
This is a repository copy of Energy-Aware Self-Adaptation for Application Execution on 
Heterogeneous Parallel Architectures.

White Rose Research Online URL for this paper:
http://eprints.whiterose.ac.uk/145092/

Version: Accepted Version

Article:

Kavanagh, R orcid.org/0000-0002-9357-2459, Djemame, K 
orcid.org/0000-0001-5811-5263, Ejarque, J et al. (2 more authors) (2020) Energy-Aware 
Self-Adaptation for Application Execution on Heterogeneous Parallel Architectures. IEEE 
Transactions on Sustainable Computing, 5 (1). pp. 81-94. ISSN 2377-3782 

https://doi.org/10.1109/TSUSC.2019.2912000

© 2019 Crown Copyright. Personal use of this material is permitted. Permission from IEEE
must be obtained for all other uses, in any current or future media, including 
reprinting/republishing this material for advertising or promotional purposes, creating new 
collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted 
component of this work in other works. Uploaded in accordance with the publisher's 
self-archiving policy.

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse 

Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless 
indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by 
national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of 
the full text version. This is indicated by the licence information on the White Rose Research Online record 
for the item. 

Takedown 

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by 
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request. 

mailto:eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/


1

Energy-aware Self-Adaptation for Application
Execution on Heterogeneous Parallel

Architectures
Richard Kavanagh, Karim Djemame, Jorge Ejarque, Rosa M. Badia and David Garcia-Perez

Abstract—Hardware in High Performance Computing environments in recent years have increasingly become more heterogeneous

in order to improve computational performance. An additional aspect of such systems is the management of power and energy

consumption. The increase in heterogeneity requires middleware and programming model abstractions to eliminate additional

complexities that it brings, while also offering opportunities such as improved power management. In this paper we explore application

level self-adaptation including aspects such as automated configuration and deployment of applications to different heterogeneous

infrastructure and for their redeployment. This therefore not only mitigates complexities associated with heterogeneous devices but aims

to take advantage of the heterogeneity. The overall result of this paper is a self-adaptive framework that manages application Quality

of Service (QoS) at runtime, which includes the automatic migration of applications between different accelerated infrastructures.

Discussion covers when this migration is appropriate and quantifies the likely benefits.

Index Terms—Self-adaptation, energy modelling, programming model, heterogeneous hardware architectures, application deploy-

ment.

F

1 INTRODUCTION

ADVANCES in distributed computing research have
in recent years resulted in considerable commer-

cial interest in utilising heterogeneous hardware archi-
tectures (e.g. Central Processing Units (CPUs), Graph-
ics Processing Units (GPUs), Field Programmable Gate
Arrays (FPGAs)), both with the intent of improving
performance and reducing overall power and energy
consumption. Solving issues with energy consumption is
seen as a means of obtaining exascale performance [1].
Heterogeneous hardware’s prevalence in HPC systems
has led to significant complexities in scheduling work
within the data centers. This increased heterogeneity has
given rise to the need for abstractions that simplify the
use of such infrastructures, ensuring that the maximum
benefit may be obtained.

Usage of large scale systems with heterogeneous re-
sources and multiple application implementations gives
rise for the need to maintain Quality of Service (QoS).
This is a complex task, given the multiple alternative
applications implementations and the deployment op-
tions given the heterogeneous hardware. Each alterna-
tive application to hardware mapping, obtains different

• K. Djemame and R. Kavanagh are with the School of Computing, Univer-
sity of Leeds, UK, LS2 9JT.
E-mail: {K.Djemame,R.E.Kavanagh}@leeds.ac.uk

• J. Ejarque is with Barcelona Supercomputing Center (BSC), Spain.
Email: {jorge.ejarque}@bsc.es

• Rosa M. Badia is with BSC and Artificial Intelligence Research Institute
- Spanish National Research Council (IIIA-CSIC), Spain
Email: {rosa.m.badia}@bsc.es

• D. Garcia-Perez is with Atos, Spain.
Email: {david.garciaperez}@atos.net

performance, power and energy characteristics, which
need to be understood within the context of a large scale
HPC system of competing application deployments.

Added to this complexity computer systems have
faced significant power consumption challenges over
the past 20 years. The dual challenge of both power
and performance has in recent years shifted from the
devices and circuits level, to their current position as
first-order constraints for system architects and software
developers. A common theme is the need for low-power
computing systems that are fully interconnected, self-
aware, context-aware and self-optimising within appli-
cation boundaries [2].

The need for the maintenance of QoS within complex
systems gives rise for the need for self-adaptation. Self
Adaptive Systems have seen a significant level of interest
in different research areas like autonomic computing and
pervasive computing [3]. They provide self-management
properties and exhibit system properties such as self-
awareness to achieve adaptation. They are capable of
monitoring their resources, state and behaviour.

Thus, QoS, power saving, performance and fast com-
putational speed are key requirements in the develop-
ment of applications. In this paper we address these
issues with a energy-aware self-adaptive framework for
heterogeneous parallel architectures. The main contribu-
tions of this paper are:

• a framework for managing heterogeneous hardware
and optimising application deployments through
self-adaptation

• a programming model that performs initial optimi-
sation and task generation

• a event driven self-adaptation manager for runtime



2

based adaptations
• recommendations and analysis on comparisons of

deployment solutions on heterogeneous devices.

The remainder of the paper is organised as follows. In
Section 2 we present the overall architecture that sup-
ports energy awareness and self-adaptation. Section 3
gives a detailed discussion of adaptation within the pro-
posed framework. In Section 4 the experimental setup is
discussed, followed by experimentation and evaluation
in Section 5. The related work is then presented in
Section 6 and Section 7 summarises the research and
provides plans for future work.

2 ARCHITECTURE

In order to meet the requirements for handling: power,
QoS and hardware heterogeneity management we pro-
pose an architecture shown in Figure 1. It includes the
high-level interactions of all components, separated into
three distinct layers and follows the standard application
deployment model. Its aim is to control and abstract un-
derlying heterogeneous hardware architectures, config-
urations and software systems, while providing tools to
optimize various dimensions of software design and op-
erations (energy efficiency, performance, data movement
and location, cost, time-criticality, security, dependability
on target architectures). Next, details on the interactions
of the architectural components are discussed.

Fig. 1: Architecture

2.1 Layer 1 - IDE

The first block, Integrated Development Environment
(IDE) facilitates the modelling, design and construction
of applications, in order to aid the evaluation of power
consumption. A number of IDE plug-ins are provided
as a means for developers to interact with components
within this layer. These are implemented as plug-ins
which can be installed in Eclipse. Lastly, this layer
enables architecture agnostic deployment of the con-
structed applications, while also maintaining low power
consumption awareness. The components in this block
are:

Requirements and Design Tooling: guides the devel-
opment and configuration of applications determin-
ing what can be targeted in terms of both Quality
of Service (QoS) and power consumption when
exploiting heterogeneous hardware devices;

Programming model (PM): supports developers when
coding their applications sequentially by letting
them annotate their programs in such a way that
the PM runtime can then execute them in parallel on
heterogeneous parallel architectures being aware of
the power consumption. The PM is implemented as
an hierarchical combination of the COMPSs [4] and
OmpSs [5] task-based programming models, where
COMPSs manages the application in the distributed
platform and OmpSs inside each compute node.

Code Profiler: This achieves power reduction through
the software development process by providing
developers the ability to directly understand the
energy footprint of the code they write.

2.2 Layer 2 - Middleware

The second block handles the placement of an appli-
cation considering energy models on target heteroge-
neous parallel architectures. Its tools are able to assess
and predict performance and energy consumption of an
application. Application level monitoring is also accom-
modated, in addition to support of self-adaptation for
the purpose of making decisions using application level
objectives. The components in this block are:

Application Life cycle Deployment Engine (ALDE):
this component manages the lifecycle of an
application deployed by the IDE. The ALDE
introduces four entities for each application:
Application, Executable, Deployment, and
Execution Configuration. More details can be
found in Section 3.2.

Monitor Infrastructure (MI): provides monitoring of
the heterogeneous parallel devices (CPU, memory,
network ...) along with historical statistics for device
metrics. The monitoring of an application includes
power, energy consumed and performance;

Self-Adaptation Manager (SAM): This component pro-
vides key functionality to manage the runtime based
adaptation strategy applied to applications and Het-
erogeneous Parallel Devices (HPDs). This includes



3

aspects such as initiating redeployment to another
HPD, restructuring a workflow task graph or dy-
namic recompilation. Furthermore, the component
provides functionality to guide the deployment of
an application to a specific HPD through predictive
energy modelling capabilities and polices. Further
details can be seen in Section 3.3.

2.3 Layer 3 - Heterogeneous Devices

The last block, addresses the heterogeneous parallel de-
vices and their management. The application admission,
allocation and management of HPDs are performed
through the orchestration of a number of components.
Power consumption is monitored, estimated and opti-
mized using translated application level metrics. These
metrics are gathered via a monitoring infrastructure and
a number of software probes. At runtime HPDs will be
continually monitored to give continuous feedback to the
Self-Adaptation Manager. This ensures the architecture
adapts to changes in the current environment including
energy demand. The components in this block are:

Device Supervisor (DS): provides scheduling capabili-
ties across devices during application deployment
and operation. The component essentially realises
abstract workload graphs, provided to it by the
Application Life-cycle Deployment Engine, by map-
ping tasks to appropriate HPDs;

Device Emulator: provides the initial mapping of the
application tasks onto the nodes/cores (at compile
time). The mapping procedure is static and thus
does not take into account any run-time constraints
or run-time task mapping decisions.

