximation on fractals can be naturally divided into two
classes: those concerned with determining the largeness (in some sense) of the set of points
on a given fractal that are difficult to approximate by rationals, and those concerned with
determining the largeness of the set of points that are easy to approximate by rationals.
Over the last decade there has been much progress regarding the first type of question.

Suppose that K is a sufficiently regular fractal, so that px of H’|x is a positive and finite
measure, where § denotes the Hausdorff dimension of K and H° denotes J-dimensional
Hausdorff measure. This holds for example if K is the middle-thirds Cantor set, and for
this choice we have:

e the set BA has full Hausdorff dimension in C [29, 31], and
e the set VWA has measure zero with respect to pc [40, 26].

Both of these results are proven using fairly robust and straightforward geometric methods,
and are true in much greater generality (see in particular [9, 10] for some recent results).
For example, they are both true if K is any Ahlfors regular subset of R (a set A < R is
called Ahlfors regular if there is a measure p with supp(u) = A and such that for some
positive constants 4, c1, ¢y, for all z € A and r € (0, 1), we have ¢;7° < u(B(z,7)) < cor?).
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The second type of question is more difficult to answer. The only relevant work of which
we are aware is the paper of Einsiedler, Fishman, and Shapira [12], whose main result
implies that if C is the standard middle-thirds Cantor set, then uc(BA) = 0. Regarding
very well approximable points, even the Hausdorff dimension of VWA n C is not known
(for a nontrivial lower bound, see [32]).

There is a good reason why the second type of question is harder to answer than the
first. For both types of questions, one might expect that a sufficiently nice fractal “inherits”
the properties of the ambient space, and the above results imply that for a large class of
fractals, this is true with respect to the first type of question. However, there is a class of
very nice and simple fractals whose points do not have typical behavior with respect to the
second type of question. Namely, for each N > 2 consider the set Fy consisting of those
points in (0,1) whose continued fraction expansion has partial quotients bounded above
by N. It is well-known that Fy consists entirely of badly approximable points (in fact, we
have BA n (0,1) = Jy Fn, see e.g. [25, Theorem 23]).

On the other hand, the set Fiy can be expressed as the limit set (cf. §8.1) of the finite
iterated function system consisting of the conformal contractions

(30) Gula) = — ne1.. N

n+a’

This implies that Fly is Ahlfors regular [35, Lemma 3.14]. Since Ahlfors regularity is one
of the strongest geometric properties held by the Cantor set, this means that it will be
difficult to distinguish F from the Cantor set using geometric properties. In particular,
taking IC = Fly shows that there are Ahlfors regular sets I for which the expected formula
wc(BA) = 0 fails.

It is thus natural to ask what kind of regularity hypotheses on a fractal K might im-
ply that uc(BA) = 0. We partially answer this question via Theorem 1.2, showing that
i (BA) = 0 whenever K is the limit set of an irreducible finite IFS of contracting similar-
ities. Let us point out a few cases where Theorem 1.2 applies while the results of [12] do
not apply:

e I =C + x is a translate of C;

e I is the middle-e Cantor set constructed by starting with the closed interval [0, 1]
and removing at each stage the open middle subinterval of relative length ¢ from
each closed interval kept in the previous stage of the construction, for some ¢ €
(0,1) ~ {1/3,2/4,3/5,. ..}/

e /C is the limit set of the the iterated function system

(1) hi() = %, ba() = 25,

e K is a fractal in higher dimensions, such as K = C x C < R2.

In fact, Theorem 1.2 shows more, namely that almost every point on the fractals listed above
is of generic type, a term which we will define in §8.5. In particular, almost every point
on a one-dimensional fractal has a typical distribution of partial quotients in its continued
fraction expansion. In addition to these results, in what follows we will also prove several

"When ¢ € {1/3,2/4,3/5, ...}, the middle-e Cantor set falls under the framework of [12] because it is xb
invariant for some b > 3.
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other Diophantine results about the measures supported on self-similar fractals, as well as
considering analogous questions regarding intrinsic Diophantine approximation on spheres
28, 14] and on Kleinian lattices (cf. [15] and the references therein).

8. MAIN RESULTS — SIMILARITY IFSES
We begin by introducing the class of sets that we will consider.

8.1. Similarity IFSes and their limit sets. We start working in higher dimensions now
and accordingly fix d > 1 and an inner product on R?. A contracting similarity is a map
R? — R? of the form x + cO(x) + y where O is a d x d matrix orthogonal with respect
to the chosen inner product, ¢ € (0,1), and y € R A finite similarity IFS on R? is a
collection of contracting similarities ® = (¢, : RY — Rd)eeE indexed by a finite set F,
called the alphabet. As in Part 1, let B = EN. However, now we let b denote the reversal
of the first n coordinates of b, i.e. bl = (b,,...,b;), in contrast to b} = (by,...,b,) which
was defined earlier. The coding map of an IFS ® is the map 7 : B — RY defined by the
formula

(32) W(b) = 7}1_1}30 ¢b}z(a0),
where o € R? is an arbitrary but fixed point, and
(33) Py = Gp, © O Dy,

(Note that in both (33) and (1), we use the convention that ¢u = @) = ¢ © ¢a.) It is
easy to show that the limit in (32) exists and is independent of the choice of oy, and that
the coding map is continuous. Thus the image of B under the coding map, called the limit
set of @, is a compact subset of R? which we denote by K = K(®).

A similarity IFS @ is said to satisfy the open set condition if there exists an open set
U < R? such that (¢.(U))eer is a disjoint collection of subsets of U, and is said to be
irreducible if there is no affine subspace £ & R? such that ¢.(£) = L for all e € E. We
remark that this assumption is equivalent to the apparently stronger assumption that there
is no affine subspace with a finite orbit under the semigroup generated by ®, which follows
from making minor modifications to the proof of [7, Proposition 3.1]. It is well-known that
with these assumptions, px = H°| is a finite nonzero measure.

Using this terminology, the first part of Theorem 1.2 can be stated as follows:

Theorem 8.1. Let K be the limit set of an irreducible finite similarity IFS satisfying the
open set condition. Then pux(BA) = 0.

It is readily verified that the examples of fractals given in §7 (i.e. translates of the Cantor
set C, middle-e Cantor sets, the limit set of (31), and C x C) all satisfy the hypotheses of
this theorem. The same is true for the Koch snowflake and the Sierpinski triangle. On the
other hand, the sets Fiy (N € N) cannot be written as the limit sets of similarity IFSes.
Note that since the inner product used to define the notion of a similarity can be chosen
arbitrarily, the class of fractals K to which our results apply is invariant under invertible
affine transformations.

We also consider more general measures on a set K than just the Hausdorff measure pix.
Namely, let Prob(E) denote the space of probability measures on E. For each 1 € Prob(E)
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we can consider the measure m,u®" on K, i.e. the pushforward of u® under the coding
map. A measure of the form 7, u®" is called a Bernoulli measure. If ® satisfies the open set
condition, then there exists 4 € Prob(E) with u(e) > 0 for all e € E such that px = cmu®"
for some constant ¢ > 0 [22, (3)(iv)]. So Theorem 8.1 is a consequence of the following
more general theorem:

Theorem 8.2. Let ® be an irreducible finite similarity IFS on R, and fix 1 € Prob(E)
such that u(e) > 0 for all e € E. Then m,3(BA) =0, where 8 = u®~.

