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Abstract

We consider estimation of a functional-coefficient panel data model. This model is useful for modeling time vary-

ing and cross-sectionally heterogeneous relationships between economic variables. We allow for serial correlation

and heteroscedasticity in the model. When the number of explanatory variables is large, we impose a rank-reduced

structure on the model’s functional coefficients to reduce the number of functions to be estimated and thus improve

estimation efficiency. To adjust for serial correlation and further improve estimation efficiency, we use a Cholesky

decomposition on the serial covariance matrices to produce a transformation of the original panel data model. By

applying the standard semiparametric profile least squares method to the transformed model, more efficient estimates

of the coefficient functions can be obtained. Under some regularity conditions, we derive the asymptotic distribu-

tion for the developed semiparametric estimators and show their efficiency improvement under correct specification

of the serial covariance matrices. To attain this efficiency gain when the serial covariance structure is unknown, we

propose approaches to consistently estimate the lower triangular matrix in the Cholesky decomposition for balanced

panel data, and the serial covariance matrices for unbalanced panel data. Numerical studies, including Monte Carlo

experiments and an empirical application to economic growth data, show that the developed semiparametric method

works reasonably well in finite samples.

Keywords: Cholesky decomposition, Functional coefficients, Local linear smoothing, Panel data, Principal

component analysis, Profile least squares, Within-subject covariance.
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1. Introduction

Nonparametric panel data models have received increasing attention in the past two decades [16, 17, 25, 34, 35].

When the dimension of explanatory variables in nonparametric panel regression is large, to circumvent the “curse of

dimensionality”, some nonparametric and semiparametric modeling techniques, such as functional-coefficient models,

additive models, partially linear models and single-index models, have been extensively studied in the literature [2, 5,

12, 23, 30? ]. In this paper, we consider functional-coefficient panel data models as they are a natural generalization of

classical linear regression models and provide a flexible framework for depicting the relationship between the response

and explanatory variables. A detailed introduction on estimation and inference of functional-coefficient models with

independent or weakly dependent data can be found in [3, 6, 13, 14, 31] and the references therein. In this paper, we

do not impose any restriction about the serial correlatedness of the model error terms and allow for arbitrary serial

correlation and heteroscedasticity to give our model and method wider applicability.

Consider a set of panel data (Yi j,Xi j, ui j) with i ∈ {1, . . . , n} and j ∈ {1, . . . ,mi}, where Yi j is the response variable

of interest, Xi j is a d-dimensional vector of explanatory variables whose first element is 1 and ui j is a univariate random
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variable. The variable ui j can be chosen as calendar time or some other index variable in practical applications. The

functional-coefficient panel model is defined, for i ∈ {1, . . . , n} and j ∈ {1, . . . ,mi}, by

Yi j = X⊤i jβ0(ui j) + εi j, (1)

where β0 is a d-dimensional vector of functional coefficients, εi j is the random error that is cross-sectionally indepen-

dent but serially correlated and satisfies

E(εi j|Xi j, ui j) = 0 and cov (εi|Xi,ui) = Σi,0 (2)

almost surely (a.s.), where εi = (εi1, . . . , εimi
)⊤, Xi = (Xi1, . . . ,Ximi

)⊤ and ui = (ui1, . . . , uimi
)⊤. Throughout the paper,

we annotate the true parameters and functions of the data generating process with 0 in their subscripts.

In this paper, we consider short panels, where the number of cross-sectional units n is large, but the number of

time series observations mi is fixed and relatively small and may vary across units. Our main interest is to estimate

the functional coefficients β0 in model (1). However, when the dimension d is large or even moderately large, the

nonparametric estimation of the functional coefficients is unstable. Therefore, an appropriate dimension reduction ap-

proach needs to be employed to reduce the number of nonparametric coefficient functions to be estimated. Motivated

by [19], we achieve this dimension reduction by extracting the principal components of the functional coefficients.

More specifically, we assume that there exist a vector of functions γ0 = (γ1,0, . . . , γd0,0)⊤, a d-dimensional vector of

parameters θ0 and a d × d0 (with d0 ≤ d) matrix of parameters Θ0 = (Θ0(1), . . . ,Θ0(d0)) in which Θ0(k), for each

k ∈ {1, . . . , d0}, is a d-dimensional column vector, such that

β0(u) = θ0 +Θ0γ0(u). (3)

We call γ1,0, . . ., γd0,0 the principal functional coefficients since they can be seen as the principal functions of

β0. The positive integer d0 is usually unknown in practice but typically much smaller than d. This integer can be

estimated by a simple ratio criterion [21] given in Section 5.1. We call model (1) with the imposition (3) a rank-

reduced functional-coefficient panel data model. By imposing the structure (3) on the functional coefficients β0, we

reduce the number of nonparametric functions from d to d0.

In practice, economic panel data are often found to be serially correlated. There are two possible ways to deal with

serial correlation in econometric analysis. The first is to treat it as a result of model misspecification and then adjust

the model accordingly to eliminate serial correlation, e.g., by using a dynamic model instead of a static model. The

second is to correct for serial correlation in estimation and statistical inference directly without changing the model

specification. In the present paper, we will take the second approach.

In the presence of serial correlation, a direct application of the estimation procedure proposed by Jiang et al. [19],

which ignores the serial correlation, would certainly affect the efficiency of functional coefficients estimation. To

account for serial correlation, some modified nonparametric and semiparametric methods have been introduced in

the statistics literature, making certain functional transformation or nonparametric/semiparametric estimation of the

serial covariance matrices Σi,0 [11, 24, 26, 36]. In this paper, we adjust for serial correlation by using a Cholesky

decomposition on the serial covariance matrices Σi,0 to obtain a transform of the original panel data model so that the

errors of the transformed model are free from serial correlation. We then apply a semiparametric estimation method to

the transformed model to obtain estimates of θ0,Θ0 and γ0. To the best of our knowledge, this paper is among the first

to combine the rank-reduced structure on the model functional coefficients and the Cholesky decomposition on the

serial covariance matrices in the estimation methodology and systematically study the relevant asymptotic properties.

Under some regularity conditions, we establish the asymptotic distribution theory for the proposed semiparametric

estimators. In particular, we show that using the rank-reduced structure on the functional coefficients and the Cholesky

decomposition on the serial covariance matrices can improve the estimation efficiency of the principal functional

coefficients and thus that of the functional coefficients when the serial covariance structure is correctly specified up to

a constant multiple.

However, the true serial covariance structure is usually unknown, and its misspecification could lead to efficiency

loss. Hence, we introduce two different approaches for consistent estimation of the lower triangular matrix in the

Cholesky decomposition for balanced and unbalanced panel data. By using these consistent estimates, we attain the

same efficiency gain as when the serial covariance matrices are correctly specified. The simulation studies show that

the developed semiparametric approach works reasonably well in finite samples.
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The functional-coefficient panel modelling framework (1) can cover a special case where the univariate index

variable is time-invariant. In this case, for each i ∈ {1, . . . , n}, j ∈ {1, . . . ,mi}, the functional-coefficient panel data

model (1) becomes

Yi j = X⊤i jβ0(ui) + εi j (4)

and the moment conditions in (2) become

E(εi j|Xi j, ui) = 0 and cov(εi|Xi, ui) = Σi,0 a.s.,

where ui is the time-invariant index variable. The estimation methodology developed in our paper is applicable to

the above model setting. In fact, model (4) is of interest for economic panel studies where the relationships under

study are cross-sectionally heterogeneous but do not vary significantly over time, as in the econometric growth study

we provide in Section 6. In this empirical study, the index variable is chosen as the income level of a country at

the beginning of the sampling period (i.e., 1986), as previous research (e.g., [4]) has found that differences in initial

conditions can account for a large amount of the variation in the effects of various economic factors on growth. By

using the proposed approach, two principal functional coefficients are identified out of the 10 functional coefficients.

Furthermore, our method is shown to have a better out-of-sample prediction performance than the one that does not

employ the rank-reduced structure or the one that ignores the serial correlation in the data.

The rest of the paper is organized as follows. In Section 2, we introduce identification conditions and two semi-

parametric estimation procedures. In Section 3, we present the asymptotic theory for the proposed estimators. In

Section 4, we consider estimation of the lower triangular matrix in the Cholesky decomposition for balanced panel

data, and the serial covariance matrices for unbalanced panel data. In Section 5, we discuss methods to obtain initial

parameter estimates and determine the value of d0 and conduct Monte Carlo simulation studies. Section 6 gives an

empirical application to panel data on economic growth. Section 7 concludes the paper. Proofs of the asymptotic

theorems are given in the Appendix.

2. Model identification and estimation

Before estimating the rank-reduced functional-coefficient model, we first introduce some identification conditions

that enable Θ0 and γ0 to be uniquely determined. We then proceed to provide a semiparametric estimation procedure

that ignores serial correlation. The parameter estimates from this first procedure are consistent and can be used in the

second semiparametric procedure in Section 2.4 as initial parameter values to produce more efficient estimates of the

functional coefficients. The second estimation procedure utilises a Cholesky decomposition of the serial covariance

matrices and adjusts for serial correlation in its estimation of the functional coefficients. To focus on the idea, we

assume in this section that the number of principal functional coefficients d0 is known. We will discuss the estimation

of d0 later in Section 5.

2.1. Model identification

Assume that the principal functional coefficients γ0 satisfy

E{γ0(ui j)} = 0d0
and cov{γ0(ui j)} = diag(λ1, . . . , λd0

), (5)

where 0d0
is a d0-dimensional null vector, 0 ≤ d0 ≤ d, and the diagonal numbers λ1, . . . , λd0

can be seen as the

eigenvalues of the covariance matrix cov{β0(ui j)}. If we further assume that

λ1 > · · · > λd0
> 0 and Θ

⊤
0Θ0 = Id0

,

where Id0
is a d0 × d0 identity matrix, then Θ0 and γ0(u) are identifiable up to a possible sign change. Similar

identification conditions can be found in [1] and [19]. The paper by Boneva et al. [1] considers identification and

estimation of heterogeneous nonparametric panel data models with a univariate regressor.
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2.2. A semiparametric method ignoring serial correlation

We now introduce a semiparametric profile least squares method that ignores serial correlation in its estimation of

parameters and principal functional coefficients. Combining (1) and (3), we may write the rank-reduced functional-

coefficient panel data model as

Yi j = X⊤i jθ0 +

d0∑

k=1

γk,0(ui j)X
⊤
i jΘ0(k) + εi j (6)

for each i ∈ {1, . . . , n}, j ∈ {1, . . . ,mi}.
For given θ and Θ, we estimate the principal functional coefficients γ0 at a given point u by using the local linear

smoothing method [10]. Define the kernel-weighted loss function

Ln{a(u),b(u)
∣∣∣θ,Θ} =

n∑

i=1

mi∑

j=1

Yi j − X⊤i jθ −
d0∑

k=1

ak(u)X⊤i jΘ(k) −
d0∑

k=1

bk(u)(ui j − u)X⊤i jΘ(k)



2

K

(ui j − u

h

)
, (7)

where a(u) = (a1(u), . . . , ad0
(u))⊤ and b(u) = (b1(u), . . . , bd0

(u))⊤, K is a kernel function and h is a bandwidth. Let

â(u) = (̂a1(u), . . . , âd0
(u))⊤ and b̂(u) = (̂b1(u), . . . , b̂d0

(u))⊤ be the solution to the minimization of the loss function

Ln{a(u),b(u)|θ,Θ} with respect to a(u) and b(u). Then, the local linear estimates of the principal functional coeffi-

cients for given θ and Θ can be obtained

γ̂(u|θ,Θ) = â(u) with ∀k∈{1,...,d0} γ̂k(u|θ,Θ) = âk(u). (8)

Given the condition E{γ0(ui j)} = 0d0
in (5), we centralize γ̂k(u|θ,Θ) for each k ∈ {1, . . . , d0} to obtain

γ̂∗k(ui j|θ,Θ) = γ̂k(ui j|θ,Θ) − 1

N(n)

n∑

i=1

mi∑

j=1

γ̂k(ui j|θ,Θ),

where N(n) = m1 + · · ·+mn. Replacing γk,0(ui j) with γ̂∗
k
(ui j|θ,Θ) in (6), we can estimate θ0 and Θ0 by minimizing the

least squares loss function

Qn(θ,Θ) =

n∑

i=1

mi∑

j=1

Yi j − X⊤i jθ −
d0∑

k=1

γ̂∗k(ui j|θ,Θ)X⊤i jΘ(k)



2

. (9)

In general, the solution to the minimization of the loss function Qn(θ,Θ) in (9) can be obtained via an iterative

algorithm. A proper choice of the initial estimates of θ0 and Θ0 may help save computational time and improve

estimation accuracy in finite samples. Section 5.1 will discuss how the consistent initial estimates can be obtained.

