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Synonyms 
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Definition 

Quantitative prediction over multiple space and time scales using computer models of the 

electrical activity in the mammalian heart, based on membrane and intracellular ion transport 

and binding dynamics, digital histology, and three-dimensional cardiac anatomy and 

architecture. 

 

 

Introduction 

The normal rhythmic beating of the heart is triggered by repetitive waves of depolarization 

(propagating action potentials) that spread from the pacemaking sinoatrial node, through the 

atria and conducting system (atrioventricular node, Bundle of His and Purkinje fibers) to the 

ventricular tissue, producing the synchronized atrial, followed by ventricular, contractions 

that form one cycle of the heart beat. Calcium entry during depolarization triggers calcium 

induced calcium release from the intracellular sarcoplasmic reticulum, and the rise in 

intracellular calcium triggers contraction. The essential features are autorhythmicity - the 

isolated heart continues to beat, and the synchronization produced by fast (up to 1 m/s) 

propagation. The repetitive pumping drives the circulation, and loss of synchronous cardiac 

contractions, as in cardiac arrhythmias, can rapidly lead to death. Computational modeling of 

the interactions among a few dozen membrane proteins – ligand- or voltage-gated ion 

channels that are characterized by their ionic selectivities, kinetics and pharmacology, ion 

pumps and exchangers, and connexins forming intercellular gap junctions; and intracellular 

ion binding, sequestration and release, within the tissue architecture and geometry of  the 

heart can account for these processes, and predict the cell, tissue and whole heart level 

effects of differences in specific channel kinetics or densities that result from gender, 

remodeling, mutations, drugs, or disease (Panfilov and Holden 1997; Roberts et al  2012). 
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Cardiac Membrane and Cell Excitation 

A single cardiac myocyte, isolated by enzymic digestion, or a small spheroid of cells growth 

in gyratory cell culture, or a small ball of myocardial tissue are all too small for membrane 

potential V to change with distance, and so are effectively isopotential, with dV/dt = −I  ion  

(V)/C, where I  ion  (V) is a function representing how the total ionic current depends on 

voltage, and C the capacitance, of either a cell or a unit area of membrane. This can be 

obtained by the analysis of macroscopic currents obtained from whole cell microelectrode 

recording techniques. For autorhythmicity or excitability, f(V) is nonlinear, with the 

characteristics of a cubic. If the equilibrium solution at which dV/dt = 0 is stable (all the 

eigenvalues have negative real parts) the system is excitable, and the threshold is at the 

negative slope intercept of the zero current axis. If the equilibrium solution is unstable and a 

complex conjugate pair of eigenvalues have positive real parts then the solution is oscillatory 

and the system is autorhythmic (pacemaking). Whether a myocyte is pacemaking or 

excitable depends on the stability of its equilibrium solution. The stability depends on the 

parameters that control current magnitudes (maximal channel conductances/channel 

densities), and parameters that determine the channel gating kinetics. 

The first model of a cardiac action potential in terms of ionic mechanisms (Noble 1962) was 

a modification the Hodgkin-Huxley equations to reproduce the prolonged Purkinje fiber 

action potential, and its automaticity. Cardiac action potential models are reconstructed from 

a number of membrane ionic currents, through channels, pumps, and exchangers. A current 

is characterized by its ion-selectivity, pharmacology, kinetics, and voltage- or ligand-

dependence, recorded under voltage clamp, in macroscopic in vitro experiments on small 

isopotential preparations, or in patch-clamp experiments on channels expressed in 

amphibian eggs or mammalian cell lines. The cardiac action potential is generated by inward 

( Na  +  and Ca  ++ ), outward ( K  + ), pacemaking, background and stretch-activated 

currents through ion channels (Priest and McDermott 2015). Single channel currents are of 

the order of a pA, i.e., ∼10 6 ions/s, and current flow through an open channel is by 

electrodiffusion, by binding to multiple binding sites within the channel. 