Note that in this theorem we do not require ® to satisfy the open set condition. The
only reason we need the open set condition in Theorem 8.1 is to guarantee that px is
proportional to m,/; if the open set condition is not satisfied, then this equivalence does
not hold, and the Hausdorff dimension of K does not necessarily reflect the dynamical
structure (see e.g. [37]).

8.2. More general measures. Once we take the point of view that the Bernoulli measures
associated with an IFS are more important than the limit set of the IFS, it is possible to
relax the assumption that the IFS is finite, instead assuming that it is compact. There is
also no reason to restrict to uniformly contracting [FSes; it is enough to have a “contracting
on average” assumption. Let F be a compact set and let ® = (¢.)eerp be a continuously
varying family of similarities of R?, called a compact similarity IFS. We say that a measure
i € Prob(FE) is contracting on average if

j log |61 dyu(e) <0,

where |¢,| denotes the scaling constant of the similarity ¢, (equal to the norm of the
derivative ¢/ at any point of RY). If u is contracting on average, then by the ergodic
theorem |}, || — 0 exponentially fast for S-a.e. b € B, and thus the limit (32) converges

almost everywhere, thereby defining a measure-preserving map 7 : (B, 8) — (R% 7.3). In
the case where all the elements of a compact similarity IFS are strict contractions (and
thus, by compactness, contract by a uniform amount), it is easy to show that the coding
map 7 is continuous and thus the image of B under 7 is compact. However, in the case of
contraction on average, m is only measurable and not continuous, and the set w(B) need
not be compact.

Now Theorem 8.2 is obviously a special case of the following:

Theorem 8.3. Let ® be an irreducible compact similarity I[F'S on R, and fix i1 € Prob(E),
contracting on average, such that supp(u) = E. Then m,8(BA) = 0, where B = u®N.

8.3. Other types of measures. A completely different direction in which to generalize
Theorem 8.1 is to consider measures on the limit set C other than Bernoulli measures. We
will need an assumption that ties the measure to the set K, i.e. that its topological support
is equal to . We will also need a fairly weak geometric assumption. A measure v on R? is
called doubling if for all (equiv. for some) A > 1, there exists a constant C > 1 such that
for all x € supp(v) and r € (0, 1), we have

(34) v(B(z, Ar)) < Chv(B(z,r)).
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Theorem 8.4. Let K be the limit set of an irreducible finite similarity IFS satisfying the
open set condition. If v is a doubling measure such that supp(v) = IC, then v(BA) = 0.

Since the measure py is doubling and has full topological support (e.g. this follows from
[22, (3)(iii)]), Theorem 8.4 provides another proof of Theorem 8.1. Note that we need the
open set condition in Theorem 8.4 in order to relate the doubling condition, which describes
geometry in R?, to information about the space B.

8.4. Approximation of matrices. The preceding theorems can be generalized to the
framework of Diophantine approximation of matrices. In what follows, we fix M, N € N
and let M denote the space of M x N matrices. Recall that a matrix a« € M is called
badly approximable if there exists ¢ > 0 such that for all q € ZV \ {0} and p € ZM,
lag — p| = c|q| /M. As before, we denote the set of badly approximable matrices by
BA.

Rather than considering an arbitrary compact similarity IFS acting on M, we will need
to be somewhat restrictive about which similarities we allow: they will need to be somewhat
compatible with the structure of M as a space of matrices. We define an algebraic similarity
of M to be a map of the form a — A\Ba~y + §, where A > 0, 3 € Oy, v € Oy, and § € M.
Here Oj; denotes the group of M x M real matrices which preserve some fixed inner
product on R, Thus an algebraic similarity is a composition of a translation and pre-
and post-composition of a with similarity mappings on its domain and range. Note that
if M =1 or N = 1, then every similarity is algebraic. A similarity IFS will be called
algebraic if it consists of algebraic similarities. It will be called irreducible if it does not
leave invariant any proper affine subspace of M =~ R™¥_ For convenience we make the
following definition:

Definition 8.5. Let ® be an irreducible compact algebraic similarity IFS on M, and fix
i € Prob(FE), contracting on average, such that supp(p) = E. Then the Bernoulli measure
7.3 is called a general algebraic self-similar measure, where 8 = u®V.

As explained in §8.1, we are free to specify our inner product structures on R™ RY in
advance, and the groups O,;, Oy appearing above should be understood as the groups
preserving these inner products. This implies that the pushforward of a general algebraic
self-similar measure under a map of the form a — Ba~y + §, where 3 € GLy(R), v €
GLy(R), and & € M, is also a general algebraic self-similar measure.

We can now state generalizations of Theorems 8.3 and 8.4, respectively:

Theorem 8.6. If v is a general algebraic self-similar measure on M, then v(BA) = 0.

Theorem 8.7. Let IC be the limit set of an irreducible finite algebraic similarity IF'S on M
satisfying the open set condition. If v is a doubling measure such that supp(v) = K, then
v(BA) = 0.

Theorem 8.7 will be proven in Section 11, while Theorem 8.6 follows from Theorem 8.11

below.

8.5. More refined Diophantine properties. Beyond showing that a typical point of a
measure is well approximable, one can also ask about finer Diophantine properties of that
point. Recall that a matrix e € M is called Dirichlet improvable if there exists A € (0,1)
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such that for all sufficiently large @ > 1, there exist q € Z" \ {0} and p € Z™ such that
la|e < @ and ||aq — Pl < AQ™/M. Here | - |, denotes the max norm, in contrast to
the notation || - || which we use when it is irrelevant what norm we are using. Dirichlet’s
theorem states that this condition holds for all & € M when A = 1, so a matrix is Dirichlet
improvable if and only if Dirichlet’s theorem can be improved by a constant factor strictly
less than 1. The concept of Dirichlet improvable matrices was introduced by Davenport
and Schmidt, who showed that Lebesgue-a.e. matrix is not Dirichlet improvable, and that
every badly approximable matrix is Dirichlet improvable [11]. The converse to the last
assertion is false except when M = N = 1. Thus the following theorem gives strictly more
information than Theorem 8.6:

Theorem 8.8. If v is a general algebraic self-similar measure on M, then v(DI) = 0,
where DI is the set of Dirichlet improvable matrices.

The properties of being well approximable and not Dirichlet improvable both indicate
that a point is “typical” in some sense. Another way of indicating that a point is typical
is to show that its orbit under an appropriate dynamical system equidistributes in an
appropriate space. In dimension 1 (i.e. M = N = 1), an appropriate dynamical system
from the point of view of Diophantine approximation is the Gauss map

G:(0,1) — (0,1), G(a) = Lo FJ

«

which is invariant and ergodic with respect to the Gauss measure dug(a) = @fﬁ
(see e.g. [24, Theorems 9.7 and 9.11]). The Gauss map acts as the shift map on the
continued fraction expansion of a number, so if a € (0,1), then the forward orbit of « is
equidistributed with respect to the Gauss measure if and only if the continued fraction

expansion of a contains each possible pattern with exactly the expected frequency.

Theorem 8.9. If v is a general algebraic self-similar measure on R, then for v-a.e. a € R,
the forward orbit of the point o — |a| under the Gauss map is equidistributed with respect
to the Gauss measure.

