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Abstract 

Modulation of vessel growth holds great promise for treatment of cardiovascular 

disease. Strategies to promote vascularization can potentially restore function in 

ischaemic tissues. On the other hand, plaque neovascularization has been shown to 

associate with vulnerable plaque phenotypes and adverse events. The current lack of 

clinical success in regulating vascularization illustrates the complexity of the 

vascularization process, which involves a delicate balance between pro- and anti-

angiogenic regulators and effectors. This is compounded by limitations in the models 

used to study vascularization that do not reflect the eventual clinical target population.  

Nevertheless, there is a large body of evidence that validate the importance of 

angiogenesis as a therapeutic concept.  The overall aim of this Position Paper of the 

ESC Working Group of Atherosclerosis and Vascular biology is to provide guidance 

for the next steps to be taken from pre-clinical studies on vascularization toward 

clinical application. To this end, the current state of knowledge in terms of therapeutic 

strategies for targeting vascularization in post-ischaemic disease is reviewed and 

discussed. A consensus statement is provided on how to optimize vascularization 

studies for the identification of suitable targets, the use of animal models of disease 

and the analysis of novel delivery methods.   
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1. Basic principles – vasculogenesis, angiogenesis, arteriogenesis 

 

Vasculogenesis describes the coalescence of mesoderm-derived angioblasts 

into the first primitive blood vessels 1. The process was first observed in quail embryos 
2, 3 and subsequently shown to be conserved in other vertebrates including mouse 4, 5 

and zebrafish 6, 7. These studies revealed many similarities not only between the 

morphogenetic processes of early blood vessel formation, but also between the 

molecules coordinating these processes 8. Several signalling pathways, such as 

Notch9 10 and Sonic Hedgehog 11, were shown to influence the early differentiation of 

arterial and venous endothelial cells (ECs) from angioblasts. Vasculogenesis was 

initially thought to be limited to embryo, but current understanding is more nuanced. 

Early embryonic angioblasts and hemoblasts share a very similar gene signature and 

the endothelium is hemogenic during development, meaning that hematopoietic stem 

cells differentiate from endothelial cells 12. The opposite is also true, hematopoietic 

stem cells can be differentiated into endothelial cells 13.  

Angiogenesis is the creation of new vessels from pre-existing ones 14. Hypoxia 

is one of the key drivers of the process. It activates ECs to become more motile and 

protrude filopodia. Further angiogenic factors such as vascular endothelial growth 

factor (VEGF) strongly dilates small arteries and capillaries which is the primary mode 

of VEGF action at low concentrations (intussusception angiogenesis). At high 

concentrations of VEGF, sprouting angiogenesis is the preferred mode of action 15. To 

prevent ECs moving en masse, a particular type of ECs, known as tip cells, are 

selected to lead the advance 16. Neighbouring cells assume an ancillary role as stalk 

cells, which divide to elongate the new vessel and establish a lumen. This specification 

of tip and stalk cells is governed by the Notch signalling pathway 17, 18. The 

establishment of flow in newly formed vessels leads to mechanical signals (shear 

stress) that feedback to reduce angiogenic sprouting thereby preventing excessive 

vascular growth 19, 20. 

Once stenosis in a large main artery becomes hemodynamically significant, the 

elevation of shear stress against the wall of these arterioles induces their enlargement. 

This is described as arteriogenesis. The collateral circulation may subsequently 

develop into a functional vascular structure to ensure regional perfusion after the 
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ischaemic event, thus protecting the tissues against necrosis. Simultaneously, 

arterioles, venules, and arteriovenous anastomoses are formed, following the 

production of smooth muscle cells and of the extracellular matrix (ECM), which 

consolidates the walls of these vascular structures 21.  

 

 

2. Neo-vascularization: physiology and pathophysiology 

 

2.1 Post-ischaemic angiogenesis: a physiological adaptation 

After the onset of ischaemia, cardiac or skeletal muscle undergoes a continuum of 

molecular, cellular, and extracellular responses that determine the function and the 

remodelling of the ischaemic tissue. Hypoxia-related pathways, the alterations in 

immunoinflammatory balance, as well as changes in hemodynamic forces within the 

vascular wall trigger vasculogenesis, angiogenesis and arteriogenesis which act in 

concert to establish a functional vascular network in ischaemic zones 22.  

The principal signalling pathway induced by hypoxia involves activation of 

hypoxia-induced factor (HIF1Į), which induces the expression of a set of genes 

appropriate to respond to this situation. Indeed, HIF1Į controls the expression of 

numerous major players involved in angiogenesis and vascular remodelling, including 

VEGF. Moreover, the target genes of HIF1Į are involved in metabolism, 

erythropoiesis, pH homeostasis, and autophagy 23.  

