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Abstract 

A ligand skeleton combining a 1,10-phenantholine (phen) binding site and one or two 

heptadentate N3O4 aminocarboxylate binding sites, connected via alkyne spacers to the 

phen C3 or C3/C8 positions, has been used to prepare a range of heteronuclear Ru�M and 

Ru�M2 complexes which have been evaluated for their cell imaging, relaxivity, and 

photophysical properties.  In all cases the phen unit is bound to a {Ru(bipy)2}2+ unit to give a 

phosphorescent {Ru(bipy)2(phen)}2+ luminophore, and the pendant aminocarboxylate sites 

are occupied by a secondary metal ion M which is either lanthanide [Gd(III), Nd(III), Yb(III)] 

or another d-block ion [Zn(II), Mn(II)].  When M = Gd(III) or Mn(II) these ions provide the 

complexes with a high relaxivity for water; in the case of Ru�Gd and Ru�Gd2 the 

combination of high water relaxivity and 3MLCT phosphorescence from the Ru(II) unit 

provide the possibility of two different types of imaging modality in a single molecular 

probe.  In the case of Ru�Mn and Ru�Mn2 the Ru(II)-based phosphorescence is substantially 

reduced compared to the control complexes Ru�Zn and Ru�Zn2 due to the quenching effect 

of the Mn(II) centres.  Ultrafast transient absorption spectroscopy studies on Ru�Mn (and 

Ru�Zn as a non-quenched control) reveal the occurrence of fast (< 1 ns) PET in Ru�Mn, from 

the Mn(II) ion to the Ru(II)-based 3MLCT state, i.e. MnII–(phen�–)–RuIII  MnIII–(phen�–)–RuII; 

the resulting MnIII–(phen�–) state decays with  ≈ 5 ns and is non-luminescent.  This occurs in 

conformers when an ET pathway is facilitated by a planar, conjugated bridging ligand 

conformation connecting the two units across the alkyne bridge but does not occur in 

conformers where the two units are electronically decoupled by a twisted conformation of 

the bridging ligand.  Computational studies (DFT) on Ru�Mn confirmed both the occurrence 

of the PET quenching pathway and its dependence on molecular conformation.  In the 

complexes Ru�Ln and Ru�Ln2 (Ln = Nd, Yb), sensitised near-infrared luminescence from 

Nd(III) or Yb(III) is observed following photoinduced energy-transfer from the Ru(II) core, 

with RuNd energy-transfer being faster than RuYb energy-transfer due to the higher 

density of energy-accepting states on Nd(III).
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Introduction

The combination of transition metal and lanthanide ions in a single molecular 

complex (d/f complexes) has provided interesting opportunities arising from the 

combination of metal centres with substantially different structural, photophysical and 

magnetic properties.1-4 Particular properties of d/f complexes that have attracted interest 

are the ability to combine blue [from Ir(III)] and red [from Eu(III)] luminescence to generate 

white light;2 fundamental studies of df photoinduced energy-transfer (PEnT) including the 

use of d-block chromophores to act as antenna for sensitisation of near-IR lanthanide 

luminescence;3 and the combination of a luminescent d-block unit with a highly 

paramagnetic lanthanide, usually Gd(III), for preparation of dual-modal imaging agents 

which permit both luminescence-based visualisation of cells and magnetic resonance 

imaging based analysis on a larger length scale using a single probe molecule.4

We have recently investigated d/f complexes based on ligand skeletons combining a 

diimine-type unit [based on 2,2’-bipyridyl (bipy) or 1,10-phenanthroline (phen)] coordinated 

to a d-block centre to enable absorbance in the visible range due to metal-to-ligand charge-

transfer transitions, with a polyaminocarboxylate unit that provides high kinetic and 

thermodynamic stability when complexed to lanthanide(III) ions.5,6 These Ir/Ln complexes 

(Scheme 1) demonstrated the ability to combine effective luminescence imaging of HeLa 

and MCF7 cells, including two-photon phosphorescence lifetime imaging of local O2 

concentration, with high relaxivity for the Gd(III) units associated with the rigidity of the 

assembly which comes from the ligand design.6 However, there were clearly solubility 

limitations arising from the hydrophobicity of the central Ir(III) core which carries a charge 

of only +1.

In this paper we develop the work using this ligand system in two new directions. 