Let θ̂ and Θ̂ be the minimizers to Qn(θ,Θ) in (9). The final local linear estimate of the principal functional

coefficients γ0(u) is

γ̂(u) = γ̂(u|̂θ, Θ̂). (10)

Subsequently, an estimate for the model functional coefficients is

β̂(u) = θ̂ + Θ̂γ̂(u). (11)

The above semiparametric profile least squares estimation can be seen as a generalization of the method in [19] to

the panel data setting. As can be seen, this method does not take into account the serial correlation in the data, and

hence may entail an efficiency loss. To address this problem, we will modify this semiparametric estimation method

for serial correlation by utilizing a Cholesky decomposition on the serial covariance matrices.
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2.3. Cholesky decomposition

The Cholesky decomposition has been widely used in recent literature to analyze covariance matrices [22, 27,

32, 36, 38]. In particular, Yao and Li [36] apply this technique to improve the nonparametric estimation efficiency in

panel data models with a univariate regressor. In this paper, we consider a more general model setting, where there

are multivariate regressors and a rank-reduced functional-coefficient structure.

For the serial covariance matrix Σi,0 of each cross section, by a Cholesky decomposition, there exist a lower

triangular matrix Ci,0 with diagonal elements being 1s and a diagonal matrix Λi,0 with diagonal elements being ρi1,

. . ., ρimi,0, such that

Ci,0Σi,0C⊤i,0 = Λi,0 = diag(ρi1,0, . . . , ρimi,0), (12)

where ρi j,0 > 0 for i ∈ {1, . . . , n} and j ∈ {1, . . . ,mi}. Define ηi = (ηi1, . . . , ηimi
)⊤ = Ci,0εi. Then, cov(ηi) =

Ci,0Σi,0C⊤
i,0 = Λi,0, which is a diagonal matrix. Hence, ηi j are serially uncorrelated. Denote by ci, jk,0 the ( j, k)th entry

of the minus of Ci,0, i.e., −Ci,0. For each i ∈ {1, . . . , n}, it is easy to see that εi1 = ηi1 and, for all j ∈ {2, . . . ,mi},

εi j = ηi j +

j−1∑

k=1

ci, jk,0εik. (13)

Given the autoregressive representation for εi j in (13), we call ci, jk,0 the autoregressive coefficients in the Cholesky

decomposition (12). Using (6) and (13), we can re-write (6) as, for each i ∈ {1, . . . , n},

Yi1 = X⊤i1θ0 +

d0∑

k=1

γk,0(Ui1)X⊤i1Θ0(k) + ηi1, (14)

and, for all j ∈ {2, . . . ,mi},

Yi j −
j−1∑

k=1

ci, jk,0εik = X⊤i jθ0 +

d0∑

k=1

γk,0(ui j)X
⊤
i jΘ0(k) + ηi j. (15)

Since ηi j are both serially and cross-sectionally uncorrelated, if
∑ j−1

k=1
ci, jk,0εik were known, by treating Yi j−

∑ j−1

k=1
ci, jk,0εik

as the response variable and ηi j as the error term, we would have a panel data model in (14) and (15) that has no serial

and cross-sectional correlation on the errors. However, the parameters ci, jk,0 and the random errors εi j are unobservable

in practical applications. Hence, we need to replace them with their estimates.

As suggested by [11] and [36], we may replace Σi,0 by a working covariance matrix Σ⋄i . Such a replacement in the

estimation procedure would not affect the consistency of the resulting estimator even if Σ⋄i , Σi,0. Hence, we apply

the Cholesky decomposition to a working covariance matrix Σ⋄i and find a lower triangular matrix C⋄
i

whose main

diagonal elements are 1s and a diagonal matrix Λ⋄i whose diagonal elements are positive constants ρ⋄
i1, . . . , ρ⋄

imi
, such

that, for all i ∈ {1, . . . , n},
C⋄i Σ

⋄
i (C⋄i )⊤ = Λ⋄i = diag(ρ⋄i1, . . . , ρ

⋄
imi

). (16)

Given an initial local linear estimate β̃ computed directly from the functional-coefficient model (1) using a kernel

function K and a bandwidth b, let ε̃i =
(̃
εi1, . . . , ε̃imi

)⊤, where ε̃i j = Yi j − X⊤
i j
β̃(ui j). Define

Ỹi1 = Yi1, ∀ j∈{2,...,mi} Ỹi j = Yi j −
j−1∑

k=1

c⋄i, jkε̃ik, (17)

where c⋄
i, jk is the ( j, k)th entry of −C⋄

i
. Approximate (14) and (15) by

Ỹi j ≈ X⊤i jθ0 +

d0∑

k=1

γk,0(ui j)X
⊤
i jΘ0(k) + ηi j, (18)

for all i ∈ {1, . . . , n} and j ∈ {1, . . . ,mi}. Section 2.4 below provides an estimation method for model (18). Theo-

rem 1 in Section 3 will show that the efficiency improvement of this estimator relies on correct specification of the

lower triangular matrices Ci,0 and the serial covariance matrices Σi,0. To avoid misspecification and ensure efficiency

improvement, we will provide two methods in Section 4 for consistently estimating Ci,0 or Σi,0 for balanced and

unbalanced panel data, respectively.
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2.4. A semiparametric method adjusting for serial correlation

After the Cholesky decomposition (16) on the working covariance matrices Σ⋄i and the subsequent transformation

in (17), the error terms ηi j in (18) are uncorrelated over both i and j and have variances var(ηi j) = ρ
⋄
i j

. Hence, for any

given
√

n-consistent parameter estimates θ and Θ, we define the loss function

Ln

{
a(u),b(u)

}
=

n∑

i=1

mi∑

j=1

Ỹi j − X⊤i jθ −
d0∑

k=1

ak(u)X⊤i jΘ(k) −
d0∑

k=1

bk(u)(ui j − u)X⊤i jΘ(k)



2

(
ρ⋄i j

)−1
K

(ui j − u

h

)
, (19)

where Θ(k) is the kth column of Θ. Let a(u) = (a1(u), . . . , ad0
(u))⊤ and b(u) = (b1(u), . . . , bd0

(u))⊤ be the solution to

the minimization of Ln

{
a(u),b(u)

}
in (19), which has a closed form. A modified local linear estimate of the principal

functional coefficients is

γ(u) ≡ γ(u|θ,Θ) = (γ1(u), . . . , γd0
(u))⊤ = a(u), (20)

and a subsequent estimate of the functional coefficients is

β(u) = θ +Θγ(u). (21)

Proposition 1 in Section 3 shows that θ̂ and Θ̂ constructed in Section 2.2 are consistent with a
√

n-convergence

rate. Hence, we may choose θ = θ̂ and Θ = Θ̂ in the above estimation procedure (19)–(21). Although the parametric

estimators θ̂ and Θ̂ do not account for serial correlation, using them in the above procedure would not affect the

asymptotic efficiency of the functional-coefficient estimation β, as the convergence rates for parametric estimators

are much faster than the point-wise convergence rates of nonparametric estimators, e.g., the asymptotic theorems

in Section 3. With properly chosen working serial covariance matrices, the semiparametric estimation procedure

proposed in this section provides a feasible approach to more efficiently estimate the coefficient functions.

3. Asymptotic theorems

In this section, we establish the asymptotic properties for the semiparametric estimators defined in Section 2.

Define

Xi j,k(Θ) = X⊤i jΘ(k), Xi j(Θ) = (Xi j,1(Θ), . . . ,Xi j,d0
(Θ))⊤,

X∗i j(Θ) = Xi j − ∆∗X(ui j|Θ)Xi j(Θ), X∗i j ≡ X∗i j(Θ0),

∆
∗
X(ui j|Θ) = ∆2(ui j|Θ)∆+1 (ui j|Θ) − E{∆2(ui j|Θ)∆+1 (ui j|Θ)},

where ∆1(u|Θ) = E{Xi j(Θ)X⊤
i j

(Θ)|ui j = u}, ∆2(u|Θ) = E{Xi jX
⊤
i j

(Θ)|ui j = u}, and for a square matrix A, A+ denotes its

generalised inverse. Let

W1 = E

{(
1 γ⊤0 (ui j)

γ0(ui j) γ0(ui j)γ
⊤
0 (ui j)

)
⊗

(
X∗i jX

∗⊤
i j

)}

and

Vn = (V⊤n (0),V⊤n (1), . . . ,V⊤n (d0))⊤,

where ⊗ denotes the Kronecker product,

Vn(k) =
1
√

N(n)

n∑

i=1

mi∑

j=1

{γk,0(ui j)
(
X∗i j − X

§
i j

)
εi j + X

‡
i j

(k)εi j + ∆
‡
k
γ0(ui j)}

for k ∈ {0, . . . , d0}, γ0,0 ≡ 1, N(n) = m1 + · · · + mn,

X
§
i j
= E

{
∆2(ui j|Θ0)∆+1 (ui j|Θ0)

}
Xi j(Θ0),

X
‡
i j

(k) = E
{
∆2(ui j|Θ0)∆+1 (ui j|Θ0)

}
E
{
γk,0(ui j)∆1(ui j|Θ0)

}
∆
+
1 (ui j|Θ0)Xi j(Θ0),

∆
‡
k
= E

{
∆2(ui j|Θ0)∆+1 (ui j|Θ0)

}
E
{
γk,0(ui j)∆1(ui j|Θ0)

}
.

6



Assume that there exists a d(d0 + 1) × d(d0 + 1) matrix W2 such that

lim
n→∞

E(VnV⊤n ) =W2.

We next list the assumptions used to prove the asymptotic theory. Some of these assumptions might be relaxed at

the cost of lengthier proofs.

Assumption 1. (i) The kernel function K is a continuous and symmetric probability density function with a compact

support.

(ii) The bandwidth h satisfies n2δ−1h → ∞, nh4 → 0 and ln(h−1)/(nh) → 0, where δ < 1 − 1/ζ with ζ being

defined in Assumption 2(iii) below.

Assumption 2. (i) The random elements in {(ui j,Xi j, εi j) : j ∈ {1, . . . ,mi}} are independent over i. Furthermore, ui j

and Xi j are identically distributed over both i and j, and E{εi1,kεi2,ℓ | (ui j,Xi j), i ∈ {1, . . . , n}, j ∈ {1, . . . ,mi}} = 0

a.s. for i1 , i2.

(ii) The index variable ui j has a continuous density function f (u) and a compact support U. Furthermore, f is

positive and bounded away from zero onU. The joint density function of (ui j, uik), f jk, exists and is continuous

for any j , k.

