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Brief Contributions________________________________________________________________________________

Cycle-Time Properties of the Timed Token
Medium Access Control Protocol

Sijing Zhang, Alan Burns, and Tee-Hiang Cheng

Abstract—We investigate the timing properties of the timed token protocol that

are necessary to guarantee synchronous message deadlines. A tighter upper

bound on the elapse time between the token’s lth arrival at any node i and its

ðlþ vÞth arrival at any node k is found. A formal proof to this generalized bound is

presented.

Index Terms—Protocol timing properties, timed token medium access control

(MAC) protocol, timed token networks, FDDI networks, real-time communications.

æ

1 INTRODUCTION

GUARANTEEING message deadlines is a key issue in distributed
real-time applications. The timed token medium access control
(MAC) protocol [1], [2] is suitable for real-time applications due to
its special timing property of bounded token rotation time. With
this protocol [2], messages are distinguished into two types:
synchronous and asynchronous. Synchronous messages are periodic
with delivery time constraints. Asynchronous messages are
nonperiodic with no delivery time constraints. During network
initialization time, all nodes negotiate a common value for the
Target Token Rotation Time (TTRT ) which should be small
enough to meet responsiveness requirements of all nodes. Each
node i is assigned a fraction of the TTRT , denoted as Hi, as its
synchronous bandwidth, which is the maximum time the node is
allowed to transmit its synchronous messages every time it
receives the token [3], [4]. Whenever node i receives the token, it
transmits its synchronous messages (if any) first for a time up to
Hi. If the time elapsed between the previous and the current token
arrivals at the same node i is less than TTRT (i.e., the token arrived
earlier than expected), node i can then send asynchronous
messages to make up the difference.

Johnson [5] first proved that the token rotation time cannot

exceed 2 � TTRT . Chen et al. [3], [4] generalized the bound derived

by Johnson on the maximum token rotation time, extending it from

between any two to between any v (integer v � 2) successive

token’s arrivals at a node. This result was widely used in studying

various synchronous bandwidth allocation (SBA) schemes [3], [4],

[6], [7], [8], [9], [10], [11]. Unfortunately, their generalized bound

may not keep tight when v grows large and, consequently, the

worst-case performance of SBA schemes, which is derived based

on this bound, could be too pessimistic and, hence, much poorer

than actually achievable. Han et al. [12] derived a more generalized

bound between any two token visits to any two nodes, which

makes the previous results by Johnson and by Chen et al. a special

case. However, for the bound on successive token arrivals to a
particular node, the bound by Han et al. is no tighter than that
derived by Chen et al.. Zhang and Burns [13], [14] improved the
bound of Chen et al. by deriving another generalized upper bound
which may become tighter when the number of successive token
rotations grows large.

This paper derives a tighter upper bound on the elapsed
time between the token’s lth arrival at any node i and the
token’s ðlþ vÞth arrival at any node k (where integer v � 0). This
result generalizes all the previous findings on the cycle-time
properties and is better than any of them in the sense that it is more
general and/or tighter. For the rest of this paper, Section 2
describes the network model, Section 3 presents a formal proof to
our generalized bound, and Section 4 shows how our result
generalizes and why it is better than any published result on cycle-
time properties. An example, given in Section 5, shows the
superiority of our derived result for guaranteeing hard real-time
messages with the timed token protocol. Finally, the paper
concludes with Section 6.

2 NETWORK MODEL

The network is assumed to consist of n nodes forming a logical
ring. The message transmission is controlled by the timed token
MAC protocol [2]. Let �i be the maximum amount of overhead
incurred from the token’s arrival at node i till its immediately
subsequent arrival at node ðiþ 1Þ, then the maximum time
unavailable for message transmission during one complete token
rotation, denoted as � , can be expressed by � ¼

Pn
i¼1 �i. Since �

forms part of the token rotation time and synchronous transmis-
sion with guaranteed bandwidth precedes asynchronous transmis-
sion, clearly, as a protocol constraint on the allocation of
synchronous bandwidth,

Pn
j¼1 Hj � TTRT ÿ � must be met. The

protocol constraint is assumed to hold for the rest of this paper.

3 THE FORMAL PROOF

Before formally proving a better result on the protocol cycle-time
property, we need to define some terms and to show a lemma.

Let “c; i” (a pair of integers) denote the token’s cth visit to
node i. Visit c; i is followed by c; iþ 1 if 1 � i < n or by cþ 1; 1 if
i ¼ n. Similarly, if i ¼ 1, then c; iÿ 1 (the visit immediately before
c; i) should be taken to be cÿ 1; n. The sum total of some quantity,
say, q, for all the visits from j; k to w; z inclusive can be expressed as
Pw;z

x;y¼j;k qx;y ¼
Pn

y¼k qj;y þ
Pwÿ1

x¼jþ1

Pn
y¼1 qx;y þ

Pz
y¼1 qw;y.