In higher dimensions, there is no direct analogue of the Gauss map but there is another
dynamical system for which the orbits of points describe their Diophantine properties: the
one given by the Dani correspondence principle [8, 27]. Let D = M + N, G = PGLp(R),
A = PGLp(Z), and X = G/A, and let zy be the element of X corresponding to the coset
A2 As in Part 1, for each t € R and o € M, let

et/MIM [M —
(35) ay = [ eft/N]N :| ) U = l IN )

which we consider as elements of PGLp(R) by identifying a matrix with its equivalence
class. Then the Dani correspondence principle says that the forward orbit (a;uao)i=0
encodes the Diophantine properties of the matrix . We will say that a is of generic type

2As in Part 1, SLE(R) and SLE(Z) denote respectively the groups of D x D real (integer) matrices of
determinant +1, and PGLp(R), PGLp(Z) are their factor groups obtained by identifying matrices which
differ by multiplications by scalars.
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if the orbit (a;uaro)i=0 is equidistributed in X with respect to the G-invariant probability
measure on X.

Remark 8.10. Note that in [8] (and most subsequent papers) the space X’ = SLp(R)/SLp(Z)
was used instead of X. But the natural map X’ — X (induced by the homomorphism
SLp(R) — PGLp(R)) is an equivariant isomorphism of homogeneous spaces and hence
does not affect the definition of generic type. Using PGLp(R) will make it possible to en-
code more general maps coming from orthogonal transformations that are not orientation-
preserving.

Theorem 8.11. If v is a general algebraic self-similar measure on M, then v-a.e. a € M
1s of generic type.

Since an equidistributed orbit is dense, [8, Theorem 2.20] and [30, Proposition 2.1] show
that Theorem 8.11 implies Theorems 8.6 and 8.8, respectively. When M = N = 1, the
equidistribution of the orbit (a;usxg)i=0 implies the equidistribution of (G"(«)),en, in other
words Theorem 8.9 follows from Theorem 8.11. The converse however is false, see Section
13 for details. Theorem 8.11 will be proven in Section 12.

Remark 8.12. Einsiedler, Fishman, and Shapira actually proved more than just pxc(BA) =
0: they showed that if v is any measure on R/Z invariant under the x k map for some k > 2,
then for v-a.e. o € R, the orbit (a;uao)i=o is dense in X, and « has all finite patterns in
its continued fraction expansion. Theorem 8.11 improves density to equidistribution. See
[39] for another result in this direction.

9. MAIN RESULTS — MOBIUS IFSES

Theorems regarding similarity [FSes can often be extended to the realm of conformal
IFSes, whose definition is somewhat technical (see e.g. [35, p.6]), or to the subclass of
Mébius IFSes, which can be defined more succinctly (see §9.1 below). However, we know
that the results of the previous section cannot be extended directly, because the sets Fly
can be written as the limit sets of Mobius [FSes, even though they contain only badly
approximable points. The reason for this appears to be a very special coincidence, namely
the fact that the defining transformations of the IFS defining Fy are all represented by
elements of the integer lattice A = PGLy(Z) € G = PGLy(R) (cf. (30)). In fact, it
turns out that the limit set of any Mobius IFS with this property consists entirely of badly
approximable numbers; see Theorem 9.1(i) below. Thus, an additional restriction will be
needed in order to rule out this case and similar cases.

It is also natural to ask about higher dimensions, but here the situation is less clear. The
reason for this is that the Diophantine structure of R? is naturally related to the group
G = PGL4(R) of projective transformations on R, and this group is the same as the group
of Mobius transformations if d = 1 but not in higher dimensions. On the other hand, a
Diophantine setting that is naturally related to the group of Mobius transformations is the
setting of intrinsic approximation on spheres, which has been studied by Kleinbock and
Merrill [28] and related to hyperbolic geometry by Fishman, Kleinbock, Merrill, and the
first-named author [14, §3.5]. In this setting, points on the unit sphere S < R*! are
approximated by rational points of S¢. When d = 1, there is a conformal isomorphism be-
tween S! and R! that preserves Diophantine properties, given by stereographic projection;
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in higher dimensions stereographic projection still provides a conformal isomorphism be-
tween S and R?, but this isomorphism does not preserve Diophantine properties. Moving
the Diophantine structure from S¢ to R? yields a structure on R? that is naturally related
to the group of Md6bius transformations.

In what follows, we will show that if IC is the image under stereographic projection of
the limit set of a conformal iterated function system on R? then almost every point of K
is not badly approximable with respect to intrinsic approximation on S¢.

The proofs in this section use the results of Benoist and Quint directly, without appealing
to Part 1.

9.1. Mobius IFSes. A Mdbius transformation of R4 = R* U {o0} is a finite composition of
spherical inversions and reflections in hyperplanes. See e.g. [21] for an introduction to the
geometry of Mobius transformations. A (finite) Mébius IFS on R< is a finite collection of
Mébius transformations ® = (¢, : R? — R_d)ee g such that for some nonempty compact set
F S R4, for all e € E, we have ¢.(F) € F, and ¢.|r is a strict contraction relative to some
Riemannian metric independent of e.®> As in the case of similarity IFSes the coding map
7 : B — F, B= E"Yis defined by the formula (32), with the additional restriction that
oy € F (otherwise the limit may not exist). Similarly, a Mobius IFS & is said to satisfy
the open set condition if there exists a nonempty open set U < R¢ such that (0e(U))eck
is a disjoint collection of subsets of U. Finally, ® is irreducible if there is no generalized
sphere £ & R? such that ¢.(£) = £ for all e € E. Here a generalized sphere in R is
either an affine subspace of R? (including the point at infinity) or a sphere inside of a (not
necessarily proper) affine subspace of R<. Note that in dimension 1, a nonempty proper
generalized sphere is just a point. For the purposes of this paper, we consider {o0} to be a
generalized sphere. Since {0} is invariant under all similarities, this means that the classes
of similarity IFSes and irreducible Mobius IFSes are disjoint.

The group of Mdbius transformations on R is isomorphic to G = PGLy(R), where each
matrix [ }] € PGLy(R) represents the Mdbius transformation 2 — %£2 In what follows
we implicitly identify these two groups via this isomorphism.

Theorem 9.1. Let & = (Pe)ecr be an irreducible finite Mébius IFS on R satisfying the
open set condition, and let KC be its limit set. Let ' denote the group generated by P.

(i) If T is virtually contained in A PGLy(Z), then K < BA.

(ii) Suppose that T is not virtually contained in any group of the form gAg™ (g € G).
Then pux(BA) = 0, and more generally, if v is a doubling measure on K such that
supp(v) = K, then v(BA) = 0.

Recall that a subgroup I' of a group G is virtually contained in another subgroup A € G
if some finite index subgroup of I' is contained in A.

3Any Mobius IFS according to this definition that satisfies the open set condition is (after possibly
passing to an iterate) a conformal IFS according to the definition given in [35, p.6]. To see this, let U be
the set coming from the open set condition, and let X be the intersection of U with a closed neighborhood
of F small enough so that ® is still strictly contracting on X, and smooth enough so that the cone condition
holds. Then let V be a slightly larger open neighborhood. It is obvious that [35, (2.6)-(2.8)] hold, and [35,
(2.9)] follows from [35, Remark 2.3].
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Example 9.2. The system of Mobius transformations (30) is an irreducible Mébius IF'S.
So the set Fy, and all of its translations, are the limit sets of irreducible Mobius IFSes.
Thus Theorem 9.1 says that for all a € Q, we have Fiy +a < BA (this also follows directly).
However, Theorem 9.1 does not say anything about the sets Fiy + a where « is irrational,
because then the corresponding IFS & falls into neither case (i) nor case (ii).

It follows from Theorem 9.6 below that if « is irrational, then any Bernoulli measure on
Fy + « gives zero measure to the set of badly approximable points. However, the natural
measure fipy 1o = H|pyia (Where § = dimy(Fy)) is not a Bernoulli measure, and our
results say nothing about this measure.