During ischaemia, inflammatory cells release angiogenic factors (e.g. VEGF) 

and cytokines (e.g. TNF), that decrease EC junctions and  enhance vascular 

permeability to promote the recruitment of inflammatory cells 24, 25. Consistent with this 

relationship between angiogenesis and inflammation, several molecules that regulate 

inflammation have been implicated in new vessel formation 22. Changes in 

hemodynamic forces (mechanical forces linked to pressure and flow rate) occurring in 

collateral vessels in response to arterial occlusion also contribute to post-ischaemic 

vascularization 26. Recent studies suggest that flow dynamics control the localisation 

of sprouting in vessels 27. The location is not determined by on highest VEGF 

concentration, but by a combination of VEGF and biomechanical signals 28. Thus, 

shear-induced mechanism appears to override pro-angiogenic signals such as VEGF 
29.  These pathways can also participate in vascular pathology; for example, the 
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mechanosensitive transcription factor TWIST1 promotes angiogenesis in the embryo 

and is also required for plaque formation in atherosclerosis models 20.  

In patients with ischaemic diseases in the presence of comorbidities such as 

diabetes, hypertension and obesity, most of the cellular and molecular mechanisms 

involved in the activation of vessel growth and vascular remodelling are markedly 

impaired 22. Thus, in the last decades, stimulation of vessel growth has emerged as a 

novel therapeutic option in patients with ischaemic diseases 30.  

 

2.2 Plaque vascularization and pathophysiology 

Under physiological circumstances, microvessels originate from the adventitia 

and provide the media with oxygen and nutrients 31. However, microvessels in 

atherosclerotic plaques have been implicated in progression of the disease and 

adverse outcomes. 

It is postulated that plaque angiogenesis is driven by plaque hypoxia and 

inflammation  32, 33 34. In experimental models plaque angiogenesis has been induced 

by stress 35, 36, treatment with pro-inflammatory mediators 37, pro-angiogenic growth 

factors 38 and viral gene delivery of pro-angiogenic factors 39-43, and was shown to 

increase plaque burden. Besides an increase in the number of microvessels, the 

physiological properties (quality) of the microvessel are also associated with risk for 

human plaque rupture. Microvessels of ruptured plaques in coronary arteries 

displayed detachments of the endothelial junctions, endothelial membrane blebs and 

a thin or absent endothelial basement membrane, and surrounding pericytes were 

found to be absent in a majority of microvessels in ruptured plaques.44 These 

ultrastructural characteristics suggest vascular leakage 45, that might be responsible 

for increased extravasation of immune cells and deposition of lipids and red blood cells 

in the plaques 46-48. Therefore, these microvessels are thought to represent one of the 

main sources of intra-plaque haemorrhage, in addition to healed thrombi 49.  

 

3. Vascularization therapeutics 

 

3.1 Growth factor therapy 

Various growth factors have been applied for therapeutic angiogenesis 

including VEGF, basic fibroblast growth factor (bFGF), hepatocyte growth factor 

(HGF), Platelet-derived growth factor (PDGF), stromal derived factor 1 (SDF-1), 



CVR-2018-239R1 

 

6 

 

Angiopoietin 1 (ANG-1) and insulin-like growth factor (IGF-1). Among these, VEGF 

and bFGF are the best studied and have reached human clinical trials. VEGF is the 

most important regulator of physiological angiogenesis during growth, healing and in 

response to hypoxia. VEGF is upregulated 30-fold by HIF1, which is more than any 

other inducible angiogenic factor during ischaemia. However, when administered 

alone, VEGF could increase endothelial permeability which leads to the formation of 

leaky capillaries and tissue oedema 50.  

PDGF can help stabilize nascent blood vessels by recruiting mesenchymal 

progenitors, and co-delivery of VEGF and PDGF has been shown to lead to early 

formation of mature vessels in animal models 51. bFGF is among the first discovered 

angiogenic factors to have both angiogenic and arteriogenic properties, which may 

facilitate formation of a mature blood vessel network 52. The HGF family induces potent 

angiogenic responses by binding to the c-MET receptor, which is expressed on ECs, 

vascular smooth muscle cells and hematopoietic stem cells. HGF is known to have 

mitogenic, angiogenic, anti-apoptotic, and anti-fibrotic activities in various cells 53. 

Clinical trials of SDF-1 in critical limb ischaemia (CLI) patients are underway and a 

better understanding of the mechanisms of chemokines, especially SDF-1, is crucial 

in filling the missing link in growth factor studies in therapeutic angiogenesis 54  .   

Notably, most of the intervention strategies to manipulate angiogenesis in 

atherosclerosis have been restricted to mouse models by using antiangiogenic or 

proangiogenic molecules such as halidomide 55, TNP-470 56, angiostatin 57, 58, anti-

VEGF-A 59, bFGF 38 and VEGF-A 60. 