(iii) There exists a positive number ζ > 2 such that E
(‖Xi j‖ζ + |εi j|ζ

)
< ∞. Furthermore, when Θ is in a small

neighborhood of Θ0, the matrix ∆1(u|Θ) is continuous, positive definite and twice differentiable for any u ∈ U.

Assumption 3. The functional coefficients β0 and principal functional coefficients γ0 have continuous second-order

derivatives inU.

Assumption 4. (i) The sixth moment of Xi j exists, i.e., E
(‖Xi j‖6

)
< ∞. The matrix ∆(u) ≡ E

(
Xi jX

⊤
i j
|ui j = u

)
is

continuous and positive definite for any u ∈ U.

(ii) The bandwidth b in the initial local linear estimator β̃ satisfies

b = o(h), nb→ ∞, (b + ξ⋆n )ξ⋆n = o{(nh)−1/2},

where ξ⋆n = {ln(b−1)/(nb)}1/2.

The above assumptions are mild. Assumption 1(i) imposes some commonly-used restrictions on the kernel func-

tion. Assumption 1(ii) and the moment conditions in Assumption 2(iii) ensure the applicability of the uniform con-

sistency results for the kernel-based estimation derived as in [29]. The bandwidth condition nh4 → 0 in Assumption

1(ii) indicates that under-smoothing is needed to derive the
√

n-convergence rates for the parameter estimation. As-

sumption 2(i) requires the underlying panel data to be cross-sectionally independent, which is not uncommon in the

literature; see, e.g., [18]. However, the restriction of identical distribution on ui j and Xi j can be relaxed at the cost of

more complicated expressions for W1 and Vn. The smoothness conditions on f , β0 and γ0 in Assumptions 2(ii) and 3

are needed as local linear smoothing of the nonparametric functional coefficients is used; see, e.g., [10]. Assumption 4

is mainly used in Theorem 1 for proving that the term εik − ε̃ik is asymptotically negligible in the estimation of the

principal functional coefficients.

We now give the asymptotic distribution theory for the parameter estimators θ̂ and Θ̂ and the nonparametric

estimator γ̂ defined in Section 2.2.

Proposition 1. Suppose that Assumptions 1–3 are satisfied and there exists a positive constant cσ such that

lim
n→∞

1

N(n)

n∑

i=1

mi∑

j=1

σ2
i j = cσ,

where σ2
i j
= E(ε2

i j
). Then we have

√
N(n)

[
θ̂ − θ0

vec(Θ̂) − vec(Θ0)

]
 N (

0d(d0+1), W+
1 W2W+

1

)
(22)
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and √
N(n)h

[
γ̂(u) − γ0(u) − 1

2
µ2γ

′′
0 (u)h2

]
 N[0d0

, ω(u)∆+1 (u|Θ0)], (23)

where ω(u) = ν0cσ/ f (u), γ′′0 (u) is the second-order derivative of γ0(u), µ j =
∫

u jK(u)du, ν0 =
∫

K2(u)du and f is the

density function of ui j.

Remark 1. As the number of observations for each individual, mi, is assumed to be fixed, we have N(n) ∝ n,

where an ∝ bn denotes that 0 < c ≤ an/bn ≤ c̄ < ∞ when n is sufficiently large. The above proposition shows

that the estimation of the parameters θ0 and Θ0 from Section 2.2 has the well-known
√

n-convergence rate, and the

nonparametric estimation of γ0 has a point-wise convergence rate of OP(h2 + 1/
√

nh). This result can be seen as an

extension of Theorems 2 and 3 in [19] to the panel data setting. By (11), (22) and (23), we can show that the asymptotic

variance of the nonparametric estimation β̂(u) defined in (11) is ω(u)Θ0∆
+
1 (u|Θ0)Θ⊤0 /{N(n)h}. In contrast, a direct

local linear estimation of the functional coefficients, with the same kernel function and bandwidth but ignoring the

rank-reduced structure, has the asymptotic variance of ω(u)∆+(u)/{N(n)h}, where ∆(u) = E(Xi jX
⊤
i j
|ui j = u). Following

the argument in [19], the estimator β̂(u) is asymptotically more efficient when d0 is smaller than d.

Remark 2. The asymptotic covariance matrices in (22) and (23) can be estimated by replacing the unknown elements

involved by the relevant estimated values. For example, ω(u) in (23) can be estimated by

ω̃(u) = ν0c̃σ/ f̃ (u), c̃σ =
1

N(n)

n∑

i=1

mi∑

j=1

ε̃2
i j,

where f̃ (u) is the conventional kernel estimate of the density function f (u) and ε̃i j is defined as in Section 2.3. The

matrix ∆1(u|Θ0) can be consistently estimated by ∆̃1(u|Θ̂) which is obtained via kernel-based regression by treating

Xi j(Θ̂)X⊤
i j

(Θ̂) and ui j as the response and regressor, respectively. Then we may use ω̃(u)∆̃+1 (u|Θ̂) as the estimated

covariance matrix for the asymptotic normal distribution in (23). For the estimation of asymptotic covariance matrix

in (22), we need to estimate W1 and W2. We next only discuss how to estimate W1 as the estimation of W2 can be

constructed analogously. Let ∆̃2(u|Θ̂) be the estimate of ∆2(u|Θ0), which is constructed via kernel-based regression

by treating Xi jX
⊤
i j

(Θ̂) and ui j as the response and regressor, respectively. Define

X̃∗i j = Xi j − ∆̃∗X(ui j|Θ̂)Xi j(Θ̂)

with

∆̃
∗
X(ui j|Θ̂) = ∆̃2(ui j|Θ̂)∆̃+1 (ui j|Θ̂) − 1

N(n)

n∑

i=1

mi∑

j=1

∆̃2(ui j|Θ̂)∆̃+1 (ui j|Θ̂).

We finally estimate W1 by

W̃1 =
1

N(n)

n∑

i=1

mi∑

j=1

(
1 γ̂

⊤
(ui j)

γ̂(ui j) γ̂(ui j )̂γ
⊤

(ui j)

)
⊗

(
X̃∗i jX̃

∗⊤
i j

)
.

Estimation of the asymptotic variance plays an important role when studying inference on the functional coefficients

and constructing relevant test statistics. Examination of the above asymptotic variance estimation in finite samples is

not the main focus of the present paper and will be addressed in our future research.

We next give the asymptotic theory for γ(u), the local linear estimator of the principal functional coefficients

defined in Section 2.4. Denote ei j = ηi j +
∑ j−1

k=1
(ci, jk,0 − c⋄

i, jk)εik and τi j = E(e2
i j

). Suppose that there exist two positive

constants: cτ and cρ such that

lim
n→∞

1

N(n)

n∑

i=1

mi∑

j=1

τi j

(ρ⋄
i j

)2
= cτ and lim

n→∞

1

N(n)

n∑

i=1

mi∑

j=1

(
ρ⋄i j

)−1
= cρ. (24)
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The asymptotic distribution theory for γ is given in the following theorem.

Theorem 1. Suppose that Assumptions 1–4 and (24) are satisfied. Then we have

√
N(n)h

{
γ(u) − γ0(u) − 1

2
µ2γ

′′
0 (u)h2

}
 N[0d0

, ω⋄(u)∆+1 (u|Θ0)], (25)

where ω⋄(u) = ν0cτ/{c2
ρ f (u)}.

Remark 3. The above theorem can be seen as a generalization of Theorem 2 in [36] to the principal functional-

coefficient models for unbalanced panel data. The estimation of the asymptotic covariance matrix in (25) can be

constructed in the same way as discussed in Remark 2. Theorem 1 shows that γ retains the point-wise convergence

rate of OP(h2 + 1/
√

nh) even if the working serial covariance matrix Σ⋄i is misspecified. However, a misspecified Σ⋄i
would lead to a larger asymptotic variance than when it is correctly specified. This can be seen by noting that for each

i and j, ηi j and {εi1, . . . , εi, j−1} are independent. Hence, we have

τi j = E(η2
i j) + E




j−1∑

k=1

(ci, jk,0 − c⋄i, jk)εik



2
 = ρi j,0 + τ

⋄
i j,

where τ⋄
i j
= E[{∑ j−1

k=1
(ci, jk,0 − c⋄

i, jk)εik}2]. By (24), we have

ω⋄(u) = ν0cτ/{c2
ρ f (u)}

=
ν0

f (u)


lim
n→∞

1

N(n)

n∑

i=1

mi∑

j=1

τi j

(ρ⋄
i j

)2




lim
n→∞

1

N(n)

n∑

i=1

mi∑

j=1

(
ρ⋄i j

)−1



−2

=
ν0

f (u)


lim
n→∞

1

N(n)

n∑

i=1

mi∑

j=1

ρi j,0

(ρ⋄
i j

)2




lim
n→∞

1

N(n)

n∑

i=1

mi∑

j=1

(
ρ⋄i j

)−1



−2

+
ν0

f (u)


lim
n→∞

1

N(n)

n∑

i=1

mi∑

j=1

τ⋄
i j

(ρ⋄
i j

)2




lim
n→∞

1

N(n)

n∑

i=1

mi∑

j=1

(
ρ⋄i j

)−1



−2

≡ ω⋄1(u) + ω⋄2(u). (26)

When Σ⋄i is correctly specified, τ⋄
i j
= 0 for all i ∈ {1, . . . , n} and j ∈ {1, . . . ,mi}. However, τ⋄

i j
> 0 for some i and

j when Σ⋄i is misspecified. Hence, ω⋄2(u) = 0 when Σ⋄i is correctly specified and ω⋄2(u) > 0 when Σ⋄i is misspecified,

showing that misspecification in the working serial covariance matrices would lead to efficiency loss in the principal

functional-coefficient estimator γ and thus efficiency loss in the functional-coefficient estimator β. To avoid this,

we will introduce, in the next section, two methods for consistently estimating Ci,0 or Σi,0 for both balanced and

unbalanced panel data.

We next compare the asymptotic covariances between the two local linear estimators of the principal functional

coefficients: γ̂(u) and γ(u). The former ignores serial correlation and the latter has adjusted for serial correlation. For

the latter, we consider the case where the serial covariance matrices are correctly specified up to a constant multiple,

i.e., Σ⋄i = c0Σi,0, where 0 < c0 < ∞. In this case ω⋄2(u) ≡ 0, and hence

ω⋄(u) = ω⋄1(u) =
ν0

f (u)


lim
n→∞

1

N(n)

n∑

i=1

mi∑

j=1

ρ−1
i j,0



−1

.

Assume that there exists a positive constant cρ,0 such that

0 < cρ,0 = lim
n→∞

1

N(n)

n∑

i=1

mi∑

j=1

ρ−1
i j,0. (27)
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By using the harmonic mean value inequality, we have


1

N(n)

n∑

i=1

mi∑

j=1

ρ−1
i j,0



−1

≤ 1

N(n)

n∑

i=1

mi∑

j=1

ρi j,0. (28)

The equality holds only when all the ρi j,0 are the same. Furthermore, by the relation εi1 = ηi1, Eq. (13) and the fact

that ηi j and {εi1, . . . , εi, j−1} are independent for j ∈ {2, . . . ,mi}, we have

ρi1,0 = σ
2
i1, ρi j,0 ≤ σ2

i j,

indicating that

1

N(n)

n∑

i=1

mi∑

j=1

ρi j,0 ≤
1

N(n)

n∑

i=1

mi∑

j=1

σ2
i j. (29)

By (28), (29), Proposition 1 and Theorem 1, we immediately obtain the following asymptotic result.