3 ADAPTATION FRAMEWORK

This section comprises of four main sub-sections, the
first (Subsection 3.1) discusses the Programming Model,
its role in adaptation at application construction. This
is followed by Subsection 3.2 covering the application
lifecycle management and how multiple deployment
configurations can be constructed. After this runtime
considerations are considered with the Self-Adaptation
manager (Subsection 3.3) and how the adaptation can be
guided by an energy model in Subsection 3.4.

3.1 Self-adaptation view at Programming Model

When developing an application with the PM, develop-
ers have to decompose applications into tasks. Candi-
dates for becoming tasks are methods which are repeated
in the application that can run independently from other
tasks and require a certain computation for their exe-
cution. To define a task, developers have to annotate
these methods indicating which arguments are input,
output or input/output data. Based on this information,
when executing an application, the PM runtime creates
a Direct-Acyclic-Graph (DAG) of tasks dependencies

where nodes are tasks to execute and arrows are data-
dependencies between the tasks.

Developers can also define different task versions, so
they can easily incorporate: sequential or multi-threaded
versions, versions implemented as OpenCL or CUDA
kernels, or different binaries calls which require different
configurations. During the application execution, the
runtime creates profiling information based on previous
task version execution. This profile includes statistical
information about the duration and power consumption
of each task version. Based on this, the runtime select
the most appropriate version for the available computing
devices in terms of time or energy.

Moreover, the task dependency graph stores valuable
information about what would be the computational
load required by the application depending on the status
of the application execution. The runtime can then obtain
from the graph precise estimations of the application
computational load without having to perform complex
statistical analysis on monitored data collected from
previous executions. Analysing the generated graph, the
runtime can find the maximum achievable parallelism
for a certain execution and compare it with the available
resources. The runtime’s analysis can detect the follow-
ing situations:

1) When there are many ready tasks (dependency-free)
which are pending to be executed, the application
could run faster if it had more resources.

2) When there are resources that can run more tasks
than the ready ones, we will waste resources be-
cause some of them will be idle or not running at
the maximum performance.

To overcome this, we can configure the self-adaptation
system with the following actuators:

• If the first situation occurs and there are unallo-
cated resources, one of these resources has to be
assigned to the task and then notify the application
runtime. Once the runtime receives the notification,
it starts the required processes in the node and
executes pending tasks in the new resource. With
this adaptation, the application execution is sped
up. However, it has the side effect that the power
consumption is increased due to increased resource
usage. The energy consumption could also be in-
creased depending on the parallelization overhead
and the achieved execution time speed up.

• If the second situation occurs, the runtime resched-
ules the tasks to use the minimum number of
resources at maximum performance and the idle
resources can be released for application allocation.
This adaptation reduces the power and increases
the efficiency of the execution reducing the overall
energy consumed by the application. In contrast, it
may increase the execution time because reducing
the resources we can also limit the application par-
allelism.

As previously mentioned, the actions described before



4

have some implications in power, energy and perfor-
mance. This implies their invocation has to be taken
in coordination with the other actuators, in order to
ensure that the quality and constraints required by the
user and the infrastructure are fulfilled. The PM runtime
can detect if some of application constraints can be
fulfilled or not. With the task dependency graph, the task
profile and the resources description, it can estimate the
application duration as well as the power and energy
consumption. When a resource scale-up or scale-down is
requested, it can estimate the effect of the new configu-
ration. If the new resource configuration is not fulfilling
the application quality requirements it can reject these
scaling requests. On the other side, the runtime is not
aware of the usage of the rest of the infrastructure.
Therefore, additional self-adaptation management is re-
quired at the middleware layer in order to take other
decisions forming a perspective that considers other
applications as well as the infrastructure capabilities and
constraints. Finally, these adaptation rules have been
programmed for the PM Runtime, but may be ported to
other task-based programming runtimes or elasticity en-
gines which are aware of how many independent tasks
are pending/running, which can dynamically reschedule
resources.

3.2 ALDE Adaptation Enablement

An Application can be build by the ALDE and optimized
for different heterogeneous architectures. Each applica-
tion can have a series of Executables which is optimal for
just CPU computation and another one that it is optimal
for CPU+GPU and so on. The ALDE for a system that it
is connected to can upload all the necessary executable
files to that platform creating a Deployment. Finally, each
deployment can have associated several Execution Config-
urations, which indicate which heterogeneous resources
the Deployment needs.

Other hardware items can be added, such as FPGAs
or Many-Core Processors. The configurations can then
be ranked by the IDE tooling or benchmarking. This
ranking helps the ALDE to take the best deployment
decision and also the Self-Adaptation Manager in cases
of reconfiguration. Once an execution request is received,
this component must choose the infrastructure that is
most suitable according to various criteria, e.g. energy
constraints/goals that indicate the minimum energy ef-
ficiency that is required/desired for the deployment and
operation of an application;

3.3 Runtime Self-Adaptation Management

The Self-Adaptation manager’s (SAM) principle role is to
manage application level adaptation at runtime, manag-
ing trade-offs between energy, power and performance
within the framework. It is event driven, deciding for
each event what adaptation to take and where it should
be applied.

It works through a series of listeners that monitor the
physical infrastructure, the jobs that are launched and
the system clock for cron based events. This therefore
requires interaction with the Monitoring infrastructure
(for system and application based metrics) as well as
the Device Supervisor and ALDE (for application based
information). The listeners act as triggers generating
events which through a sequence of rules then map to
actuators that perform the required adaptation.

3.3.1 Event Generation

The first step in adaptation is a notification event which
derives from the listeners. These events principally con-
tain the following information:

Time: the timestamp of the event.
Value: a raw value representing how large the QoS

breach is, i.e. the measured value of the violation.
Type of violation message: This is either a ”violation”

if the violation is detected, a ”warning”, or an
informative indicator such as a event driven by the
system clock has occurred.

Agreement Term: the metric to be monitored.
Guarantee Id: an identifier for each QoS constraint.
Operator: such as greater than, less than, equal.
Guaranteed Value: the value of the threshold.

Events (Host, Application and Clock) dependant upon
their source must contain additional information. Host
events additionally must contain the hostname, thus in-
dicating the events’ origin. Application based events must
additionally record the application’s name, a reference
to the exact application instance and a reference to any
application configuration information and specific firing
rules as defined by the ALDE. Clock events, must hold
a map for additional settings so that it can mimic either
a host or a application based event. This allows clock
events generated by previous rules firing to mimic host
or application based events, facilitating features such as
un-pausing an application. Events such as the following
have the potential to trigger adaptation:

Boundary conditions on measurements: provide a re-
active response to a QoS breaches, by setting con-
straints on application and host metrics.

Idle host detection: enables responses such as increas-
ing application’s resource utilisation or switching off
underutilised resources. This includes the detecting
of idle hosts with accelerators, enabling opportuni-
ties for redeploying and reconfiguring applications.

Host’s failing/failed or in drain state: allows for self-
healing, where applications can be reconfigured and
redeployed on the remaining infrastructure. Drain-
ing hosts of existing jobs can be sped up.

Applications approaching deadline: This allows appli-
cations to be check-pointed close to completion in
order to preserve work before eviction.

Application starting/completion: Useful to constrain
execution to set times of the day, ensuring power
hungry applications with low QoS requirements can
be launched as required but run later.



5

Cron based events: create triggers based upon sched-
ules, increasing flexibility, e.g. events such as un-
pausing jobs at a set time later on.

3.3.2 Adaptation Rules

On event notification the SAM works in two phases.
The first considers the mapping between the type
of notification and the actuators to use essentially
the type of adaptation to make such as: redeploying
an application to use accelerators or pausing an
application. The second phase indicates the exact
nature of this adaptation to take such as which
application should be adapted and by how much.
The first phase utilises adaptation rules that can be
specified as a tuple of: 〈Agreement Term, Comparator,

Response Type, {Event Type}, {Lower Bound}, {Upper

Bound}, {Parameters}〉 which is utilised to determine
the form of adaptation to take. Two examples
of this are: 〈IDLE HOST+ACCELERATED,EQ, RESE-

LECT ACCELERATORS〉 and 〈IDLE HOST+ACCELERATED,

EQ, RESELECT ACCELERATORS, WARNING, 0, 0,

KILL PREVIOUS=TRUE; application=gromacs〉.

The latter optional values allow for stronger granular-
ity ensuring the adaptation behaviour considers the scale
of the notification event. This provides the flexibility to
do things such as:

• Responding to warnings, in a different fashion to
breaches or informative notifications.

• Observing the difference between the guaranteed
value and the measured value and providing a
stronger response if the deviation is further away
(i.e. the lower bound and upper bound values).

• Parametrising the rules, so applications can further
indicate how adaptation should occur e.g. clock
based events such as ”it is out of working hours”
can specify through parameters application informa-
tion, thus allowing lower priority jobs to run.

Application and resource based events, derived from
measurements utilise a threshold value, which deter-
mines how many events are required before a rule fires.
This ensures that the temporary reporting of minor
breaches can be ignored (e.g. if power consumption goes
too high due to a short burst of CPU utilisation).

Once a rule has fired a recent history log prevents
the same rule firing in rapid succession, thus avoiding
over adaptation. After a short configurable amount of
time (e.g. last minute), the rule can then be re-fired. The
rules can optionally be set into a hierarchy so that if one
rule cannot be applied additional rules that match the
criteria may be used instead. This generates the prospect
of either having fall back options for adaptation or an
intensification of the adaptation response.