Signs “¼; ” “< ,” “� ,” “> ,” and “� ” can be used to link two
visits such that “x; y ¼ c; i,” “x; y < c; i,” “x; y � c; i,” “x; y > c; i,”
and “x; y � c; i” mean, respectively, visit x; y being the same as,
before (earlier than), no later than, after (later than), and no earlier
than c; i.

Let tc;i be the time when the token makes its cth arrival at node
i. Let hc;i, ac;i, and �c;i, respectively, represent the times spent
transmitting synchronous and asynchronous traffic and the
various overheads involved in visit c; i. Then, the duration of visit
c; i, denoted as vc;i, can be expressed as vc;i ¼ hc;i þ ac;i þ �c;i.
Further, let Bc;i be the length of a complete token rotation ending
with visit c; i, i.e., Bc;i ¼

Pc;i
x;y¼cÿ1;iþ1 vx;y.

According to the timed token protocol [2], each node i can
transmit synchronous messages for a time up to Hi and can then
send asynchronous messages (if the token arrived early) up to the
amount of time by which the token arrived early. So, for c � 1 and
1 � i � n, hc;i � Hi, ac;i � maxð0; TTRT ÿBc;iÿ1Þ. Also, with this
protocol, no nodes are allowed to hold the token for a time over
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TTRT , i.e., ac;i � TTRT ÿ hc;i. Combining these two constraints on

ac;i, we get

ac;i � min fTTRT ÿ hc;i ; maxð0; TTRTÿ Bc;iÿ1Þ g: ð1Þ

Because Bc;iÿ1 ¼ � , when no nodes have messages, either synchro-

nous or asynchronous, to send during the preceding token rotation

ending with visit c; iÿ 1, the bandwidth available for transmitting

asynchronous messages is bounded by TTRT ÿ � (since

ac;i � max ½ 0; TTRT ÿ Bc;iÿ1 � ).

Let
Pf

e Qj be defined as follows (where e and f are positive

integers and “mod n” represents “modulo_n” operation):

X

f

e

Qj ¼

Pf
j¼e Qj if 1 � e � f � n and e 6¼ ðf mod nÞ þ 1

Pn
j¼e Qj þ

Pf
j¼1 Qj if 1 � f < e � n and e 6¼ f þ 1

0 if e ¼ ðf modnÞ þ 1:

8

>

<

>

:

Then, the sum of overheads incurred during less than n

successive token visits (from node e to node f inclusive) can be

expressed as
Pf

e �j.
We also need the following lemma for the proof of our

generalized result.

Lemma 1 [14]. If the token is early on visit c; i (i.e., early on its cth

arrival at node i), then

tc;iþ1 ÿ tcÿ1;i ¼
X

c;i

x;y¼cÿ1;i

vx;y � TTRT þ hc;i þ �c;i � TTRT þHi þ �i:

Before formally proving our generalized upper bound given in

Theorem 1, we briefly describe the simple idea behind the proof:

For visits between l; i and lþ v; kÿ 1, examine each visit backward

starting from lþ v; kÿ 1. If the current visit is a late visit (where

only synchronous transmission is allowed), replace it by the

allocated amount of synchronous bandwidth (allocated to the node

which the late visit corresponds to) plus an upper-bounded

amount of overheads involved in the visit and then move onto

the next visit immediately before this late visit. Otherwise, if the

current visit is an early visit, replace ðnþ 1Þ successive visits

ending with this early visit by the bound specified in Lemma 1 and

then move onto the next visit immediately before these ðnþ 1Þ

visits. Check the new current visit in exactly the same way as

above and continue the backward examining process until visit l; i

has been replaced by a bound formed either individually or jointly

with other visits. Finally, by smartly concatenating and formulat-

ing all produced component bounds (each for one or ðnþ 1Þ

replaced visits), one can easily reach the proposed upper bound.

Following this proof route, the upper bound is easy to derive

though it looks quite complex.

Theorem 1 (Generalized Johnson’s Theorem). For any integers l

and v ðl�1; v�0Þ and any nodes i and k ð1� i�n; 1�k�nÞ, if

tlþv;k> tl;i, then , under the protoco l cons tra int ( i . e . ,
Pn

j¼1 Hj þ � � TTRT ),

tlþv;k ÿ tl;i �
v � nþ kÿ i

nþ 1

� �

� TTRT þ
X

kÿ1

iþ1

H þ �þ

v�nþkÿiÿ1

n

� �

ÿ
v�nþkÿi

nþ1

� �

þ1

� �

�
X

n

j¼1

Hj þ �

 !