Firstly we have used a Ru(II) tris-diimine unit as the d-block luminophore, given its excellent 

promise as a component of water-soluble, non-toxic agents for optical microscopy,7 and its 

higher charge compared to the cyclometallated Ir(III) centre (+2 vs. +1) which should aid 

water solubility. We have combined this with a range of lanthanide ions including Gd(III) (for 

its relaxivity properties) and Yb(III)/Nd(III) (for the possibility of sensitised near-IR 

luminescence). Secondly, we have used the pendant heptadentate polyaminocarboxylate 

unit as a ligand for complexing additional transition metal ions as well as just lanthanide(III) 

ions – creating the possibility to form d/d as well as d/f assemblies, in which ultrafast 
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spectroscopy studies have been used to investigate intramolecular photoinduced electron 

transfer from Mn(II) to the Ru-based 3MLCT state in the Ru/Mn dyad.

Results and Discussion

(i) Synthesis and characterisation.  

Mononuclear Ru(II) complexes. 

The synthetic strategy is summarised in Schemes 2 – 4 and is similar to the approach 

we used for the previously-reported Ir/Ln complexes6 except that the key Sonogashira 

coupling step, connecting the polyaminocarboxylate and phenanthroline units, was 

performed with the phenanthroline unit already coordinated to the Ru(II) ion: this type of 

‘chemistry on the complex’ approach has been used by others.8 We found that the coupling 

worked better if we exchanged the positions of the relevant functional groups from those 

used previously,6 such that the reactive Br substituent is attached to the Ru(II) complex core 

as a 3-Br-phen or 3,8-Br2-phen ligand, and the terminal alkyne is pendant from the 

protected polyaminocarboxylate unit.

The complex [Ru(bipy)2(Br-phen)](PF6)2, A (Scheme 2),8a was prepared by reaction of 

3-Br-phen9 with [Ru(bipy)2Cl2]�2H2O. The alkyne-containing coupling partner compound C 

(Scheme 3) required a five-step synthesis, some of these being in the literature. At first, 

commercially available 4-hydroxy-2,6-dimethylpyridine was brominated at the 4-position 

using PBr5.10 The two methyl groups were then converted to –CH2Br groups using radical 

bromination with N-bromosuccinimide to give 4-bromo-2,6-bis(bromomethyl)pyridine.11 

Installation of the tert-butyl protected pendant arms of the metal chelating fragments to 

give the known intermediate B12 was achieved through a substitution reaction with two 

equivalents of di-(tert-butyl)-iminodiacetate, and then a straightforward Sonogashira 

reaction with trimethylsilylacetylene (TMSA) introduced the trimethylsilyl-protected alkyne 

group at the 4-position of the pyridine ring (compound CSi, Scheme 3). Deprotection of the 

trimethylsilyl group to reveal the free alkyne C was carried out in THF using tetra-n-

butylammonium fluoride (TBAF), but as this deprotection was performed in situ before 

immediate further reaction of compound C, no characterisation data were recorded for this 
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5

intermediate species; attempts to isolate analytically pure C were unsuccessful and tended 

to afford the Glaser-coupled di-alkyne bridged dimer.  

Components A and C were then combined using a Sonogashira coupling using Cu(I) / 

Pd(dppf)Cl2 as catalyst in anhydrous DMF / diisopropylamine (5:1, v/v) as solvent under 

argon, affording the protected Ru(II) complex Ru�E in 50 % yield (Scheme 2; ‘E’ indicates the 

presence of the ester protecting groups at the secondary binding site). Satisfactory 

characterisation was provided by 1H NMR spectroscopy and high-resolution electrospray 

mass spectrometry (SI, Figs. S1 and S2). In particular at lower chemical shifts in the 1H NMR 

spectrum there are singlet peaks at 1.45 ppm, 3.49 ppm and 4.00 ppm integrating as 36, 8 

and 4 protons, respectively, which represent the aliphatic protons on the pendant arms of 

the protected secondary binding site formed from the two imino-diacetate units. Finally, 

removal of the tert-butyl protecting groups was effected by prolonged stirring of Ru�E with 

excess trifluoroacetic acid in CH2Cl2 to afford Ru�L (where ‘L’ denotes the deprotected 

secondary ligand site).  Again, satisfactory characterisation was provided by 1H NMR 

spectroscopy and a high-resolution ES mass spectrum (SI, Figs. S3 and S4), with the 1H NMR 

spectrum confirming complete loss of the protons from the tBu groups (previously at 1.45 

ppm). A 500 MHz COSY spectrum was used to confirm the 1H NMR assignments.