Example 9.3. If the IFS ® = (¢,).cp contains at least two similarities with distinct
fixed points, but is not entirely composed of similarities, then we are in case (ii). This is
because it follows from applying Lemma 6.4 to the subgroup of I'" generated by these two
similarities (thinking of it as a subgroup of the Lie group of all similarities) that the closure
of I" contains a positive-dimensional unipotent subgroup. Therefore it cannot have a finite
index subgroup contained in gAg~! for any g € G.

9.2. Intrinsic approximation on spheres. Fix d > 1, and let S? be the unit sphere
in R, We recall that a point o € S? is badly approzimable with respect to intrinsic
approzimation on S%, or just badly intrinsically approximable, if there exists ¢ > 0 such
that for all p/g € Q! n S? we have |ga — p| = ¢. The set of badly intrinsically
approximable points is similar in many ways to the set of badly approximable points; for
example, it has full Hausdorff dimension but zero Lebesgue measure [28]. We denote the
set of badly intrinsically approximable points by BA ga.

We define a Mébius IFS on S% to be a Mobius IFS on R%*! that preserves S¢. Such an IFS
is said to be drreducible (relative to S¢) if it does not preserve any generalized sphere £ & S<.
Let G (resp. A) denote the group PO(d+1,1;R) (resp. PO(d+1,1;Z)) of (d+2) x (d+2)
real (resp. integer) matrices preserving the quadratic form Q(zg, 1, ..., T4r1) = —T2+ 23+
-+~ 423, |, where matrices which are scalar multiples of each other are identified. Note that
the group of Mobius transformations that preserve S¢ is isomorphic to G via the following
isomorphism: each element g € G acts conformally on S? via the restriction of a projective
transformation of P4*1(R) 2 R¥*! and this conformal isomorphism of S¢ extends uniquely

to a Mobius transformation of R4*1. (The resulting Mébius transformation is not the same
as the projective action of g on R4l unless g preserves the origin of R4*l.) Using this
identification, we can now state the following theorem:

Theorem 9.4. Let G, A be as above, let ® = (¢¢)ecr be an irreducible finite Mébius IFS
on S¢ satisfying the open set condition, and let K be its limit set. Let I < G denote the
group generated by P.

(i) If T is virtually contained in A, then K < BAga.
(i) Suppose that there is no g € G for which T is virtually contained in gAg~'. Then

pc(BAga) = 0, and more generally, if v is a doubling measure on K such that
supp(v) = K, then v(BAgs) = 0.

9.3. Kleinian lattices. We conclude this section by considering an approximation prob-
lem in hyperbolic geometry that generalizes both of the setups considered above. Let HY*!
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denote (d + 1)-dimensional hyperbolic space, let G = Isom(H?™), and let A = G be a
lattice. A point v € JH*! is said to be uniformly radial with respect to A if any geodesic
ray with endpoint a stays within a bounded distance of the orbit A(o), where o € H*? is
arbitrary but fixed. We denote the set of uniformly radial points of A by UR,. Uniformly
radial points can also be thought of as “badly approximable with respect to the parabolic
points of A”; see [15, Proposition 1.21]. In particular,

e If H? is the upper half-plane model of hyperbolic geometry, then JH?> = R, and

the parabolic points of the lattice A% PGL»(Z) < G PGL2(R) are exactly the
rational points of R (including o0). The heights of these rational points correspond
to the diameters of an invariant collection of horoballs centered at these points,
which implies that UR, = BA [15, Obs. 1.15 and 1.16 and Proposition 1.21].

e If H! is the Poincaré ball model of hyperbolic geometry, then JH?*! = S¢, and the
parabolic points of the lattice A = PO(d+1,1;Z) < G = PO(d+1, 1;R) are exactly
the rational points of S¢. Again the heights of these rational points correspond to
the diameters of horoballs, so URy, = BAga [14, §3.5].

These facts show that the following theorem generalizes both Theorem 9.1 and Theorem
9.4:

Theorem 9.5. Let ® = (¢o)ecr be an irreducible finite Mobius IFS on JHI satisfying
the open set condition, and let IC be its limit set. Let I' denote the group generated by P,
and let A € G = Isom(H!) be a lattice.

(i) If ' is virtually contained in A, then KK < URA.
(ii) Suppose that there is no g € G for which T is virtually contained in gAg=t. Then
pc(URA) = 0, and more generally, if v is a doubling measure on K such that

supp(v) = K, then v(UR,) = 0.

In this theorem, H%! can be interpreted as either the Poincaré ball model of hyperbolic
geometry (in which case dHY™! = S?), or as the upper half-space model (in which case
OH! = R9). Either way, the group of Mobius transformations on dH®*! is isomorphic to
Isom(H9*!), which explains how the M&bius transformations (@ )ecr can be identified with
elements of GG. In what follows we will not distinguish between a Mobius transformation
and its corresponding isometry of H*!, but it should be observed that the Mobius trans-
formation is not itself an isometry of the space JHY"!, but only a conformal map. If we
interpret H?*! as the upper half-space model, then we should assume that oo ¢ K, so that
K inherits a metric from R? with respect to which the notion of a doubling measure can
be interpreted. Theorem 9.5 will be proven in Section 11.

We can relax the assumptions that ® is finite, contracting on some set F, and satisfies
the open set condition if we consider a more restricted class of measures, namely the class
of Bernoulli measures. This restriction will also allow us to improve the conclusion of
Theorem 9.5(ii), and to bypass the obstruction that occurs when I' is virtually contained in
some gAg~! # A (the obstruction that occurs when T is virtually contained in A remains).
We define a compact Mébius IFS on dH**! to be a continuously varying family of Mébius
transformations ® = (¢, € Isom(H**!)).cp, where E is a compact set. Note that in
this definition, we do not assume that the family ® is contracting in any sense. We call
® irreducible if it does not preserve any generalized sphere £ < S¢ nor any point of
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H4. Given an irreducible compact Mobius IFS @ and a measure p € Prob(E) such that
supp(p) = E, for f-a.e. be B, the limit

(36) 7(b) = lim gy (o)

exists in H?*!, where o € H*™ is a distinguished point and ¢ is as in (33) (see [34]).
Thus we can define the measure 7,3 on ¢H%* .

Theorem 9.6. Let ® = (¢.)ecr be an irreducible compact Mébius IFS on JHAL. Let T
be the group generated by ®, and let A € G = Isom(H*) be a lattice. Suppose that T is
not virtually contained in A. Then for all p € Prob(FE) such that supp(p) = E, we have
3(URy) = 0, where 8 = pu®. Moreover, for B-a.e. b € B, any geodesic ray ending
at w(b) is equidistributed in the unit tangent bundle T'HI*/A =~ K\G/A (where K is the
mazximal compact subgroup of G fizing a distinguished tangent vector at o).

Summary. The theorems of §8 and Theorem 1.2 all reduce to three theorems: 8.7, 8.9,
and 8.11. The theorems of this section all reduce to two theorems: 9.5 and 9.6. We will
then prove these theorems in Sections 11-13.