The instantaneous current voltage relation can be linear, and given by the product of a 

conductance G and a driving force, as background currents, for the Na  +  background 

current: 

$$ {I_{{bNa}}} = {G_{{bNa}}}\left( {V - {V_{{Na}}}} \right) $$ 

and the fast Na  +  current 

$$ {I_{{Na}}} = {g_{{Na}}}(V - {V_{{Na}}}) = {G_{{Na}}}{m^3}hj(V - {V_{{Na}}}). $$ 

The conductance g is the product of the maximal conductance G and the fraction that is 

conducting; this can be controlled by separate activation and inactivation gates, (for g  Na  m 

is activation, h inactivation, and j slow inactivation; 0 ≤ m,h,j ≤ 1 that can be interpreted as 

the fraction of the gates in a state that allows ion flow, or the probability that a gate is 

“open”). 
When there is a difference in ion concentration across the membrane the Goldman-Hodgkin-

Katz constant field theory equations predict a nonlinear rectifying current, (the magnitude of 

the current for a given driving force depends on the direction of ion flow current), and this is 

marked for Ca  ++  currents, where intra- and extracellular concentrations [Ca  ++  ] differ by 

four orders of magnitude ( [Ca  ++  ]  i  from 100 nM diastolic to 1 μM systolic, [Ca  ++  ]  o  ∼2 

mM). For the L-type Ca current I  Ca,L  



$$ \begin{array}{rlrlrl} {I_{{Ca,L}}} & = {G_{{Ca,L}}} df{f_{{Ca}}}(4V{F^2}/RT) \cr & \times \left\{ 

{ \left( { {{{[}C{a^{{ + + }}}{]}}_i} exp{(}2VF/RT{)} - 0.341 {{[C{a^{{ + + }}}]}_o} } \right) } \right\} 

\cr & / \left \{ {\left( {exp(2VT/RT) } \right) - {1}} \right\},\end{array} $$ 

where d is a voltage-dependent activation gate, f a voltage-dependent inactivation gate, and 

f  Ca  a [Ca  ++  ]  i  dependent inactivation gate; F and R are Faraday’s and the gas constant, 
and T the absolute temperature. The 0.341 comes from the ratio of the partition coefficients 

for Ca ++. 

The time dependence of ionic permeabilities and conductances with linear or nonlinear 

instantaneous current-voltage relationship is described by the kinetics of the activation and 

inactivation gating processes ( m, h, j, d, f, f  Ca  in the two examples above), that have 

voltage-dependent macroscopic rate coefficients of opening α(V) and closing β(V) that are 

described by empirical expressions based on curve fitting, e.g., for the fast activation of I  Na  

$$ {a_m}(V) = 1/({\left\{ {1 + exp([ - 56.86 - V)/9.03])} \right\}^2}, $$ 

with analogous expressions for β(V). An alternative and equivalent description, in place of 

the rate coefficients α(V) and β(V), is by the time coefficient τ(V) = 1/(α(V) + β(V)), and 

steady-state value, e.g., m  ∞  = α  m  (V)/(α  m  (V) + β  m  (V)). 

Single file transfer across multiple binding sites provides one mechanism for channel 

rectification. The strong inward rectification of K + channels is due to block of the channel by 

intracellular polyvalent cations (Hille 2001), and the inward rectifier K +current I  K1  is 

represented by: 

$$ {I_{{K1}}} = {G_{{K1}}} \surd \left( {{{[K]}_o}/5.4} \right){ }{x_{{K1\infty }}}(V - {E_K}), $$ 

where x  K1∞  is a time independent rectifier factor that depends on voltage, and √([K]  o  

/5.4) describes the dependence on [K]  o . 

Each current is described by terms that give its magnitude (maximal conductance G, or 

product of channel density and single channel conductance), gating dynamics by activation 

and inactivation variables, and instantaneous current voltage relation that have been 

obtained in extensive series of voltage clamp experiments under different conditions. The 

channel density (which can act as a bifurcation parameter) fluctuates, due to changes in 

channel regulation, and trafficking and insertion into the membrane, and so can be modeled 

by a stochastic variable. The analysis of patch-clamp recordings of single channel activity in 

terms of opening, closing, and open time probability distributions gives a microscopic 

interpretation of α(V) and β(V) as probabilities, that are related to the transition probabilities 

between multiple states in Markov model within kinetic state diagrams of a single channel. 