3.3.3 Scale of Adaptation

The second phase then decides upon the location of
adaptation. This involves the usage of a decision en-
gine that considers various parameters, such as the

application configuration, QoS goals (e.g. save energy,
cap power, reduce completion time) and the current
environment to decide where the adaptation should take
place.

The decision engines handle cases where information
is lacking on what to adapt. This can include cases
such as host based events and their transformation into
actions applied to applications. This also applies to clock
based events that may have originated from an applica-
tion or host based event. The transformation process for
hardware based events can be achieved: randomly, based
upon the applications power consumption, or based
upon the last application instantiated on the originating
host. Clock events can be transformed into either host or
application based events dependant upon the additional
parameters attached to the event. They are transformed
in order of precedence by: 1) Event data has application
details attached. Originates from a call back event, where
for example a pause action has specified when to resume.
2) Event data has host details attached. Similar to above
but originates from a host based event instead. 3) The
decision rule contains the host or application data.

3.3.4 Actuators

The actuation can cover many different forms of change.
This can be at the level of applications and the workload
for example: increasing/reducing an applications wall
time, adjusting the wall time so its closer to the runtime,
aiding scheduling and in particular backfilling, pausing
and restarting applications or sets of applications, over-
subscribe applications to resources, reselecting the accel-
erators an application uses, killing off an application, or
it can be at host level such as starting and shutting down
hosts and adjusting the cluster’s power cap.

One actuator stands out as being more complex than
the rest, ”Reselect Accelerators” (see Algorithm 1). Its
primary aim is to choose an application configuration
that is better than the existing configuration. This may
for example be switching from a single threaded CPU
bound executable to a GPU accelerated version of the
same application. This could be done to improve the
accelerator utilisation. The algorithm firstly filters out
configurations that are already running and thus have
a head start upon any new instance starting. The second
phase in the algorithm selects the new instance to launch.
This works by ranking each configuration by either,
power, energy or completion time. The best configu-
ration is then selected so long as its power/energy
or completion time is better than the existing running
configuration. This ranking is performed based upon
pilot jobs that are executed before hand. The process
generating the ranking is as follows:

1) launch fixed workload pilot jobs: (either a single
representative value, or uniform range, applied to
each alternative configuration).

2) record the following information (application id,
job number, completion time, energy consumption,
configuration id).



6

3) for a given job filter out configurations that cannot
run and calculate the average power, energy con-
sumption and completion time for a given applica-
tion id and configuration id.

4) order by chosen ranking (completion time, power
or energy.

The pilot jobs have a fixed workload (or a sequence
of workloads that is repeated uniformly against each
configuration), ensuring that each application config-
uration is compared fairly. This comparison gives a
relative ranking between the configurations based upon
the current hardware setup. It is considered that each
application configuration has a relative affinity to each
of the available resources on the testbed, therefore if the
pilot jobs are repeated several times the likely improve-
ment between configurations is going to be realised.
An example of this affinity is where CUDA compiled
applications must be launched upon a GPU enabled
node, thus constraining a configuration to launch on
a subset of the total amount of nodes available, which
narrows the likely range of possible power, energy and
completion time values for the fixed workload on the
testbed. This process enables the ratio of improvement
between the configurations to be determined. This in-
cludes aspects such as the likely energy consumption
and average power consumption for running a pilot
job or job (by relative ratio between configurations),
which reflects complex aspects such as which resources
a particular job was submitted to.

Algorithm 1 Reselection of Accelerators

procedure RESELECTACCELERATORS(String appName,
String deploymentId, boolean killPreviousApp,
RankCriteria rankBy)

AppConfig currentConfig← getCurrentConfigurationI-
nUse(appName, deploymentId)

AppDefintion appDef ←
getApplicationDefintion(currentConfig)

AppConfig validConfigs[] ← getValidConfigura-
tions(appDef) ⊲ check resources availability and
executables are compiled

validConfigs[] ← removeAlreadyRunningConfigura-
tions( validConfigs[])

AppConfig selectedConfig ← selectCon-
fig(validConfigs[], appDef, currentConfig, rankBy)

startAndStopNewAndOldJobs(selectedConfig, appDef,
currentConfiguration)

end procedure

procedure SELECTCONFIG(AppConfig validConfigs[], Ap-
pDefintion appDef, AppConfig currentConfig, RankCrite-
ria rankBy)

sort(validConfigs[],rankBy)
if first(validConfigs[]).isRunning() then

return null
end if
if isRankBetter(first(validConfigs[]),currentConfig) then

return first(validConfigs[])
end if
return null ⊲ no better solution so return

end procedure

3.4 Energy Modelling

Adaptation inside the framework requires guidance, one
such aspect regards application power and overall en-
ergy consumption. The self-adaptation manager needs
to know the likely consequences of its actions in regards
to aspects such as the power and energy consumed by
an application or physical host. Application power con-
sumption cannot directly be measured and is synthetic
in nature, based upon attributing power consumption to
an application dependant upon workload. Adaptation of
applications based upon power consumption therefore
requires a model to attribute this power.

The energy modeller (EM) [6] considers the major
power consumers such as CPUs and other accelera-
tors. In order to do this it has various models that
may be used to attribute power consumption to an
application. Two models have been specifically de-
signed for physical hosts with accelerators, namely the
CpuAndAcceleratorEnergyPredictor that utilises
neural networks to apply a fit to the available calibration
data and the CpuAndBiModalAcceleratorEnergy

Predictor that determines power usage of an accel-
erator assuming an unutilised and heavily utilised state.
The latter adaptor being useful in cases where the quality
of calibration data is poor which causes calibration to
fail, yet it still offers an estimate that can give a guide
to any adaptation.

The CpuAndAcceleratorEnergyPredictor works
as an additive model in which the CPU and the accel-
erator’s utilisation is considered separately. The CPU is
considered as polynomial fit of order 2, this has been
chosen because if the model turns out to be linear then
it will still provide a good fit, yet offers flexibility in cases
where pure linearity does not hold [6].

The accelerator based calibration is written in such a
way as to be as flexible as possible. It utilises a multilayer
perceptron network with a single hidden layer. The
amount of inputs is based upon the size of the calibration
data gathered providing a single output. The size of the
hidden layer is scaled to be

√

inputsize+ outputsize, this
ensures its size is sufficient but not so large as to cause
it to be overly trained. The emphasis is therefore placed
upon gathering training data of sufficient quality for the
network to train correctly, ensuring that the parameters
chosen have sufficiently strong influence on the power
consumption.

The second predictor CpuAndBiModalAccelerator
EnergyPredictor also works in an additive fash-
ion, with two sub models, one for the CPU and
another for the accelerators in use. The CPU sub-
model uses the same polynomial model as the
CpuAndAcceleratorEnergyPredictor model. This
accelerator model performs clustering assuming two
distinct states, one at the higher end of usage while the
accelerator is active and another assuming the accelera-
tor is idle. This model acts as an approximation for situ-
ations when the accelerator is only partially observable,



7

has limited training data, or when the training data for
accelerator utilisation does not correlate well to power
consumption. An example of limited observability and
correlation is with Nvidia GPUs, whereby the clock
frequency of a stream multiprocessor (SM) may be used
as a substitute for utilisation. This due to Nvidia-smi’s
utilisation value reporting the percentage of time in a
given interval where at least one SM is active [7], which
has limited direct correlation to power consumption.
Alternative routes such as application profiling which
provide performance counters for each application re-
main impractical, given overheads and requirements to
attach to every application running.

4 EXPERIMENTAL DESIGN

To evaluate the feasibility of the adaptation features as
outlined in section 3, the following section presents the
experimental design to test the performance of three
sample use cases that are utilised to show self-adaptation
within various different contexts. Experiments are de-
signed in the context of the energy efficient HPC frame-
work presented in Section 2 and implemented by the
TANGO project [2].

Objectives - The objective of the experimentation is to
ascertain if the self-adaptation when monitoring applica-
tions in operation achieves dynamic energy management
in each layer of the software stack. In particular, the first
experiment examines the PM and the performance of
variants of the same application. This is then advanced
upon examining the conditions required at runtime to
switch between application implementations and still
save energy. Finally, the generalisability of the frame-
work is explored in generating application level power
capping.

Use Cases - The first of the three use cases focuses
on self-adaptation features applicable when the whole
architecture is utilised. The latter two use cases focus
on runtime based self-adaptation features of the middle-
ware which can be achieved for all type of applications.

In the first case an application is run where its paral-
lelism and load depend on its input parameters. It allows
the PM runtime to detect the application parallelism and
adapt the number of resources used by the application
to the application load and their implication in terms
of performance and energy consumption. In the second
case we see the prospect of hardware becoming avail-
able, this might be caused by the completion of another
job for example. This presents the opportunity to trigger
adaptation and redeploy an application and may include
changing accelerators used. In scenario 3 time based
rules for each application will ensure an application
is paused during a ”busy time of the day” and then
resumed later, thus smoothing power consumption.

Testbed - The experiments are performed on a cluster
using a subset of a bullx blade system. The testbed
is composed of the following heterogeneous hardware
resources: 4 bullx 515 nodes equipped with: 2 Intel Xeon

TABLE 1: Use Case Scenarios

Case 1) Programming
Model Runtime
Self-Adaptation

2) Hardware Be-
comes Available

3) Power
Smoothing

Why Application
quality can be
improved.

