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Replica Determinism and Flexible Scheduling in
Hard Real-Time Dependable Systems
Stefan Poledna, Alan Burns, Member, IEEE, Andy Wellings, and Peter Barrett

AbstractÐFault-tolerant real-time systems are typically based on active replication where replicated entities are required to deliver

their outputs in an identical order within a given time interval. Distributed scheduling of replicated tasks, however, violates this

requirement if on-line scheduling, preemptive scheduling, or scheduling of dissimilar replicated task sets is employed. This problem of

inconsistent task outputs has been solved previously by coordinating the decisions of the local schedulers such that replicated tasks

are executed in an identical order. Global coordination results either in an extremely high communication effort to agree on each

schedule decision or in an overly restrictive execution model where on-line scheduling, arbitrary preemptions, and nonidentically

replicated task sets are not allowed. To overcome these restrictions, a new method, called timed messages, is introduced. Timed

messages guarantee deterministic operation by presenting consistent message versions to the replicated tasks. This approach is

based on simulated common knowledge and a sparse time base. Timed messages are very effective since they neither require

communication between the local scheduler nor do they restrict usage of on-line flexible scheduling, preemptions and nonidentically

replicated task sets.

Index TermsÐDistributed real-time systems, fault tolerance, distributed operating systems, replica determinism, distributed

scheduling, flexible scheduling.

æ

1 INTRODUCTION

DISTRIBUTED fault-tolerant real-time systems are typically
based on active replication, i.e., critical components in

the system are replicated and perform their services in
parallel. This replication of components may take place
either at the hardware or the software level. At the
hardware level, complete processors are replicated in
conjunction with the software they are executing. Replica-
tion at the software level allows for finer granularity. It is
possible to replicate only critical tasks on different
processors, while noncritical tasks can be executed without
replication. Replication at the software level, therefore, has
the advantage of better resource efficiency. It is thus not
necessary to replicate a complete processor when only a
small fraction of tasks are critical. This leads to a system
configuration where processors execute dissimilar sets of
tasks (replicated and nonreplicated ones). There are many
application areas for distributed fault-tolerant real-time
systems where this type of resource efficiencyÐwhich, in
turn, translates to low system costÐis of utmost impor-
tance. One such example is the area of automotive
electronics with its high product volumes. However,
replication of software tasks is often not cost effective due
to the high communication effort required to coordinate the

individual replicated tasks in a loosely coupled distributed
system.

Safety critical software has traditionally been implemen-

ted using a cyclic executive. This uses a regular interrupt to

access a table in which sequences of procedure calls are

identified. By cycling through the table, periodic jobs are

supported. Although conceptually simple, the cyclic execu-

tive approach suffers from a number of drawbacks [18]; it

uses resources inefficiently, it does not easily cater to

sporadic jobs, and it gives poor support to more flexible and

adaptive requirements. A more appropriate scheme, using

priority-based scheduling of application tasks [4], is

currently been used (or evaluated) in a number of

application domains, for example, in avionics [2] or

automotive electronics [24]. Both preemptive and non-

preemptive (cooperative) methods are under consideration.
With cyclic executives, it is relatively easy to coordinate

the executions of replicated jobs. With more flexible

scheduling, where not all tasks are replicated, this coordi-

nation is problematic. In this paper, we propose a scheme

for this coordination. The work presented is based on earlier

independent treaties by Poledna [25], [26] and Barrett et al.

[3]. The paper is organized as follows: In the following

section, the issue of replica determinism is introduced. A

system model is given in Section 3. Section 4 relates the

formal concept of common knowledge in distributed

computer systems to the problem of deterministic distrib-

uted scheduling. Timed messages are introduced in

Section 5. It is shown that timed messages provide a very

efficient and flexible means to achieve replica determinism

in the presence of on-line scheduling, preemptions, and

nonidentically replicated task sets. Finally, Section 6

concludes the paper.
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2 REPLICA DETERMINISM

With active replication, fault-free replicated components are
required to exhibit replica determinism [32], [29], [28], i.e.,
they have to deliver identical outputs in an identical order
within a specified time interval. If replica determinism is
guaranteed, then it is relatively simple to achieve fault
tolerance. Failures of components can be detected by
carrying out a bit-by-bit comparison of the replicas' results.1

While it might seem trivial at first that replicated
components will produce replica deterministic outputs this
is unfortunately not the case. Replica nondeterminism is
introduced by 1) the interface to the real world and 2) the
system's internal behavior. First, at the interface to the
continuous real world, replicated sensors may return
slightly different observation results due to their limited
accuracy (e.g., 100� C and 99.99� C).2 Second, system
internal nondeterminism is caused by mechanisms such
as on-line scheduling, preemptive scheduling or scheduling
of nonidentically replicated task sets. This results in
different execution order and timing of the replicated tasks,
which, in turn, causes inconsistently ordered outputs.