Markov models allow the kinetics of drug-channel interactions to be modeled in detail. These 

equations for microscopic, multistate single channel currents and macroscopic membrane 

currents are semiempirical, and contain experimentally estimated parameters and dynamic 

variables, on time scales from 10 μs to s. 
There are also semiempirical expressions for pump and exchanger currents, and for 

intracellular ion concentration dynamics, and for [Ca  ++  ]  i  binding and sequestration. The 

equations for the individual currents are constructed from currents recorded under voltage 

clamp, and so will reconstruct these currents. If all the membrane currents are summed as I  
ion  (V) then 

$$ dV/dt = - {I_{{ion}}}(V)/C $$ 

should reconstruct V(t) for the cell. However the model will require some informed 

manipulation, to ensure electroneutrality at rest (so at the resting membrane potential dV/dt= 

0) and electrochemical neutrality (so the individual ionic fluxes are all individually equal to 

zero, and there are no slow drifts in intracellular concentrations and hence potential). 

Cardiac cell models are in a state of continuing development, and as a result of interactions 



with experiment have undergone several paradigm shifts, with new mechanisms being 

incorporated, data being reinterpreted and some old mechanisms replaced (Noble and Rudy 

2001). 

Families of ordinary differential equation cardiac cell models have been developed to 

describe the voltage and time-dependent current I ion that reconstruct the action potentials 

V(t) of different types of cardiac myocytes cells of a number of species: mouse, rat, rabbit, 

dog, pig, and man. Cardiac cell electrophysiology models, although simple in principle, are 

complicated because of the large number of dynamic variables, with kinetics over several 

orders of magnitude, and large number of parameters, and empirical expressions for gating 

variables, and so need to be specified by computer programs if they are to be used. A 

printed description probably contains typographical errors, or a mismatch between the 

equations described and the revised equations used to generate the final figures, and 

models are generally published with the computer code as an electronic supplement, and 

are available in a standard markup language such as CellML (Fink et al. 2010). These stiff 

(have time scales from 100 μs to 100 ms), high order (have a large number of dynamic 
variables) cardiac cell electrophysiology models are solved by numerical integration for time 

spans of seconds (during repetitive activity after more than a few seconds there are 

nonphysiological drifts in ionic concentration) to compute V(t), with a time step of ∼10–100 

μs. Computing technology is now fast enough for cell V(t) to be computed in close to real 

time on a PC, especially if efficient programming methods (adaptive time steps, use of look 

up tables rather than evaluation for the α(V) and β(V)) are used.  

The qualitative nature of solutions of V(t) need to be physiologically appropriate: models for 

isolated cells that are pacemaking (sinoatrial and atrioventricular node, Purkinje fibers) need 

to be autorhythmic, while models of atrial and ventricular myocytes need to have a stable 

equilibrium that corresponds to the resting membrane potential, and be excitable. Small 

changes in the value of a parameter (say a conductance) can change the stability of the 

equilibrium, producing a qualitative change in behavior, and allowing periodic solutions to 

occur. This is a bifurcation, and periodic solutions can emerge at Hopf of homoclinic 

bifurcation points (Ermentrout and Rinzel 2009). Changes in a number of the cell model 

parameters can produce periodic solutions, and so pacemaking is an emergent, cell level 

system property, and is not due to a specific pacemaking mechanism, such as the 

hyperpolarization activated funny current I f, or intracellular Ca ++ oscillators, or multiple 

redundant mechanisms, where removal of one mechanism exposes another. 

Figure 1 illustrates numerical solutions for a normal human ventricular cell model, and when 

the parameters have been modified to simulate a mutation that produces long-QT syndrome, 

and the effects of a drug whose actions on the channel kinetics are known. The action 

potential solutions for an excitable myocyte can be quantified by measures of its threshold 

(strength duration curve) and shape – resting potential, peak potential, maximum rates and 

rise and fall, times at which they occur, and action potential duration APD (measured as 

APD 90, time to 90% depolarization), and for an autorhythmic cell by its maximum and 

minimum potentials, rate and its response to brief perturbations, by a phase resetting curve 

(Winfree 2001). These can be compared to experiments, and further model validation can be 

by reproducing the effects of drugs, if their actions on membrane channels have been 

described quantitatively. When validated, cell models can be used to predict the cell level 

effects of drugs whose channel level actions are known. Although antiarrhythmic drugs can 

be classified by what channels they act on (e.g., type 1a antiarrhythmics, such as flecainide 

reduce excitability by blocking I  Na ), many antiarrhythmics act on several ion channels 



(e.g., dronedarone) and can have multiple actions (e.g., the I  Na  blocker flecainide also acts 

on intracellular Ca ++ release kinetics) (Leenhardt et al 2012). 