QoS
improvement

Timed trigger
event (based on
workload)

Where Applications
What Scale-up/down

application
resources

Migrate app/re-
configure app

Pause
application

How Request more
application
resources

Redeploy appli-
cation

Pause
application,
causing
lower power
consumption

Objective Application
resource usage
optimization

Faster
completion time
and potential
lower total
energy

Smooth
overall power
consumption
by delaying
unimportant
jobs

@constra int ( ComputingUnits =24 , ProcessorType= ’CPU ’ )
@task ( tpr=FILE IN , t r r h =FILE OUT , gro=FILE OUT )
def mdrun pc ( tpr , t r r , gro , props ) :

mdrun . Mdrun( tpr , t r r , gro , props ) . launch ( )

@implement ( s o u r c e c l a s s =”gromacs” , method=”mdrun pc” )
@constra int ( processors =[

{ ’ Type ’ : ’CPU ’ , ’ ComputingUnits ’ : 8} ,
{ ’ Type ’ : ’GPU ’ , ’ ComputingUnits ’ : 1 } ] )

@task ( tpr=FILE IN , t r r =FILE OUT , gro=FILE OUT )
def mdrun pc gpu ( tpr , t r r , gro , props ) :

mdrun . Mdrun( tpr , t r r , gro , props ) . launch ( )

Fig. 2: Definition of tasks with using the python binding
of COMPSs

E5-2470 (Sandy Bridge) at 2.3GHz, 12 X 16GB DDR3-1600
ECC SDRAM and 2 X 256GB SATA3 SSDs. Additionally
two nodes ns50-51 with 2 Nvidia Kepler K20X GPUs
each and nodes ns52-53 with 2 Intel Xeon Phi 5100 series
(rev 11) KNC each. In addition to these nodes there
are: 3 bullx B520 double compute blades (ns55-57), each
equipped with: 2 Intel Xeon E5-2690 v3 (Haswell) at
2.6GHz with 16 X 16GB DDR4-RDIMM 2133DDR and
2 X 256GB SATA3 SSDs.

Applications - The experiments utilise Gromacs
(http://www.gromacs.org/), an open source and widely
utilised molecular dynamics simulation package. It is
used to generate load within the testbed although any
HPC application would have been suitable. Additionally
Gromacs provides a realistic application that can be
compiled into various alternative implementations such
as Message Passing Interface (MPI) and CUDA. The first
experiment utilises Pymdsetup [8] which is an applica-
tion implemented on top of the Gromacs framework,
which facilitates the setup and the execution of systems
for molecular dynamics simulations.

From a system defined in a configuration file, Pymd-
setup composes an algorithm which automatically gen-
erates the required information for different protein mu-
tations; for each of these mutations it performs different



8

molecular dynamic simulations and evaluations using
Gromacs. Originally, Pymdsetup executes the generated
algorithm sequentially. However, nothing precludes ex-
ploring the protein mutations in parallel. The PM has
therefore been used to parallelize and distribute the
execution of the different steps of the algorithm upon
the heterogeneous computing nodes. The porting of the
application has been performed as explained below,
including a code snippet as depicted in Figure 2.

1) The python functions which performed the differ-
ent steps of the algorithm have been annotated as
coarse-grain tasks. It is done by adding a @task
decorator before the method definition indicating
the type and direction of the parameters (IN, OUT,
or INOUT). In the code snippet, a task definition
is shown indicating which parameters are files and
their direction. The rest are considered objects with
IN direction by default.

2) Different task implementations are defined for those
tasks where there are versions for different com-
puting devices such as GPUs. This is done by
adding a @implements decorator before the task
definition indicating the task which is defining a
version. The code snippet shows how to indicate
that mdrun pc gpu is a version of mdrun pc.

3) For the different versions, constraints are set in order
to schedule tasks properly. It is done by adding a
@constraints decorator before the task definition. In
the code snippet, we can see that the mdrun pc task
requires 24 CPU cores and the mdrun pc gpu task
requires 8 CPU cores and 1 GPU.

From the application user perspective with the ported
version, a molecular dynamic system for simulation is
defined in the same way as in the original one. However,
instead of executing the simulation sequentially, the
runtime evaluates the data dependencies between the
different task invocations creating a task dependency
graph and executes in parallel those tasks which are free
of dependencies. Figure 3 shows the task dependency
graph generated by the runtime for a system where two
protein mutations are evaluated. In the graph, we can see
that an independent workflow of Gromacs invocations
is created to evaluate each protein mutation, and at the
end, the results per mutation are merged to produce a
plot with the results. Note that the gromacs.mdrun pc and
gromacs.mdrun pc cpt tasks have a version for running
in CPUs and GPUs as previously mentioned. Finally
varying the number of mutations, leads to different
parallel computational load of the molecular dynamic
system simulation.

5 EVALUATION

The following section discusses the performance of the
self-adaptation presenting an analysis of the experimen-
tal results.

1

2

d2

3

d5

4

d6

d9

5

d12 d13

6

d13

d17

7

d20 d21

9

d21

11

d21

13

d21

15

d20

8

d25

d29

10

d33

d37 d39

12

d42

d46 d48

14

d51

d54

31

d61

16

17

d62

18

d65

19

d66

d69

20

d72 d73

21

d73

d76

22

d79 d80

24

d80

26

d80

28

d80

30

d79

23

d83

d87

25

d90

d94 d96

27

d98

d102 d104

29

d106

d109

d116

32

d117

sync

d118

scwrl_pc  

pdb2gmx_pc  

gromacs.editconf_pc  

gromacs.solvate_pc  

gromacs.grompp_pc  

gromacs.genion_pc  

gromacs.mdrun_pc  

gromacss.mdrun_pc_cpt  

gromacs.grompp_pc_cpt  

gromacs.rms_pc  

merge_dictionaries  

gnuplot_pc  

Fig. 3: Pymdsetup task dependency graph for two pro-
tein mutations

TABLE 2: Adaptation of task version to different re-
sources

Node Type Time(s) Energy(KJ) Executed version
B515 (CPUs/GPUs) 150.49 53.40 8 CPU + 1 GPU
B520 (CPUS) 203.41 63.58 24 CPU

5.1 Experiment 1

This experiment validates the self-adaptation features
from the PM perspective. Pymdsetup application (pre-
sented in Section 4) is executed with different work-
loads in order to see how the PM runtime adapts the
application execution taking into account the load and
the available infrastructure. The experiment is split into
three parts: the first one demonstrates how the runtime
selects the appropriate version to achieve the maximum
performance and energy consumption. The second part
validates the adaptation of the resources according to
the application load while the third one validates the
adaptation of the resources according to the application
quality requirements.

5.1.1 Task Version Selection Self-adaptation

The first PM self-adaptation feature selects the task
version which is the most efficient for the available
computing resources. To validate this feature, several
task versions are defined for the gromacs.mdrun pc and
gromacs.mdrun pc cpt tasks which match with the capa-
bilities of the different resource types. Then, Pymdsetup
is executed to simulate a system with two protein mu-
tations using different type of nodes: one execution uses
the B515 nodes with 2 Kepler K20 GPUS; and another
uses the B520 nodes. For both executions the execution
time and energy consumption are measured. Table 2
shows that the runtime has selected the GPU version
for the node B515 which has the best performance and
energy consumption. In the case of the B520 nodes, it
has selected the CPU task because the GPUs are not
available. This adaptation did not require any change
in the code.



9

1

2

d2

3

d5

4

d6

d9

5

d12 d13

6

d13

d17

7

d20d21

9

d21

11

d21

13

d21

15

d20

8

d25

d29

10

d33

d37 d39

12

d42

d46d48

14

d51

d54

61

d61

16

17

d62

18

d65

19

d66

d69

20

d72d73

21

d73

d76

22

d79d80

24

d80

26

d80

28

d80

30

d79

23

d83

d87

25

d90

d94d96

27

d98

d102d104

29

d106

d109

d116

31

32

d117

33

d120

34

d121

d124

35

d127d128

36

d128

d131

37

d134 d135

39

d135

41

d135

43

d135

45

d134

38

d138

d142

40

d145

d149d151

42

d153

d157d159

44

d161

d164

62

d171

46

47

d172

48

d175

49

d176

d179

50

d182 d183

51

d183

d186

52

d189 d190

54

d190

56

d190

58

d190

60

d189

53

d193

d197

55

d200

d204d206

57

d208

d212d214

59

d216

d219

63

d226

d227

d228

64

d229

sync

d230

(a) 4 mut.

1

2

d2

3

d5

4

d6

d9

5

d12d13

6

d13

d17

7

d20 d21

9

d21

11

d21

13

d21

15

d20

8

d25

d29

10

d33

d37d39

12

d42

d46d48

14

d51

d54

91

d61

16

17

d62

18

d65

19

d66

d69

20

d72d73

21

d73

d76

22

d79d80

24

d80

26

d80

28

d80

30

d79

23

d83

d87

25

d90

d94 d96

27

d98

d102d104

29

d106

d109

d116

31

32

d117

33

d120

34

d121

d124

35

d127 d128

36

d128

d131

37

d134 d135

39

d135

41

d135

43

d135

45

d134

38

d138

d142

40

d145

d149d151

42

d153

d157d159

44

d161

d164

92

d171

46

47

d172

48

d175

49

d176

d179

50

d182d183

51

d183

d186

52

d189 d190

54

d190

56

d190

58

d190

60

d189

53

d193

d197

55

d200

d204d206

57

d208

d212 d214

59

d216

d219

93

d226

61

62

d227

63

d230

64

d231

d234

65

d237d238

66

d238

d241

67

d244 d245

69

d245

71

d245

73

d245

75

d244

68

d248

d252

70

d255

d259 d261

72

d263

d267d269

74

d271

d274

94

d281

76

77

d282

78

d285

79

d286

d289

80

d292d293

81

d293

d296

82

d299d300

84

d300

86

d300

88

d300

90

d299

83

d303

d307

85

d310

d314d316

87

d318

d322 d324

89

d326

d329

95

d336

d337

d338

d339

d340

96

d341

sync

d342

(b) 6 mut.