Corollary 1. Suppose that the conditions in Proposition 1 and Theorem 1 and Eq. (27) hold, and Σ⋄i = c0Σi,0 for

some 0 < c0 < ∞. The local linear estimator γ(u) defined in Section 2.4 is asymptotically more efficient than γ̂(u) in

Section 2.2 that ignores serial correlation.

Remark 4. By (11), (21) and Corollary 1, we can show that the asymptotic variance of the local linear estimator β̂

minus that of β(u) is non-negative definite, and thus β is asymptotically more efficient than β̂. Furthermore, noting

that the asymptotic bias of γ and γ̂ are the same, the mean squared error of γ (or β) is asymptotically smaller than

that of γ̂ (or β̂). This will be later verified for finite samples in simulation.

Remark 5. For the functional-coefficient panel data model (4) with time-invariant index variable ui, we may show

that, with some minor modifications, the asymptotic properties given in this section still hold if the index variables,

u1, . . . un, are assumed to be independent and identically distributed and satisfy the smoothness conditions in Assump-

tion 2(ii). Details are omitted here to save the space.

4. Estimation of the Cholesky decomposition

The asymptotic theorems in Section 3 show that the efficiency gain in the local linear estimator of the (principal)

functional coefficients which adjusts for serial correlation over the ordinary local linear estimator given in Section 2.2

depends on correct specification of the true serial covariance matrices Σi,0, or equivalently, the lower triangular matri-

ces Ci,0 and the diagonal matricesΛi,0 in the Cholesky decomposition. In applications, we may use working covariance

matrices constructed from a semiparametric method proposed in [11], which relies on a parametric specification of the

serial correlation matrix. In this section, we introduce two different methods for estimating Ci,0 or Σi,0. For balanced

panel data, we will estimate Ci,0 directly together with model parameters θ0 andΘ0 via a profile least squares method.

For unbalanced panel data, we first use a local linear method to estimate the serial covariance and variance functions

consistently and then obtain an estimate of Ci,0 via (12) or (16). The estimation of Λi,0 will be discussed as well for

the above two cases.

4.1. The case of balanced panel data

Consider the case of balanced panel data, i.e., m1 = · · · = mn ≡ m. As in [36], we assume that εi ≡ (εi1, . . . , εim)⊤

are independent and identically distributed over i and are independent of the regressors Xi. This implies that the serial

covariance matrices Σi,0 are invariant over i, i.e., Σi,0 = Σ0 for all i ∈ {1, . . . , n}. Then, the Cholesky decomposition of

Σ0 gives

C0Σ0C⊤0 = Λ0 = diag(ρ1,0, . . . , ρm,0),

where C0 is a lower triangular matrix with diagonal elements being 1s and ρ1,0, . . ., ρm,0 are positive constants. As in

Section 2.3, we denote c jk,0 the ( j, k)th entry of the matrix −C0 and ηi = C0εi and replace εik by ε̃ik in (15), where
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ε̃ik = Yik −X⊤
ik
β̃(uik) is the residual from an initial estimate β̃(uik) of the functional coefficients. Then, for i ∈ {1, . . . , n}

and j ∈ {2, . . . ,m}, the approximating model (18) becomes

Yi j ≈ X⊤i jθ0 +

d0∑

k=1

γk,0(ui j)X
⊤
i jΘ0(k) +

j−1∑

k=1

c jk,0ε̃ik + ηi j. (30)

Define c0 = (c21,0, c31,0, c32,0, . . . , cm,m−1,0)⊤, a vector consisting of the elements of C0 below the main diagonal.

Based on (30), we next provide a feasible procedure for estimating θ0, Θ0 and c0. For given initial values θ, Θ

and c = (c21, c31, c32, . . . , cm,m−1)⊤, we first obtain the local linear estimate of the principal functional coefficients by

minimizing the kernel-weighted loss function

L♯n
(
a(u),b(u)

∣∣∣θ,Θ, c) =
n∑

i=1

m∑

j=2

Yi j − X⊤i jθ −
j−1∑

k=1

c jkε̃ik −
d0∑

k=1

ak(u)X⊤i jΘ(k)

−
d0∑

k=1

bk(u)(ui j − u)X⊤i jΘ(k)



2

K

(
ui j − u

h1

)
(31)

with respect to a(u) and b(u), where h1 is a bandwidth. Denote the resulting estimator of the principal functional

coefficients by γ̌(u|θ,Θ, c) which has a closed form given θ, Θ and c. Let γ̌∗(u|θ,Θ, c) be the sample centralization of

γ̌(u|θ,Θ, c) and γ̌∗
k
(u|θ,Θ, c) the kth element of γ̌∗(u|θ,Θ, c). Then we update the values of θ, Θ and c by minimizing

the loss function

Q♯n(θ,Θ, c) =

n∑

i=1

m∑

j=2

Yi j − X⊤i jθ −
d0∑

k=1

γ̌∗k(ui j|θ,Θ, c)X⊤i jΘ(k) −
j−1∑

k=1

c jkε̃ik



2

. (32)

Let
(
θ,Θ, c

)
, in which

c =
(
c21, c31, c32, . . . , cm,m−1

)⊤ , (33)

be a minimizer of (32), i.e.,

Q♯n(θ,Θ, c) = min
θ,Θ,c
Q♯n(θ,Θ, c). (34)

The above estimation method can be seen as a generalization of the profile likelihood method proposed by [36] from

univariate nonparametric panel data models to principal functional-coefficient panel data models. It provides a feasible

iterative procedure to obtain the estimates θ,Θ and c. The initial values θ andΘ can be chosen as the estimates θ̂ and Θ̂

from Section 2.2 and the initial value of c can be chosen as the corresponding values from a Cholesky decomposition

of the sample serial covariance matrix of the residuals ε̃i j. In the following proposition we give the convergence rates

for θ, Θ and c.

Proposition 2. Suppose that Assumptions 1(i) and 2–4 are satisfied and Assumption 1(ii) holds with h1 replacing h.

Furthermore, assume mi ≡ m and that εi are independent and identically distributed over i, and are independent of

the regressors Xi. Then we have 

θ − θ0

vec(Θ) − vec(Θ0)

c − c0

 = OP(1/
√

n). (35)

Given a consistent initial estimate β̃(ui j) of the functional coefficients, the diagonal elements, ρ1,0, . . ., ρm,0, of Λ0

can be consistently estimated by applying a Cholesky decomposition on the sample serial covariance matrix of the

residuals. One may then add weights, chosen as the inverse of estimates of ρ2,0, . . . , ρm,0, in the loss functions L♯n and

Q♯n. This would not affect the above consistency and convergence rates of the parameter estimators but may potentially

make them more efficient.
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With the estimates of ci j,0 from (33) and (34), we may transform Yi j into Ỹi j via (17). By substituting ρ⋄
i j

with their

estimates, plugging in θ and Θ, and then minimizing the resulting loss function in (19), we can obtain the estimator γ

of the principal functional coefficients. Combining Theorem 1 and Proposition 2, we obtain the following asymptotic

distribution theory for γ.

Corollary 2. Suppose that the conditions in Theorem 1 and Proposition 2 are satisfied, and let c⋄
i, jk in (17) be replaced

by c jk defined in (33) and (34). Then we have

√
nmh

{
γ(u) − γ0(u) − µ2γ

′′
0 (u)h2/2

}
 N[0d0

, ω
♯
1
(u)∆+1 (u|Θ0)], (36)

where ω
♯
1
(u) = ν0/{cρ,0 f (u)} and cρ,0 is defined in (27).

Remark 6. By using consistent estimates of the autoregressive coefficients ci j,0 and estimates of ρ j,0 in (19), we can

avoid the misspecification of Σ0 or C0 and hence obtain a modified local linear estimator of γ0(u) that is asymptotically

more efficient than the local linear estimator γ̂(u) that ignores the serial correlation present in the panel data.

4.2. The case of unbalanced panel data

The profile least squares estimation method discussed in Section 4.1 strongly relies on the balanced structure

of the panel data and cannot be directly extended to unbalanced panel data. Hence, we next introduce a different

approach to estimate the matrices Ci,0 in the Cholesky decomposition. Motivated by [20] and [24], we assume that

the observations on the ith cross-section are taken at time points ti1, . . ., timi
, which fall within a bounded interval T .

In the rest of this section, we sometimes use Yi(ti j), Xi(ti j), ui(ti j), and εi(ti j) to denote Yi j, Xi j, ui j and εi j in order to

emphasize the time at which their observations are taken.

Denote the covariance function of ε by σ0, i.e., for all ti j, tik ∈ T ,

σ0(ti j, tik) ≡ cov{εi(ti j), εi(tik)}. (37)

Note that σ0 is a bivariate positive semi-definite function, and σ0(ti j, tik) is the ( j, k)th element of the serial covariance

matrix Σi,0. Hence, to estimate Σi,0 consistently, we only need to estimate σ0 consistently. As in some previous studies

such as [24] and [37], we assume that σ0(s, t) is continuous everywhere except on the plane s = t. This implies that

the covariance function can have jumps at the main diagonal of the covariance matrix Σi,0, i.e., the so-called nugget

effect. Because of the existence of the nugget effect, we estimate σ0(s, t), s , t, and σ2
0(t) ≡ σ(t, t), separately.

The estimation procedure is based on local linear smoothing and uses residuals, ε̃i j = ε̃i(ti j) = Yi j−X⊤
i j
β̃(ui j), from

an initial estimate, β̃, of the functional coefficients: (i) for s , t, we estimate σ0(s, t) by σ̃(s, t) = σ̃10, where σ̃10 is

defined such that the triplet (σ̃10, σ̃11, σ̃12) minimizes

n∑

i=1

mi∑

j=1

mi∑

k=1,, j

{
ε̃i jε̃ik − σ10 − σ11(ti j − s) − σ12(tik − t)

}2
K

(
ti j − s

b1

)
K

(
tik − t

b2

)
(38)

with respect to σ10, σ11 and σ12, where K is a kernel function and b1 and b2 are two bandwidths; (ii) for s = t, we

estimate σ2
0(t) by σ̃2(t) = σ̃20, where σ̃20 is defined such that the pair (σ̃20, σ̃21) minimizes

n∑

i=1

mi∑

j=1

{
ε̃2

i j − σ20 − σ21(ti j − t)
}2

K

(
ti j − t

b3

)
(39)

with respect to σ20 and σ21, where b3 is a bandwidth. Proposition 1 in [24] shows that thus defined σ̃(s, t) and σ̃2(t)

are uniformly consistent over s, t ∈ T . With these consistent estimates, we can readily construct Σ̂i, a consistent

estimator of Σi,0, whose ( j, k)th element is

σ̂(ti j, tik) = σ̃(ti j, tik)1(ti j , tik) + σ̃2(ti j)1(ti j = tik), (40)
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where 1 is an indicator function. After applying the Cholesky decomposition to Σ̂i, we can obtain consistent estimates

of Ci,0 and Λi,0.

Note that the serial covariance matrix estimate Σ̂i constructed above is not necessarily positive definite in finite

samples. To ensure its positive definiteness, we need to make modifications on σ̃(s, t) and σ̃2(t). As in [15], let ι̃k and

φ̃k be the eigenvalues and their corresponding eigenfunctions of σ̃ with ι̃1 ≥ ι̃2 ≥ · · · , and re-define the estimator of

σ0(s, t) as

σ̃⋆(s, t) =

k0∑

k=1

ι̃kφ̃k(s)φ̃k(t), k0 = max{k : ι̃k > 0}. (41)

On the other hand, to ensure the non-negativity of σ̃2, we truncate it by a pre-determined positive parameter̟n, which

is very close to zero, and re-define the estimator of σ2
0(t) as σ̃2

⋆(t) = σ̃2(t)I(σ̃2(t) > ̟n). The simulation studies in

Section 5 below show that the nonparametric estimation method for the serial covariance matrices works reasonably

well in finite samples.