The following two examples illustrate internal replica
nondeterminism which results in inconsistent operation of
replicated tasks. First, Fig. 1 shows nondeterminism
introduced by dissimilar replicated task sets. We assume
two identical processors P1 and P2. The tasks T1 and T2 are
replicated on these two processors and must produce the
same results in the same order. Processor P1 additionally
executes task T3 which implements a non-fault-tolerant
service that is not replicated on processor P2. At time, t1,
task T1 becomes ready. Since P2 is idle, T1 is started
immediately on processor P2. T1's activation is delayed on
processor P1 which currently executes task T3. Before task
T3 is finished, task T2 becomes ready at time t2. It is
assumed that task scheduling is carried out cooperatively
(nonpreemptive) and that T2 has higher priority than task
T1. Therefore, processor P1 starts with task T2 immediately
after finishing T3, while processor P2 has to wait until T1 is

finished. Therefore, processor P1 sends message m2 before
m1, while P2 sends the messages in the opposite order.
Note, in Fig. 1, r1 and r2 represent the event that released
the task. They could be clock events, in which case, T1 and
T2 are periodic tasks, or irregular events, in which case T1

and T2 are sporadic tasks.
The second example shows that replica nondeterminism

may also occur if preemptive scheduling is used instead of
cooperative scheduling, even if the task sets are replicated
identically. Fig. 2 shows two identical processors P1 and P2.
Both processors execute exclusively the replicated task set
consisting of T1 and T2. Task T1 starts its execution at time t0
on both processors.

Due to minor differences in the clock speed,3 T1 finishes
at processor P2 slightly earlier than on P1. Message m1, the
output of task T1, is therefore sent at time t1. Immediately
after the output of m1 on P2, the task activation request for
T2 arrives. Again, it is assumed that T2 has higher priority.
But, since preemptive scheduling is used, task T1 gets
preempted by task T2 at processor P1 before it has sent its
message. Task T2 then runs to completion on both
processors and both send message m2 by time t3. Finally,
at time t4, task T1 finishes on P1 with its remaining
instructions and outputs message m1. Again, the order of
outputs is inconsistent across both processors.

Both examples show that the requirement for an identical
output order is violated. In a plant control system, for
example, such a situation might lead to a case where one
processor decides to shut down while the other decides to
continue the process. Another example would be an alarm
monitoring system where, due to different message orders,
the replicated processors might evaluate different causes for
an alarm. These situations all have in common an inability
to resolve the nondeterministic decisions by a voting
protocol without extensive application knowledge (which
undermines a systematic and, thus, application indepen-
dent approach to fault tolerance).

In addition to the inconsistent output order, there are
large divergences in the timing of the outputs. This
nondeterministic behavior is clearly unacceptable for
fault-tolerant real-time systems since it would be difficult,
if not impossible, to decide whether processors are
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1. This mechanism is based on the assumptions that individual
components are affected by faults independently and that the possibility
of correlated faults is sufficiently low.

2. To guarantee replica determinism it is, therefore, necessary to achieve
agreement on the replicated sensor observations by using appropriate
communication protocols [19].

Fig. 1. Inconsistent order through non-identical replicated task sets.

Fig. 2. Inconsistent order through preemptive scheduling.

3. Fault-tolerant computer systems typically use different clocks for the
individual processors to avoid a common source of system failures.



returning inconsistent results due to a fault or due to their
nondeterministic behavior.

2.1 Shortcomings of Replica Determinism
Enforcement Strategies

As the above examples show, it is necessary to enforce
replica deterministic behavior of replicated tasks. The
related literature describes two different possibilities to
ensure deterministic behavior of replicated tasks:

. On-line agreement:
All relevant (preliminary) scheduling decisions

are exchanged among the individual schedulers
before they are actually taken. Based on the
individual scheduling decisions, an agreement pro-
tocol is carried out. This guarantees that all
schedulers take identical scheduling decisions with
respect to the replicated tasks, e.g., [16], [30]. An
alternative approach for obtaining on-line agreement
is to execute group communication protocols such as
those defined by ISIS [31].

. Off-line agreement:
Second, all scheduling decisions are based on a

global coordinated time base where the sequence of
task activations has been determined completely off-
line, e.g., [11]. Agreement on scheduling decisions
with respect to the replicated tasks is guaranteed by
the off-line scheduler.

The major disadvantage of the first approach is the
extremely high communication effort and the latency
introduced by the execution of an agreement protocol. For
example, in the area of automotive electronics execution of
an agreement protocol on the CAN [6] bus has a latency of
at least 400�s4 for a replication degree of only two [27], [20].
A latency of 400�s, however, is unacceptable since up to
10.000 tasks per second have to be scheduled in this
application. The disadvantage of the second approach is
the restrictive execution model, where the task schedule is
determined completely off-line and nonidentically repli-
cated task sets, as well as arbitrary preemption, is not
allowed.

To overcome these restrictions, a new method is
presented which ensures deterministic behavior of repli-
cated tasks even if 1) preemptive scheduling, 2) dissimilar
tasks sets, and 3) on-line scheduling is used. This
methodologyÐcalled timed messagesÐis based on simulated
common knowledge which exploits the a priori knowledge
available in real-time systems. The basic idea is to present
only consistent message versions to the replicated tasks,
despite their possibly diverging execution order and timing.
Timed messages require no extra communication between
the processors and are, therefore, highly efficient.