 
Modeling the Heart, Fig. 1  

Cellular and intracellular dynamics. (a – d) Modelling effects of mutations and pharmacological agents  

via their effects on conductances and kinetics. Human mid-myocardial ventricular action potentials 

computed from ten Tusscher and Panfilov 2006 model (WT), modified for effect of a mutation in the 

human ether-a-go-go-related gene (hERG), which encodes the Kv11.1 potassium channel, reduces 

IKr, and is responsible for LQT2 syndrome (R56Q), and the effects of the hERG channel opener 

NS1643. ( a) solitary action potentials, produced by a brief depolarizing current pulse; ( b) I Kr during 

these action potentials; ( c) repetitive periodic activity in normal; ( d) alternating periodic activity in 

mutant model, both produced by repetitive stimulation at same cycle length. ( e – g) Modeling  

intracellular, stochastic spatio-temporal Ca++ dynamics. The stochastic local dynamics of Ca++ release 

units which underlie Ca++  sparks can lead to spontaneous Ca+ waves and spatial Ca++ transient 

alternans  (Colman et al 2017) (e) High resolution reconstructions of the surface-sarcolemma (light-

brown contour) and T-tubule (dark-brown contour) membranes from a portion of a large mammal 

ventricular myocyte, from electron-microscopy  imaging. (Pinali et al 2013). The dyads are shown as 

light-blue contour dots, with a color-mapped snapshot of computed spatial Ca++ concentration in this 

portion of the cell, illustrating the non-uniformity in Ca++ distribution associated with normal excitation. 

(f) Color-mapped snapshots every 100ms of the development and propagation of an intracellular Ca++ 

wave in a model of a full cell. (g) Intracellular Ca++ transient alternans. The top panel shows the Ca++ 

transient (purple, left axis) and AP (blue, right axis). The lower panel is a linescan through the cell 

showing Ca++ concentration. The differences in activation patterns between the even beats accounts 

for the irregularity of the small amplitude Ca++ transients. 

 

Virtual cells can also quantitatively test if the effects of inherited channelopathies (disease 

caused by mutations in genes coding membrane channels) account for their 

electrophysiological symptoms (e.g., long or short QT syndromes). Modeling pathological 

states, e.g., acute ischemia is complicated by actions on intracellular metabolism as well as 

directly on the electrophysiological processes being modeled, and chronic disease, e.g., 

atrial fibrillation can cause remodeling of the cell ion channels (Trayanova 2014). 

If the APD restitution curve has a maximal slope >1, then periodic action potentials at rates 

where the slope is >1 are unstable and a period-doubling bifurcation into alternans (a 



periodic sequence of long-short APDs) is expected. Alternans in itself is benign, but 

prognostically is a bad sign. The maximal slope of the APD restitution curve is used as an 

arrhythmogenic index, and can be computed, or estimated experimentally. These cell 

models are all deterministic – stochasticity necessary to account for the temporal variability 

in cell properties  can be introduced by additive noise terms, by repeated computations on a 

population of cell models, where some of the cell parameters are drawn from a distribution, 

or by stochastic models of the ionic channel mechanisms (Qu et al, 2014) 

 

 

Cardiac Heterogeneity 

Action potentials recorded from myocytes isolated from different points in the heart differ 

qualitatively (autorhythmic or excitable) and have quantitative differences in shape. Figure 2 

illustrates propagating action potentials computed at different points through the cardiac 

pacemaking, conduction system and myocardium during normal sinus rhythm, and illustrates 

the wave nature of cardiac propagation. These spatial differences in action potential shape 

can be explained by spatial differences in the expression of different ion channel proteins. 