 

3.2 Cell therapy 

Since the first pilot clinical study to evaluate treatment of peripheral vascular 

disease with stem cell therapy in 2002, over 50 clinical studies have been reported 

with progenitor cells 61. Therapeutic details such as patient selection, effective cell type 

selection and processing, optimal dosage, and delivery route are constantly improved.  

Studies have included patients of varying peripheric artery disease (PAD) 

severity. However, most of clinical trials have primarily focused on CLI patients in small 

phase I or II studies 61.  A variety of cell types have been studied as potential PAD 

treatments, including unselected bone marrow mononuclear cells (BM-MNC) or 

peripheral blood MNC (PB-MNC), marker-specific cells selected from the marrow or 
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blood, mesenchymal stem cells (MSCs), and adipose tissue–derived regenerative 

cells 62.  

In clinical studies of neovascularization considerable progress in the use of 

adult stem cells for cell transplantation has been made using hematopoietic stem cells 

(HSC), bone marrow-derived dendritic cells (BMDC), MSC, and endothelial progenitor 

cells (EPC) 63. Neovascularization in infarcted heart can be mediated by the 

incorporation of vascular progenitor cells into the capillary or by the paracrine factors 

released from stem cells and progenitor cells. In relation to the effectiveness of the 

use of adult stem cells for cell transplantation, the variability in the reported findings 

may be partly explained by differences in the delivery methods, treatment logistics, 

and target diseases 63.  

 

 

3.3 Non-coding RNA therapy 

Short (microRNAs; miRNAs) or longer (long non-coding RNA (lncRNAs) non-

coding RNAs play important roles in several physiological and pathological conditions 

such as cancer and cardiovascular diseases (CVD) including atherosclerosis 64 . 

Emerging data show that several miRNAs are linked to both adaptive and maladaptive 

vascular remodelling processes. Mir-126, one of the most abundantly expressed 

microRNAs in ECs, has a pro-angiogenic as well as anti-atherosclerotic role 65 and the 

systemic delivery of miR-126 mimics rescued EC proliferation at vulnerable sites and 

inhibited atherosclerotic lesion progression 66. On the other hand, the 17-92 miRNA 

cluster is anti-angiogenic but pro-atherosclerotic. Recent studies described that the 

endothelial-specific deletion of miR-17-92 in mice enhanced arterial density and 

improved post-ischaemia blood flow recovery 67. Notably, miR-503 expression is 

increased in ischaemic limb muscles and ECs of diabetic mice. Inhibition of miR-503 

by adenoviral delivery to the ischaemic adductor muscles of diabetic mice corrected 

diabetes-induced impairment of post-ischaemic angiogenesis and blood flow recovery 
68. Even though the functions of individual microRNAs in angiogenesis are not yet 

completely elucidated, because a single microRNA could regulate several growth 

factors at the same time, miRNA-derived therapy could replace single-factor 

angiogenic gene therapy 69.  
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4. Animal models of angiogenesis 

 

4.1 Pre-clinical studies of therapeutic angiogenesis 

Models to investigate post-ischaemic angiogenesis have been established in 

rodents and larger animals such as rabbits, pigs or dogs. They exhibit considerable 

variation because each species differs in the extent of naïve vascularization and thus 

reacts differently to vascular growth stimuli. To make things more complicated, within 

one animal species, different strains show distinct naïve vascularization and even 

show opposite reactions 70. 

So far, most studies have been performed in mice, because of the availability 

of a wide range of genetic knockout strains and the ease of introducing new genetic 

manipulations, including knock-in and temporal or tissue-specific manipulations. 

Moreover, the breeding is relatively fast and less expensive than experimentation with 

large animals and data obtained in mouse models are still necessary to justify 

experiments in large animal.  

A commonly used method in mice to induce post-ischaemic angiogenesis is the 

hind-limb ischaemia model, which is based on ligation of the femoral artery 71. 

Compared to the coronary or carotid artery, the femoral artery is easier to access and 

the method is accompanied by lower mortality rates. Moreover, live imaging of blood 

flow in ischaemic areas can be easily performed by laser Doppler imaging. 

Nevertheless, many of the mechanisms underlying neovascularization in response to 

ischaemia in peripheral arteries are not directly transferable to angiogenic processes 

in the heart. Experimental models of cardiac ischaemia are based on transient or 

permanent occlusion of the left descending coronary artery, induced by a highly 

invasive surgical procedure requiring thoracotomy. Moreover, in vivo imaging of 

coronary arteries by for instance intravital microscopy is complicated by the rapid 

movements due to cardiac and respiratory cycles 72.  