3 SYSTEM MODEL

The following assumptions about the distributed fault-
tolerant real-time system are made: The system consists of a
set of (not necessarily identical) processors denoted

P � fP1;P2; . . . ;Ppg. The processors are connected by
means of a message passing facility; they do not share
common memory. Each processor has a local clock which is
approximately synchronized with the clocks of the other
nonfaulty processors in the system. It is assumed that no
two nonfaulty clocks differ by more than time ". The set of
tasks which is executed by these processors is denoted
T � fT1; T2; . . . ; Ttg. A subset of these tasks is replicated
and, thus, executed by more than one processor. Commu-
nication between tasks (within the same or different
processors) is carried out by sending and receiving
messages exclusively. The sending of messages is the only
behavior of a task that is visible to the outside and other
tasks. It is assumed that no internal operation of a task,
other than reading a message, can lead to nondeterminism.
The set of messages is denoted M � fm1;m2; . . . ;mmg.
Besides communication, tasks may also have arbitrary
precedence and resource constraints.

The semantics of messages are very similar to that of
global variables. First, the sending and receiving of a
message is nonblocking (and may be buffered). Second, a
message does not get consumed by a receive operation. It is,
therefore, possible to receive a message more than once. A
message reflects the last state of some entity which can be
read by receiving a message or updated by sending a
message. Between sender and receiver there is no synchro-
nization relation with such messages. Rather, they can be
used for an unsynchronized 1 : n or m : n information
exchange between processors. Messages are typically
implemented by pools. The sender puts the recent message
in the pool, while receivers get copies of this message from
the pool.

Since we consider a multiprocessor system it is possible
to have intra and interprocessor communication. For
intraprocessor communication, it is assumed that message
send and receive operations are atomic, i.e., the data
transfer of send and receive operations is indivisible. For
interprocessor communication, it is assumed that a reliable
broad- or multicast protocol is available, e.g., [7], [8], [35].
This service guarantees that a message, once sent, is
delivered to all correct participants within � time units.
Furthermore, to ensure determinate behavior of the
replicated tasks it is necessary that they receive the same
sequence of messages. The broad or multicast protocol is
therefore required to support suitable order properties such
as total and causal order [8], [34].

Each processor has a local scheduler which starts the
execution of a ready task and suspends the execution of a
running task. It is assumed that the scheduler is activated
either by the passage of time (time-triggered activation) or
by the arrival of relevant events (event-triggered activation).
Thus, both periodic and sporadic task sets can be accom-
modated. Upon each activation, the scheduler decides
whether the currently active task needs to be suspended
and another task needs to be started. These scheduler
activations are carried out in response to task activation
requests which are denoted r1; r2; . . . ; rr. The time of
occurrence for an activation request ri is denoted tri. There
are no assumptions on the scheduling strategy, whether
scheduling is preemptive or cooperative, nor if scheduling
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4. This latency figure is based on the implementation described in [20]. It
is assumed that the CAN is operated at its maximum communication rate of
1 Mbps.



is static or dynamic. The only two necessary assumptions
are that 1) the scheduler is able to guarantee hard deadlines
and that 2) replicated sets of tasks are started in response to
scheduler activations with an agreed upon timestamp. This
requires the availability of an approximately synchronized
clock service5 [17], [14]. If time-triggered activation requests
are based on approximately synchronized clocks, then the
requirement for an agreed timestamp is fulfilled implicitly.
In the case of event-triggered activation requests for
replicated sporadic tasks, it is necessary that the event
carries an agreed upon timestamp with a reference to the
approximately synchronized clock. This, in turn, requires
that an agreement protocol has to be executed to get an
agreed timestamp for these events (see Section 5.5).

There are no assumptions taken concerning fault
hypotheses and failure semantics of the system. The reason
for this is that timed messages are not a fault tolerance
mechanism. They rather guarantee deterministic behavior
of all replicated tasks which are not faulty. Timed messages
are a building block to implement specific fault tolerance
mechanisms. For example, the deterministic output of the
replicated tasks can be combined by a consensus protocol to
ensure Byzantine resiliency.

4 DETERMINISTIC OPERATION AND SIMULATED

COMMON KNOWLEDGE

This section gives a brief overview of the concept of
common knowledge in distributed computer systems and
relates this formal concept to the problem of deterministic
operation in fault-tolerant distributed real-time systems. It
will be shown that the theoretical results in this area can be
used as a starting point for a highly efficient method to
manage replicated tasks.

From a formal point of view, there is a correspondence
between deterministic operation and common knowledge
[10]. If all replicated tasks use common knowledge
exclusively and their output becomes available within a
specified time interval, then replica determinism can be
guaranteed. In other words, it can be guaranteed that the
results of replicated tasks are identical and that they are
returned in identical order.