A similar method was used to prepare the scaffold for the potentially trinuclear 

complexes in which there two are two identical aminocarboxylate binding sites pendant 

from the phen ligand on the central Ru(II) unit (Scheme 4). In this case the Ru(II)-based 

starting complex [Ru(bipy)2(Br2-phen)](PF6)2 (complex D) has Br substituents at both 

positions C3 and C8 of the phen ligand.  Sonogashira coupling of D with two equivalents of C, 

under similar conditions to those described above but with a longer reaction time, afforded 

complex Ru�E2 – with two ester-protected heptadentate binding sites on either side of the 

phen ligand – in 45 % yield (SI, Fig S5 and S6). The higher (twofold) symmetry compared to 

Ru�E affords a simpler 1H NMR spectrum with the aliphatic signals arising from the 

protected polyaminocarboxylate arms at 1.45 ppm, 3.49 ppm and 3.99 ppm (Fig. S5) having 

integrals consistent with the expected 72:16:8 ratio of protons. Removal of the ester groups 

using the same method as described above (TFA in CH2Cl2) afforded the deprotected 

complex ligand Ru�L2 with two pendant binding sites. The 1H NMR spectrum of this 

compound in D2O (SI, Fig. S7) was noticeably broader and less well defined than the 

protected form Ru�E2 possibly due to a combination of the size of the complex, the viscosity 
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6

of the solvent, and strong hydrogen-bonding interactions between solute and solvent which 

results in slow tumbling in solution. The number of signals and their relative integrals are 

correct, and a high-resolution ES mass spectrum (SI, Fig, S8) confirms formulation of the 

complex.

Heteronuclear Ru�Ln and Ru�Ln2 complexes (Ln = Gd, Nd, Yb).  

There are two particular reasons for studying Ru(II)/Ln(III) (‘Ln’ = a generic 

lanthanide) complexes based on this ligand skeleton. The first is that incorporation of Gd(III) 

ions allows preparation of potential dual-modal imaging agents based on the combination 

of luminescence plus magnetic resonance imaging with the same probe.4,6  The second is 

that incorporation of the near-IR emitting lanthanide ions Nd(III) and Yb(III) allows the study 

of sensitised emission arising from df PEnT.3 In both cases the fully conjugated, 

unsaturated structure of the bridging ligand facilitates the desired use; the structural rigidity 

will help to minimise the rotational correlation time of the Gd(III) centres which contributes 

to high relaxivity,13 and the electronic conjugated pathway directly connecting both Ru(II) 

and Ln(III) centres will facilitate Dexter-type PEnT which requires through-bond electronic 

coupling.6  The varying sizes of the lanthanide ions used mean that the heptadentate ligand 

will be supplemented by most likely 1 or 2 water molecules depending on ionic radius. 

Dinuclear Ru�Gd was prepared in 84% yield simply by stirring 1.1 equivalents of 

GdCl3�6H2O with Ru�L in water (pH 5 – 6) for 18 h. Size-exclusion chromatography on 

Sephadex LH-20 in MeOH, followed by anion metathesis using Dowex 1x2 chloride resin to 

ensure that all hexafluorophosphate anions (from the starting Ru(II) complex) were replaced 

by chloride, afforded pure Ru�Gd as its mono-chloride salt. Trinuclear Ru�Gd2 was prepared 

similarly in 69 % yield from Ru�L2 and 2.6 equivalents of GdCl3�6H2O in aqueous solution. 

The complex Ru�Gd2 is neutral so no anion-exchange step was necessary, but was likewise 

purified using Sephadex LH-20 eluting with MeOH. Given that routine characterisation by 1H 

NMR spectroscopy was not feasible for these complexes due to extensive paramagnetic 

line-broadening by the Gd(III) ions, we rely on a combination of chromatographic purity and 

high-resolution mass spectra (SI, Fig. S9 and S10), which for both complexes give excellent 

agreement with expected values as well as the correct isotopic patterns.

The heteronuclear complexes Ru�Nd, Ru�Nd2, Ru�Yb and Ru�Yb2 were synthesised 

in high yields in the same manner as the analogous Ru/Gd complexes, by reaction of the 
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starting ‘complex ligands’ Ru�L and Ru�L2 with excess (1.6 equivalents or 2.8 equivalents, 

respectively) of the appropriate lanthanide triflate salt in water at pH 5 – 6. The dinuclear 

complexes Ru�Nd and Ru�Yb were anion-exchanged to the chloride salts using Dowex® 1x2 

chloride ion-exchange resin and finally purified by size-exclusion chromatography on 

Sephadex® G-15 in water. The trinuclear complexes Ru�Nd2 and Ru�Yb2 are neutral so 

required no ion-exchange. As with the Ru/Gd complexes, high resolution ES mass 

spectrometry of these paramagnetic complexes confirmed their formulation (SI, Figs S11 – 

S14).