:

Proof. The time interval of tlþv;k ÿ tl;i exactly corresponds to visits

from l; i to lþ v; kÿ 1, inclusive. There are two cases to

consider:

CASE 1: The token is late on all visits from l; i to lþ v; kÿ 1

inclusive.
Since ax;y ¼ 0 (l; i � x; y � lþ v; kÿ 1), the time elapsed

during any complete token rotation, if any, is bounded by
Pn

j¼1 Hj þ � . As there are, in total, (v � nþ kÿ i) visits between
l; i and lþ v; kÿ 1, inclusive, and each token rotation consists of
n successive visits, the number of complete token rotations is
given by b ¼ bv�nþkÿi

n c. The elapsed time in the remaining visits
from node i to node (kÿ 1) inclusive, if any, is bounded by
Pkÿ1

i Hj þ
Pkÿ1

i �j. Based on the above analysis, we have,

tlþv;k ÿ tl;i ¼
X

lþv;kÿ1

x;y¼l;i

vx;y ¼
X

bÿ1

j¼0

X

lþjþ1;iÿ1

x;y¼lþj;i

vx;y

 !

þ
X

lþv;kÿ1

x;y¼lþb;i

vx;y

¼
X

bÿ1

j¼0

X

lþjþ1;iÿ1

x;y¼lþj;i

ðhx;y þ �x;yÞ

 !

þ
X

lþv;kÿ1

x;y¼lþb;i

ðhx;y þ �x;yÞ

� b �
X

n

j¼1

Hj þ �

 !

þ
X

kÿ1

i

Hj þ
X

kÿ1

i

�j

ðsince �x;y � �y; � ¼
X

n

j¼1

�i; hx;y � HyÞ

¼
v � nþ kÿ i

n

� �

�
X

n

j¼1

Hj þ �

 !

þ
X

kÿ1

i

Hj þ �

since
X

kÿ1

i

�j � �

 !

�
X

kÿ1

iþ1

Hj þ � þ
v�nþkÿiÿ1

n

� �

þ1

� �

�
X

n

j¼1

Hj þ �

 !

�
X

kÿ1

iþ1

Hj þ � þ
v�nþkÿiÿ1

n

� �

þ 1

� �

�
X

n

j¼1

Hjþ�

 !

þ
v � nþ kÿ i

nþ 1

� �

� TTRT ÿ
X

n

j¼1

Hj ÿ �

 !

since
X

n

j¼1

Hj þ � � TTRT

 !

¼
v � nþ kÿ i

nþ 1

� �

� TTRT þ
X

kÿ1

j¼iþ1

Hj þ �

þ
v�nþkÿiÿ1

n

� �

ÿ
v�nþkÿi

nþ1

� �

þ1

� �

�
X

n

j¼1

Hj þ �

 !

:

CASE 2: There is at least one early visit from l; i to lþ v; kÿ 1

inclusive.
Let p1; q1 ; ; . . . ; pm; qm, where

l; i � p1; q1 < p2; q2 < � � � < pm; qm < lþ v; k;

be all m early visits between l; i and lþ v; kÿ 1 inclusive such

that, for 1 � s � m (assuming lþ v; k ¼ pðmþ1Þ ÿ 1; qðmþ1Þ),

ps; qs < pðsþ1Þ ÿ 1; qðsþ1Þ, where ps; qs is the last early visit before

pðsþ1Þ ÿ 1; qðsþ1Þ. The following observations can be made from

the above definitions:

1. For 1 � s < m, between ps; qs exclusive and pðsþ1Þ; qðsþ1Þ

inclusive, there are at least ðnþ 1Þ successive visits.
Since there are, in total, v � nþ ðkÿ iÞ visits between l; i
and lþ v; kÿ 1 inclusive, we have m � dv�nþkÿi

nþ1
e.

2. Any visit between ps; qs and pðsþ1Þ ÿ 1; qðsþ1Þ

exclusive (where 1 � s � m and, as assumed,

pðmþ1Þ ÿ 1; qðmþ1Þ ¼ lþ v; k ), if it exists, is a late visit.
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Thus,
Ppðsþ1Þÿ1;qðsþ1Þÿ1

x;y¼ps ;qsþ1 vx;y ¼
Ppðsþ1Þÿ1;qðsþ1Þÿ1

x;y¼ps ;qsþ1 ðhx;y þ �x;yÞ.