4.1 Common Knowledge and Simultaneity

A group of processors P � fP1;P2; . . . ;Ppg has common
knowledge on a true fact6 denoted ' if all processors know
that all processors know that all processor know . . . that all
processors know ', where ªall processors knowº is
repeated an infinite number of times. It has been shown
that this state of knowledge cannot be attained in practical
distributed computer systems (without shared memory) [9].
This observation is based on the impossibility of simulta-
neous actions which is caused by the finite accuracy of any
ªrealº component.7 This impossibility result can be trans-
lated to the problem of deterministic operation as follows:
Since scheduling decisions cannot be carried out simulta-

neously, it is impossible for replicated tasks to return their
results simultaneously. This negative conclusion on the
possibility of common knowledge does not say that it is
completely impossible to operate replicated tasks determi-
nistically. It rather states that common knowledge cannot be
attained and the requirement for simultaneity has to be
dropped. Two alternatives have been studied to relax the
semantics of common knowledge. First, a relaxed definition
of common knowledge and, second, a restricted execution
model for tasks.

The first alternative relaxes the definition of common
knowledge to cases that are attainable in practical dis-
tributed systems. One such case is epsilon common knowledge
[10], which is defined as: Every processor Pi of the
replicated group P knows ' within a time interval of
epsilon. This weaker variant of common knowledge can be
attained in synchronous systems with guaranteed message
delivery. In the context of real-time systems, epsilon
common knowledge is a ªnaturalº relaxation from common
knowledge and corresponds to a system where it is
guaranteed that the outputs of replicated tasks are
delivered within a known interval of time. This is typically
implemented by exchanging messages to agree on the
scheduling decisions. Since the communication effort to
achieve epsilon common knowledge on all scheduling
decisions would be prohibitive, this methodology is not
considered any further. However, as epsilon common
knowledge about global time is required, it is assumed
that the clocks are synchronized within a value of " time
units.

4.2 Simulating Common Knowledge

The second possibility to achieve a relaxed notion of
common knowledge is internal knowledge consistency [21],
[10] or simulated common knowledge [22], [23]. The idea
behind this concept is to restrict the behavior of the tasks in
such a way that they can act as if common knowledge were
attainable. This is the case if all replicated tasks never obtain
information to contradict the assumption that common
knowledge has been attained. This concept of simulating
common knowledge has been formalized in [23]. The class
of problems where this simulation is possible is defined as
internal specifcation [22]. These are problems that can be
specified without explicit reference to real-time, i.e., it is
only allowed to reference internally agreed information like
messages or the time of the task activation requests. Based
on this restricted class of specifications, it is possible to
simulate perfectly synchronized clocks. That is, all tasks
cannot detect any behavior which contradicts the assump-
tion that clocks are perfectly synchronized. It is possible to
simulate perfectly synchronized clocks either on the basis of
logical clocks or on real-time clocks [22]. Simulated
perfectly synchronized clocks are the prerequisite require-
ment for simultaneous actions and, hence, allows simulated
common knowledge to be achieved.

A similar approach to simulate perfectly synchronized
clocks and common knowledge is the introduction of a
sparse time base [15]. Although this concept has not been
presented in the context of distributed knowledge, it can be
understood as simulating common knowledge. This con-
cept is based on a synchronous system model with
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5. That is, clocks are synchronized to within " time units.
6. A formal definition of what it means for a processor Pi to know a given

fact ' is presented in [10].
7. For example, no two quartz crystals have exactly the same oscillation

speed. This results in slightly diverging execution speeds of processors.



approximately synchronized clocks. However, relevant
event occurrences are restricted to the lattice points of the
globally synchronized time base. Thus, time can be
justifiably treated as a discrete quantity. It therefore
becomes possible to reference the approximately synchro-
nized clocks in the problem specification while assuming
that the clocks are perfectly synchronized. Hence, it is
possible to simulate common knowledge. Again, the class of
problems that can be treated by this approach is restricted
to internal specifications. In this case, it is possible to
reference the approximately synchronized clocks, but it is
not allowed to reference arbitrary external events occurring
in real-time. For external events, it is necessary to carry out
a consensus protocol. But, since it is possible to achieve a
clock synchronization accuracy in the range of micro
seconds and below [14], [13], this simulation of common
knowledge and simultaneous actions comes very close to
perfect simultaneity for an outside observer.

4.3 Simulated Deterministic Messages

Simulation of common knowledge based on a sparse time
base provides the theoretical foundation for a new
methodology to achieve deterministic operation in real-
time systems. Currently known approaches to deterministic
operation are based on solutions which try to coordinate the
decisions of the local schedulers, e.g., [16], [30], [11]. It is the
goal of these solutions to schedule replicated tasks in
identical order. However, a much more efficient and
flexible solution can be found by simulated deterministic
messages. The idea behind this concept is to drop the
requirement that all replicated tasks start their execution in
identical order within a known interval of time. As with
simulated common knowledge, the requirement for simul-
taneity is replaced by the weaker requirement that the
system believes that all replicated tasks are scheduled
simultaneously and that the replicated tasks output their
messages simultaneously. Furthermore, it has to be guar-
anteed that the tasks cannot contradict the assumption that
common knowledge has been attained in the system. The
aim of simulated deterministic messages is to guarantee
that replicated tasks behave deterministically, i.e., they
produce their outputs in identical order within a defined
interval. Simulated deterministic operation thus shifts the
problem from scheduling replicated tasks deterministically
to the problem of providing deterministic messages to the
replicated tasks. While it might seem that shifting the
problem does not provide any advantages, it will be shown
that the a priori knowledge available in real-time systems
allows a highly efficient and flexible solution to the
problem.