Heteronuclear Ru�M and Ru�M2 complexes (M = Mn, Zn).  

Having used Gd(III) ions to prepare Ru�Gd and Ru�Gd2 as described above, we were 

interested to try other highly paramagnetic ions in these sites for possible alternative dual-

modal imaging agents. Recently, interest in utilising high-spin Mn(II) ions as alternative 

paramagnetic centres to Gd(III) in T1-weighted MRI contrast agents has grown,14,15 due to 

increasing concern for the in vivo toxicity of free Gd(III) ions. New ligand structures are 

beginning to be explored to incorporate Mn(II) into probes used for MR imaging purposes.14  

However, examples of dual-modal luminescence/MRI probes containing Mn(II) as the 

paramagnetic centres are rare, with only one recent example of MnO2 nanosheets 

combined with [Ru(bipy)3](PF6)2 units being reported.15  Accordingly our ligand skeletons 

were also used to prepare Ru(II)/Mn(II) complexes to examine their luminescence and 

magnetic relaxivity properties; the analogous Ru(II)/Zn(II) complexes were also prepared for 

control experiments.  

Dinuclear complexes Ru�Mn and Ru�Zn were prepared by reaction of Ru�L with 1.3 

– 1.6 equivalents of the appropriate M(II) chloride hydrate (M = Mn, Zn) for 18 h in water at 

pH 5 – 6. The excess metal salt was removed by size-exclusion chromatography on 

Sephadex® G-15 in water to produce the pure, neutral compounds in good yields (80-95 %). 

As Zn(II) is diamagnetic, the successful synthesis and isolation of pure Ru�Zn was confirmed 

by 1H NMR spectroscopy (SI, Fig. S15). The signals in the aromatic region of the 1H NMR 

spectrum (400 MHz, D2O) integrate to the expected twenty-five protons, although there are 

four singlets at δ = 7.52 ppm, 7.54 ppm, 8.76 ppm and 8.79 ppm that each integrate to half 

a proton. A two-dimensional 1H-1H NMR correlation spectrum confirmed that these peaks 

correspond to either a pyridyl H3/H5 pyridine proton (δ = 7.52 ppm and 7.54 ppm) and the 
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H2 phenanthroline proton (δ = 8.76 ppm and 8.79 ppm). These half-integral values suggest 

the presence of two isomers in solution, which were not present in the 1H NMR spectrum 

(d6-DMSO, 500 MHz) of the starting complex Ru�L. As the protons in question are only split 

into inequivalent ‘halves’ in Ru�Zn, it would suggest that the two isomers are brought about 

by the chelation of the Zn(II) ion at the polyaminocarboxylate binding site to generate a 

chiral centre, and are therefore diastereoisomers arising from the presence of two chiral 

centres close together – the other chiral centre being of course the Ru(II) tris-chelate unit. 

This suggestion is supported by the appearance of a multiplet at δ = 3.34-3.52 ppm in the 1H 

NMR spectrum for Ru�Zn, which integrates as eight protons, and represents the four CH2 

groups adjacent to the carboxylate groups of the secondary metal chelate site. In the 1H 

NMR spectrum of Ru�L these 8 protons are equivalent, occurring as a singlet at δ = 3.94 

ppm.  However, once the Zn(II) ion is bound in Ru�Zn, they become inequivalent and appear 

as a multiplet due to the presence of the diastereoisomers. The remaining signal in the 

aliphatic region of the 1H NMR spectrum is from the two CH2 groups attached to C2 and C6 of 

the pyridine ring (δ = 4.15 ppm). We could not obtain meaningful 1H NMR spectra for 

Ru�Mn, but both complexes were characterised by high-resolution ES mass spectrometry 

(SI, Figs. S16 and S17).  We note that seven coordination is known for in some Mn(II) 

complexes, and is supported by the calculations (see later).16  There are also a few examples 

of Zn(II) complexes with seven-fold coordination despite the smaller ionic radius of Zn(II): 

these generally have two small bidentate nitrate ligands.17

Trinuclear Ru�Zn2 and Ru�Mn2 were prepared similarly from Ru�L2 and excess (2.4 – 

4.8 equivalents) of the appropriate M(II) chloride hydrate (M = Mn, Zn), and were obtained 

in good yields of 67 – 82 %. These are dianionic complexes with Na+ as the counter-cation. 