Rat models are also frequently used due to the ease of breeding and their 

extended lifespan. The methods and readouts normally applied do not differ 

essentially from those used in mice. Their major advantage compared to mice 

therefore lies in their size, without improving translatability into humans. Moreover, 

larger animals require a longer time to restore vessel function by neovascularization. 

Of course, this is an oversimplification, but it partly explains why larger animal models 
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are often regarded to have added value for translation of angiogenic therapies into 

human medicine (Table 1).  

For a long time, the dog 73, 74 , together with the rabbit 75, 15, were the animals 

of choice for investigation of neovascularization. Amongst other reasons such as easy 

handling, dogs are well known for their extended myocardial vascularization that 

allows performing coronary artery occlusions with low complication rates. Much of our 

current knowledge on the role of various angiogenic and arteriogenic growth factors is 

based on experiments performed in dogs. However, ethical considerations have led 

to a significant decrease in the use of dogs for animal experimentation.  

The occlusion pathophysiology and tissue recovery that occur after an acute 

arterial ligation are very different in animal models than in human chronic ischaemic 

diseases. Experimental acute vessel occlusion results in an immediate vascular 

response in animals which reflects the situation in a limited subgroup of patients (such 

as young patients with traumatic injuries), who require immediate medical 

interventions and are not typically enrolled in angiogenic therapy clinical trials. Another 

crucial difference between the experimental models and patients is that the patients, 

owing to their comorbidities, do not have sufficient growth of collaterals, showing  

decreased endogenous angiogenic stimuli and reduced angiogenic signalling 30.  

The search for an adequate replacement with potentially even higher 

translational value has resulted in an increasing number of pig models. Hind-limb 

ischaemia in pigs can be safely performed without leading to limb necrosis 76. In 

contrast, the pig was long considered to have insufficient capabilities to compensate 

for coronary ischaemia by neovascularization 77. In the past decade, however, several 

groups succeeded in establishing also pig coronary neovascularization models by 

inducing progressive coronary stenosis rather than acute occlusions78, 79.  

 

4.2 Pre-clinical studies of plaque angiogenesis 

Many studies of atherosclerosis use murine models, however there are several 

limitations in their applicability to analyse plaque vascularization. Notably, 

atherosclerotic plaques developing in hypercholesterolemic murine models contain 

fewer microvessels than human atherosclerotic plaques. The reason for this remains 

uncertain but it may be due to differences in the transport of oxygen between human 

versus murine atherosclerotic plaques, ECM turnover and different biomechanics 

between mice and man 80. A role for ECM was implicated by studies of knockout mice 
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lacking collagen XVIII which had enhanced intra-plaque vascularization in response 

to hypercholesterolemia compared to controls 57. This was more pronounced in ApoE 

fibrillin double knockout mice 81, suggesting that lack of proper ECM components in 

the media  and plaque might mediate angiogenesis. Besides ECM degradation, 

different biomechanical properties between mice and man might also explain the lack 

of plaque angiogenesis 82, 83. Lower fibrotic material stiffness (cellular and 

hypocellular) and a fundamental difference in plaque morphology (dome-like) together 

with a smaller vessel size as well as lower peak cap stress are present in murine 

compared to human plaques 83. In addition, tissue contraction and deformation have 

been shown to induce VEGF-A expression 84. Lower biomechanical stresses might 

account for lower VEGF-A levels in mice versus humans. Indeed, ruptured human 

plaques express higher levels of VEGF-A compared to stable plaques 85. In murine 

atherosclerosis, experimental overexpression of VEGF-A increased signs of plaque 

vulnerability 38, showing that endogenous VEGF-A expression is not sufficient to evoke 

signs of plaque rupture.   

Another limitation relates to the site of microvessel formation. While a minority 

of studies report intra-plaque angiogenesis in murine atherosclerosis models, most 

focus on plaque-associated vasa vasorum of the adventitia as a surrogate for intra-

plaque microvessels (Table 2). This is an important caveat because although 

adventitial vasa vasorum growth may precede atherosclerotic plaque development 86, 

87, plaque rupture has been linked with increased intra-plaque angiogenesis rather 

than an increase in adventitial vasa vasorum in humans 44. Thus far, this discrepancy 

limits the extrapolation of murine adventitial angiogenesis as an outcome parameter 

to human studies. 

Moreover, several methodological limitations hamper the comparability of 

murine and human studies. Firstly, while murine models usually examine on various 

regions (e.g. aortic root, ascending aorta, descending aorta, brachiocephalic artery, 

and carotid artery) they often ignore other clinically-relevant vessels such as the 

coronary and renal arteries. In addition to this, the parameters measured to assess 

vascularization vary considerably between studies: for example, microvessel density 

(number of microvessels per mm2), microvessel count (per section or per mouse), 

CD31 positive adventitial area or vasa vasorum volume have been used (Table 2). 