5 TIMED MESSAGES

5.1 A Priori Knowledge in Real-Time Systems

Real-time systems are characterized by the a priori knowl-
edge of when a task has to finish. The duration between the
activation request and the required finish time of a task is
called deadline. Since deadlines of tasks are a priori known,
it follows trivially that individual processors have common
knowledge on the finish times of replicated tasks. In the
following, we consider a task Ti which is replicated on the

processor group P � fP1;P2; . . . ;Ppg with a deadline
denoted di. The local schedulers within the processor group
P are activated in response to a set of task activation
requests R. Task activation request set Ri � fr1; r2; . . . ; rrg
requests execution of the replicated tasks Ti. Task activation
requests are generated either in response to the passage of
time (periodic tasks) or the occurrences of external events
(sporadic tasks). According to the system model, it is
guaranteed for all task activation requests ri that all local
schedulers agree on the timing of these requests (using an
approximately synchronized clock). Based on the time of
the task activation request tri and the tasks deadline di the
corresponding task finish time fi can be defined by the sum
of the tasks activation request time and its deadline
fi � tri � di. Since the task activation request time and the
deadline are agreed upon by the processors, it follows that
the finish time is also agreed upon by all processors. Hence,
there is implicit agreement on the finish times of replicated
tasks. Fig. 3 depicts the execution of task Ti with its
activation request time tri and its finish time fi. It is
assumed that task Ti is delayed after its request and gets
preempted three times before it finishes.

5.2 Task Finish Times and Message Validity

In the following, only intraprocessor messages, i.e., mes-
sages that are sent locally on one processor, are considered.
This assumption will be removed later on.

The agreed upon task finish time can be used as follows
to achieve deterministic operation. Each message mk is sent
by one or more tasks. Upon sending a message, the message
is associated with the sender task Ti's finish time fi; that is,
it is assumed that the message arrives at its destination
before the deadline of the task. Since messages are sent only
locally within a processor, message arrival is immediate
after termination of the send operation. It is therefore
guaranteed that every message sent by a task arrives within
the task`s deadline. The associated task`s finish time is
called a message`s validity time which is denoted mk�v�
where mk�v� � fi. In this context, validity time means not to
use before rather than not to use after time. Messages with
validity times are called timed messages. This notion of a
message's validity time was based on the assumption that
messages are only sent locally within one processor. To
relax this assumption and to allow intra as well as
interprocessor messages, an extension to the message
validity time has to be made. For interprocessor messages,
the transmission time is not negligible, more specifically,
according to the system model, the message transmission
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Fig. 3. Task activation request and finish time.



time may take up to � time units. Since the clocks are only
approximately synchronized to " time units, a broad or
multicast message becomes available after � � " time units
to all correct participants. Therefore, the term � � " has to be
considered for the message validity time of interprocessor
messages. This leads to the following definition for a
message mk's validity time:

mk�v� �
fi : intraprocessor messages

fi � � � " : interprocessor messages:

�

�1�

Typically, messages are sent more than once during
system operation, i.e., possibly different message contents
are sent with the same message (identifier) during
different invocations. Each send operation generates a
new message version. The nth message version of mk and
its validity time are denoted mk�n� and mk�n��v�,
respectively. Message receive operations for timed mes-
sagesÐdenoted m:receive��Ðare defined as follows: If a
task receives a message, it needs to select a message version
such that the associated validity time is the largest one that
is smaller than the receiver's task activation request time.
More formally, if task Tj with the activation request time trj
receives message mk, then the following message version is
returned, where n is the actual number of message versions
that have been sent up until now.

mk:receive�trj� � max
n

i�0
mk : mk�i��v� � trj
ÿ �

: �2�

Note that all variables in (2) are common knowledge.
If all tasks adhere to this algorithm, then it is guaranteed

that they receive the same message contents regardless of
when the actual execution of the receive operation takes
place. Because the activation request times (as well as the
validity times of messages) are agreed upon for replicated
tasks, it is guaranteed that all replicas select the same
version of a message. Compared to normal message
delivery, where messages become available immediately
after being sent, timed messages become available at the
latest possible (but still correct) moment.

If replicated tasks restrict their implementation to
internal specifications, i.e., they make no references to

real-time, then timed messages provide a simulation of
common knowledge. This does not preclude that any
reference is made to real-time at all. It rather restricts the
access to timing events which are agreed upon by all
replicated tasks. It is then guaranteed that replicated tasks
receive the same messages in the same order and produce
identical outputs. The replicated tasks believe that they are
scheduled simultaneously since they have no possibility to
prove otherwise. According to the system model, sending of
messages is the only behavior of tasks that is visible to other
tasks. Timed messages guarantee that messages become
available within the time interval that is given by the
accuracy of the approximately synchronized clocks. Hence,
the execution of replicated tasks becomes independent of
the local schedulers' decisions and the resulting execution
order among the individual processors as long as all local
schedulers are able to meet the deadlines of the tasks.