3. If p1 ÿ 1; q1 > l; i, there are no early visits (thus no
asynchronous transmission) between l; i and p1 ÿ
1; q1 ÿ 1 inclusive. Hence,

X

p1ÿ1;q1ÿ1

x;y¼l;i

vx;y ¼
X

p1ÿ1;q1ÿ1

x;y¼l;i

ðhx;y þ �x;yÞ:

4. According to Lemma 1, the time elapsed in any ðnþ 1Þ
successive visits ending with an early visit is bounded
by TTRT plus the synchronous bandwidth used and
the amount of overheads incurred in this early visit. For
simplicity of proof, suppose that this bound is formed
by two imaginary parts: the first n successive visits (that
form one complete token rotation) being bounded by
TTRT and the ðnþ 1Þth visit of only synchronous
transmission. Note that this imaginary (equivalent)
situation, though not what happens in reality, leads to
the same theoretically derived upper bound and, at the
same time, simplifies the derivation making the proof
easy to follow.

Note that removing any n successive visits (say,

replaced by the imaginary upper bound of TTRT )

does not break the neighboring relationship between

nodes because any n successive visits make up one

complete token rotation. That is, the node corre-

sponding to the visit immediately before these n

visits and the node corresponding to the visit

immediately after these n visits neighbor each other

(i.e., the latter is the immediately subsequent node of

the former), although these two corresponding visits

are one-token-rotation apart. For example, the node

corresponding to visit ps ÿ 1; qs ÿ 1 (i.e., node (qs ÿ 1))

and the node corresponding to visit ps; qs (i.e., node qs)

neighbor each other, with the removed n visits

(replaced by TTRT ) between ps ÿ 1; qs and ps; qs ÿ 1

inclusive.
5. Based upon how far the visit p1; q1 is from l; i, several

cases are considered below:

a. If p1 ÿ 1; q1 � l; i (i.e., p1; q1 � lþ 1; i).

Allm early visits, each corresponding to ðnþ 1Þ

successive visits, fall within the visits from l; i to

lþ v; kÿ 1, inclusive. By 4, we can replace the first

n successive visits of each ðnþ 1Þ successive visits

by the imaginary upper bound of TTRT . So, the

final derived upper bound (on the elapse time

from l; i to lþ v; kÿ 1 inclusive), for this case,

should include “m � TTRT .”

After removing m sets of token rotations

(replaced by m � TTRT ), the number of remaining

visits will be the total number of all visits minus the

number of removed visits, i.e., ðv:nþ kÿ iÞ ÿm � n.

Note that we should only consider transmission of

synchronous messages in each of these remaining

visits because it is either a late visit x; y (if

x; y 6¼ ps; qs; 1 � s � m) or has been supposed so

(if x; y ¼ ps; qs) in our imaginary equivalent scenario

stated in 4. Due to the unbroken feature of

neighboring relationships between nodes (when-

ever the removal of any n successive nodes

happens), the number of the imaginary equivalent

token rotations within these remaining visits is

given by q ¼ bðv�nþkÿiÞÿm�n
n c ¼ bv�nþkÿi

n c ÿm. The

elapsed time in the q equivalent token rotations is

bounded by

q �
X

n

j¼1

Hj þ �

 !

¼

v � nþ kÿ i

n

� �

ÿm

� �

�
X

n

j¼1

Hj þ �

 !

;

which should also be a component of the final

derived upper-bound expression.

Also, with the unbroken neighboring feature

between nodes, it is easy to check that the elapsed

time in the leftover visits (after taking out the q

rotations) is bounded by
Pkÿ1

i Hj þ
Pkÿ1

i �j, which

should also appear in the final expression.
b. If lÿ 1; i � p1 ÿ 1; q1 < l; i, i.e.,

l; i � p1; q1 < lþ 1; i:

Divide all ðn � vþ kÿ iÞ visits (from l; i to lþ

v; kÿ 1 inclusive) into two groups:

Group 1 ¼ fx; y j p1; q1 þ 1 � x; y � lþ v; kÿ 1g

Group 2 ¼ fx; y j l; i � x; y � p1; q1g:

We now discuss the upper bounds for visits in

these two groups, respectively.

For visits in Group 1, we can do exactly the

same analysis as that adopted in (5.a) for ðmÿ 1Þ

early visits (i.e., “p2; q2”;“p3; q3”; ... ; “pm; qm”). So,

the final upper-bound expression (for Group 1)

should include “ðmÿ 1Þ � TTRT” and

q ¼
ðlþ vÿ p1Þ � nþ ðkÿ q1Þ ÿ 1

n

� �

ÿ ðmÿ 1Þ:

Similarly, the time elapsed in the q rotations is

upper bounded by

q � ð
X

n

j¼1

Hj þ �Þ ¼

ðlþ vÿ p1Þ � nþ ðkÿ q1Þ ÿ 1

n

� �

ÿ ðmÿ 1ÞÞ

�

�
X

n

j¼1

Hj þ �

 !

and the leftover visits can never exceed
Pkÿ1

q1þ1ðHj þ �jÞ ¼
Pkÿ1

q1þ1 Hj þ
Pkÿ1

q1þ1 �j. Also, both

of these two bounds, together with

“ðmÿ 1Þ � TTRT ,” form an upper bound for

Group 1.