1

2

d2

3

d5

4

d6

d9

5

d12d13

6

d13

d17

7

d20 d21

9

d21

11

d21

13

d21

15

d20

8

d25

d29

10

d33

d37d39

12

d42

d46d48

14

d51

d54

121

d61

16

17

d62

18

d65

19

d66

d69

20

d72 d73

21

d73

d76

22

d79d80

24

d80

26

d80

28

d80

30

d79

23

d83

d87

25

d90

d94d96

27

d98

d102d104

29

d106

d109

d116

31

32

d117

33

d120

34

d121

d124

35

d127 d128

36

d128

d131

37

d134d135

39

d135

41

d135

43

d135

45

d134

38

d138

d142

40

d145

d149d151

42

d153

d157 d159

44

d161

d164

122

d171

46

47

d172

48

d175

49

d176

d179

50

d182d183

51

d183

d186

52

d189d190

54

d190

56

d190

58

d190

60

d189

53

d193

d197

55

d200

d204 d206

57

d208

d212 d214

59

d216

d219

123

d226

61

62

d227

63

d230

64

d231

d234

65

d237 d238

66

d238

d241

67

d244 d245

69

d245

71

d245

73

d245

75

d244

68

d248

d252

70

d255

d259d261

72

d263

d267 d269

74

d271

d274

124

d281

76

77

d282

78

d285

79

d286

d289

80

d292d293

81

d293

d296

82

d299 d300

84

d300

86

d300

88

d300

90

d299

83

d303

d307

85

d310

d314 d316

87

d318

d322 d324

89

d326

d329

125

d336

91

92

d337

93

d340

94

d341

d344

95

d347 d348

96

d348

d351

97

d354d355

99

d355

101

d355

103

d355

105

d354

98

d358

d362

100

d365

d369d371

102

d373

d377 d379

104

d381

d384

126

d391

106

107

d392

108

d395

109

d396

d399

110

d402 d403

111

d403

d406

112

d409 d410

114

d410

116

d410

118

d410

120

d409

113

d413

d417

115

d420

d424d426

117

d428

d432 d434

119

d436

d439

127

d446

d447

d448

d449

d450

d451

d452

128

d453

sync

d454

(c) 8 mut.

1

2

d2

3

d5

4

d6

d9

5

d12d13

6

d13

d17

7

d20d21

9

d21

11

d21

13

d21

15

d20

8

d25

d29

10

d33

d37d39

12

d42

d46 d48

14

d51

d54

151

d61

16

17

d62

18

d65

19

d66

d69

20

d72 d73

21

d73

d76

22

d79 d80

24

d80

26

d80

28

d80

30

d79

23

d83

d87

25

d90

d94d96

27

d98

d102 d104

29

d106

d109

d116

31

32

d117

33

d120

34

d121

d124

35

d127d128

36

d128

d131

37

d134d135

39

d135

41

d135

43

d135

45

d134

38

d138

d142

40

d145

d149 d151

42

d153

d157d159

44

d161

d164

152

d171

46

47

d172

48

d175

49

d176

d179

50

d182d183

51

d183

d186

52

d189d190

54

d190

56

d190

58

d190

60

d189

53

d193

d197

55

d200

d204d206

57

d208

d212d214

59

d216

d219

153

d226

61

62

d227

63

d230

64

d231

d234

65

d237 d238

66

d238

d241

67

d244d245

69

d245

71

d245

73

d245

75

d244

68

d248

d252

70

d255

d259 d261

72

d263

d267d269

74

d271

d274

154

d281

76

77

d282

78

d285

79

d286

d289

80

d292 d293

81

d293

d296

82

d299 d300

84

d300

86

d300

88

d300

90

d299

83

d303

d307

85

d310

d314d316

87

d318

d322d324

89

d326

d329

155

d336

91

92

d337

93

d340

94

d341

d344

95

d347d348

96

d348

d351

97

d354d355

99

d355

101

d355

103

d355

105

d354

98

d358

d362

100

d365

d369 d371

102

d373

d377d379

104

d381

d384

156

d391

106

107

d392

108

d395

109

d396

d399

110

d402 d403

111

d403

d406

112

d409d410

114

d410

116

d410

118

d410

120

d409

113

d413

d417

115

d420

d424 d426

117

d428

d432d434

119

d436

d439

157

d446

121

122

d447

123

d450

124

d451

d454

125

d457 d458

126

d458

d461

127

d464d465

129

d465

131

d465

133

d465

135

d464

128

d468

d472

130

d475

d479d481

132

d483

d487d489

134

d491

d494

158

d501

136

137

d502

138

d505

139

d506

d509

140

d512d513

141

d513

d516

142

d519d520

144

d520

146

d520

148

d520

150

d519

143

d523

d527

145

d530

d534 d536

147

d538

d542d544

149

d546

d549

159

d556

d557

d558

d559

d560

d561

d562

d563

d564

160

d565

sync

d566

(d) 10 mut.

Fig. 4: Task-dependency graph for executions with dif-
ferent mutations (mut.)

TABLE 3: Resource adaptation according to quality re-
quirements for 20 mutations simulation

Quality
Time Energy

Used
Optimization Constraints Nodes

Time none 427s 707KJ 5
Energy none 1029s 670KJ 2
Time max. ener. 700KJ 559s 693KJ 4

Energy deadline 800s 751s 679KJ 3

5.1.2 Application Load Resource Self-adaptation

In the second part of this experiment, Pymdsetup is
executed, simulating systems with a different number of
mutations (4, 6, 8 and 10). How the runtime adapts the
resources used by the application according to the exe-
cution load is then observed. Figure 4 shows the task de-
pendency graphs generated by the different simulations
and Figure 5 shows the parallel workload estimated by
the runtime and the resources used for its execution.
The parallel workload is the expected time to execute
the dependency-free tasks in every evaluation interval.
So, it is a combination of the number of tasks and its
duration. This is compared by the capacity of the current
infrastructure and the time which the Device Supervisor
takes to allocate a new resource. According to this metric,
the runtime decides to increase and decrease the number
of resources. As seen in Figure 5, the runtime does not
perform any adaptation for 4 mutations, because the
parallel workload can be executed with the minimum
configuration (2 nodes). In the case of 6, 8 and 10
mutations, the runtime scales-up the resources to 1, 2
and 3 resources to speed up the execution.

5.1.3 Quality Requirements Resource Self-adaptation

Finally, in the third part of the experiment, the applica-
tion is executed to simulate a system with 20 mutations
but with different quality requirements. In this case how
the PM runtime adapts the application resources to fulfil
the required quality is observed. Four executions are run.
Two executions are configured for time optimization:
one without constrains and another with an energy
limit of 700KJ. The other two executions are configured
for energy optimization: one without constraints and
another with a deadline constraint. Table 3 shows the
results of the experiment.

In the time optimization execution without con-
straints, the runtime’s proposed solution is the same as
the one in the previous section, to speed up the applica-
tion to the maximum. Due to the large application load,

TABLE 4: Resource adaptation according to quality re-
quirements for 10 mutations simulation

Quality
Time Energy

Used
Optimization Constraints Nodes

Time none 216s 342KJ 5
Energy none 394s 317KJ 3
Time max. ener. 350KJ 216s 342KJ 5

Energy deadline 400s 393s 315KJ 3

the runtime scales-up the resources to the maximum
(5 nodes). In contrast, when the execution is config-
ured with energy optimization without constraints, the
runtime decides not to scale-up the resources. This is
because the energy estimation performed by the runtime
with a larger number of resources is bigger than with
the initial configuration. In the other two executions
some constraints are added which limits or forces the
runtime to achieve a certain level of parallelism. On one
hand, in the case of time optimization with maximum
energy constraint, the runtime tries to use the maximum
parallelism, but limits the parallelism to 4 because the
estimation with larger resources surpasses the constraint.
On the other hand, in the case of energy optimization
with deadline, the runtime is forced to use an extra
resource because the estimated time is not fulfilling the
deadline constraint.

In general, increasing the resources in the execution of
a parallel application increases the energy consumption.
This is due to large overheads such as transferring more
files, etc. However, in some cases this is not the case,
this part of the experiment is therefore repeated while
halving the mutations and quality constraints, the results
of which are shown in Table 4. For the time optimization
without constraints, the solution reached by the runtime
is the same as in the previous experiment, however
for the energy optimization it has decided to scale-up
up to 3 nodes. This is because the task execution is
unbalanced with the minimum nodes. The runtime can
run 4 mutation simulations in parallel, but in the last
stage, there are only 2 mutations, so the resources are
wasted. In the case with the resource adaptation, the
runtime creates an extra resource to run the 2 pending
simulations in parallel, thus solving the imbalance and
reducing time and energy consumption. The same issue
is experienced with the Time performance run with
an energy limitation. Having 4 nodes we will have a
unbalance load which is not happening with 5 nodes
and therefore energy consumption is held below the
threshold. Consequently this is detected by the runtime
which decides to run the application with 5 nodes giv-
ing the same results as the time optimization without
constraints.