The importance of timed messages stems from the fact
that no additional communication is necessary to achieve
simulated common knowledge. This is the reason why
shifting the problem from scheduling replicated tasks
deterministically to the problem of deterministic messages
provides much higher performance and flexibility.

5.3 An Example

The principle of operation can be illustrated by the
following example (see Fig. 4). This example shows that
timed messages guarantee deterministic execution of tasks
despite the fact that the execution order and timing of
replicated tasks is nondeterministic. Again, there are two
processors P1 and P2 which have to execute the replicated
set of tasks T � fT1; T2g, where T1 sends a message to T2,
but their executions are not synchronized (i.e., there is no
precedence relation). At arrival of the task activation
request r1, the replicated task T1 is started immediately by
the schedulers of the processors P1 and P2. Due to minor
differences in the execution speed, task T1 finishes at
processor P2 a few instructions earlier than at processor P1.
Upon finishing, task T1 sends the nth version of message
mk. Since T1 finishes earlier on P2, this send operation
mk�n�:send is carried out at P2 before the task activation
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request r2 arrives. It is assumed that task T2 has higher
priority than task T1. Task T2 is therefore started at both
processors immediately after arrival of the task activation
request r2. Hence, task T1 is preempted by task T2 at
processor P1 before T1 has sent message mk. Without timed
messages, this would result in an inconsistent order and
timing of message outputs. As with the example in Fig. 2, it
is assumed that task T2 receives message mk when starting
its execution. According to the definition of timed mes-
sages, upon receiving message mk, the validity time of all
message versions is compared against the task activation
request time tr2. At time tr2, processor P1 has sent nÿ 1

message versions and processor P2 has sent n message
versions of message mk. But, since the validity time of
message mk�n��v� � tr1 � d1 and the task activation request
time of T2 is tr2 and tr2 < mk�n��v�, it follows that the
receive operation of task T2 returns message version mk�nÿ

1� at processor P1 and P2. That is, since the replicated
processors agree upon the task activation request time tr2
and the message validity time mk�v�, it is guaranteed that
identical message versions are received by the replicated
tasks regardless of nondeterministic behavior of the local
schedulers.

Timed messages can be implemented at the level of the
operating system. This encapsulates implementation details
of timed messages such that replicated tasks which send or
receive messages do not perceive any difference from the
ªnormalº message semantics. This allows the simulation of
common knowledge by timed messages which is transpar-
ent to the application program.

5.4 Performance Issues

The protocol as it stands is effective in that all processes will
select the same version of the message on each receive
request, thus preserving replica determinism. It is, however,
under certain circumstances, overly pessimistic. It might
happen that receiver replicas are forced to use an old
message long after the new message has, in reality, become
stable. Consider, for example, the scenario shown in Fig. 5.

In the above example, T1 (on processor P1) executes the

send fairly early in a relatively long deadline; T2 (on P2)

begins execution around the time of T1's deadline and

requests the message some time later. The message itself

arrives (on P2) at time A.
Under these circumstances, however, tr1 � d1 ��1 � " >

tr2 and, thus, T2 will be forced to read the old value of the

message despite the fact that the new message has, in

reality, been available for some time and is available on all

nodes with replicated versions of T2. Thus, the data actually

received is stale by at least the amount shown in the

diagram. Modifications to the protocol can reduce substan-

tially the potential staleness of the data received and a

number of such options are now discussed.

5.4.1 Use Common Knowledge about the Worst-Case

Response Time of the Task and Message

In the above, it has been assumed that the only common

knowledge available is the deadlines of the tasks. However,

modern schedulability analysis allows the calculation of

task's worst-case response times [1], [12], which, in some

cases, will be considerably less than their deadlines. We can

also assume that a particular message`s worst case delivery

time, �, can be calculated where � � �. Consider Fig. 6.
In Fig. 6, the validity time for the message is now defined

by the worst-case response time for all the replicas of T1.

This worst-case response time is denoted W1. Again, for the

message validity time, two cases have to be considered:

inter and intraprocessor message communication. The

resulting equation for the message validity time is given by:

mk�v� �
W1 : intraprocessor messages

W1 ��i � " : interprocessor messages:

�

�3�

Since all the variables in this equation are common

knowledge, correctness of the timed message mechanism

is still guaranteed.
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5.4.2 Using Response Time for Actual Message Send

Operation

Recent schedulability analysis has extended response time
analysis to enable the worst case time for any internal
computing event to be calculated [5]. Let S1 be the worst-
case time for sending the message; as with W1, this is
common knowledge. The validity time equation now
becomes:

mk�v� �
S1 : intraprocessor messages

S1 ��i � " : interprocessor messages:

�

�4�

5.4.3 Using the Best-Case Receive Message Time

Schedulability analysis can also be used to obtain more
precise knowledge of when the receiver of the message
actually issues the receive-message request. However, in
this case, the best-case response time, B, must be calculated.
This can now be used instead of just tr to select the correct
message version. The equation for the message receive
operation thus is given by:

mk:receive�trj� � max
n

i�0
mk : mk�i��v� � trj �Bj

ÿ �

: �5�

The overall staleness of any message has now been
significantly reduced, as illustrated in Fig. 7.