For Group 2, by Lemma 1, we have

X

p1 ;q1

x;y¼l;i

vx;y <
X

p1 ;q1

x;y¼p1ÿ1;q1

vx;y � TTRT þ hp1 ;q1 þ �p1 ;q1

� TTRT þHq1 þ �q1 :

Note that l; i becomes the only visit in Group 2

when p1; q1 ¼ l; i. By (1), when p1; q1 ¼ l; i, we have

vl;i � TTRT þ �l;i � TTRT þ �i.
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With the above observations 1-5, the upper bound of
Theorem 1 can be derived as follows:

tlþv;k ÿ tl;i

¼ ðtlþv;k ÿ tpm ;qmþ1Þ þ
X

mÿ2

j¼0

½ ðtpmÿj ;qmÿjþ1 ÿ tpmÿjÿ1;qmÿj
Þ

þ ðtpmÿjÿ1;qmÿj
ÿ tpmÿjÿ1 ;qmÿjÿ1þ1Þ �

þ

ðtp1 ;q1þ1 ÿ tp1ÿ1;q1 Þ þ ðtp1ÿ1;q1 ÿ tl;iÞ if p1 ÿ 1; q1 > l; i

ðtp1 ;q1þ1 ÿ tl;iÞ if lÿ 1; i < p1 ÿ 1; q1 � l; i

ðtl;iþ1 ÿ tl;iÞ if p1 ÿ 1; q1 ¼ lÿ 1; i

8

>

<

>

:

¼
X

lþv;kÿ1

x;y¼pm ;qmþ1

vx;y þ
X

mÿ2

j¼0

X

pmÿj ;qmÿj

x;y¼pmÿjÿ1;qmÿj

vx;y þ
X

pmÿjÿ1;qmÿjÿ1

x;y¼pmÿjÿ1 ;qmÿjÿ1þ1

vx;y

2

4

3

5

þ

Pp1 ;q1
x;y¼p1ÿ1;q1

vx;y þ
Pp1ÿ1;q1ÿ1

x;y¼l;i vx;y if p1 ÿ 1; q1 > l; i
Pp1 ;q1

x;y¼l;i vx;y if lÿ 1; i < p1 ÿ 1; q1 � l; i

vl;i if p1 ÿ 1; q1 ¼ lÿ 1; i

8

>

<

>

:

�
X

lþv;kÿ1

x;y¼pm ;qmþ1

ðhx;yþ�x;yÞþ
X

mÿ2

j¼0

X

pmÿj ;qmÿj

x;y¼pmÿjÿ1;qmÿj

vx;y

2

4

3

5

þ
X

mÿ2

j¼0

X

pmÿjÿ1;qmÿjÿ1

x;y¼pmÿjÿ1 ;qmÿjÿ1þ1

vx;y

2

4

3

5

þ

Pp1 ;q1
x;y¼p1ÿ1;q1

vx;y þ
Pp1ÿ1;q1ÿ1

x;y¼l;i ðhx;y þ �x;yÞ

ðby ðCÞÞ
if p1 ÿ 1; q1 > l; i

Pp1 ;q1
x;y¼p1ÿ1;q1

vx;y

ðsince
Pp1 ;q1

x;y¼l;i vx;y <
Pp1 ;q1

x;y¼p1ÿ1;q1
vx;yÞ

if lÿ1; i < p1ÿ1;

q1 � l; i

hl;i þ al;i þ �l;i if p1 ÿ 1; q1 ¼ lÿ 1; i

8

>

>

>

>

>

>

<

>

>

>

>

>

>

:

ðby observation 2 aboveÞ

�
X

lþv;kÿ1

x;y¼pm ;qmþ1

ðhx;y þ �x;yÞ þ
X

mÿ2

j¼0

ðTTRT þ hpmÿj ;qmÿj
þ �pmÿj ;qmÿj

Þ

þ
X

mÿ2

j¼0

X

pmÿjÿ1;qmÿjÿ1

x;y¼pmÿjÿ1 ;qmÿjÿ1þ1

ðhx;y þ �x;yÞ

2

4

3

5þ

ðTTRT þ hp1 ;q1 þ �p1 ;q1 Þ

þ
Pp1ÿ1;q1ÿ1

x;y¼l;i ðhx;y þ �x;yÞ
if p1 ÿ 1; q1 > l; i

TTRT þ hp1 ;q1 þ �p1 ;q1 if lÿ1; i < p1ÿ1; q1 � l; i

hl;i þ �l;i þminfTTRT ÿ hl;i;

maxð0; TTRT ÿBl;iÿ1Þgðby ð1ÞÞ
if p1 ÿ 1; q1 ¼ lÿ 1; i

8

>

>

>

>

>

>

<

>

>

>

>

>

>

:

ðby Lemma 1Þ

�

m�TTRT þ ð v�nþkÿi
n

� �

ÿmÞ�ð
Pn

j¼1 Hj þ �Þ

þ
Pkÿ1

i Hj þ
Pkÿ1

i �j

ðby observation 5:a aboveÞ

if p1 ÿ 1; q1 � l; i

ðmÿ 1Þ � TTRTþ

ðbðlþvÿp1Þ�nþðkÿq1Þÿ1

n c ÿ ðmÿ 1ÞÞ�

ð
Pn

j¼1 Hjþ�Þþ
Pkÿ1

q1þ1 Hj þ
Pkÿ1

q1þ1 �j

þðTTRT þHq1 þ �q1 Þ

ðby observation 5:b aboveÞ

if lÿ1; i < p1ÿ1;

q1 < l; i

ðmÿ 1Þ�TTRT þ

ðbv�nþðkÿiÞÿ1

n c ÿ ðmÿ 1ÞÞ�ð
Pn

j¼1 Hj þ �Þ

þ
Pkÿ1

iþ1 Hj þ
Pkÿ1

iþ1 �j þ ðTTRT þ �iÞ

ðsince al;i � TTRT ÿ hl;iÞ

ðby observation 5:b aboveÞ

if p1 ÿ 1;

q1 ¼ lÿ 1; i

8

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

:

ðbecause �x;y � �y; � ¼
X

n

j¼1

�i and hx;y � HyÞ

� m � TTRT þ b
v � nþ ðkÿ iÞ ÿ 1

n
c ÿ ðmÿ 1Þ

� �

�
X

n

j¼1

Hj þ �

 !

þ
X

kÿ1

iþ1

Hj þ �

�
v � nþ kÿ i

nþ 1

� �

� TTRT þ
X

kÿ1

iþ1

Hj þ �þ

v�nþkÿiÿ1

n

� �

ÿ
v�nþkÿi

nþ1

� �

þ 1

� �

�
X

n

j¼1

Hj þ �

 !

ðby observation 1 above and the fact of the above

upper bound being an increasing function of mÞ:

tu

As shown in the above proof process, the derived upper bound

is independent of hx;y (l; i=leqx; y < lþ v; k) as long as the protocol

constraint holds. So, the bound still works even when hx;y ¼ 0 for

some x; y. Realizing this fact is important for real-time commu-

nication with the timed token protocol.

4 COMPARISON WITH PREVIOUS RESULTS

Zhang and Burns [13] demonstrate how the previous findings by

Johnson [5] become a special case of their generalized upper bound

and why their bound is tighter than that derived by Chen et al.

when the number of consecutive token rotations grows large

enough under
Pn

j¼1 Hj < TTRT ÿ � . It is easy to check that

Theorem 1 becomes the generalized upper bound expression

derived by Zhang and Burns [13] when k ¼ i.
Let diðlÞ be the time when the token makes its lth departure

from node i and �b;iðl; cÞ be the time difference between dbðlÞ and

the time when the token departs from node i the cth time after dbðlÞ

[12], i.e.,

�b;iðl; cÞ ¼
diðlþ cÿ 1Þ ÿ dbðlÞ if 1 � b < i � n
diðlþ cÞ ÿ dbðlÞ if 1 � i � b � n:

�

ð2Þ

Han et al. [12] derived a generalized upper bound on �b;iðl; cÞ (i.e.,

the elapses time between the token’s lth departure from node b and

the token’s ðlþ cÞth departure from node i) which makes the

previous results by Johnson [5] and by Chen et al. [3] a special case

of their result. The following theorem shows their generalized

upper bound expression.

Theorem 2 (Generalized Johnson’s Theorem by Han et al. [12]).

For the timed-token MAC protocol, under the protocol constraint, for

any l � 1 and c � 1,

�b;iðl; cÞ � c � TTRT þ
X

i

j¼bþ1

Hj þ � � ðcþ 1Þ � TTRT;

where
Pi

j¼bþ1 Hj is subject to the definition of
Pf

j¼e Hj as shown

below:

X

f

j¼e

Hj ¼

He þHeþ1 þ � � � þHf if 1 � e � f � n

He þHeþ1 þ � � � þHn þH1 þH2 þ � � � þHf if 1 � f < e � n:

�

We now show our generalized bound given in Theorem 1 is

tighter (thus better) than that given in Theorem 2. To show this, we

relax our upper bound as follows:
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tlþv;k ÿ tl;i

�
v � nþ kÿ i

nþ 1

� �

� TTRT þ
X

kÿ1

iþ1

Hj þ � þ

v�nþkÿiÿ1

n

� �

ÿ
v � nþ kÿ i

nþ 1

� �

þ 1

� �

�
X

n

j¼1

Hjþ�

 !