5.2 Experiment 2

In this experiment the workflow covers a large pro-
portion of the architectural components presented in
Section 2, namely the SAM, ALDE, DS, EM and MI.
They are used to illustrate the use of multiple application



10

(a) Expected workload and resources used for 4 mutations (b) Expected workload and resources used for 6 mutations

(c) Expected workload and resources used for 8 mutations (d) Expected workload and resources used for 10 mutations

Fig. 5: Resource self-adaptation

Fig. 6: Automatic Optimization of Applications

implementations of HPC applications in order to deploy,
monitor and adapt an application so that the most
efficient implementation is executed, given the resources
that are available at the time of execution. The workflow
is shown in Figure 6, is as follows: 1) The Gromacs ap-
plication is defined in the ALDE and the configurations
available 2) Job deployment, a CUDA implementation
of Gromacs is started 3) the device supervisor (in our
case SLURM) launches the job onto the infrastructure 4)
The SAM receives an event indicating a host has become
free with an accelerator 5) The SAM compares Gromacs
implementations (in this case MPI vs CUDA but CUDA
is already deployed) and re-launches the most efficient
version of the application 6) The Gromacs application
completes.

In the following experimentation two different ver-

TABLE 5: Run of Pilot jobs to determine power, energy
and completion time rankings

Name Run
Count

Total
Energy
(all
runs)(J)

Average
Energy
(J)

Total
Time
(s)

Average
Time
Per
Run (s)

Average
power
(W)

cuda 3 22,835 7,611.67 87 29 262.47
mpi 3 19,217 6,405.67 67 22.33 286.82

sions of the Gromacs application are prepared, one using
MPI (Using 16 threads) and the other CUDA. For each
configuration, previous pilot runs are performed where
execution time and energy consumption are measured
for a given fixed workload. This presents a relative
ranking of each configuration of the application upon the
available hardware, given that each configuration will
have an affinity towards a particular set of resources. A
CUDA job for example must be launched on a subset
of resources that have GPUs. Table 5 shows these initial
measurements, where depending on the configuration,
the Gromacs simulations can achieve different perfor-
mance and energy consumption. The most efficient con-
figuration in terms of time and energy for this execution
is using the MPI implementation. The variance in exe-
cution time and energy consumption is low in this case,
making it particularly suitable for determining speed up
between configurations.

What can be seen is that the MPI application has the
lowest energy consumption overall at 6,405.67J per run,



11

principally due to the lower runtime of 67s as compared
to 87s. The average power consumption of the CUDA
application is however less. This set of configurations
therefore offers either: a lower power consumption that
runs for longer and consumes more energy or a higher
power consumption that runs for a shorter period of time
and therefore uses less energy.

These results also give an indication of how quickly a
replacement replica should start in order to consume less
energy overall. This calculation assumes the workload
is similar to that of the pilot jobs. To find the relative
rank between jobs requires each application configura-
tion to remain proportional in its energy usage to the
other potential configurations. In the case of the pilot
job executions (see: Table 5), an MPI implementation
could be started in the first 4s of the CUDA instance’s
execution and still use less energy. This is derived from:

avg(cuda run energy) - avg(mpi run energy) =
∆energy per run
7611.67 - 6405.67 = 1206J
∆energy per run / avg(mpi run power) = migration
exploitation window size
1206 / 286.82 = 4.02s

Given the executions above are short lived the bene-
fits of restarting jobs with different accelerators is lim-
ited, however if the workload is increased then the
migration exploitation window size will also increase.
Practically as this mechanism only provides the relative
ranking between application configurations, without a
priori knowledge of the runtime (to work out scale
differences from the pilot jobs), then it is possible to use
recent job submissions as guidance on current expected
execution durations. The MPI and CUDA jobs both
linearly scale (so far as tested), leaving the ratios between
their durations and energy consumption comparable.
However, due to gradient differences causing divergence
(see Figure 7, CUDA increasingly uses more energy in
comparison to the MPI implementation, therefore to save
both energy and time, larger jobs should favour the MPI
implementation. The migration exploitation window size
scales linearly with the job size.

In addition applications using this calculation may be
ranked to consider which ones have the most difference
between the available configurations options. This there-
fore finds the application which is most likely to benefit
from adaptation.

To illustrate the mechanism working the following
rule: 〈IDLE HOST ACCELERATED, EQ, RESELECT AC-

CELERATORS, WARNING, 0, 0, KILL PREVIOUS=TRUE;

application=gromacs〉 was created with the format:
〈Agreement Term, Direction, Response Type, Event Type, Up-

per Bound, Lower Bound, Parameters〉. It causes on detec-
tion of idle accelerated resources the SAM to consider if
any Gromacs instance may be accelerated.

The reselection of accelerators mechanism compared
the deployment options available and found an instance
that has a lower amount of energy consumption was pos-

Fig. 7: CUDA vs MPI Job Workload Scaling

Fig. 8: MPI Job Launching and Cancelling CUDA Job

sible to execute. It therefore on receiving the IDLE HOST
ACCELERATED event killed the previous instance and
started a new job thus switching from the CUDA to the
MPI implementation of Gromacs. The result of this is
shown in Figure 8. The CUDA job runs on node ns51
and then is replaced by an MPI job on node ns55. The
MPI job then completes at 27s, 2 seconds earlier than
the CUDA job could have been expected to complete.
Although this is a small benefit 6%, with longer running
jobs the benefit is likely to be more substantial.

This job redeployment mechanism allows for multiple
possibilities, when considering events that the SAM will
act upon. For example job or node failure could cause the
redeployment of a job to the most appropriate available
resources, thus acting as a recovery mechanism. If rank-
ing by power consumption it would aid power capping
mechanisms by ensuring the mix of jobs running is most
likely to have the least power consumption available.
This mechanism also ensures accelerators where appro-
priate are more likely to be utilized.

In Figure 7 it seems counter intuitive that the CUDA
implementation given the vast parallelism of the GPU
does not perform better than the MPI implementation.



12

Fig. 9: MPI vs CUDA on Multiple Host Types

Fig. 10: Job Steering Considerations

This results in the transfer of the job from ns51 to ns55
in Figure 8. The difference is caused by the generational
differences between the hosts leading to overall changes
in efficiency. The explanation can be seen in Figure 9,
which shows the energy consumption of a series of
Gromacs jobs, both on ns51 (default choice for GPUs)
and ns55 (default choice for MPI jobs), along with MPI
implementation fixed so that it must use ns51. Here the
graph for job completion time is omitted for purposes of
clarity though it is similar to Figures 7 and 9.

The CUDA implementation is more efficient than the
MPI implementation of ns51, however the MPI imple-
mentation can run on ns55 which is more efficient than
ns51, therefore the MPI implementation is the best choice
if the more efficient nodes are available.

5.2.1 Further Discussion

The strategy employed to determine the relative ranking
of jobs has many considerations that must be made.
These considerations (see Figure 10) are going to be split
here into categories and discussed in turn. In the pro-
posed framework, the application configurations bundle
together resource requirements (CPU, Memory, GPU
needs etc), application implementations (MPI, CUDA,
other...) and QoS requirements. These constraining ele-
ments influence the direction to where jobs are directed
and are indicated in green on Figure 10. In blue the

QoS aspects are highlighted indicating how well an
application configuration will perform once it arrives
for processing. Figure 10 also shows a job queue with
jobs in either a configuration for GPUs (red) or blue
(general). This illustrates one constraint on applications,
although this can be reconfigured to switch jobs between
GPU only and general purpose. In terms of comparing
various different configurations of an application two
key aspects are identified: temporal and power/energy.

Job duration is important, simply the longer it runs
the greater the power consumption. However ranking
of jobs may be subject to changes in throughput for
a given configuration, dependent upon the size of the
workload (Figures 7 and 9). This can be checked with a
series of jobs of different sizes and examining how the
application scales under workload changes. If it scales in
a predictable fashion, recently completed jobs can guide
estimates for both completion time and the migration
exploitation window size. Thus, this offers an estimate
of the likely speed up/energy saving between config-
urations. One strategy of tackling throughput changes
would be to make pilot jobs of a similar size to “typical”
jobs thus mitigating scaling differences.

The second aspect relates to the power consumption
of a job and its power consumption consistency (with
obvious exception of the start and end of jobs). In the
case of Gromacs (MPI) on ns55 the power consumption
is consistent in the range of 303-320W with an average
of 310W excluding earlier lower power consumption
at the start of the applications execution. If it varies
through time, does it act in phases with any particular
recognisable fashion? and moreover does the average
power consumption stay the same with job length?

Applications may be made up of several stages. These
from the perspective of ranking configurations only need
to be considered in cases where the average power con-
sumption varies or the duration varies because of some
underlying change in actions. Examples of this might
include transferring data vs compute work, or different
types of compute work on different accelerators/instruc-
tion sets. The steps may change size, altering average
power consumption for example in cases where a large
input file is needed. Data transfers may alternatively act
as bounding behaviour on the power consumption, for
example streaming might limit processor utilisation and
hence power consumption as well.