The mRNA abundance and the expressed protein density are not semiquantitative indices of 

the density of functionally active channels, but provide a guide for segmenting cardiac tissue 

and identifying different types of myocyte. Ten types of cardiac myocyte have been 

described, and quantitatively modeled for the rabbit heart – cells from the center and 

periphery of the sinoatrial node, atrial muscle fast and slow pathways of the atrioventricular 

node and the His bundle), Purkinje fibers and endo-, mid-, and epicardial layers of the left 

ventricle, where each cell type has a characteristic electrophysiology that is determined by 

the relative densities of the different ion channels. Cardiac tissue action potentials reflect the 

electrotonically smoothed local cell action potentials, and so spatial changes in tissue 

electrophysiology could be due to changes in the ratio for mixtures of two or more cell types 

(a mosaic), or to a smooth tissue gradient in the expressed channel densities. Myocardial 

tissue also contains inexcitable fibroblasts that may be electrically coupled to the myocytes 

(Kohl and Gourdie. 2014). 

 



Modeling the Heart, Fig. 2 
Space–time plot of color-coded computed membrane potential along rabbit cardiac conduction axis 

during ( a) normal sinus rhythm ( b) sinus rhythm slowed by incorporating the actions of an 

acetylcholine analogue. The action potential is generated in the SAN and propagates through the rest 

of the heart toward the ventricular epicardium as a series of repetitive waves 

 

 

Cardiac Propagation 

The 20–100 μm myocardial cells are coupled via low resistance gap junctions, and at the 
mm scale propagation appears smooth and can be modeled by a continuous, excitable 

medium represented by a reaction-diffusion equation: 

$$ \partial {\text{V}}/\partial{\text{t}} = \nabla (D \nabla {\text{V}}) - {I_{{ion}}}(V). $$ 

\( \nabla \)is a spatial gradient operator, D is the electrical diffusion coefficient tensor (mm 
2ms −1) that gives the spatial scale. Spatial differences in cell electrophysiology and protein 

expression can be mapped as spatially varying parameters in the equations for I  ion  (V). 

The electrical diffusion tensor D is defined within the geometry of the heart and changes with 

location: it is determined principally by the average orientation of myocytes at any given 

location. Numerical solutions requires a time step determined by the kinetics of I  ion  (V) and 

a space step small enough to ensure numerical stability, and convergence of the traveling 

wave solution. These integration steps can be selected empirically, by tracking the 

convergence of the solution as the steps are reduced, and are typically ∼100 μs, ∼100 μm 

The conduction velocity of a cardiac action potential depends on the membrane 

conductances, and intercellular coupling: via connexins, the proteins that form the gap 

junctions coupling myocytes, and perhaps also fibroblasts. Electrical coupling is modeled via 

the diffusion coefficient D: a value of D is selected to give the appropriate conduction velocity 

for the excitation model. Cardiac tissue possesses a complex fiber-sheet structure, and 

propagation is anisotropic, up to five times faster along the local myocyte orientation, and is 

orthotropic, faster within sheets than across sheets. 

One-dimensional models can support solitary wave and wave train solutions. At higher rates, 

the APD is shortened, velocity is reduced, and the wavelength is shortened. Colliding 

traveling wave solutions annihilate each other; this destructive interference results from the 

refractory period of the action potential. Figure 3 illustrates the responses of a one-

dimensional model to stimulation at different times in the wake of an action potential. The 

vulnerable window is the period after a preceding action potential during which a 

unidirectional wave can be initiated, i.e., there is a unidirectional conduction block. The 

initiation of a single solitary wave in a one-dimensional ring provides a computationally 

simple model for reentry; such unidirectional propagation can only be produced in a 

homogeneous one-dimensional medium if the symmetry is broken, say by a preceding 

action potential. 



 
Modeling the Heart, Fig. 3 
Computed response of human virtual ventricular wall to localized stimulation. ( a– c) space time plots, 

with a S1 stimulation at t = 0 on the endocardial border producing an action potential that propagates 

through the wall from left to right at a constant velocity. A second stimulus S2 at the * produces ( a) no 

response: the stimulus is in the refractory period ( b) bidirectional propagation and ( c) unidirectional 

propagation, i.e., the stimulus is in the vulnerable window. ( d– f) the transmural distribution of action 

potential duration and width of vulnerable window, for normal (WT), LQT2 mutant (R56Q), and hERG 

channel opener (NS1663) modified tissue 

Stimulation during the vulnerable period in the wake of a plane wave in a two-dimensional 

medium would initiate a pair of spiral waves. The width of the vulnerable window and the 

transmural dispersion in APD are indices of pro-arrhythmogenicity, i.e., the likelihood of the 

occurrence of a reentrant arrhythmia. Figure 4 illustrates the onset and breakdown of 

ventricular tachycardia into ventricular fibrillation. 