�
v � nþ kÿ i

nþ 1

� �

� TTRT þ
X

kÿ1

iþ1

Hj þ � þ

v�nþkÿiÿ1

n

� �

ÿ
v�nþkÿi

nþ1

� �

þ1

� �

�TTRT

since
v � nþ kÿ iÿ 1

n

� �

ÿ
v � nþ kÿ i

nþ 1

� �

þ 1 � 0

�

and
X

n

j¼1

Hj þ � � TTRT

!

¼
v�nþkÿiÿ1

n

� �

þ1

� �

�TTRTþ
X

kÿ1

iþ1

Hjþ�:

ð3Þ

As shown below, even the above relaxed upper bound (3) is

still tighter than that derived by Han et al. To enable

comparison, we need to represent �b;iðl; cÞ using our notation

tc;i. Let � be the delay between the departure of the token from

any node i and its immediate arrival to node (iþ 1), i.e.,

diðlÞ ¼ tlþbi=nc;ði mod nÞþ1 ÿ �, then �b;iðl; cÞ can be converted as

follows:

�b;iðl; cÞ ¼
diðlþ cÿ 1Þ ÿ dbðlÞ if 1 � b < i � n

diðlþ cÞ ÿ dbðlÞ if 1 � i � b � n

�

¼

ðtðlþcÿ1Þþbi=nc;ði mod nÞþ1 ÿ �Þ ÿ ðtl;bþ1 ÿ �Þ if 1 � b < i � n

ðtðlþcÞþbi=nc;ði mod nÞþ1 ÿ �Þ

ÿðtlþbb=nc;ðb mod nÞþ1 ÿ �Þ
if 1 � i � b � n

8

>

<

>

:

¼

tlþc;1 ÿ tl;bþ1 if 1 � b < i ¼ n

tlþcÿ1;iþ1 ÿ tl;bþ1 if 1 � b < i < n

tðlþcÞþ1;1 ÿ tlþ1;1 if i ¼ b ¼ n

tlþc;iþ1 ÿ tlþ1;1 if 1 � i < b ¼ n

tlþc;iþ1 ÿ tl;bþ1 if 1 � i � b < n

8

>

>

>

>

>

>

<

>

>

>

>

>

>

:

�

ðbc�nþ1ÿðbþ1Þÿ1

n c þ 1Þ � TTRT

þ
Pn

½ðbþ1Þ mod n�þ1 Hj þ �
if 1 � b < i ¼ n

ðbðcÿ1Þ�nþðiþ1Þÿðbþ1Þÿ1

n c þ 1Þ � TTRTþ
Pi

bþ2 Hj þ �
if 1 � b < i < n

ðbc�nþ1ÿ1ÿ1
n c þ 1Þ � TTRT þ

Pn
2 Hj þ � if i ¼ b ¼ n

ðbðcÿ1Þ�nþðiþ1Þÿ1ÿ1

n c þ 1Þ � TTRT þ
Pi

2 Hj þ � if 1 � i < b ¼ n

ðbc�nþðiþ1Þÿðbþ1Þÿ1

n c þ 1Þ � TTRTþ
Pi

½ðbþ1Þ mod n�þ1 Hj þ �
if 1 � i � b < n

8

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

:

ðby ð3ÞÞ

¼

c � TTRT þHbþ2 þ � � � þHi þ � if 1 � b � nÿ 2 < i ¼ n

c � TTRT þ � if 1 � b ¼ nÿ 1 < i ¼ n

c � TTRT þHbþ2 þ � � � þHi þ � if 2 � bþ 1 < i < n

c � TTRT þ � if 2 � bþ 1 ¼ i < n

c � TTRT þH2 þ � � � þHi þ � if i ¼ b ¼ n

c � TTRT þH2 þ � � � þHi þ � if 1 < i < b ¼ n

c � TTRT þ � if 1 ¼ i < b ¼ n

c � TTRT þH1 þ � � � þHi þ � if 1 � i � b ¼ nÿ 1

c � TTRT þHbþ2 þ � � � þHn

þH1 þ � � � þHi þ �
if 1 � i � b � nÿ 2:

8

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

:

On the other hand, according to Theorem 2, we have,

�b;iðl; cÞ �

c � TTRT þHbþ1 þ � � � þHi þ � if 1 � b < i � n

c � TTRT þH1 þ � � � þHi þ � if 1 � i � b ¼ n

c � TTRT þHbþ1 þ � � � þHn

þH1 þ � � � þHi þ �
if 1 � i � b < n:

8

>

>

>

<

>

>

>

:

Comparing each case of the bound obtained from Theorem 2

with those of its corresponding cases obtained from (3), clearly,

Theorem 1 gives a tighter upper bound (for �b;iðl; cÞ) than

Theorem 2.