5. Monte Carlo simulation studies

In this section, we conduct Monte Carlo experiments to examine the finite sample performance of the estimation

methods introduced in Sections 2 and 4. To facilitate practical implementation of the methods, we start this section

with the proposal of initial parameter estimates for the iterative estimation procedures in Sections 2.2 and 2.4 and then

a method for estimating the number of principal functional coefficients, i.e., d0. It is then followed by a flowchart

showing the flow of implementation process for the estimation methods considered in our numerical studies.

5.1. Choice of initial parameter estimates and estimation of d0

In order to save the computational time of the iterative semiparametric estimation procedures given in Section 2,

we introduce a consistent initial estimate for the model parameters. As in previous sections, let β̃ be the local linear

estimate of β0 obtained from local linear smoothing on the functional-coefficient model (1) directly, ignoring the

principal component structure for β0. Given the assumption E{γ0(ui j)} = 0, we have θ0 = E{β0(ui j)}. Hence, an initial

estimate of θ0 can naturally be chosen as

θ̃
(0)
=

1

N(n)

n∑

i=1

mi∑

j=1

β̃(ui j). (42)

To construct an initial estimate for Θ0, we define the d × d sample covariance matrix for β̃(ui j) as

Σ̃β =
1

N(n)

n∑

i=1

mi∑

j=1

{
β̃(ui j) − θ̃

(0)
} {
β̃(ui j) − θ̃

(0)
}⊤

and let Θ̃
(0)

(k) be the eigenvector associated with the kth largest eigenvalue λ̃k of Σ̃β. In view of the identification

conditions in Section 2.1, when d0 is known, a natural initial estimate of Θ0 is

Θ̃
(0)
=

[
Θ̃

(0)
(1), . . . , Θ̃

(0)
(d0)

]
. (43)

Following the proof of Lemma B.1 in Appendix B, the uniform convergence rate for β̃ is OP[b2 + {nb/ ln(b−1)}−1/2],

where b is the bandwidth used in computing β̃. By Theorem 1 in [19], we can also show that the initial estimators in

(42) and (43) are consistent with a uniform convergence rate OP[b2 + {nb/ ln(b−1)}−1/2].

However, the number of principal functional coefficients d0 is usually unknown in practice, and has to be estimated.

A Bayesian Information Criterion (BIC) is proposed by [19] to estimate d0, which performs well in numerical studies.

In this paper, we use a simple ratio method introduced in [21] to estimate d0. This estimator is defined as

d̂0 = arg min
1≤k≤d

λ̃k+1/̃λk, (44)
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where λ̃k is the kth largest eigenvalue of Σ̃β, and we define λ̃d+1 = 0 and 0/0 ≡ 1. In order to reduce estimation error,

we set λ̃k = 0 if |̃λk | < ǫ0, where ǫ0 is a pre-specified small number. In the simulation studies below, we choose ǫ0 as

0.05, which works well in all the cases considered.

The flow of estimation process for the proposed methods is shown in the flowchart. To facilitate exposition, we use

FCM (and a tilde for estimators) to denote the method that estimates β0(u) by applying local linear smoothing directly

on the functional-coefficient model Yi j = X⊤
i j
β0(ui j) + εi j in (1), ignoring both the principal functional-coefficient

structure and any serial correlation that may exist, PFCM (and a hat for estimators) to denote the estimation method

defined in (7)–(11) of Section 2.2, which ignores serial correlation but takes into account the principal functional-

coefficient structure, and PFCM + CD (and an overline for estimators) to denote the method defined in (19)–(21),

which takes into account the principal functional-coefficient structure and adjusts for serial correlation via a Cholesky

decomposition on error serial covariance matrices and a subsequent transformation on the model.

5.2. Simulation study

For the choice of bandwidth in the context of panel data with serial correlation, one could employ the leave-

one-unit-out (i.e., leave out all observations from one cross-sectional unit at a time) cross-validation method; see

[33] for details. In the simulation studies below, however, we use fixed bandwidths to save computational time, i.e.,

h = 0.4, 0.3, 0.2 for cross-sectional sizes of n = 50, 100, 200, respectively. Throughout the numerical studies, we use

the standard normal probability density function as the kernel function.

We now investigate the finite-sample performance of the estimation methods proposed in the foregoing sections.

For each i ∈ {1, . . . , n} and j ∈ {1, . . . ,mi}, we generate data from the following principal functional-coefficient panel

data model

Yi j = X⊤i jβ0(ui j) + εi j, β0(ui j) = θ0 +Θ0γ0(ui j), (45)

where d = 7, d0 = 1, θ0 = (1, 1, 1, 1, 1, 1, 1)⊤, Θ0 = (−1/
√

2, 1/
√

2, 0, 0, 0, 0, 0)⊤, γ0(u) = 10u(1 − u) − 5/3, the

index variables ui j are independently drawn from the uniform distribution on [0, 1], and Xi j = (1,X∗
i j

)⊤, in which X∗
i j

are independently drawn from a 6-dimensional Gaussian distribution with mean 06 and covariance matrix I6. The

disturbances εi j will be specified later. The above data generating process is similar to that in [19]. We compare the

performance of three estimation methods for the functional coefficients β0(u): the FCM, PFCM and PFCM + CD. For

the PFCM + CD method, the autoregressive coefficients ci, jk,0 in the Cholesky decomposition are estimated using the

method introduced either in Section 4.1 or Section 4.2, depending on whether the panels are balanced or unbalanced.

The accuracy of FCM, PFCM, and PFCM + CD estimates for the functional coefficients β0(u) are evaluated by

the average bias, mean squared error (MSE), and mean absolute deviation (MAD) over grid points between 0.05 and

0.95 with an increment of 0.1. Letting u0
1
, . . ., u0

N0
denote these grid points, the average bias, MSE, and MAD are

defined, respectively, as

Bias(β̆) =
1

N0d

d∑

k=1

N0∑

ℓ=1

{
β̆k(u0

ℓ ) − βk0(u0
ℓ )
}

MSE(β̆) =
1

N0d

d∑

k=1

N0∑

ℓ=1

{
β̆k(u0

ℓ ) − βk0(u0
ℓ )
}2
, MAD(β̆) =

1

N0d

d∑

k=1

N0∑

ℓ=1

∣∣∣β̆k(u0
ℓ ) − βk0(u0

ℓ )
∣∣∣ ,

where β̆ denotes an estimate of β0. The smaller the values of bias, MSE and MAD, the more accurate the underlying

estimator is.

As this paper concerns more efficient nonparametric estimation of functional-coefficient models, we also look at

the average standard deviations of the FCM, PFCM and PFCM + CD estimators of β0 over the grid points. The

PFCM + CD estimates are expected to have the smallest standard deviations when there is medium or strong serial

correlation.

We consider both balanced and unbalanced panels for the data generating process in simulation.
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Obtain FCM estimates β̃(ui j).

Determine d0 via (44) and obtain inital estimates θ̃
(0)

and

Θ̃
(0)

for θ0 and Θ0 via (42) and (43).

Obtain FCM residuals ε̃i j = Yi j −
X⊤

i j
β̃(ui j).

Use θ̃
(0)

and Θ̃
(0)

to obtain PFCM estimates θ̂, Θ̂,

γ̂(ui j), β̂(ui j) via (7)–(11).

Use ε̃i j to obtain estimate Σ̂i for Σi,0 via (38)–(41),

then obtain Ĉ and Λ̂ via a Cholesky decomposition

on Σ̂i.

Obtain initial estimates Ĉ and Λ̂ for C0 and Λ0

from a Cholesky decomposition on the sample se-

rial covariance matrix of ε̃i j.

Use θ̂, Θ̂ and Ĉ as initial values to obtain θ, Θ and

C (or equivalently c) via (31)–(34).

Use θ, Θ, C and Λ̂ to obtain PFCM + CD esti-

mates γ(ui j) and β(ui j) via (19)–(21)

Use θ̂, Θ̂, Ĉ and Λ̂ to obtain PFCM + CD esti-

mates γ(ui j) and β(ui j) via (19)–(21).

unbalanced balanced

Flowchart for the estimation process

1
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Case I: balanced panel data. Set mi ≡ 4 and generate εi =
(
εi1, . . . , εi4

)⊤
, i ∈ {1, . . . , n}, independently from a

4-dimensional Gaussian distribution with mean 04 and covariance matrix Σ0 = (σ jk)4×4, where σ jk = ι
| j−k| for all

j, k ∈ {1, . . . , 4}. Such εi j are cross-sectionally independent but serially correlated with an AR(1) serial correlation

structure. In order to investigate the performance of the three estimation methods under different levels of serial

correlation, we choose ι = 0.1, 0.5, 0.9. We also set n = 50, 100, 200.

With balanced data, we use the method in Section 4.1 to estimate the autoregressive coefficients in the Cholesky

decomposition. To obtain initial estimates of these autoregressive coefficients, we first extract the residuals from

the FCM method, i.e., ε̃i j = Yi j − X⊤
i j
β̃(ui j), then calculate the sample covariance matrix of ε̃i = (̃εi1, . . . , ε̃i4)⊤ for

all i ∈ {1, . . . , n}, and subsequently apply the Cholesky decomposition to this sample covariance matrix and extract

the below-diagonal elements of the resulting lower triangular matrix. Table 1 summaries the average bias, MSEs,

and MADs of the three estimation methods and their standard deviations (in parentheses) over 1000 replications for

balanced panel under different combinations of n and ι. Table 3 gives the average standard deviations over the grid

points between 0 and 1.

From Table 1, we find that the FCM method always has the lowest estimation accuracy (measured in MAD), as it

ignores both the rank-reduced structure of β0(ui j) = θ0 +Θ0γ0(ui j) and the serial correlation present in the data. This,

on the other hand, shows the benefit of making use of the principal functional-coefficient structure for reducing the

dimension of functional coefficients to be estimated. When ι = 0.1, the MADs of PFCM and PFCM + CD are close,

which is not surprising because when the serial correlation is weak, the consequence of ignoring it in the estimation is

not severe. However, as ι becomes larger (in particular when ι = 0.9), the PFCM + CD outperforms the PFCM, even

in small samples of size 50. The average standard deviations in Table 3 indicate that when there is medium to high

serial correlation, the PFCM + CD is more efficient than the other two estimators. The above findings are consistent

with the asymptotic theorems in Section 3.

Case II: Unbalanced panel data. With unbalanced data, the number of observations, mi, for each cross-section

varies across i. We follow [11] and generate unbalanced observation times in the following way: we first pre-schedule

the observation times for each cross-section at 1, 2, 3, 4, 5; each observation point has a probability of 0.2 of being

skipped (i.e., having no observation taken at that time); then for each non-skipped observation point a random pertur-

bation (uniformly distributed over [0, 1]) is added. This results in unbalanced numbers of observations and different

observation times for different cross-sections. All the other specifications of the data generating process are the same

as those in Case I.

With unbalanced data, we use the nonparametric estimation method introduced in Section 4.2 to estimate the

serial covariance matrices and then apply the Cholesky decomposition to the estimated matrices. As in Case I, we

compare the performance of the three estimation methods: the FCM, PFCM and PFCM + CD. The simulation results

are summarized in Tables 2 and 4, and the same findings can be observed as those for Case I with balanced data.