 
Modeling the Heart, Fig. 4 
Computational modeling of human ventricular fibrillation. ( a) clinical electrocardiogram of 

spontaneous onset of an episode of ventricular fibrillation (VF) from normal sinus rhythm (NSR) 

through ventricular tachycardia (VT) ( b) 2D cartoon and representative time series of snapshots of 

repetitive plane waves of NSR, a rotating spiral and its core for VT, and spatiotemporal irregularity of 

VF ( c) analogous snapshots isolated slab of human left ventricular free wall ( d) snapshots of color-

coded potential, the V=−40 mV isosurface and filaments during VF in the anisotropic geometry of a 
rabbit heart 

In a two-dimensional medium, the propagation velocity depends on the curvature of the 

wavefront, as well as rate of activity, and the wave front can be broken at regions of 

unidirectional conduction block. The broken wave may evolve into a high frequency 

circulation of excitation, in the form of an Archimedean spiral, around the core. The core acts 

as an organizing center that imposes its rhythm on the rest of the tissue as the tip of a 



propagating wave that reenters locations far from the core once every rotation. Even in ideal, 

homogeneous, isotropic media, spiral waves need not rotate rigidly around a circular core, 

but their tip can meander in a complicated biperiodic trajectory, and in heterogeneous media 

will drift (Mikhailov et al. 1994). Meandering, drifting spiral waves provide a conceptual 

model for self-limiting episodes of reentrant arrhythmias, as the the entry will terminate when 

the tip reaches inexcitable boundaries – the heart surfaces, or great veins and arteries. A 

spiral wave can be pinned onto a compact heterogeneity, such as a coronary blood vessel, if 

it is sufficiently large. Spiral waves in homogenous media can be stable, or, for some sets of 

ion channel excitation parameters, break down into spatiotemporal irregularity. 

Heterogeneity enhances spiral wave instabilities. 

The three-dimensional generalization of a spiral is a scroll, in which the reentry propagates 

around an extended, curved, meandering, and drifting filament. There are intrinsic 3D 

instabilities, and even in homogenous media, some sets of ion channel parameters produce 

stable spiral waves in 2D and unstable scroll waves in 3D. 

The breakdown of spiral or scroll waves into irregularity provides mechanisms for the 

development of fibrillation. 

 

 

Cardiac Tissue Architecture 

The voltage diffusion tensor D can be estimated from diffusion tensor magnetic resonance 

imaging (DTMRI), in which a voxel averaged diffusion tensor is calculated from the signal 

attenuation and the intensity of magnetic gradient applied during a diffusion weighted spin-

echo experiment. The tensor is symmetric, and so the 3 × 3 matrix can be represented by 

the 3 real eigenvalues and the 3 orthogonal eigenvectors. The tensor for each voxel can be 

imagined as an ellipsoid whose axes are orientated along the eigenvectors, extended 

ellipsoids correspond to linearly extended anisotropic diffusion, flat ellipsoids to planar, 

orthotropic diffusion and spherical ellipsoids to isotropic diffusion. The largest (primary) 

eigenvector has been validated provides a measure of ventricular local average myocyte 

orientation within the ventricular wall of several species, and secondary and tertiary 

eigenvectors provide an index of any sheet orientation (Helm et al. 2005). Figure 5 presents 

fiber and sheet angles reconstructed from a DTMRI data set and illustrates the transmural 

change in fiber angle through the ventricles, and the more irregular sheet structure. The 

fractional anisotropy provides a measure of the tissue architecture, and can aid 

segmentation of the data set. These data sets provide the vector components of the diffusion 

tensor D for virtual cardiac tissues. Cardiac DTMRI data sets take ∼10 h to acquire, and so 

have been obtained for postmortem hearts, and a spatial resolution ∼100 μm can be 

achieved on a 9.4 T research instrument, fine enough for computing propagation. 