Moreover, also the imaging method varied between studies: most of them used 

histology, but also intra-vital microscopy, two photon microscopy, confocal microscopy 
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and micro CT have been used to visualize adventitial microvessels (Table 2). 

Moreover, the experimental design often limits the translatability of the findings. In two 

studies, induction/manipulation of angiogenesis was started together with 

atherosclerosis induction 55, 88, whereas pre-existing plaques represent the treatment 

target in human atherosclerosis.  

In addition to mice and rats, rabbits and pigs (Table 3) have been used to study 

angiogenesis in atherosclerosis. In rabbit models, atherosclerosis was mostly induced 

by a combination of balloon angioplasty and high cholesterol diet, leading to plaques 

with a baseline microvascular density between 15 and 80 vessels per mm2. In some 

studies, adventitial angiogenesis was specifically targeted using a hollow perivascular 

collar together with a relatively short post-operation time of 9 to 21 days 40, 41, 89, 90. 

Interestingly, induction of diabetes accelerated atherogenesis and intraplaque 

angiogenesis in Watanabe heritable hyperlipidemic rabbits 91 (Table 3). 

In pigs, atherosclerosis was induced by high cholesterol diet and/or surgical 

interventions (balloon angioplasty or stenting) (Table 3). However, intra-plaque 

angiogenesis was not detected in all studies except for one (Table 3). Here, a 

genetically engineered Yucatan mini pig was used, which develops 

hypercholesterolemia due to pro-protein convertase subtilisin/kexin type 9 (PCSK9) 

overexpression, when fed a high cholesterol diet 92. The resulting plaques show a 

human like morphology including intra-plaque and adventitial angiogenesis. However, 

data on microvascular density were unfortunately not provided. Practically, larger 

animal models allow for the use of clinical diagnostic tools such as magnetic 

resonance imaging to detect microvessels. Therefore, it will be easier to translate the 

study results to the human situation.  

 

5. Gene and cell delivery 

 

5.1 Viral delivery 

Gene and cell delivery into the myocardium has been a major challenge over 

the past decade. Efficient therapeutic approaches developed in animal models have 

not been successful in human clinical trials because gene and cell transfer efficiency 

in cardiac muscle has remained too low 93, 94 Several factors contribute to this problem: 

the human heart is a very large muscle as compared to mice and rats and vectors or 

cell solutions cannot easily penetrate deep into the myocardium. The adeno 
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associated virus (AAVs) for instance, bind tightly to heparansulphate proteoglycans 

and they do not easily escape from the intraluminal space into the myocardium 95. In 

previous trials, intracoronary injections, intramyocardial injections from the left 

ventricle and intramyocardial injections during thoracotomy or bypass surgery have 

been tested. However, because occluded coronary arteries do not get adequate 

perfusion, fail to deliver substances into the ischaemic areas. Thus, it is not surprising 

that intracoronary injections have not been very successful for gene and cell delivery.  

 

5.2 Mechanical delivery 

Intramyocardial injections lead to better transduction efficiencies but diffusion 

of viral vectors in the myocardium is still limited and the binding to ECM components 

further limits vector spreading in the myocardium. Protein, such as VEGF-A165, 

delivered by transgenes, bind strongly to heparansulphate proteoglycans which 

reduces their diffusion in ischaemic and fibrotic myocardium.  Similar obstacles exist 

for successful cell delivery into the myocardium. Intracoronary injections seldom lead 

to viable, engrafted cells in the heart. Intramyocardial injections cause significant 

mechanical stress on the cells during injections. Most cells seem to die within hours 

or during the first days and paracrine factors seem to contribute to the potential 

therapeutic effects 96, 97. For applications like myocardial ischaemia, local targeted 

injections based on electromechanical mapping 98 or blood flow measurements using 

positron emission tomography 98 have recently improved the situation and targeted 

injections into hibernating myocardium can now be achieved with 10-20% efficiency 

around the needle track. Multiple injections are still needed to cover larger areas in 

ischaemic myocardium. To improve myocardial function in heart failure, the effects of 

gene or cell transfer should be very global to transduce as many cardiomyocytes as 

possible. At the moment, this can be achieved with some vectors in mice 99 but in 

larger animals and humans wide spread gene expression after any delivery method 

still remains a very challenging task 100, 101. 