10. RELATION TO THE RANDOM WALK SETUP

In this section we restate the results we will use from Part 1 of this paper, and from [5].
We use the following notation for all of the theorems below:

e (7 is a semisimple real algebraic group with no compact factors, A is a lattice in
G, X = G/A, and mx is the G-invariant probability measure on X obtained from
Haar measure on G (in some cases below G and A will be made more specific). The
point xg € X corresponds to the coset A.

e F is a compact set, e — ¢, is a continuous map from E to G, and p € Prob(FE) is a
measure such that supp(u) = E.

e I'" (resp. I') is the semigroup (resp. group) generated by {g. : e € E'}.

o For b= (e1,e,...) € B, and n € N, gy denotes the product ge, - - ge, -

By combining Theorems 2.1 and 6.3 of Part 1, we immediately obtain the following:

Theorem 10.1. Let M, N be positive integers, let D = M+ N, and let G = PGLp(R), A =
PGLp(Z), X = G/A. Let i be a probability measure with compact support E < G which is
in (M, N)-upper block form (see Definition 6.2). Then for all x € X,

(i) Iz is dense in X.
(ii) For f-a.e. be B, the random walk trajectory
(37) (gb?x) neN

18 equidistributed in X with respect to mx.
We will also use:

Theorem 10.2 (Benoist-Quint, see [5, Theorems 1.1 and 1.3]). Suppose that T't is Zariski
dense in G. Then for all x € X, there exist a closed group H < G containing I'" and an
H-invariant probability measure v, such that supp(v,) = Hx and:

(i) I'"x is dense in Hz.
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(ii) For B-a.e. b € B, the random walk trajectory (37) is equidistributed in Hx with
respect 1o v,.

Remark 10.3. If the identity component of G is simple in Theorem 10.2, then the group
H is either discrete or of finite index in . This is because the adjoint action of I'* on
Lie(G) normalizes Lie(H), so since I'* is Zariski dense, the adjoint action of G normalizes
Lie(H) as well, and thus either Lie(H) = {0} or Lie(H) = Lie(G).

If H is discrete, then v, is atomic and gives the same measure to every atom, and thus
Hzx is finite. In this case H acts by permutations on Hzx, so a finite index subgroup of H
is contained in Stabg(z) = gAg™!, where z is the coset gA.

If H is of finite index, then v, is the (renormalized) restriction of the natural measure
mx on X to one or more connected components of X. In particular, if X is connected
(which is true in the examples we consider), then v, = mx.

The following is an immediate consequence of Theorem 2.2, also proven in Part 1.

Theorem 10.4. Fiz x € X, and suppose that for f-a.e. b€ B, the random walk trajectory
(gbvfa:)neN 15 equidistributed in X with respect to myx. Let K be a compact group, let k :
I' — K be a homomorphism, and for each e € E let k. = k(g.). Let K denote the closure
of k(T') and let mg denote Haar measure on K, and assume that T acts ergodically on
(X x K,mx ®mpg). Finally, let B =E?, 3= u®", letY be a locally compact topological
space, and let f : B — Y be a measurable transformation. Then for f-a.e. b € B, the
sequence

(38) (gon, ko, f(T"b))neN
is equidistributed in X x K x'Y with respect to mx @ mg @ f.3.

10.1. Relation to the setups considered in Sections 8 and 9. Now we show that the
hypotheses of the above theorems are satisfied in the setups considered in §8-§9, which we
summarize as follows:

Setup 1. In §8, the fundamental objects are an irreducible compact algebraic similarity IFS
® = (Pe)ecr on the space M of M x N matrices, a contracting-on-average measure
p € Prob(E) such that supp(p) = E, the groups G = PGLp(R), A = PGLp(Z),

and the homogeneous space X = G/A.
Setup 2. In §9, the fundamental objects are an irreducible compact Mobius [FS ® = (¢¢)ecr
on JHY™, a measure p € Prob(E) such that supp(u) = E, and a lattice A € G =

Isom (H?1).

We will explain how to connect Setups 1 and 2 with the homogeneous space random walks
setup introduced in this section. In both setups the objects G, A, E, and u are already
defined, so it remains to define the family (g.)ecp. In Setup 2 we notice that the M&bius
transformations ¢, (e € E) are already members of G, so they define a family (ge)ecp via
the formula g, = ¢_'. Note that taking the inverse in this definition ensures that the
expressions gyn and ¢y appearing respectively in the definitions of the random walk and
the coding map (see (37) and (32)) are related by the formula gy = (¢1)~" (be B, n e N).
In Setup 1, we will also define the family (g.)ecr via the formula g. = ¢-!, but it takes
a little more work to describe how to view the algebraic similarities ¢, (e € F) as elements
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of G = PGLp(R). We recall that in §6.1 we defined subgroups A, K, U < G by:

(39) A:{at:teR}, KZOM@ON, Uz{ua:aeM}
(where as before matrices are identified with their images in G), and we let
(40) P = AKU.

Note that A and K commute with each other and normalize U, and thus the natural
projections
ma:P—>Aand g : P> K

are homomorphisms. Let ¢ : M — P/AK be defined by the formula ((at) = uq AK. Then ¢
is a homeomorphism, and ¢(0) is the identity coset AK € P/AK. Now consider the action
p of P on M that results from conjugating the action of P on P/AK by left multiplication
by the isomorphism ¢. It is readily checked that p(uq)(8) = B + «, pla;)(B) = /M*T/N g,
and p(O; ® 0,)(B) = 0,80, . In particular p is faithful (since P € PGLp(R) and thus
multiplication by —1 is considered trivial), and p(P) is the group of algebraic similarities
of M. So p is an isomorphism between P and the group of algebraic similarities of M.
By identifying each element of P with its image under p, we can think of the algebraic
similarities ¢, (e € F) as elements of P < G, and from there define the family (g.)ecr
by the formula g. = ¢_'. Note that this paragraph is the reason we needed to consider
algebraic similarities, rather than all similarities, in Theorems 8.6—S8.11.

We now show that we can apply Theorems 10.1 and 10.4 in Setup 1, and Theorem 10.2
in Setup 2.

o Let & = (¢p)ecr be an irreducible compact algebraic similarity IFS, where E is a
compact indexing set, and let u € Prob(F) be a contracting-on-average measure
such that supp(u) = E. By replacing E and p with their images under the map
e — g. = ¢!, we can without loss of generality assume that F is a subset of
G and that g. = e for all e € E. We want to apply Theorem 10.1 to show that
for any z € X, for f-a.e. b € B, the associated random walk trajectory (37) is
equidistributed in X.

Note that replacing p by its pushforward under a conjugation in G does not
affect the validity of this conclusion; indeed, if (37) is equidistributed then so is
(90gon T)nen = (gogsn 9o 190 ) nen, which is the random walk corresponding to the
pushforward of p under conjugation by gy and the initial point gox. Taking an
element of the semigroup generated by ® which acts on M as a contraction and
translating the fixed point to the origin, we can assume with no loss of generality
that supp(u) contains an element hy € AK with ma(ho) = a;, t > 0. After this
conjugation, let us show that the measure p satisfies conditions (i)—(iii) of Definition
6.2, where

ay = 7a(g), ko = mic(9); ug = kylag'g.