In the above simulation studies, the number of principal functional coefficients, d0, is estimated using the simple

ratio method introduced in (44). In order to evaluate the performance of this method, we report, in Tables 5 and

6, the frequencies at which d0 is correctly estimated (i.e., the estimated value equals its true value) for the cases

considered above. The results in these tables show that when the number of observations N(n) = m1 + · · · + mn is

about 50 × 4 = 200, the percentage of replications in which d0 is correctly estimated is around 70% for unbalanced

data and 85% for balanced data. This percentage rises to around 98% when N(n) increases to around 400 and further

to almost 100% when N(n) increases to around 800.
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Table 1

Average biases, MADs and MSEs for Case I, with their standard deviations over 1000 replications given within

the parentheses next to them.

ι
n

n = 50 n = 100 n = 200

ι = 0.1

FCM

Bias −0.0004 (0.0324) −0.0010 (0.0213) −0.0010 (0.0152)

MAD 0.1644 (0.0183) 0.1213 (0.0119) 0.0818 (0.0083)

MSE 0.0525 (0.0087) 0.0297 (0.0047) 0.0129 (0.0024)

PFCM

Bias 0.0002 (0.0303) −0.0014 (0.0193) −0.0011 (0.0149)

MAD 0.1462 (0.0197) 0.1062 (0.0115) 0.0723 (0.0080)

MSE 0.0474 (0.0095) 0.0264 (0.0045) 0.0113 (0.0023)

PFCM + CD

Bias 0.0005 (0.0310) −0.0007 (0.0194) −0.0001 (0.0148)

MAD 0.1489 (0.0201) 0.1076 (0.0119) 0.0733 (0.0080)

MSE 0.0490 (0.0097) 0.0272 (0.0047) 0.0117 (0.0023)

ι = 0.5

FCM

Bias −0.0005 (0.0346) −0.0006 (0.0235) −0.0008 (0.0152)

MAD 0.1651 (0.0181) 0.1226 (0.0123) 0.0813 (0.0087)

MSE 0.0532 (0.0091) 0.0306 (0.0051) 0.0128 (0.0027)

PFCM

Bias 2.7 × 10−5 (0.0326) −0.0009 (0.0221) −0.0010 (0.0145)

MAD 0.1472 (0.0199) 0.1074 (0.0125) 0.0718 (0.0084)

MSE 0.0481 (0.0099) 0.0272 (0.0050) 0.0112 (0.0025)

PFCM + CD

Bias 0.0034 (0.0320) 0.0048 (0.0208) 0.0045 (0.0137)

MAD 0.1463 (0.0191) 0.1074 (0.0120) 0.0733 (0.0085)

MSE 0.0489 (0.0095) 0.0287 (0.0054) 0.0126 (0.0030)

ι = 0.9

FCM

Bias −0.0004 (0.0365) 0.0002 (0.0232) −0.0002 (0.0163)

MAD 0.1652 (0.0185) 0.1216 (0.0127) 0.0815 (0.0095)

MSE 0.0547 (0.0095) 0.0305 (0.0059) 0.0131 (0.0032)

PFCM

Bias −0.0006 (0.0341) −8.7 × 10−5 (0.0229) −0.0002 (0.0158)

MAD 0.1481 (0.0216) 0.1071 (0.0122) 0.0722 (0.0093)

MSE 0.0503 (0.0122) 0.0273 (0.0057) 0.0115 (0.0032)

PFCM + CD

Bias 0.0071 (0.0287) 0.0122 (0.0186) 0.0132 (0.0124)

MAD 0.1351 (0.0170) 0.0993 (0.0107) 0.0690 (0.0090)

MSE 0.0480 (0.0106) 0.0295 (0.0071) 0.0146 (0.0047)

Table 2

Average biases, MADs and MSEs for Case II, with their standard deviations over 1000 replications given within

the parentheses next to them.

ι
n

n = 50 n = 100 n = 200

ι = 0.1

FCM

Bias −0.0013 (0.0307) −0.0013 (0.0198) 0.0002 (0.0144)

MAD 0.1241 (0.0182) 0.0872 (0.0128) 0.0625 (0.0077)

MSE 0.0259 (0.0075) 0.0126 (0.0035) 0.0064 (0.0015)

PFCM

Bias −0.0019 (0.0302) −0.0011 (0.0194) 0.0003 (0.0142)

MAD 0.1118 (0.0221) 0.0708 (0.0140) 0.0465 (0.0085)

MSE 0.0217 (0.0081) 0.0086 (0.0033) 0.0036 (0.0012)

PFCM + CD

Bias −0.0012 (0.0306) −0.0007 (0.0196) 0.0006 (0.0141)

MAD 0.1143 (0.0222) 0.0719 (0.0142) 0.0467 (0.0084)

MSE 0.0228 (0.0084) 0.0089 (0.0034) 0.0037 (0.0012)

ι = 0.5

FCM

Bias −0.0007 (0.0337) −0.0010 (0.0206) 0.0010 (0.0152)

MAD 0.1288 (0.0204) 0.0868 (0.0122) 0.0626 (0.0084)

MSE 0.0283 (0.0091) 0.0125 (0.0034) 0.0065 (0.0018)

PFCM

Bias −0.0010 (0.0334) −0.0013 (0.0200) 0.0009 (0.0148)

MAD 0.1162 (0.0245) 0.0708 (0.0133) 0.0469 (0.0089)

MSE 0.0237 (0.0096) 0.0087 (0.0031) 0.0037 (0.0014)

PFCM + CD

Bias 0.0025 (0.0319) 0.0011 (0.0193) 0.0021 (0.0140)

MAD 0.1165 (0.0237) 0.0703 (0.0133) 0.0459 (0.0089)

MSE 0.0240 (0.0092) 0.0087 (0.0032) 0.0036 (0.0015)

ι = 0.9

FCM

Bias 0.0029 (0.0340) −0.0008 (0.0222) −0.0011 (0.0156)

MAD 0.1241 (0.0219) 0.0871 (0.0140) 0.0633 (0.0090)

MSE 0.0268 (0.0098) 0.0129 (0.0041) 0.0066 (0.0019)

PFCM

Bias 0.0022 (0.0329) −0.0009 (0.0216) −0.0011 (0.0154)

MAD 0.1105 (0.0254) 0.0717 (0.0144) 0.0476 (0.0095)

MSE 0.0222 (0.0103) 0.0091 (0.0038) 0.0039 (0.0016)

PFCM + CD

Bias 0.0088 (0.0284) 0.0044 (0.0180) 0.0017 (0.0130)

MAD 0.1000 (0.0224) 0.0633 (0.0130) 0.0394 (0.0087)

MSE 0.0199 (0.0096) 0.0079 (0.0039) 0.0029 (0.0015)
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Table 3

Standard deviations of estimators for Case I.

ι
n

n = 50 n = 100 n = 200

ι = 0.1
FCM 0.1268 0.0855 0.0605

PFCM 0.1043 0.0653 0.0476

PFCM + CD 0.1063 0.0658 0.0478

ι = 0.5
FCM 0.1295 0.0876 0.0614

PFCM 0.1076 0.0674 0.0485

PFCM + CD 0.1033 0.0636 0.0447

ι = 0.9
FCM 0.1322 0.0891 0.0630

PFCM 0.1115 0.0697 0.0503

PFCM + CD 0.0877 0.0506 0.0326

Table 4

Standard deviations of estimators for Case II.

ι
n

n = 50 n = 100 n = 200

ι = 0.1
FCM 0.1295 0.0941 0.0732

PFCM 0.1139 0.0729 0.0524

PFCM + CD 0.1139 0.0730 0.0523

ι = 0.5
FCM 0.1374 0.0942 0.0737

PFCM 0.1220 0.0732 0.0532

PFCM + CD 0.1164 0.0695 0.0507

ι = 0.9
FCM 0.1323 0.0953 0.0749

PFCM 0.1154 0.0752 0.0545

PFCM + CD 0.0934 0.0584 0.0417

Table 5

Frequency at which d0 is corrected estimated for Case I.

ι
n

n = 50 n = 100 n = 200

ι = 0.1 87.00% 98.40% 100.00%

ι = 0.5 85.80% 98.00% 100.00%

ι = 0.9 85.80% 99.80% 100.00%

Table 6

Frequency at which d0 is corrected estimated for Case II.

ι
n

n = 50 n = 100 n = 200

ι = 0.1 68.80% 97.40% 100.00%

ι = 0.5 61.20% 98.40% 100.00%

ι = 0.9 73.60% 98.40% 100.00%

6. An empirical application to economic growth data

As introduced in Section 1, the modeling framework and estimation methodology developed in this paper cover a

special case where the index variable is time-invariant. In this section, we apply model (4) and our estimation methods

to a cross-country economic growth study where the index variable is chosen as the initial income level of a country

over the study period, which is invariant over time.

There has been extensive literature on the econometric analysis of economic growth; see [7] for a review of the

literature. A wide range of statistical methods have been employed to study and identify structural patterns in growth

data. With the increasing availability of panel data in this area, much of the research now uses panel data methods

in their study. In cross-country growth studies, while a single model assuming parameter constancy is easier to

implement and more straightforward to interpret, it ignores the heterogeneity that is well documented to exist across

countries. One of the most commonly-used econometric models for accounting for heterogeneity is the linear fixed-

effect model. Although the fixed-effect model does allow a certain degree of heterogeneity (for the model intercept

term), it is limited in its capacity to capture the variation in growth structure across countries. Moreover, the fixed-

effect model treats the heterogeneous individual effects as nuisance parameters and, as argued in [9], this treatment

of individual effects is inappropriate due to them being of fundamental interest to studying growth differences. One

approach that has been used by researchers to address this issue is to include interactions or nonlinear terms of the

explanatory variables in the model so that the marginal effects of these explanatory variables can vary across countries

and/or over time. In this paper, we use a different approach and employ the (principal) functional-coefficient model

to the cross-country growth study. The dependency of the parameters on the index variable, which varies cross-

sectionally, allows the model to capture cross-country heterogeneity in the effects of explanatory variables on growth.

The use of functional-coefficient models in growth study is not new. For example, Durlauf et al. [8] estimate

a functional-coefficient version of the augmented Solow model and find considerable parameter heterogeneity, es-

pecially among the poorer countries. However, to the best of our knowledge, no studies have used a rank-reduced

functional-coefficient model. Since there is no consent among economists on the determinants of growth and eco-

nomic theories do not provide much guidance on this, many different explanatory variables have been used in growth

regressions and found to be significant (different studies may produce a different set of significant explanatory vari-

ables). However, the inclusion of a large number of explanatory variables in a functional-coefficient model is clearly

not advisable due to the large number of functional coefficients having to be estimated. The rank-reduced functional-

coefficient model alleviates this problem by extracting and using only the first few principal functional coefficients.
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Table 7

Description of variables.

Variable Description

Y Annual growth rate of real GDP per capita at 2005 constant prices (%)

u Log of real GDP per capita at 2005 constant prices (log of 2005 $/person)

X1 1 for the model intercept

X2 Annual growth rate of population (%)

X3 Price level of investment (PPP over investment/XRAT)

X4 Consumption share of real GDP per capita at 2005 constant prices (%)

X5 Government consumption share of real GDP per capita at 2005 constant prices(%)

X6 Investment share of real GDP per capita at 2005 constant prices (%)

X7 Openness at 2005 constant prices (%)

X8 Age dependency ratio, young % of working-age population (%)

X9 Fertility rate, total births per woman

X10 Life expectancy at birth (years)

As we will see in our study below, there are common patterns in some of the functional coefficients and the first two

principal functionals account for 99.9% of the total variation among all the 10 functional coefficients.