An additional aspect is the heterogeneity of the hard-
ware. An application’s configuration is unlikely to spec-
ify specific hardware, but it may provide an affinity to
a given subset of hardware or explicitly exclude some
resources. An example of this is a CUDA job that needs
a GPU. It may be for a given job configuration that the
resources available to use are not very heterogeneous in
terms of power and compute capacity (i.e. temporal/du-
ration of job given the same workload). It is likely that
this affinity of a given configuration towards different
subsets of the infrastructure can be discovered by several
runs of a given pilot job, thus providing an average case



13

for the speed up between configurations.
This strategy has its limitations and is dependent upon

other workloads running at the same time, as well as the
scheduler in use and size of the job to be rescheduled.
The variance in time and energy consumption can be
considered a measure of the reliability of the reselection
method. The variance would be reduced if as part of
the calculation the pilot run dataset could be reduced to
records only considering the types of resources available
or more specifically to the underlying resource that is
going to be chosen.

5.3 Experiment 3

The third case helps smooth a data centre’s power
consumption by restricting certain applications power
consumption at given times of the day, adding greater
flexibility than merely a node level power constraint
alone. The SAM can set a cluster’s power cap at different
times of the day or inc/dec-remented it based upon
events. Application level power capping advances upon
host level power capping in that it ensures choice upon
when applications contribute to the power consumption.

In this experiment we start the SAM running with
an application already running on the infrastructure,
the power consumption of the application rises too
high and the application is then paused. Later on the
application is un-paused given a signal that it is now
not running in normal working hours of the day, thus
allowing it to complete its work, while ensuring the
maximum power consumed is lowered during the prime
hours of usage. There are two rules used to gener-
ate the pausing and resuming of jobs. Using a tuple
with the format 〈Agreement Term, Comparator, Response

Type, Event Type, Parameters〉 the following rules gener-
ate this behaviour. 〈app power:gromacs:*, GT, PAUSE APP,

SLA BREACH, application=gromacs;END TIME= 14:49〉 and

〈out of hours, EQ, UNPAUSE SIMILAR APPS, WARNING,

application=gromacs〉.
The event for pausing an application was based upon

power consumption at a given time of day. To ensure
the power consumption would exceed the threshold a
value of 50W was chosen. The rule for event generation
follows the format: 〈Unique Id, Agreement Term, Compara-

tor, Event Type, Guarantee Value〉 resulting in the follow-
ing expression: 〈1, app power:gromacs:*, GT, SLA BREACH,

50〉. A cron rule for indicating out of hours (set for
14:50 for illustrative purposes only) was derived from
the cron statement ”0 50 14 1/1 * ? *” which triggers
events with an agreement term of ”out of hours”. The
rules outcome is for the application to be paused for
a period of time, as shown in Figure 11. The result of
pausing a selected application is that particularly power
consuming applications can be moved to periods of
time when the overall data centre power consumption
is lower. This therefore allows the mechanism to smooth
and select which applications contribute to the overall
power consumption.

Fig. 11: Rule Based Application Pausing

6 RELATED WORK

Research effort has targeted energy efficiency support at
various stages of the application service lifecycle (con-
struction, deployment, operation). On the other hand,
heterogeneity has been recognized as a viable solution
to improve performance and reduce power consumption
at the same time [9]. This section reviews existing work
and categorises it into self-adaptation, energy efficiency
and heterogeneous computing environments.

Due to increasing systems complexity in recent years,
there has been an increase trend towards self-adaptive
systems (SASs) to address issue such as maintenance
and configuration and maintenance of Quality of Service
(QoS) in such complicated environments. Self-adaptation
requires the answering of fundamental questions of
“When to adapt?”, “Why do we have to adapt?”, “Where
do we have to implement change?”, “What kind of
change is needed?”, “Who has to perform the adapta-
tion?” and “How is the adaptation performed?” [10].

Krupitzer et al. [3] presents a taxonomy of self-
adaptive systems and their inspiration, while R. deLe-
mos et al [11] identifies research challenges when devel-
oping, deploying and managing self-adaptive software
systems. These challenges result from the dynamic na-
ture of self-adaptation, which brings uncertainty. Adap-
tation can be considered to commonly follow a Monitor
Analyses Plan and Execute (MAPE) approach. An ex-
tended architecture of the MAPE-K loop as a reference
model for the design of self-adaptive systems is found
in [12], assuming that the system has a central controller
with a central MAPE-K loop. The proposal consists
in continuously evaluating adaptation steps concerning
their actual effect and adaptation mechanisms concern-
ing their applicability and efficiency in the case of topol-
ogy changes. An agent-based modelling approach for
adaptation is presented in [13]. An Agent Verification
Engine (AVE) which constructs agents to perceive, react,
and adapt to runtime changes of a component-based
system is proposed. These agents are based on the Belief-
Desire-Intention (BDI) architecture, in which agents op-



14

erate in terms of motivation and beliefs. The work in [14]
consolidates design knowledge of self-adaptive systems.
To support software designers, the paper contributes
with a set of formally specified MAPE-K templates that
encode design expertise for a family of self-adaptive
systems. The templates comprise: (1) behaviour specifi-
cation templates for modelling the different components
of a MAPE-K feedback loop (based on networks of timed
automata), and (2) property specification templates that
support verification of the correctness of the adaptation
behaviours (based on timed computation tree logic).

The work presented in this paper focus upon low
power and energy saving. Kong and Liu [15] group
green-energy-aware into four distinct categories, namely:
(1) Green-energy-aware workload scheduling. (2) Green-
energy-aware Virtual Machine (VM) management. (3)
Green-energy-aware energy capacity planning. (4) In-
terdisciplinary. The first three areas are focusing upon
workloads temporal and spatial flexibility, VM schedul-
ing for a similar effect and crafting workload profiles
to desirable power consumption profiles. This paper
focuses not only on workload placement but also upon
the exact configuration of the application, which has
multiple configurations available and various possibili-
ties to use different hardware accelerators. The EcoScale
project [16], [17] uses hardware performance monitors
and models to project runtime and power consumption
in heterogeneous environment using accelerators. The
aim is to enable a runtime scheduler called the execution
engine, to dynamically select and distribute software
functions to either hardware acceleration or to software
based execution. This selection is based upon workers in
the vicinity and implementing worker queues [16].

Research effort has focused on the exploitation of
hardware accelerators in cloud computing environments
by addressing the challenge of programming such sys-
tems and making them easily accessible in a virtualized
environment. One common approach is to propose meth-
ods to offload computations on heterogeneous hardware
components. A solution for the efficient exploitation
of specialised computing resources of a heterogeneous
system is found in [18]. Other works have proposed het-
erogeneous architectures that combine high-performance
and low-power servers in order to achieve better overall
energy proportionality and energy efficiency [19]. The
mapping problem between compute resources and ap-
plication configurations is explored in [20], considering
throughput in a cloud context. This is similar in idea
to the work presented in this paper, though the context
and approach differs regarding the heterogeneity that
is being utilised. The ASCETiC project [21] holds sim-
ilarities it focused upon energy efficiency and software
adaptation but in the context of clouds. A highly scalable
model for developing applications, exploiting hardware
heterogeneity in cloud data centres while at the same
time considering the aspect of energy efficiency is pre-
sented in [22]. In such model applications are expressed
in the form of interconnected microservices which are

automatically scheduled for execution on the most suit-
able heterogeneous computing elements. However, no
evaluation of the model has been carried out.

The Legato project [23] identifies power as a key
concern and while software-stack support for hetero-
geneity is relatively well developed for performance, is
seen to remain an open question for power and energy-
efficiency, which is an aspect that this paper contributes
towards. StarPU [24] is one such early work that uses ab-
stractions to allow workloads to be placed upon various
different accelerator based platforms, selecting between
various different accelerators, to improve computational
performance and not energy. The Antarex project [25],
[26], focuses on energy efficient systems and in partic-
ular on producing a tool chain that tunes code to run
efficiently on heterogeneous infrastructures. The Manago
project [27] is equally similar to work presented in this
paper but with a particular focus on time-predictability
with trade-offs with power and energy efficiency. Dutot
et al. [28] advance upon power-capping and consider
energy budgets with a principle focus on scheduling.

From a technology viewpoint hardware accelerators,
such as GPGPUs and FPGAs still need the use of
power reduction techniques such as Dynamic Voltage
and Frequency Scaling (DVFS) and partial reconfigu-
ration for FPGAs to keep power consumption under
control [29]. Many approaches to adaptation and en-
ergy/power optimisation concentrate at the hardware
level, such as utilising task scheduling coupled with
GPU-specific DVFS and dynamic resource sleep (DRS)
mechanisms, as a means to minimise the total energy
consumption [30]. Our work in this paper compliments
such hardware based strategies given the similarity of
goals, yet utilises software based approaches to minimise
power and conserve energy.

7 CONCLUSION

A key aspect for any future middleware system is to
abstract away complexities of the heterogeneity and to
support power and energy awareness through automatic
reconfiguration at the level of the application. In this
paper we have addressed these issues with a energy-
aware self-adaptive framework for heterogeneous par-
allel architectures. This has included showing a self-
adaptive approach for heterogeneous hardware, includ-
ing more specific aspects such as job partitioning and
allocation, automatic redeployment of applications and
power capping. Discussion has focused on the criteria
that would need to be considered as an element of the
migration process. In a wider context of self-adaptation
mechanisms have been demonstrated that can aid power
capping behaviour and raise the intelligence of such
an approach from the hardware to the middleware
level. The self-adaptation manager alongside the other
architectural components presented in this research are
currently used in other frameworks e.g. Heterogeneous
hardware and software alliance [31]. In future work



15

this will be extended to include check pointing based
schemes as part of migration and utilising application
models and programming model annotations to fur-
ther rank application deployment alternatives during
migration. This work on adaptation is also expected
to be extended into other domains such as embedded
systems.