Clearly, these elements are of the form described in Definition 6.2, and the growth
assumption in (ii) follows from the contraction-on-average assumption. We will use
the irreducibility assumption to verify (iii). Let H < P be the Zariski closure of T',
and we will show that Lie(H) 2 Lie(U). Let @ be the identity component of H nU.
Clearly, H normalizes (), and by Lemma 6.4, for all g € H we have log(ug,) € Lie(Q)
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and thus u, € Q. Now let £ = {ac € M : log(ua) € Lie(H)} = {a € M : uq € Q}.
We claim that £ is invariant under the action of I' on M. Indeed, ifge I'and a € L,
then g - t(a) = azk uyua/AK = g(uqu,)g'/AK € Q/AK and thus p(g)(a) € L.
Thus by the irreducibility assumption, £ = M and thus Lie(H) 2 Lie(U), as
required.

e In Setup 1 we will also need to know that the assumptions of Theorem 10.4 are
satisfied for the map k = mx. That is, we need to show that I" acts ergodically on
(X x K,mx ®mg), where K is the closure of mx(I') and m is Haar measure on
K. To see this, note that the “contracting on average” assumption on g implies
that I is an unbounded subgroup of G. Thus by the Howe-Moore theorem (see e.g.
[41]), the action of I" on X is mixing, and hence also weakly mixing. Moreover, the
action of T' on (K, mg) (via k) is ergodic since x(I') is dense in K. This implies
(see [38, Proposition 2.2]) that the product action of I' on X x K is ergodic.

e In Setup 2, we need to show that I'" is Zariski dense, naturally using the assumption
that the IF'S @ is irreducible. First of all, by [1, Lemma 5.15], the Zariski closure
of I'*, which we denote by H, is a group. It is clear that the limit set of H in the
sense of Kleinian groups contains the limit set of ® in the sense of §9, which by
assumption is not contained in any generalized sphere £ & H™! (or else the smallest
such sphere would be invariant under ®). Thus H is a Lie subgroup of Isom(H?*)
with no global fixed point whose limit set (in the sense of Kleinian groups) is not
contained in any nonempty generalized sphere which is properly contained in OH?*!.
So by [20, Proposition 16], either H is discrete or H = Isom(H%*!). The former
case is ruled out because Zariski closed discrete sets are finite, and H is infinite (e.g.
because its limit set is nonempty). Thus I'" is Zariski dense.

11. DOUBLING MEASURES

In this section, we prove Theorems 8.7 and Theorem 9.5, using results from Part 1 and
[5] respectively. The proofs are very similar. They rely on the notion of a porous set:

Definition 11.1. Let Z be a metric space. A subset S < Z is called porous if there
exists ¢ > 0 such that for all 0 < r < 1 and for all z € Z, there exists w € Z such that
B(w,er) € B(z,r) N\ S.

Lemma 11.2 ([23, Proposition 3.4]). If S < Z is porous, then S has measure zero with
respect to any doubling measure v such that supp(v) = Z.

Before beginning the proofs of Theorems 8.7 and 9.5, we will provide equivalent charac-
terizations of when a point is badly approximable (resp. uniformly radial) in the context
of Theorem 8.7 (resp. Theorem 9.5).

Lemma 11.3. Let the notation be as in Setup 1, and assume that ® is strictly contracting
(i.e. that sup,.p|¢.| < 1). Then for each b € B, we have w(b) € BA if and only if the
sequence (GunTo)nen is bounded in X.

Proof. By the Dani correspondence principle, we have 7(b) € BA if and only if the orbit

(@rttn(e)0) 2
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is bounded in X [8, Theorem 2.20]. Write g, = gs» = ay, knlq, for some ¢, € R, k, € K,
and a,, € M. Also write 8, = w(T™b) € K, where T': B — B is the shift map, and let
hy, = u_g,_a, kntrp). Obviously h, and g, agree in their projections to AK, and on the
other hand, letting them act on M via the isomorphism ¢ : M — P/AK (and recalling the
minus sign in (35)), we have

he ' (B) = gk tag H(0) = ug (0) = w(D) = ¢4 (B) = g5 (Bn).
So h, = g, and thus h,ry = g,xro. Since ® is strictly contracting, the limit set K is
compact, so the sequence (3, )nen 18 bounded. Since K is also compact, this shows that

the distance from h,x¢ to a;,ur@p) o is bounded by a number independent of n. So since
the sequence (ay, Jnen has bounded gaps in (a;),-,, we have

(gnxo)neN is bounded < (atnuﬂ(b)xo)neN is bounded
= (atuﬂ(b)xo)t>0 is bounded. O

Lemma 11.4. Let the notation be as in Setup 2, and assume that ® is strictly contracting
on some compact set F < JH*L. Given b € B, we have w(b) € URy if and only if the
sequence (GyrTo)nen 15 bounded in X.

Proof. Let K be the subgroup of G fixing a distinguished tangent vector at the basepoint
0, so that TTHY ™! ~ K\G/A. Since K is compact,

(gb?q;o)neN is bounded in X
< the image of (gb’f)neN is bounded in K\G/A
< the image of (qﬁbl) is bounded in A\G/K
< (¢ (0 )) remains w1th1n a bounded distance of A(o).

So to complete the proof, we need to show that the Hausdorff distance between the sequence
(dw1 (o))neN and the geodesic ray [o,7(b)] from o to w(b) is finite. Since the sequence

of successive distances (dist(¢y: (o ) gbbl ( ))). _ is bounded, it suffices to show that the

neN

sequence of distances (dist(¢p (0), is uniformly bounded. Now for each n,

)neN
dist (6, (0), [o. (b)) = dlst( [% (0), 85, (x())]) = dist (o, [¢5,"(0), T(T"B)]),

so we just need to show that, after taking any subsequence along which both limits exist,

we have

(41) lim ¢b1 (o) # lim 7(T™b).

n—aoo n—aoo
But the left-hand side of (41) belongs to JH4™ \ V, where V < HI* U JHI™! is a
neighborhood of F small and regular enough so that o ¢ V' and ¢.(V) < V for all e € E.
On the other hand, since ® is strictly contracting on F, the right-hand side of (41) is a
member of F. So the two cannot be equal, which completes the proof. O

We are now ready to prove Theorems 8.7 and 9.5.

Proof of Theorem 9.5(i). By Lemma 11.4, it suffices to show that for all b € B, the sequence
(gnT0)nen is bounded in X = G/A. But this sequence is contained in the orbit I'"zq, which
by hypothesis is finite. O



RANDOM WALKS AND DIOPHANTINE APPROXIMATION 39

Proof of Theorems 8.7 and 9.5(ii). Let K; / X be an exhaustion of X by compact sets,
and for each j let

Sj = {b eB: (gb}le)neN < KJ}

Then by Lemma 11.3 (resp. Lemma 11.4), the set of badly approximable points (resp.
uniformly radial points) can be written as (J;y 7(S;). By Lemma 11.2, in order to complete
the proof, it suffices to show that for all j, the set 7(S;) is porous in K.

By contradiction, suppose that there exists j such that 7(S;) is not porous in K. Then
for all m € N, there exist z,, € K and r,, € (0,1) such that for all w € K such that
B(w,rp,/m) S B(2m,Tm), we have B(w,ry,/m) n w(S;) # @. Write z,, = m(b) for some
be B. Let n be the smallest integer such that ¢, (K) S B(zm,m/2). Now since ® satisfies
the open set condition, by [37] it also satisfies the strong open set condition, i.e. there exists
an open set U such that (¢.(U))eer is a disjoint collection of subsets of U, and U n K # @.
Fix 2z e U n IC, and let

A = mininf|¢.| > 0.
eclE

We claim that there exists ¢ > 0 such that for all £ € N and d € E*, we have
(42) B(¢d,1€b,11(20)7 C)\kT‘m) = de}cb}L(U)a where (bdib}L = fpy, © (bd}c-
Indeed, an easy induction argument shows that

B((bd,lC (Z0)7 AkdiSt(Zoj aU)) = qﬁd}6 (U)a

and the choice of n ensures that the contraction rate of the map ¢y is on the order of r,,.
Combining these facts with the bounded distortion property demonstrates (42).