5 AN EXAMPLE

Consider a network with three nodes. Assume that each node i

(i ¼ 1; 2; 3) has a synchronous message stream Si characterized by

a period Pi, a maximum transmission time Ci, and a relative

deadline Di. Messages from Si arrive regularly with period Pi and

have relative deadlineDi (i.e., if a message from Si arrives at time t,

it must finish its transmission at node i by time tþDi). Table 1 lists

all network and message parameters, where SN and DN represent

Source Node and Destination Node, respectively.
Clearly, the protocol constraint holds for the given network

parameters. We now check if these parameters can ensure that all

synchronous messages will arrive at their destination nodes before

their deadlines by, respectively, using our proposed generalized

upper bound (Theorem 1) and that derived by Han et al.

(Theorem 2). Let Ri be the message response time for a message

from Si (i.e., the interval from arrival of the message till completion

of its transmission at node i) and Rw
i (� Ri) be the worst-case

message response time (i.e., the longest possible interval). In the

worst case, a message from Si becomes available for transmission

immediately after some tl;i, thus it misses the first chance of being

transmitted on visit l; i [13], [14]. Because Ci units of time are

needed for transmission of a whole message from Si and node i

can use at most Hi time units for transmitting synchronous

messages whenever it receives the token, a total of dCi=Hie times’

token arrivals is required for transmitting the whole message,

which is divided into dCi=Hie frames (to be transmitted separately

on each of the token arrivals). Since the message misses the first

chance at time tl;i in the worst case, we have

Ri ¼

ðtlþdCi=Hie;i ÿ tl;iÞ þ Ci ÿ ðdCi

Hi
e ÿ 1Þ �Hi ðfor use with Theorem 1Þ

�iÿ1;iÿ1ðl; dCi=HieÞ

þCi ÿ ðdCi

Hi
e ÿ 1Þ �Hi

ðfor use with Theorem 2Þ

8

>

<

>

:

ð4Þ

With the above analysis, we can calculateR1 based on Theorem 2

as follows:
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TABLE 1
Message and Network Parameters (TTRT ¼ 8ms, � ¼ 1ms)



R1 ¼ �3;3 l;
C1

H1

� �� �

þC1ÿ
C1

H1

� �

ÿ1

� �

�H1 ðby ð4ÞÞ

�
C1

H1

� �

� TTRT þ
X

3

j¼1

Hj þ � þ C1 ÿ
C1

H1

� �

ÿ 1

� �

�H1

ðby Theorem2Þ

¼
3:1

1

� �

� 8þ 1þ 2:16þ 0:84þ 1þ 3:1ÿ
3:1

1

� �

ÿ 1

� �

� 1 ¼ 37:1:

Thus, Rw
1 ¼ 37:1ms > D1 ¼ 36ms, i.e., the message of S1 misses its

deadline when judged with Theorem 2. However, as shown below,
this is not the case. Based on Theorem 1, we have

R1 ¼ t
lþd

C1
H1

e;1
ÿ tl;1

� �

þC1ÿ
C1

H1

� �

ÿ1

� �

�H1 ðby ð4ÞÞ

�
dC1

H1
e � n

nþ 1

& ’

� TTRT þ
X

3

j¼2

Hj þ � þ
C1

H1

� �

ÿ
dC1

H1
e � n

nþ 1

& ’ !

� ð
X

3

j¼1

Hj þ �Þ þ C1 ÿ
C1

H1

� �

ÿ 1

� �

�H1 ðby Theorem 1Þ

¼
d3:1

1
e � 3

3þ 1

� �

� 8þ 2:16þ 0:84þ 1þ
3:1

1

� �

ÿ
d3:1

1
e � 3

3þ 1

� �� �

� ð4þ 1Þ þ 3:1ÿ
3:1

1

� �

ÿ 1

� �

� 1 ¼ 33:1:

Thus, Rw
1 ¼ 33:1ms < D1 ¼ 36ms, i.e., the deadline of S1 is met

when judged with Theorem 1.
Similarly, calculating R2 and R3 based on Theorem 1, we have:

R2 ¼ 20:98ms < D2 ¼ 21ms; R3 ¼ 28:68ms < D3 ¼ 30ms. So, no
messages miss their deadlines when judged with Theorem 1.

6 CONCLUSION

We have presented a formal proof to a generalized upper bound
on the elapsed time from the token’s lth arrival at any node i till its
ðlþ vÞth arrival at any node k (where integer v � 0). Our derived
upper bound expression, which is particularly important for hard
real-time communications in any timed token network, is better
than any of the previous findings on the protocol cycle-time
properties due to the fact that it is more general and may produce a
tighter upper bound.
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