5.4.4 Using Actual Send Times for Single Source

Messages

Many messages are sent by only one task (but read by a
replicated set of receiver tasks).8 For these tasks, it is
possible to base the message validity time on the actual time
of sending. The time of message sending (as measured on
the local clock) for a message mk is denoted tmsendk. The
resulting equation for the message validity time is given by:

mk�v� � tmsendk ��k � ": �6�

Note that this case only applies to interprocessor commu-
nication and that it is therefore not necessary to consider
intraprocessor communication in the equation.

5.5 Agreeing Release Times for Sporadic Tasks

Sporadic tasks are activated in response to external events.
This, however, violates the requirement for timed messages
that simulated common knowledge and the notion of
internal specifications is satisfied. According to the definition
of internal specifications, it is not possible to reference
external events.

To enable sporadic task activations within the frame-
work of timed messages, it is necessary to add an agreement
phase before the sporadic task is started. During this phase,
agreement on one activation request time has to be achieved.
After this agreement phase, it is guaranteed that the tasks
activation request time have become common knowledge.
The external event has thus been internalized and conforms
now with the requirements of internal specifications and
timed messages.

A typical implementation for this agreement phase will
use an interrupt service routine to record the timestamp of
the sporadic request for task activation. This interrupt
routine starts an agreement protocol where the timestamp is
used as input. Depending on the fault hypothesis, a suitable
agreement protocol has to be selected. For crash and
omission failures, it is sufficient that only one interrupt
service routine sends its timestamp by means of a reliable
broadcast protocol to all the other participants. For a more
severe fault hypothesis, all participants have to send their
timestamp. Having sent the timestamp, all correct partici-
pants wait for the arrival of the communicated time-
stamp(s). To tolerate crash or omission failures, it is
sufficient to take the first arriving timestamp. To tolerate
f timing or authentication detectable Byzantine failure, it is
sufficient to wait for the arrival of 2f � 1 timestamps. In the
general case, for Byzantine failures, it is necessary to wait
for the arrival of 3f � 1 timestamps. Based on the received
timestamps, one common decision for the task's activation
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8. This illustrates the flexibility of the approach since there are no
restrictions to mix replicated and nonreplicated tasks on one processor.



request time is derived. This information can now, in turn,
be used to activate the requested task at one agreed upon
point in time.

If sporadic tasks are released by internal events (from
either periodic or sporadic tasks), then the release time can
be derived from the release time of the ªparentº task plus its
best-case response time at the point where the event is sent.

5.6 Message Versions and Implementation

Until now, the unrealistic assumption has been made that
all versions of a message which have been sent during the
system operation are available. To drop this assumption, it
is necessary to establish criteria to decide how many
versions of a message have to be kept in the system
simultaneously and how to discard old message versions.
Compared to ªnormalº message semantics, timed messages
require that more than one message version has to be kept
under certain circumstances. This requires additional
memory space for messages, which is the cost for
guaranteeing deterministic behavior of tasks.

To give the exact number of versions for timed messages,
assume a replicated task Ti with a deadline di which
receives a message mk. The maximum number of message
versions mk�n� that becomes valid during task Ti's deadline
di is called the nondeterministic send rate of message mk,
which is denoted NDSR�mk; Ti�. If TS�mk� is the set of all
tasks that send message mk and pj denotes the minimum
interarrival period for two task activation requests of task
Tj, then the nondeterministic send rate NDSR�mk; Ti� can
be defined formally as:

NDSR�mk; Ti� �
X

Tj2TS�mk�

di

pj

� �

� 1

� �

: �7�

If TR�mk� is the set of all replicated tasks that receives
message mk, then the following number of message
versions MV ersions�mk� for timed state-messages is
necessary:

MV ersions�mk� � max
Ti2TR�mk�

�NDSR�mk; Ti��: �8�

This sufficient, but not necessary, condition guarantees that
enough message versions are kept such that all replicas of a
task can access one consistent message version. An informal
proof can be given as follows: If the replicated task Ti is
activated by task activation request ri, then all replicas
agree on the timing of the task activation request tri and the
task finish time fi � tri � di. It is furthermore guaranteed
that all task replicas of Ti perform their receive operation
during the time interval �tri; fi� (since they have to finish
within their deadline). It is therefore guaranteed that all
message versions are kept which are valid during this time
interval. Particularly, this implies that the message version
which is valid at time tri is available for all replicated tasks.
This proves that enough message versions are kept since,
according to the definition of timed messages, a receive
operation would return the message version which is valid
at time tri.