ACKNOWLEDGMENTS

The authors would like to thank the European Commis-
sion for supporting this work under the Horizon 2020
Research and Innovation program under contract 687584
(TANGO project).

REFERENCES

[1] D. Stroobandt et al., “EXTRA: Towards the exploitation of eXascale
technology for reconfigurable architectures,” in 2016 11th Interna-
tional Symposium on Reconfigurable Communication-centric Systems-
on-Chip (ReCoSoC), jun 2016, pp. 1–7.

[2] K. Djemame et al., “Tango: Transparent heterogeneous hardware
architecture deployment for energy gain in operation,” in Proceed-
ings of the First Workshop on Program Transformation for Programma-
bility in Heterogeneous Architectures, Barcelona, Spain, March 2016,
http://arxiv.org/pdf/1603.01407.

[3] C. Krupitzer et al., “A survey on engineering approaches for self-
adaptive systems,” Pervasive and Mobile Computing, vol. 17, pp.
184 – 206, 2015.

[4] R. M. Badia et al., “Comp superscalar, an interoperable program-
ming framework,” SoftwareX, vol. 3, pp. 32–36, 2015.

[5] A. Duran et al., “Ompss: a proposal for programming heteroge-
neous multi-core architectures,” Parallel Processing Letters, vol. 21,
no. 02, pp. 173–193, 2011.

[6] R. Kavanagh, D. Armstrong, and K. Djemame, “Accuracy of
Energy Model Calibration with IPMI,” in 2016 IEEE 9th Interna-
tional Conference on Cloud Computing (CLOUD). San Francisco,
California: IEEE, jun 2016, pp. 648–655.

[7] NVidia Coporation, “NVML API Pages - For GPU Utilization,”
2017. [Online]. Available: http://docs.nvidia.com/deploy/nvml-
api/structnvmlUtilization t.html#structnvmlUtilization t.

[8] Barcelona Supercomputing Center and Institute for Research
in Biomedicine, “Pymdsetup,” 2017. [Online]. Available:
https://github.com/bioexcel/pymdsetup

[9] S. P. Crago and J. P. Walters, “Heterogeneous cloud computing:
The way forward,” Computer, vol. 48, no. 1, pp. 59–61, Jan 2015.

[10] M. Salehie and L. Tahvildari, “Self-adaptive software: Landscape
and research challenges,” ACM Transactions on Autonomous and
Adaptive Systems (TAAS), vol. 4, no. 2, p. 14, 2009.

[11] R. de Lemos et al., Software Engineering for Self-Adaptive Systems:
A Second Research Roadmap. Berlin, Heidelberg: Springer Berlin
Heidelberg, 2013, pp. 1–32.

[12] V. Klos, T. Gothel, and S. Glesner, “Adaptive Knowledge Bases in
Self-Adaptive System Design,” in 2015 41st Euromicro Conference
on Software Engineering and Advanced Applications, aug 2015, pp.
472–478.

[13] K. Johnson, R. Sinha, R. Calinescu, and J. Ruan, “A Multi-
agent Framework for Dependable Adaptation of Evolving Sys-
tem Architectures,” in 2015 41st Euromicro Conference on Software
Engineering and Advanced Applications, aug 2015, pp. 159–166.

[14] D. G. D. L. Iglesia and D. Weyns, “Mape-k formal templates
to rigorously design behaviors for self-adaptive systems,” ACM
Transactions on Autonomous Adaptive Systems, vol. 10, no. 3, pp.
15:1–15:31, Sep. 2015.

[15] F. Kong and X. Liu, “A Survey on Green-Energy-Aware Power
Management for Datacenters,” ACM Computing Surveys, vol. 47,
no. 2, pp. 1–38, nov 2014.

[16] I. Mavroidis et al., “Ecoscale: Reconfigurable computing and
runtime system for future exascale systems,” in 2016 Design,
Automation Test in Europe Conference Exhibition (DATE), March
2016, pp. 696–701.

[17] P. Harvey et al., “A scalable runtime for the ecoscale hetero-
geneous exascale hardware platform,” in Proceedings of the 6th
International Workshop on Runtime and Operating Systems for Su-
percomputers, ser. ROSS ’16. New York, NY, USA: ACM, 2016,
pp. 7:1–7:8.

[18] G. Durelli, M. Coppola, K. Djafarian, G. Kornaros, A. Miele,
M. Paolino, O. Pell, C. Plessl, M. D. Santambrogio, and C. Bolchini,
“Save: Towards efficient resource management in heterogeneous
system architectures,” in Reconfigurable Computing: Architectures,
Tools, and Applications, D. Goehringer, M. D. Santambrogio, J. M. P.
Cardoso, and K. Bertels, Eds. Cham: Springer International
Publishing, 2014, pp. 337–344.

[19] V. Petrucci, M. A. Laurenzano, J. Doherty, Y. Zhang, D. Moss,
J. Mars, and L. Tang, “Octopus-man: Qos-driven task manage-
ment for heterogeneous multicores in warehouse-scale comput-
ers,” in 2015 IEEE 21st International Symposium on High Performance
Computer Architecture (HPCA), Feb 2015, pp. 246–258.

[20] M. Meredith and B. Urgaonkar, “On Exploiting Resource Diver-
sity in the Public Cloud for Modeling Application Performance,”
in The 9th International Conference on Cloud Computing, GRIDs, and
Virtualization. Athens, Greece: IARIA, 2017, pp. 66–72.

[21] K. Djemame, R. Bosch, R. Kavanagh, P. Alvarez, J. Ejarque,
J. Guitart, and L. Blasi, “PaaS-IaaS Inter-Layer Adaptation in an
Energy-Aware Cloud Environment,” IEEE Transactions on Sustain-
able Computing, vol. 2, no. 2, pp. 127–139, apr 2017.

[22] P. Ruiu, A. Scionti, J. Nider, and M. Rapoport, “Workload manage-
ment for power efficiency in heterogeneous data centers,” in 2016
10th International Conference on Complex, Intelligent, and Software
Intensive Systems (CISIS), July 2016, pp. 23–30.

[23] Legato Project, “LEGaTO Homepage,” 2018. [Online]. Available:
https://legato-project.eu/about

[24] C. Augonnet et al., “StarPU: a unified platform for task schedul-
ing on heterogeneous multicore architectures,” Concurrency and
Computation: Practice and Experience, vol. 23, no. 2, pp. 187–198,
2011.

[25] C. Silvano, G. Agosta, A. Bartolini, A. R. Beccari, L. Benini,
J. Bispo, R. Cmar, J. M. P. Cardoso, C. Cavazzoni, J. Martinovič,
G. Palermo, M. Palkovič, P. Pinto, E. Rohou, N. Sanna, and
K. Slaninová, “Autotuning and adaptivity approach for energy
efficient Exascale HPC systems: The ANTAREX approach,” in
2016 Design, Automation & Test in Europe Conference & Exhibition
(DATE), 2016, pp. 708–713.

[26] C. Silvano, G. Agosta, J. Barbosa, A. Bartolini, A. R. Beccari,
L. Benini, J. Bispo, J. M. P. Cardoso, C. Cavazzoni, S. Cheru-
bin, R. Cmar, D. Gadioli, C. Manelfi, J. Martinovič, R. Nobre,
G. Palermo, M. Palkovič, P. Pinto, E. Rohou, N. Sanna, and
K. Slaninová, “The ANTAREX tool flow for monitoring and
autotuning energy efficient HPC systems,” in 2017 International
Conference on Embedded Computer Systems: Architectures, Modeling,
and Simulation (SAMOS), 2017, pp. 308–316.

[27] J. Flich, G. Agosta, P. Ampletzer, D. A. Alonso, C. Brandolese,
E. Cappe, A. Cilardo, L. Dragić, A. Dray, A. Duspara, W. For-
naciari, G. Guillaume, Y. Hoornenborg, A. Iranfar, M. Kovač,
S. Libutti, B. Maitre, J. M. Martı́nez, G. Massari, H. Mlinarić, E. Pa-
pastefanakis, T. Picornell, I. Piljić, A. Pupykina, F. Reghenzani,
I. Staub, R. Tornero, M. Zapater, and D. Zoni, “MANGO: Explor-
ing Manycore Architectures for Next-GeneratiOn HPC Systems,”
in 2017 Euromicro Conference on Digital System Design (DSD), 2017,
pp. 478–485.

[28] P. F. Dutot, Y. Georgiou, D. Glesser, L. Lefevre, M. Poquet, and
I. Rais, “Towards Energy Budget Control in HPC,” in 2017 17th
IEEE/ACM International Symposium on Cluster, Cloud and Grid
Computing (CCGRID), 2017, pp. 381–390.

[29] J. Nunez-Yanez, “Energy efficient reconfigurable computing with
adaptive voltage and logic scaling,” SIGARCH Comput. Archit.
News, vol. 42, no. 4, pp. 87–92, Dec. 2014.

[30] X. Mei, X. Chu, H. Liu, Y. W. Leung, and Z. Li, “Energy efficient
real-time task scheduling on cpu-gpu hybrid clusters,” in IEEE
INFOCOM 2017 - IEEE Conference on Computer Communications,
1-4 May 2017, pp. 1–9.

[31] “Heterogeneous Hardware and Software Alliance Homepage,”
2018. [Online]. Available: http://heterogeneityalliance.eu/