It follows that if cA¥ > 1/m, then for all d € E*, we have Parpr (U) N m(S;) # ©@. Thus
there exists 0" € S; such that (V') € ¢4 (U). The defining property of U implies that byd
is an initial segment of V', i.e. that v/ = b}dd’ for some d’ € B. In particular, we have

(43) gai Tm € K for allde EF and i =0,...,k,

where z,, = gyxo. In particular x,, € K; for all m, so we can pass to a subsequence
along which we have z,, --» y € K;. Taking the limit of (43) along this subsequence
shows that for all d € E*, we have ggy € K;. In particular, the orbit I'*y is bounded.
In Setup 1 this gives a contradiction to Theorem 10.1(i). In Setup 2, in view of Theorem
10.2(i) and Remark 10.3, it follows that the set I'y is finite. But then the finite index
subgroup Stabr(y) < T is entirely contained in gAg~!, where y = gxy. This contradicts
the hypothesis of Theorem 9.5(ii). O

12. BERNOULLI MEASURES

In this section we prove Theorems 8.11 and 9.6, using Theorems 10.1, 10.2, respectively,
as well as Theorem 10.4.

Proof of Theorem 8.11. Recall that B = EZ, and define 7, : B — M by 7, (b) = 7(b}).
By the definition of a general algebraic self-similar measure, it suffices to show that for
[-a.e. b e B, the trajectory {asur, wyxo : t = 0} is equidistributed in X with respect to
mx. By Theorem 10.1(ii), for S-a.e. b€ B the orbit (g o)nen is equidistributed. We will
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apply Theorem 10.4. Let x = 7g, k. = s(e) be as in §10.1, let Y = E x M, and define
f:B —Y by f(b) = (by,7(b)). Then for S-a.e. be B, the sequence

(44) (95320, ko, F(T"D)) e

is equidistributed with respect to the measure mxy ® mg ® f«/3, where mg is the Haar
measure on K, the closure of x(I'). Note that f.f = u ® v, where v = 7,8. Now consider
the map fo: X x K xY — X x FE defined by the formula

fo(z, K, (e, @) = (K ugz, €).
Since f5 is continuous, the image of (44) under f,, i.e. the sequence
(45) (Tn, bn)nen,  where z,, = k';»illqur(Tnb)gb'ilxo,
is equidistributed in X x E with respect to the measure (f2).[myx @ mz ® f.3] = mx ® p.
Write g, = g = knay,Ua,- As in the proof of Lemma 11.3, we find that ¢, =
U_g, (Trb) Gy, Fpliz, ) and thus
(46> Tn = k?EIUm(Tnb)gnﬁo = A, Uz (b)To

for all n € N.

For each e € E, let t. € R be chosen so that m4(ge) = a;,. Since w4 is a homomorphism,
we have t, = t, 1 + 1, for al n € N. Now let F : X — R be a bounded continuous
function. Then the function F’ : X x E — R defined by the formula

F'(z,e) = ft Fla) dt

is also a bounded continuous function. Here we use the convention that if b < a, then
S F(ax) dt = = F(a,x) dt. Since (45) is equidistributed, plugging in (46) we find that

n

1
JF’ dimx ® pu) = J%HZF’ U, () %0, b)
:J%RZL 1 (aytir, (byTo) dt

1 (i
= (Jt6 du(e)) lim —J F(aur, pyxo) dt
n—o t, 0

(where in passing to the last line we used the special case of the first two lines where F' = 1
and ' (x,e) = t.). On the other hand,

[ranson (] ) s~ ([0 f ).

Since t, — oo and the gaps t,41—t, (n € N) are bounded, it follows that % So (agtn, vy T0) At —
SF dmy, i.e. that (atum(b)xo)tzo is equidistributed with respect to my. O

Proof of Theorem 9.6. Let x = xo, and let H < G and v, be as in Theorem 10.2. Since
by assumption I' is not virtually contained in A = Stabg(xy), Remark 10.3 shows that
v, = mx. So by Theorem 10.2(ii), for S-a.e. b e B the orbit (37) is equidistributed. As in
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the previous proof, we want to apply Theorem 10.4. Let 7, 7_ : B — JH*"! be defined
by the formulas

4 (8) = lim 5 0)
ﬂ-—(b) = EIPOOQSb}l(O)v

with the convention that ¢, = (bb’nlﬂ whenever n < 0.
0

Let b € B be a random variable with distribution 3. Then 7, (b) and 7_(b) are inde-
pendent random variables with atom-free distributions, and thus 7, (b) # 7_(b) almost
surely. Let «v(b) denote the bi-infinite geodesic from 7_(b) to 7, (b), and for each n € Z
let v, (b) € T'H*! =~ K\G be the unit tangent vector whose basepoint is the projection of
®p1 (0) to y(b) and which is parallel to v(b), pointing in the direction of 7, (b). Note that
Un(b) = ¢p, (V,—1(Th)). Equivalently, v, (b) = v,_1(Tb)gy,, where now we are thinking of
v,(b) and v,_1(Th) as elements of K\G. Let k : G — K = {e} be the trivial homomor-
phism, let Y = TYHI x TTH*!, and let f(b) = (vo(b),v1(b)). Then by Theorem 10.4, the
sequence

(47) (gen, vo(T7b), v1(T"D)) .,

is almost surely equidistributed with respect to my ® fi3. Let F : K\G/A — R be a
bounded continuous function, and let 7 v(b) be the space of unit vectors tangent to (b)
and pointing in the direction of 7, (b). We need to show that

1 UL
J F(wzg) dw
V1 — Vo Jy,

(48) JF dmyx for all vy e THv(b),

T+~(b)av1 -7y (b)
where the left-hand integral is taken over all w € T"(b) between vy and vy, with respect
to the pushfoward of Lebesgue measure on R under the differential of any unit speed
parameterization of v(b). The expression v, — vy is interpreted as the distance between the
basepoints of v; and vy. In what follows, it may happen that v; < vy in the sense that the
basepoint of vy is closer to 7, (b) than v; is, in which case we think of v; — vy as a negative

number and we use the convention SZ; h(w) dw T SZS h(w) dw for any function h.
To demonstrate (48), first observe that

1 vn (b)

1 f F(wag) dw

T Juo(b)
1 n—1 (le)gbi
=— J F(wzg) dw

0(T*b)g,i

Ln L (T'b)
=— Z J F(wgy xo) dw

n i=0 Uo(le)

fj (wz) dw dmx(z) df.B(v, v1)

(oo ) ([ o)
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Note that the last two lines make sense because for all (vg,v1) € supp(fif3), the tangent
vectors vg and v; span the same geodesic. To summarize, we have

1 vn (b)
(49) —f F(wxo) dw—>ch dmy,

n vo (b) n—o0

where ¢ € R is a constant independent of F.

By [34, Theorems 1.2 and 1.3], if F' = 1 then the left-hand side of (49) converges to a
positive number almost surely. This implies that ¢ > 0 and thus we can divide (49) by its
special case that occurs when F' = 1, yielding the limit

1 fvn(b)
—_— F(wzy) dw —— | F dmy.
U (0) — v0(b) Juo () (wzo) n—o X
Since vy, (b) — m1(b) and (vp41(b) — v, (b))nen is bounded, this implies that (48) holds, i.e.
that the directed segment [vg(b), 7, (b)] of the bi-infinite geodesic v(b) is equidistributed in
K\G/A. Since any two geodesic rays ending at the same point have the same equidistribu-
tion properties, this completes the proof. [l

Vo

13. EQUIDISTRIBUTION UNDER THE (GAUSS MAP

In this section we prove the following result. The result may be well-known but we were
unable to find a suitable reference. Combining it with Theorem 8.11 yields Theorem 8.9 as
an immediate corollary.