The data we use are from the Penn World Table and the World Bank World Development Indicators (WDI). They

include annual growth rate of real GDP per capita (at 2005 constant prices), real GDP per capita and 9 other variables

for 148 countries over the years 1986–2010. Since many variables exhibit little year-to-year variation, we take five-

year averages of the data as is done in most panel growth studies. This gives a balanced panel data set with a time

series length of 5. Since previous research (e.g., [4]) has found that initial economic conditions can explain a big

proportion of cross-sectional variation, we use the log of real GDP per capita at the beginning of the sampling period

(i.e., in the year of 1986) as the time-invariant index variable in model (4). A list of the variables used in this study is

given in Table 7.

Given that the growth variables are likely to be correlated over time with the correlation structure unknown a

priori, we use the methods proposed in Sections 2.4 and 4.1 to estimate the serial correlation and adjust for it in the

estimation procedure. The number of principal functional coefficients, d0, is selected as 2. This cuts the dimension

of nonparametric functional coefficient vector from 10 (1 for intercept coefficient and 9 for slope coefficients) to 2.

The selection of d0 can be clearly seen from Figure 1, which depicts the eigenvalues λ̂k of the sample covariance

matrix of the FCM estimates of β0 and their consecutive ratios λ̂k+1/̂λk. The first two principal functional coefficients

together account for 99.97% of the total variation. The preliminary (or initial) estimates of β0 from the FCM method

are shown in Figure 2. One can observe from Figure 2 that there are some common patterns in the 10 estimated

coefficient functions: (i) the first pattern, typically seen in β̃1(u), β̃2(u), β̃9(u) and β̃10(u) (pattern reversed for β̃9(u)

and β̃10(u)), has two saddle points and goes sharply upwards for smaller values of u (u ≤ 6.4 approximately) then

downwards before going upwards again for larger values of u (u ≥ 8 approximately), or the reverse of the above;

(ii) the second pattern, typically seen in β̃5(u), β̃6(u) and β̃7(u), has a general upward or downward trend with small

variations. These typical patterns can be more clearly observed in Figure 3, which plots the PFCM + CD estimates of

β0(ui j), and are generally captured by the principal coefficient functions shown in Figure 4. Linear combinations of

the two principal functions can provide a good description of the 10 functional coefficients.

All the functional coefficients in Figures 2 and 3 show a large amount of variation, especially for smaller values of

u. This implies that there is higher heterogeneity in the effects of the explanatory variables on growth across poorer

countries (with lower income levels). This is consistent with findings from previous growth studies such as [8]. The

estimated intercept coefficient, β̃1(ui j) or β1(ui j), shows a positive relationship between the initial income level and

economic growth for smaller values of u, negative for medium values and positive again for larger values. This is

again consistent with findings by Durlauf et al. [8] and Liu and Stengos [28], who find a positive relationship for

smaller values of u and a negative relationship for medium values (6.4 ≤ u ≤ 9 approximately). Note that we use data

from a much larger set of countries (148 countries) and covering a more recent time period (1986–2010) than [8] (98

countries over 1960–85) and [28] (86 countries over 1960s, 1970s and 1980s).

The PFCM + CD estimates of θ0 andΘ0 are listed in Table 8 and their standard errors are shown in parentheses. To

again compare the three methods: FCM, PFCM and PFCM + CD, we present in Table 9 the in-sample mean squared

19



Table 8

PFCM + CD Estimates of θ0 and Θ0, with their standard errors given

within the parentheses next to them.

θ0 Θ0(1) Θ0(2)

4.0013 (2.6550) −0.9462 (0.9093) −0.1582 (5.5816)

0.0511 (0.1469) −0.1951 (0.0541) 0.9573 (0.2762)

0.0015 (0.0040) −0.0002 (0.0015) −0.0050 (0.0054)

−0.0341 (0.0090) 0.0016 (0.0028) 0.0110 (0.0177)

−0.0800 (0.0244) −0.0026 (0.0076) 0.1686 (0.0533)

0.0473 (0.0162) −0.0049 (0.0060) 0.0806 (0.0347)

0.0077 (0.0031) 0.0001 (0.0009) 0.0124 (0.0065)

0.0276 (0.0240) −0.0054 (0.0083) −0.0189 (0.0500)

−1.1393 (0.3227) 0.2578 (0.1118) 0.1482 (0.6393)

0.0206 (0.0310) 0.0119 (0.0092) −0.0317 (0.0608)

Table 9

In-sample MSEs and average out-of-sample MSPEs

Measure

Method
FCM PFCM PFCM+CD

In-sample MSE 10.3159 10.5190 10.6262

Average out-of-sample MSPE 14.7575 13.7189 13.4521

errors (MSE) and the average out-of-sample mean squared prediction errors (MSPE) (calculated from 10 repeats of

10-fold cross validation). For the in-sample MSE, the full sample is used for estimation and then the mean of squared

residuals is calculated. The 10-fold cross validation randomly splits the 148 countries into 10 subsets of roughly equal

size (each subset has 14-15 countries) and uses data from 9 subsets of countries for estimation and those from the

remaining subset of countries for testing, from which the MSPE is computed. Since data splitting is randomly taken,

the out-of-sample MSPE varies for each repeat of the 10-fold cross-validation. From Table 9, we find that the FCM

method has the best fit in terms of in-sample MSE, whereas the PFCM-based methods show their advantage in terms

of out-of-sample MSPE.

7. Conclusion

This paper introduces a novel rank-reduced functional-coefficient modeling approach for analyzing panel data. By

imposing a rank-reduced structure on the functional coefficients, we achieve dimension reduction on the nonparamet-

ric coefficient functions. Both the parameters and principal functional coefficients in the model are estimated through

an iterative semiparametric procedure. To account for serial correlation in the estimation, we first apply Cholesky

decomposition to the serial covariance matrices and then use the elements in the lower triangular matrix from the

Cholesky decomposition to construct a model transformation whose errors are free from serial correlation.

Based on this transformed model, we obtain an asymptotically more efficient estimator for the (principal) func-

tional coefficients. Under some regularity conditions, we establish the asymptotic distribution theory for the proposed

parametric and nonparametric estimators. The theory shows that the serial covariance matrix needs to be correctly

specified up to a constant multiple for the Cholesky decomposition based method to achieve efficiency improvement.

Since the serial covariance matrix is usually unknown, we further propose two different approaches to its consistent

estimation for balanced and unbalanced panel data.

Simulation studies as well as an empirical application show that the developed semiparametric modeling and es-

timation methods work reasonably well in finite samples. In particular, from the empirical application, we find that

the proposed principal functional-coefficient panel models with reduced number of unknown nonparametric compo-

nents have more accurate out-sample prediction of the economic growth than the conventional functional-coefficient

panel models, and are thus recommended in practical applications when the main interest lies in the out-sample panel

prediction.
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Figure 1: Eigenvalues of the sample covariance matrix of the FCM estimates of β1,0, . . ., β10,0 and their consecutive ratios.

6 8 10

u

-50

0

50

1
(u

)

6 8 10

u

-2

0

2

2
(u

)

6 8 10

u

-0.02

0

0.02

3
(u

)

6 8 10

u

-0.1

0

0.1

4
(u

)

6 8 10

u

-0.5

0

0.5

5
(u

)

6 8 10

u

-0.2

0

0.2

6
(u

)

6 8 10

u

-0.1

0

0.1

7
(u

)

6 8 10

u

0

0.1

0.2

8
(u

)

6 8 10

u

-5

0

5

9
(u

)

6 8 10

u

-0.5

0

0.5

1
0
(u

)

Figure 2: FCM estimates of the functional coefficients.
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Figure 3: PFCM + CD estimates of the functional coefficients.
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Appendix: Proofs of the asymptotic theorems

In this Appendix, we give the detailed proofs of the asymptotic theorems stated in Sections 3 and 4. To simplify

the proofs, we introduce some notation. For each ℓ ∈ {0, 1, 2}, we define

Snℓ
(
u|Θ)

=
1

N(n)h

n∑

i=1

mi∑

j=1

(ui j − u

h

)ℓ
Xi j(Θ)X⊤i j(Θ)K

(ui j − u

h

)
,

Tnℓ
(
u|θ,Θ)

=
1

N(n)h

n∑

i=1

mi∑

j=1

(ui j − u

h

)ℓ
Xi j(Θ)(Yi j − X⊤i jθ)K

(ui j − u

h

)
,

and

Sn(u|Θ) =

[
Sn0(u|Θ) Sn1(u|Θ)

Sn1(u|Θ) Sn2(u|Θ)

]
, Tn(u|θ,Θ) =

[
Tn0(u|θ,Θ)

Tn1(u|θ,Θ)

]
.

Define ∆1Θ(u|θ0 − θ) = E
{
Xi j(Θ)X⊤

i j
(θ0 − θ)|ui j = u

}
, ∆2Θ(u|Θ0 −Θ) = E

{
Xi j(Θ)X⊤

i j
(Θ0 −Θ)|ui j = u

}
, and

Tn,ε(u|Θ) =
1

N(n)h f (u)

n∑

i=1

mi∑

j=1

Xi j(Θ)εi jK
(ui j − u

h

)
.

We start with two technical lemmas. The first lemma gives the asymptotic expansion of the local linear estimate

γ̂(u|θ,Θ) and is a generalization of Lemma 1 in [19] to the panel data context. The proofs of the lemmas can be found

in the Online Supplement.

Lemma A.1. Suppose that Assumptions 1–3 are satisfied. Then for (θ,Θ) in a neighborhood of (θ0,Θ0) we have

γ̂(u|θ,Θ) − γ0(u) = µ2h2γ′′0 (u)/2 + ∆+1 (u|Θ)
{
∆1Θ(u|θ0 − θ) + ∆2Θ(u|Θ0 −Θ)γ0(u)

}

+ ∆+1 (u|Θ)Tn,ε(u|Θ) + oP(‖θ − θ0‖ + ‖Θ −Θ0‖)
+ OP

(
h3 + hξn + ξ

2
n

)
(46)

uniformly in u ∈ U, whereU is the compact support of ui j defined in Assumption 2(ii), and ξn =
{
ln(h−1)/(nh)

}1/2
.

Lemma A.2. Suppose that Assumptions 1–3 are satisfied. Then we have

√
N(n)

[
θ̂ − θ0

vec(Θ̂) − vec(Θ0)

]
=W+

1 Vn{1 + oP(1)}, (47)

where Vn and W1 are defined in Section 3.

Proof of Proposition 1. By Lemma A.2 and applying the Central Limit Theorem on Vn, we readily prove (22). By

Lemma A.1 and Eq. (22), we have

γ̂(u) − γ0(u) = µ2h2γ′′0 (u)/2 + ∆+1 (u|Θ0)Tn,ε(u|Θ0) + OP

(
n−1/2 + h3 + hξn + ξ

2
n

)
,

= µ2h2γ′′0 (u)/2 + ∆+1 (u|Θ0)Tn,ε(u|Θ0) + oP{(nh)−1/2}. (48)

Using the Central Limit Theorem again, we may show that

√
N(n)hTn,ε(u|Θ0) =

1
√

N(n)h f (u)

n∑

i=1

mi∑

j=1

Xi j(Θ0)εi jK
(ui j − u

h

)
 N[0d0

, ω(u)∆1(u|Θ0)]. (49)
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We then complete the proof of (23) by using (48) and (49).

The proof of Proposition 1 has thus been completed. �

Proof of Theorem 1. Define

S⋄nℓ
(
u|Θ)

=
1

N(n)h

n∑

i=1

mi∑

j=1

(ui j − u

h

)ℓ
Xi j(Θ)X⊤i j(Θ)

(
ρ⋄i j

)−1
K
(ui j − u

h

)
,

T⋄nℓ
(
u|θ,Θ)

=
1

N(n)h

n∑

i=1

mi∑

j=1

(ui j − u

h

)ℓ
Xi j(Θ)

(
Ỹi j − X⊤i jθ

)(
ρ⋄i j

)−1
K
(ui j − u

h

)

and

S⋄n(u|Θ) =

[
S⋄

n0(u|Θ) S⋄
n1(u|Θ)

S⋄
n1(u|Θ) S⋄

n2(u|Θ)

]
, T⋄n(u|θ,Θ) =

[
T⋄

n0(u|θ,Θ)

T⋄
n1(u|θ,Θ)

]
.