 
Modeling the Heart, Fig. 5 
Visualization of fiber and sheet orientation, and a measure of anisotropy, for a 200 μm cubic voxel 
digital data set reconstruction of a rabbit heart obtained by DTMRI ( a) long axis, ( b– d) short axis 

slices. All angles are defined relative to a line through the centroids of the left ventricle 

Clinical cardiac magnetic resonance imaging provides two-dimensional slices in any 

selected plane, or three-dimensional data sets of cardiac geometry, at a spatial resolution of 

2–3 mm (Garg et al 2016), at selected times in the cardiac cycle. Patient specific ventricular 

geometry reconstructed from clinical imaging does not include any information about 

anisotropy or orthotropy: For patient specific modeling this could be introduced by rule based 

methods, as the smooth, tranmural change of ∼120° in fiber helix angle is found in all normal 

mammalian hearts. 

 

 

Computational Systems Biology of the Heart 

Myocyte excitation and action potentials are cell level properties that emerge from the 

interactions between membrane and intracellular ion transport processes, and the computed 

effects of drugs on cell behavior could be tested by experiments on cells. Synchronization 

and propagation are tissue level effects, and models allow the quantitative effects of different 

mechanisms to be dissected separately in space and time. The effects of changed channel 

properties (due to mutations or drugs) rate, curvature, anisotropy, and spiral wave meander 

patterns can be computed in isolation for homogenous virtual tissues. These quantitative 

spatiotemporal predictions of virtual behaviors cannot be tested experimentally, as all real 

cardiac tissue has an architecture and is heterogeneous. Figure 6 illustrates the 

visualization, using voltage sensitive dyes, of surface and subsurface electrical activity of an 

isolated perfused heart, where contraction has been blocked by an excitation-contraction 

decoupler (Walton and Bernus 2015). Such optical mapping experiments can provide a 

partial quantitative validation of predicted three-dimensional spatiotemporal activity during 

normal sinus rhythm, or solitary or periodic propagating action potentials produced by 

stimulation. They can only provide a semiquantitative, statistical validation of the 



spatiotemporal irregularities of computed activity during fibrillation (Biktashev and Holden 

2001). 

 
Modeling the Heart, Fig. 6 

(a) Activation time and (b) action potential duration obtained from optical mapping of surface 

spatiotemporal activity in response to a brief suprathreshold stimulation in isolated, perfused rat heart, 

contraction blocked by and voltage imaged using Di-4-ANEPPS ( c) computed activation time and ( d) 

action potential duration 

The myocardium is not just composed of myocytes there are also fibroblasts, connective 

tissue and intruding blood vessels, and perhaps scar tissue resulting from earlier damage. 

All these can contribute to non-excitable granularities, with length scales from ∼100 μm to 
cm, which can interfere with propagation, either by producing a site for wave breaking or for 

pinning the free ends of reentrant waves. Further functional heterogeneities emerge if 



excitation is coupled to contraction in electromechanical models (Nordletten et al 2011) with 

mechano-electric feedback (Quinn et al 2014). 

 

 

Summary 

The normal sinus rhythm of the heart, reentrant arrhythmias and fibrillation can all be 

computed in terms of the propagation of nonlinear waves in an excitable medium, with the 

excitation described by membrane ion transport and intracellular sequestration and binding. 

Physiological and pathological patterns can be explained in terms of nonlinear wave 

properties – the dependence of velocity on rate by nonlinear dispersion, and breakdown 

from spatiotemporal patterned activity into irregularity by interactions between waves and by 

changes in wave stability. The anatomy of the heart – its size, shape, and organization into 

chambers and conducting pathways – provide the physical structure within which 

propagation occurs, and can be incorporated as a data set obtained from DTMRI. A 

biophysically and anatomically detailed computational model of mammalian heart 

electrophysiology can describe the electrical activity of the heart, how it is altered by drugs, 

or mutations in ion channels. Such quantitative predictions can be partially tested by optical 

recordings of activity in isolated, perfused hearts. The virtual human heart can be used to 

link noninvasive clinical recordings with models of the underlying cellular electrophysiology. 

Normal sinus rhythm, and arrhythmias, are cm length scale and 1–1,000 s time scale 

phenomena that emerge, at a tissue level, from the spatially heterogeneous cellular 

electrophysiology and tissue architecture, and the effects of changes in the ms-100 ms 

kinetics of ion transport processes on the initiation and persistence of arrhythmias can be 

computed. 
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