 

5.3 Non-viral delivery 

Several methods of non-viral gene transfer have been utilized to deliver genes 

of interest to ischaemic tissues to stimulate therapeutic angiogenesis. Genes encoding 

pro-angiogenic proteins have been administered by cationic polymers, lipids, 

liposomes and three-dimensional scaffolds 102. Targeting strategies using polymers or 
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lipids modified with specific ligands for the receptors on target tissues could improve 

the efficacy of current gene delivery systems by facilitating cellular uptake of genes 

via receptor-mediated endocytosis 103. Gene delivery using lipid formulations has been 

applied in ischaemic tissues for therapeutic angiogenesis. Jeon et al. reported that 

VEGF-A gene delivery using heparin-conjugated Polyethylenimine (PEI) significantly 

upregulated VEGF-A expression, resulting in extensive neovascularization in mouse 

ischaemic limbs 104. Nanoparticles composed of biocompatible and biodegradable 

polymers (e.g., poly (lactic-co-glycolic acid; PLGA) are considered to serve as gene 

carriers for the treatment of ischaemic tissues due to the efficient delivery mechanism 

and low toxicity. Indeed, VEGF-A delivery using PLGA nanoparticles resulted in higher 

VEGF-A expression and more extensive angiogenesis in mouse ischaemic limbs 105. 

A novel concept of involving a biodegradable gelatin hydrogel carrying a sustained-

release system of bFGF was studied in patients with CLI. The delivery improved 

transcutaneous oxygen tension, increased walking time, and decreased ischaemic 

pain 106. Despite this progress, the ability to introduce new genes into ischaemic tissue 

remains an important challenge and a limiting factor in the field of therapeutic 

angiogenesis. 

 

6. Clinical trials for therapeutic vascularization: change of perspectives 

 

6.1 Endpoints 

Ongoing clinical gene and cell therapy trials have been reviewed elsewhere 93, 

107.  In most ongoing trials, very stringent endpoints have been selected, such as 

overall mortality, major adverse cardiovascular events (MACE), improvement in 

exercise test, or various quality of life endpoints. However, since most gene and cell 

therapy trials are still quite small as compared to large pharmaceutical phase II/III 

trials, endpoints like overall mortality or MACE cannot easily capture potentially 

significant treatment effects, such as reduced frequency of hospital admissions and 

lower number of multiple additional interventions in chronically ill patients. For 

example, endpoints like ST segment decline of 1 mm is not useful for refractory angina 

patients who usually have infarction scars, ECG alterations and the ST segment 

changes cannot be reliably detected.  Small phase I and phase II clinical trials for CLI 

have shown that cell-based therapies are safe and improve wound healing, but the 

trials were not large enough to detect any improvements in delaying amputation 62. 
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Ideally, functional readouts based on imaging such as PET or MRI should be 

obtained ahead of hard clinical endpoints to validate the biological effects of the 

intervention along the way.  It would be especially important to measure functional 

improvements in the myocardial function and extend analysis to various sensitive 

imaging and metabolic measurements. In cancer trials for example, it is well accepted 

that drugs can be approved based on imaging-derived complete or partial responses 

and/or timelines to recurrence even though there are no effects on survival or mortality 
108. In addition, it is likely that only some patient populations will be responding 

positively to gene and cell therapies and therefore it would be important to identify 

biomarkers, which could differentiate responders from non-responder populations 109. 

 

6.2 Patient populations 

So far, while non-controlled, non-randomized gene and cell therapy trials in 

cardiovascular diseases have provided positive outcomes, most randomized, 

controlled, blinded studies have not achieved any clinically relevant effects in heart 

and limb muscles 110.  In multi-center studies, heterogeneity in patients and different 

cell preparations and products can influence the efficacy of cell therapy 111.  In addition, 

meta-regression showed that a refinement in endovascular and surgical techniques 

leading to improved limb salvage is expected to reduce the potential incremental 

benefit of cell therapy 111 . Therefore, future cardiovascular gene and cell therapy trials 

should focus more on randomized, blinded and controlled study designs where less 

severely affected patients are treated as compared to so called no-option patients 

which have been frequently targeted in previous non-randomized trials. It is likely that 

these no-option patients have already lost at least some of their regenerative capacity 

and therefore are not optimal for testing new biological therapeutic approaches.  

 

6.3 Growth factors development 

To achieve better outcomes, an optimal profile of growth factors should be 

identified for clinical testing since some of the previously tested factors, such as VEGF-

A, are problematic in respect to their fast and very strong effects. They also induce 

harmful side effects like increased vascular permeability and thrombosis. Despite 

promising effects of anti VEGF therapy on tumor angiogenesis, serious adverse 

effects on cardiovascular events (angina pectoris, arterial thrombosis, cerebral or 
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myocardial ischaemia and infarction) have been shown for the VEGF-A inhibitor 

bevacizumab in a meta-review study 112. 