Theorem 13.1. Fizx o € (0,1), and suppose that the orbit (a;usTo)i=0 1S equidistributed in
X = G/A = PGLy(R)/ PGLy(Z) with respect to Haar measure. Then the orbit (G"Q)pen 1S
equidistributed with respect to Gauss measure, where G is the Gauss map. Equivalently, if
b= (b1,bs,...) is the sequence of continued fraction coefficients of o = [0;by,ba,...], then
the sequence (T™D)nen is equidistributed in NN with respect to Gauss measure, where T is
the shift map.

The converse to Theorem 13.1 is not true:

Example 13.2. Let b € N be chosen so that the sequence (T") ey is equidistributed with
respect to Gauss measure, and let S € N be an infinite set of density zero. Then if d € NY is
chosen so that d,, = b, for all n € N\ .S, then the sequence (77b),ey is also equidistributed
with respect to Gauss measure. However, by choosing the integers d,, (n € S) large enough,
it is possible to guarantee an arbitrary degree of approximability for the encoded point
a = [0;dy,ds,...]. In particular, d may be chosen so that « is very well approximable, in
which case it is not hard to show that the orbit (a;uqxg)i=0 cannot be equidistributed in
X with respect to any measure (due to escape of mass).

The idea of the proof of Theorem 13.1 is to define a map f : X — N which is continuous
outside a set of measure zero, such that the image of the orbit (a;uaxo)i=o is the orbit
(T™b)nen. To define this set, we use the fact that elements of X can be interpreted as
lattices in R? via the map gzg — ¢(Z?). In what follows we let L, denote the lattice
corresponding to a point x € X.

We define a best approzimation in a lattice L € R? to be a point (&1, &) € L ~ {0} with
the following property: there is no point (y1,92) € L~{0, +(&1,&2)} such that || < || and
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|2| < €. Tt is well-known that if @ € R, then the set of best approximations ({1, &) in the
lattice u,Z? that satisfy & > 1 is precisely the set {tuq(pn, @) : n € N}, where (pn/qn)nen
is the sequence of convergents of v [25, Theorems 16 and 17]. Also, it is easy to see using
Minkowski’s convex body theorem that the set of best approximations in L with second
coordinate > 1 is infinite unless L has a nontrivial intersection with {0} x R. Accordingly
we let X denote the set of points € X such that L, n ({0} x R) = {0}. Let Y denote the
set of increasing sequences in [1,00) which begin with 1 and have no finite accumulation
points, equipped with the Tychonoff topology. Define a function f; : X' — Y by letting
f1(z) denote the sequence of numbers consisting of the elements of the set

{& = 1:(&,&) € L, is a best approximation}

listed in ascending order and rescaled by a homothety so that they begin with 1. Using
continued fractions (see e.g. [24, Chapter 10]), it is not hard to show that for each z € X",
the sequence fi(x) = (y1, Y2, . . .) satisfies a recursive equation of the form y,, 1 = @, yn+yn_1
with a, € N. Note that X’ is an {a;}-invariant set of full mx-measure, and for all ¢ > 0
and x € X, there exists n > 0 such that fi(a;x) = T" o fi(z), where T : Y — Y is
the shift map. (More precisely, n is the smallest number such that the nth coordinate of
fi(x) is at least e'.) Also note that the set of discontinuities of f; is contained in the set
{re X' :L,n (R x{0,1}) # {0}}, which is a set of mx-measure zero.

Lemma 13.3. For all x € X' such that the trajectory (a,;z)so is equidistributed in X with
respect to the measure mx, the orbit

(50) (7" 1)) e

s equidistributed in Y , with respect to some probability measure p which is independent of
x.

Proof. Indeed, let ' : Y — R be a bounded continuous function, and define F’ : Y — R
and h : X’ — R by the formulas

F'(y1,92,...) = Z F(Yi,Yir1,---), h=1Fofi
1<jie
(Here log(e) = 1.) When (y1,ys,...) € Fi(X’), the recursive equation y, 1 = a,¥n + Yn_1
(a, = 1) guarantees that the number of summands in this series is uniformly bounded (in
fact < 3), and therefore h is bounded.
Write f1(x) = (y1,¥2,...). Then for all i e Nand ¢t > 0, Fo T fi(z) = F(yi, Yiz1,---)
is a term in F” o fi(az) if and only if log(y;) — 1 <t < log(y;). For all n > 0, we have

log(y:)

Yo T i(w) = ZJ FoTify(2) dt

=1 Ylog(yi)—1

log(yn)
:J F'o fi(ae) dt + O(1),
0

SO

1 1
. i— /
(51) JLOO log EFoT fi(zx) —TIE%OTJ F'o fi(ax) dt

0
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assuming the right-hand side exists.

The set of discontinuities of h is contained in the set {z € X’ : L, n ({0, 1, e} x R) # {0}},
which is of my-measure zero. Thus by the Portmanteau theorem, if v, — v with respect
to the weak-* topology, then (A dv, — {h dv. Thus, letting v, = = {/d,,, dt in the
Portmanteau theorem and using the equidistribution assumption shows that the right-hand
side of (51) converges to § F’ o f; dmx. Rearranging yields

e (s ) ([ o)

-1
for all x such that (a;x)i=0 is equidistributed.

As of yet, we do not claim that the limits exist, but only that the left-hand limit exists if
and only if the right-hand limit does.

Setting F' = 1 in (52), we see that the limit lim,_,q % exists and is independent of

. . log(yn
x. Write lim,,_, % = ¢ for some constant ¢ > 0. Then we have

1 & ~ o
lim —ZFoT’_lfl(a:) = JF dudzchF’ o fi dmx
e
for all z such that (a;x);>0 is equidistributed. This shows that the sequence (T™ f1(x))n=0
is equidistribuited with respect to u, completing the proof. 0

Proof of Theorem 13.1. Define f, : Y — NN by letting

Loy, 2, ..) = (lynJrl/ynJ)neN

Then the set of discontinuities of fo is contained in the set {(y1,%2,...) : Yns1/Un €
N for some n}, which is of measure zero with respect to the probability measure p defined
in Lemma 13.3. Thus by the Portmanteau theorem, the image of every equidistributed
sequence in Y under f, is equidistributed in NY with respect to the measure v = (fy)4pt.
On the other hand, if « € (0, 1), then the sequence f5 o fi(u,zo) is precisely the sequence
of partial quotients of the continued fraction expansion of «, except that the first partial
quotient is omitted. Thus

the sequence (T"(b))nen is equidistributed with respect to v
(53) for all & = [0; b1, b, ...] such that (a;uaz0)i=0 is equidistributed

with respect to mx.

A standard computation shows that whenever zy, 2o € X satisfy xo = gx; for some lower
triangular matrix g € G, then the trajectory (a;z1)i>o is equidistributed with respect to
myx if and only if (a;x2)=0 is equidistributed with respect to my. Now if S € R is any set
of positive Lebesgue measure, then the set {gu,zo : o € S, g lower triangular} has positive
my-measure. Thus, for Lebesgue-a.e. a € R, the trajectory (a;usxo)i=0 is equidistributed
with respect to myx. On the other hand, for Lebesgue-a.e. o = [0;by,bo,...] € R, the orbit
(T™(D) )nen is equidistributed with respect to the Gauss measure. Thus (53) implies that v
is equal to Gauss measure. Plugging this equality into (53) completes the proof of Theorem
13.1. O
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