For timed messages, it is therefore possible to derive the
number of message versions for a given system by means of
static analysis. The only two necessary preconditions are
1) that the set of sender and receiver tasks are known for
each message and 2) that the deadline and the minimum
interarrival period are known for all tasks. Since both
conditions are satisfied for real-time systems, allocation of
message versions can be made safely. Indeed, as was
utilized in Section 5.4, if worst case response times Wi or Si

are known, they can be substituted for di in (7).
An important issue concerning timed messages is how to

manage message versions with different validity times.
Depending on the maximum number of message versions
that have to be stored simultaneously, different implemen-
tations have to be selected. Typically, messages are sent by
only one task and the minimum interarrival period of tasks
is larger than the deadlines. According to (8), this results in
only two message versions. Under this assumption it is
sufficient to store an old version of the message, a new
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version, and the validity time of the new message version,9

see Fig. 8.
The corresponding message operations, send and

receive, are shown in Fig. 9. The caller tasks activation

request time tri and its deadline di are known by the

operating system and, therefore, do not have to be passed as

function arguments to the operations send and receive.
Further optimizations are possible when it is noted that

most intertask communication is used to implement

precedence relations. Two common forms of such opera-

tions are event-based transactions and time-based transactions.

With event-based, sporadic tasks are used, with the release

of a task being caused by an event message sent by the

previous task in the transaction; therefore, no messages

need to be stored.
Time-based transactions use offsets in time to ensure that

a task is not released until any messages it requires are

available locally. Consider the validity time for a typical

message mk�n��v�. If tr2 is set to this value, then a timed

message is not needed; neither are additional message

versions. An ordinary message will suffice (although the

use of a timed message will enable the released task to

know if a fault has occurred further up the transactionÐthe

validity time would be ªout of dateº).

5.7 Evaluation

Figs. 8 and 9 show that the overhead for timed messages in

terms of memory space and runtime is very small. An

experimental implementation of the message operations

send and receive has shown an overhead of 0.625 �s and

0.750 �s, respectively. This implementation has been carried

out in the framework of ERCOS [24] under the assumption

that the message length is equal to the word length of the

processor.
With the proposed method, no more messages are sent

than would be required for the support process group

communication. Buffer sizes for timed message pools are

increased, but by manageable amounts. Message lengths

are increased, but again only by a small amountÐthe size of

a timestamp. In effect, replica determinacy is implemented

at virtually no extra cost. This compares very favorably with

the overheads that occur when attempts are made to

coordinate the behavior of the individual schedulers.
It was also noted in the previous section that, in many

common software structures, an implementation can sig-

nificantly simplify the bufferingÐor eliminate it altogether.

There are also situations in which timed messages can be

safely replaced by ordinary (untimed) messages.

6 CONCLUSION

To achieve fault tolerance, real-time systems typically
replicate tasks over a number of distributed processors.
These replicated tasks are required to deliver identical
outputs in an identical order within a specified time
interval. This requirement, called replica determinism, is
violated by distributed scheduling algorithms if on-line
scheduling, preemptive scheduling, and nonidentically
replicated task sets are used. To avoid the inconsistent
order and timing of replicated tasks, global coordination of
the local schedulers decisions have been employed pre-
viously. This approach, however, results in a very high
communication overhead to agree on each scheduling
decision or it restricts scheduling such that no on-line
scheduling, no preemptions, and only identically replicated
task sets may be used.

To overcomes these problems a new methodÐcalled
timed messagesÐhas been introduced. It has been shown
that deterministic operation of replicated tasks corresponds
to the problem of common knowledge. Since common
knowledge cannot be attained in practical systems, a
weaker notion, called simulated common knowledge, is
used to achieve deterministic operation. The idea behind
this approach is that the system believes that all replicated
tasks are executing simultaneously, while the tasks have no
possibility to prove the opposite. This simulation is
implemented by means of timed message. With timed
messages, each message version is associated with a
validity time. If a task receives a timed message, then the
message version with the appropriate validity time is
returned. This guarantees that replicated tasks receive
identical message versions, regardless of their actual
execution timing. Furthermore, since the validity time of
messages is based on approximately synchronized clocks, it
is guaranteed that timed messages sent by replicated tasks
become valid in identical order and within an appropriate
time interval.

The major advantage of timed messages is its efficiency
and flexibility while guaranteeing deterministic operation
of replicated tasks. It has been shown that no extra
communication is necessary to establish agreed upon
validity times. Additionally, by using timed messages,
there are no restrictions on the local schedulers. They can
use on-line scheduling, preemptions, and nonidentically
replicated task sets. The price of timed messages is that, in
some cases, more than one message version has to be kept.
For timed messages, it has been shown that the number of
message versions can be determined by static system
analysis. This allows safe system construction since it is
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9. The old message version does not need a validity time since it is
guaranteed by static analysis that the old version is valid whenever the new
version is not valid.

Fig. 8. Timed message data structure.

Fig. 9. Send and receive timed message. (10The message's validity has

to be set according to the selected optimization strategy.)



guaranteed that the system cannot run out of message space

during peak load scenarios. Timed messages can be

implemented at the operating system level, which provides

transparency to the application program. A number of

optimizations have also been considered.
The use of timed messages facilitates the application of a

wide range of fault tolerance measures within the context of

flexible scheduling. This, in turn, opens up the possibilities

for adaptive dependable hard real-time systems.
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