 Instead, growth factors with more appropriate signaling kinetics for improving 

cardiac condition should be taken into clinical testing. A possible example is VEGF-D, 

which is both angiogenic and lymphangiogenic and therefore can improve fluid 

drainage from myocardium after inducing angiogenic effects. Signaling kinetics for 

VEGF-D are also slower, less aggressive and longer lasting than VEGF-A. Therefore, 

it may be better suited for therapeutic applications than the previously tested growth 

factors. Recent phase I/IIa clinical trial results in refractory angina patients have indeed 

supported this approach. The trial results showed improved myocardial perfusion 

reserve in the treated ischaemic, hibernating myocardium one year after the treatment 
113. Also, the trial suggests that patients with high Lp(a) benefit most from the 

adenovirus VEGF-D therapy. Therefore, we can expect improved therapeutic 

applications in the future after learning important lessons from the previous trials.  

 

Consensus statement:  

The design of therapeutic strategies for angiogenesis is crucial to the success 

of the vascularization studies. In this section, the ESC Working Group for 

Atherosclerosis and Vascular Biology provides guidance for the development of 

treatments to target the vasculature in post-ischaemic disease and for their 

assessment in pre-clinical and clinical studies: 

 

 Research during the last decade has identified an intricate genetic network of 

molecules that control the assembly of the first blood vessels from individual 

angioblasts prior to the onset of circulation. Moreover, large-scale changes in 

transcriptomes as well as changes in non-coding RNAs that regulate the 

angiogenic process have been investigated. The potential to harness these 

novel mechanisms to drive therapeutic angiogenesis should now be tested. 

 Although murine models have underpinned a wealth of basic biology studies, 

they also have certain limitations (reviewed extensively above). Standardization 

of animal models for cardiovascular research and inclusion of comorbidities are 

necessary to reach the standard for clinical translation. It is our view that large 

animal models, including novel transgenic pig models, can be useful for long-

term experimentation because their close similarity with human size, anatomy 
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and metabolism enhances their relevance for clinical translation. Main 

limitations for the use of large animal models could be the costs and ethics 

behind such studies.   

 Efficacy and tissue specific delivery is a key point to consider in planning 

neovascularization studies. It appears that physical/mechanical interventions 

(i.e., by surgery or via a catheter) currently provides better control for the 

delivery procedure compared to systemic injection. In the setting of PAD or 

coronary artery disease (CAD), local cell or gene therapy to promote post-

ischaemic angiogenesis could be combined with systemic pharmacological 

therapy to reduce risk factors for atherosclerosis. A new generation of inducible 

viral vectors should be developed to allow precise temporal control of inducible 

transgene expression, thus avoiding detrimental effects due to continuous 

overexpression. As an alternative, non-viral gene transfer, has become a 

possible option for transgene delivery.  

 An analysis of the clinical trial of the last decades has shown that endpoints 

have been inconsistently used in clinical trials. We propose that functional and 

metabolic readouts should be further developed to capture therapeutic efficacy 

and biological activity of the treatments and support clinical hard endpoints.  To 

this end, imaging readouts represent one avenue for the future that will require 

further standardization.  

 Patient selection is critical, given the influence that comorbidities, aging and 

medications may have on the results of the trials. Since safety of gene and cell 

therapy has been very good in almost all reported trials, moving towards trials 

of less severe patients, such as CCS class 2-3 for refractory angina, in the 

future will be justified. Biomarkers and scores that would enable appropriate 

identification of specific target populations that benefit most from gene or cell 

therapy need to be proposed. Finally, further genetic characterization of non-

responder patient groups in neovascularization clinical trials would help to 

identify factors affecting treatment responsiveness. 
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Figure Legend 

Figure 1: Difference in heart vascularization and response to ischaemia between 

animals and humans 
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Table 1: Large animal models of post-ischaemic angiogenesis 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Animal 

Species 

Model Outcome Ref. 

R
a

b
b

it
 

Left anterior descending coronary artery ligation Myocardial Infarction  75 

Femoral artery ligation Hind-limb ischaemia 15 

Femoral artery excision Hind-limb ischaemia 114 

P
ig

s 

Coronary stenosis Myocardial Infarction 78, 79 

Left anterior descending coronary artery ligation Myocardial Infarction 77 

Femoral artery ligation Hind-limb ischaemia 76 

D
o

g
 Ameroid constrictors and coronary artery ligation Myocardial Infarction 73 

Ameroid constrictors Myocardial Infarction 74 
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Table 2: Model of angiogenesis in mouse atherosclerotic plaque 

 

Animal 

Species 

Anti/Pro 

Angiogenic 

Mechanism Duration Read 

out 

Effect 

on 

plaque 

Intra-

plaque 

Incidence Adventitial Incidence Ref. 