Using the same argument as in the proof of Lemma A.1, we have

γ(u) =
(
Id0
, Nd0

){S⋄n(u|Θ)}+T⋄n(u|θ,Θ), (50)

where Nd0
is a d0 × d0 null matrix. As Θ is assumed to be

√
n-consistent, we may show that

S⋄n(u|Θ) = S⋄n(u|Θ0) + OP(n−1/2) = ∆⋄n(u|Θ0) + OP{(nh)−1/2 + h}, (51)

where

∆
⋄
n(u|Θ) = diag(1, µ2) ⊗ f (u)

N(n)

n∑

i=1

mi∑

j=1

E{Xi j(Θ)X⊤i j(Θ)
(
ρ⋄i j

)−1|ui j = u}

= f (u)


1

N(n)

n∑

i=1

mi∑

j=1

(
ρ⋄i j

)−1


× diag(1, µ2) ⊗ ∆1(u|Θ).

Note that

Yi j − X⊤i jθ = X⊤i j

(
θ0 − θ

)
+

d0∑

k=1

γk0(ui j)X
⊤
i jΘ0(k) + εi j

= X⊤i j

(
θ0 − θ

)
+

d0∑

k=1

γk0(ui j)X
⊤
i j

{
Θ0(k) −Θ(k)

}
+

d0∑

k=1

γk0(ui j)X
⊤
i jΘ(k) + εi j. (52)

By (18) and (52), we have

Ỹi j − X⊤i jθ = ηi j + X⊤i j

(
θ0 − θ

)
+

d0∑

k=1

γk,0(ui j)X
⊤
i jΘ0(k) +

j−1∑

k=1

(ci, jk,0 − c⋄i, jk)εik +

j−1∑

k=1

c⋄i, jk(εik − ε̃ik), (53)

where
∑0

k=1 · ≡ 0. Let T⋄n(u, 1), T⋄n(u, 2), T⋄n(u, 3), T⋄n(u, 4) and T⋄n(u, 5) be defined as T⋄n(u|θ,Θ) with Ỹi j − X⊤
i j
θ

replaced by ηi j, X⊤
i j

(
θ0 − θ

)
,
∑d0

k=1
γk,0(ui j)X

⊤
i j
Θ0(k),

∑ j−1

k=1
(ci, jk,0 − c⋄

i, jk)εik and
∑ j−1

k=1
c⋄

i, jk(εik − ε̃ik), respectively. Then,

by (50)–(53), we can show that

γ(u) =
(
Id0
, Nd0

){S⋄n(u|Θ)}+


5∑

k=1

T⋄n(u, k)

 =
(
Id0
, Nd0

) {
S⋄n(u|Θ0)

}+


5∑

k=1

T⋄n(u, k)

 + OP(n−1/2). (54)
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As θ and Θ are
√

n-consistent, we can prove that

(
Id0
, Nd0

) {
S⋄n(u|Θ0)

}+
T⋄n(u, 2) = OP(n−1/2) = oP{(nh)−1/2}. (55)

By some standard calculations, we can also prove that

(
Id0
, Nd0

) {
S⋄n(u|Θ0)

}+
T⋄n(u, 5) = oP{(nh)−1/2}. (56)

The proof of (56) will be given later in this Appendix. Applying the Taylor expansion to the principal coefficient

functions in T⋄n(u, 3), we obtain, uniformly in u ∈ U,

(
Id0
, Nd0

){
S⋄n(u|Θ0)

}+
T⋄n(u, 3) = γ0(u) + µ2h2γ′′0 (u)/2 + oP{h2 + (nh)−1/2}. (57)

Let ei j = ηi j +
∑ j−1

k=1
(ci, jk,0 − c⋄

i, jk)εik. By the Central Limit Theorem, we can show that

1
√

N(n)h

n∑

i=1

mi∑

j=1

Xi j(Θ0)ei j

(
ρ⋄i j

)−1
K
(ui j − u

h

)
 N[0, Ω⋄(u|Θ0)],

where

Ω⋄(u|Θ0) = f (u)ν0∆1(u|Θ0) lim
n→∞

1

N(n)

n∑

i=1

mi∑

j=1

τi j

(
ρ⋄

i j

)2
= f (u)ν0cτ∆1(u|Θ0),

τi j = E(e2
i j

). This indicates that

√
N(n)h

(
Id0
, Nd0

) {
S⋄n(u|Θ0)

}+ {
T⋄n(u, 1) + T⋄n(u, 4)

}
 N[0d0

, ω⋄(u)∆+1 (u|Θ0)], (58)

where ω⋄(u) is defined in (26). By (54)–(58), we complete the proof of (25). �

We next give the proof of (56), which shows that the influence of replacing εik by ε̃ik can be ignored asymptotically.

Proof of (56). Recall that β̃ is a local linear estimation of β0 with the kernel function K and bandwidth b, i.e.,

β̃(u) =
(
Id, Nd

)
S+n (u)Tn(u), (59)

where Sn(u) and Tn(u) are defined similar to Sn(u|Θ) and Tn(u|θ,Θ) with Xi j(Θ), Yi j −X⊤
i j
θ and h replaced by Xi j, Yi j

and b, respectively. Hence,

εik − ε̃ik = X⊤ik
{
β̃(uik) − β0(uik)

}
,

which indicates that

T⋄nℓ(u, 5) =
1

N(n)h

n∑

i=1

mi∑

j=1

(ui j − u

h

)ℓ
Xi j(Θ)

(
ρ⋄i j

)−1
K

(ui j − u

h

) j−1∑

k=1

c⋄i, jkX⊤ik
{
β̃(uik) − β0(uik)

}
(60)

for ℓ ∈ {0, 1}, where T⋄
n0(u, 5) is the first d0 elements in T⋄n(u, 5), and T⋄

n1(u, 5) is the last d0 elements in T⋄n(u, 5).

In order to complete the proof of (56), we only need to show that

T⋄nℓ(u, 5) = oP{(nh)−1/2} (61)

for ℓ ∈ {0, 1}. We next only prove (61) for the case of ℓ = 0 as the case of ℓ = 1 can be proved in the same way. As Θ

is
√

n-consistent, we may replace Θ by Θ0 in this proof. Furthermore, noting that

sup
u∈U
‖Sn(u) − diag(1, µ2) ⊗ f (u)∆(u)‖ = OP(b + ξ⋆n ),

25



where ∆(u) is defined in Assumption 4(i) and ξ⋆n = {ln(b−1)/(nb)}1/2, we may show that

β̃(uik) − β0(uik) =
1 + OP(b + ξ⋆n )

N(n)b f (uik)

n∑

p=1

mp∑

q=1

εpq∆
+(uik)XpqK

(upq − uik

b

)
+ OP(b2).

Then, by (60) and Assumption 4(ii), we have

T⋄n0(u, 5) =
1

N2(n)hb

n∑

i=1

mi∑

j=1

Xi j(Θ0)K
(ui j − u

h

) j−1∑

k=1

c⋄i, jk

n∑

p=1

mp∑

q=1

εpqX⊤ik

× f −1(uik)∆+(uik)XpqK

(upq − uik

b

)
+ OP{b2 + (b + ξ⋆n )ξ⋆n }

=
1

N2(n)hb

n∑

p=1

mp∑

q=1

εpqνpq(u) + oP{h2 + (nh)−1/2}, (62)

where

νpq(u) =

n∑

i=1

mi∑

j=1

j−1∑

k=1

c⋄i, jkXi j(Θ0)X⊤ik f −1(uik)∆+(uik)XpqK

(ui j − u

h

)
K

(upq − uik

b

)
.

To evaluate the asymptotic order of T⋄
n0(u, 5), we next calculate the order for the variance of

∑n
p=1

∑mp

q=1
εpqνpq(u).

Note that

E
[{ n∑

p=1

mp∑

q=1

εpqνpq(u)
}2]
=

n∑

p=1

mp∑

q1=1

mp∑

q2=1

E{εpq1
εpq2
νpq1

(u)νpq2
(u)}

= O


n∑

p=1

mp∑

q1=1

mp∑

q2=1

n∑

i1=1

n∑

i2=1,,i1

mi1∑

j1=1

mi2∑

j2=1

j1−1∑

k1=1

j2−1∑

k2=1

E
{
K

(ui1 j1 − u

h

)

×K

(upq1
− ui1k1

b

)
K

(ui2 j2 − u

h

)
K

(upq2
− ui2k2

b

)}]

+ O


n∑

p=1

mp∑

q1=1

mp∑

q2=1

n∑

i1=1

mi1∑

j1=1

mi1∑

j2=1

j1−1∑

k1=1

j2−1∑

k2=1

E
{
K

(ui1 j1 − u

h

)

×K

(upq1
− ui1k1

b

)
K

(ui1 j2 − u

h

)
K

(upq2
− ui1k2

b

)}]

= O(n3h2b2 + n2hb),

which indicates that

T⋄n0(u, 5) = OP{n−1/2 + (n2hb)−1/2} = oP{(nh)−1/2}.

Therefore, we complete the proofs of (61) and (56). �

In order to prove Proposition 2, we need to use the following two technical lemmas, which are similar to Lemmas

A.1 and A.2. Their proofs can again be found in the Online Supplement. Define

Tn,η(u|Θ) =
1

n(m − 1)h1 f (u)

n∑

i=1

m∑

j=2

Xi j(Θ)ηi jK
(ui j − u

h1

)

and

Tn,ε(u|Θ, c) =
1

n(m − 1)h1 f (u)

n∑

i=1

m∑

j=2

Xi j(Θ)K
(ui j − u

h1

) j−1∑

k=1

c jk,0(εik − ε̃ik).
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Lemma A.3. Suppose that the conditions in Proposition 2 are satisfied. Then we have

γ̌(u|θ,Θ, c) − γ0(u) = µ2h2
1γ
′′
0 (u)/2 + ∆+1 (u|Θ)

{
∆1Θ(u|θ0 − θ) + ∆2Θ(u|Θ0 −Θ)γ0(u)

}

+ ∆+1 (u|Θ)
{
Tn,η(u|Θ) + Tn,ε(u|Θ, c)

}
+ oP (‖θ − θ0‖ + ‖Θ −Θ0‖
+ ‖c − c0‖) + OP

(
h3

1 + h1ξn1 + ξ
2
n1

)
(63)

uniformly in u ∈ U, where ξn1 = {ln(h−1
1 )/(nh1)}1/2 and the remaining notation is the same as that in Lemma A.1.

Let

Fi j =

[
0⊤( j−2)( j−1)

2

, εi1, . . . , εi j−1, 0
⊤
m(m−1)

2
− j( j−1)

2

]⊤
, WF = diag


W1,

1

m − 1

m∑

j=2

E
(
F1 jF

⊤
1 j

)

,

where W1 is defined as in Section 3.

Lemma A.4. Suppose that the conditions in Proposition 2 are satisfied. Then we have

√
n(m − 1)



θ − θ0

vec(Θ) − vec(Θ0)

c − c0

 =W+
FV
♯
n{1 + oP(1)}, (64)

where V
♯
n is a {d(d0 + 1) + m(m − 1)/2}-dimensional random vector satisfying V

♯
n = OP(1).

Proof of Proposition 2. By Lemma A.4, we readily have (35) in Proposition 2. �
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