S
h

o
rt

 t
im

e
 d

ie
t  

ApoE-/- Pro Time + hr 

VEGF-A 

7, 6, 5 

wks HCD 

Histo ј ј ND ND - 38 

LDLR-/- Anti Time + VEGF 

R2 

vaccination 

20 wks 

HCD 

Histo љ ND - љ ND 88 

LDLR-/- 

ApoB38-/- 

Pro Time + 

VEGF-A, 

VEGF-B, 

VEGF-C, 

VEGF-D  

genetransfer 

12 wks 

HCD 

Histo = - - = 5 

vessels/section 

43 

ApoE-/- 

Coll XVIII-

/- 

Pro Time + 

CollXVIII KO 

24 wks 

HCD 

Histo ј ј Incidence, baseline 

13% and KO 53% 

ј Baseline 17% 

vessels/area 

and KO 32% 

vessels/area 

57 

ApoE-/- 

Fbn1 

C1039G+/- 

Pro Time + Fbn1 

C1039G+/- 

KO 

20 wks 

HCD 

Histo ј ј Incidence, baseline 

4% and KO 90%, 

baseline MVD 0 and 

KO MVD 6 

vessels/10^7 µm2 

Present ND 81 

A
g

e
d

 m
ic

e
 a

n
d

/o
r 

p
ro

lo
n

g
e

d
 d

ie
t 

ti
m

e
 

ApoE-/- - Time 40-50 

wks 

chow 

Two 

photon 

micro. 

- ј Incidence 30% ј Incidence 

88.2% 

48 

ApoE-/- Pro Time + 

rbFGF 

(I) 67-94 

wks 

chow (II) 

12 wks 

HCD 

Histo ј ND - ј ND 60 

ApoE-/- - Time 40-96 

wks HCD 

Intravital 

micro. 

- ј 5% 2 of 39 studied 

advanced plaques 

(but total mice 

imaged 168 mice 

ј Incidence 77% 47 

ApoE-/- 

LDLr-/- 

Anti Time + 

Thalidomide 

39 wks 

chow 

µCT љ ND - љ Baseline 8 

vessels/section, 

treatment 5.5 

vessels/section 

55 

ApoE-/- 

SV129-/- 

Pro Time + 

stress + 

SV129 KO 

20 wks 

HCD 

Histo ј ј ND ND - 35 

S
u

rg
ic

a
l 

M
a

n
ip

u
la

ti
o

n
 

ApoE-/- - Collar 

Placement + 

MMP9 gene 

therapy 

Not 

clear 

Histo = = ND ND - 39 

LDLr Anti Collar 

placement + 

VEGFR2 

vaccination 

Not 

clear 

Histo љ - - Present ND 115 

ApoE-/- Pro Collar 

placement + 

VEGF-A 

genetransfer 

Not 

clear 

Histo ј = ND = ND - 39 

LDLr Anti Collar 

placement  

+ Tie2 

vaccination 

8 wks 

HCD 

Histo љ - - љ Baseline 22 

vessels/section, 

treatement 7.5 

vessels/section 

116 

ApoE-/- - Tandem 

Stenosis 

17, 13, 

10, 8 

wks HCD 

Histo ј Present 0.03 

microvessels/mm2 

Present ND 117 
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Table 3: Large animal models of plaque angiogenesis 

 

 

 

 

ApoE-/- Pro Wireinjury + 

asTF 

genetransfer 

6 wks 

HCD 

Histo ј ј Baseline 0.5 

vessels/mm2, 

treatment 1.75 

vessels/mm2 

ND - 42 

Animal 

Species 

Anti/Pro 

Angiogenic 

Mechanism Duration Read 

out 

Effect 

on 

plaque 

Intra-

plaque 

Adventitial Ref. 

R
a

b
b

it
s 

Pro Time +hrVEGF-A 6 wks 

HCD 

Histo ј Increase 

but only 

total CD31 

measured 

not density 

ND 38 

Pro Perivascular Collar + 

VEGF-A, VEGF-CNC, VEGF-

D and VEGF-DNC gene 

transfer 

3 wks 

HCD 

Histo ј ND ј 40 

Pro Perivascular Collar + 

VEGF-E, VEGF-E+(s)VEGF-

R-2 gene transfer 

10 days 

chow 

Histo ј ND ј 89 

Pro Collar placement (rabbit)+ 

balloon angioplasty (rat) 

with VEGF and PR39 gene 

transfer 

9 days 

(rabbit) 

and 14 

days 

(rat) 

chow 

Histo ј ND ј 41 

Pro Watanabe + Alloxan 

injection to induce 

diabetes 

 Histo 

NMR 

ј Total CD31 

not density 

ND 91 

P
ig

s 

Anti Time + Thalidomide 

4mg/kg 

12 wks 

HCD 

µCT љ ND љ 32 

Anti Balloon Angioplasty + 

Endostar 

12 wks 

HCD 

Histo љ ND љ 118 

- Time + PCSK9 KI 46 wks 

HCD 

Histo - Present Present 92 