Ru�Zn2 could be characterised by 1H NMR spectroscopy (SI, Fig. S18) and gives the correct 

number of signals in the aromatic and aliphatic regions which integrate to the required 

total: the spectrum is noticeably broader than that of Ru�Zn, likely due to slower tumbling 

in solution because of its size and the viscosity of D2O (similar to the difference that we 

observed between Ru�L and Ru�L2). As with Ru�Zn there is evidence that the presence of 

diastereoisomers arising from the presence of three chiral centres splits some signals into 

several components. For example, the singlet at δ = 7.69 ppm for the four pyridyl H3/H5 

protons in Ru�L2 is split into two broad singlets between 7.50 and 7.70 ppm in the spectrum 
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of Ru�Zn2. High resolution ES mass spectra confirmed the formulations of Ru�Zn2 and 

Ru�Mn2 (Figs. S19, S20).

(ii) Photophysical properties.  

Mononuclear Ru(II) complexes.

All four mononuclear complexes Ru�E, Ru�L, Ru�E2 and Ru�L2 were characterised by 

UV/Vis and luminescence spectroscopy (Table 1, Fig. 1 and S21). The monosubstituted 

complexes Ru�E and Ru�L both show, in addition to the usual ligand-centred absorptions in 

the UV region, 1MLCT absorptions spanning the 375 – 550 nm region with a maximum at 

around 440 nm in each case. These are assigned as Rubipy and Ruphen 1MLCT 

transitions by comparison with published spectra:18 we might expect the Ruphen 

transition to be at lower energy given the alkyne substituent conjugated with the phen core 

which will reduce the energy of the LUMO, but any such effect is not clearly resolved in 

these spectra. However, for Ru�E2 and Ru�L2 the absorption spectra do clearly show this 

effect (Fig. S9): the second alkyne substituent on the phen ligand results in a Ruphen 

1MLCT transition that is clearly apparent as a low-energy shoulder at ca. 480 nm with the 

more intense 1MLCT Rubipy transition (as there are two bipy ligands) remaining at ca. 440 

nm.

The luminescence spectra in fluid and frozen solution, at RT and 77 K respectively 

(Fig. 1), likewise reflect the general behaviour of [Ru(bipy)3]2+-type cores18 where 

modification by the alkyne substituents slightly reduces the 3MLCT excited state energies.19 

For Ru�E and Ru�L the broad, featureless 3MLCT emission band occurs at ca. 650 nm, 

slightly lower in energy than what has been observed for [Ru(bipy)2(phen)]2+ bearing no 

alkyne substituents.8a At 77 K (frozen EtOH/MeOH glass) the usual rigidochromism results in 

a blue-shift of the main emission maximum to 611 nm (hence, the 3MLCT energy is 16,400 

cm-1, measured from the 0-0 transition energy) and results in the appearance of clear fine-

structure with two low-energy shoulders on the emission profile arising from vibronic 

effects. The presence of the additional alkyne substituent in Ru�E2 and Ru�L2 results in an 

additional red-shift of both the solution luminescence maximum to ca. 690 nm.  The 77 K 

emission spectrum (frozen EtOH/MeOH glass) of Ru�E2 is likewise red-shifted to 645 nm 
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compared to Ru�E and Ru�L.  Ru�L2 was not sufficiently soluble in EtOH/MeOH to permit a 

77 K spectrum but it is clear from comparison of Ru�E and Ru�L that the presence or 

absence of the ester groups has no significant effect on the luminescence energy. This gives 

a 3MLCT excited-state energy of 15,500 cm-1 for both Ru�E2 and Ru�L2. Luminescence 

lifetimes in air-equilibrated solution at RT for all four complexes are in the region of 100 – 

300 ns; these become longer (µs timescale) at 77 K (see Table 1).

Heteronuclear Ru�M and Ru�M2 complexes (M = Gd, Nd, Yb).  

UV/Vis absorption spectra in water (Table 2) revealed that coordination of the Gd(III) 

centre had little effect on the main spectral features which are of course associated with the 

Ru(II) tris-diimine core.18 Thus the absorption spectrum of Ru�Gd is similar to that of Ru�L. 

However, we can see that for Ru�Gd2 the lowest energy 1MLCT absorption feature – a 

shoulder associated with the Ruphen transition – is slightly red-shifted by about 10 nm 

compared to Ru�L2. This can be ascribed to the electronic effect of a 3+ cation coordinated 

to each of the two pyridine groups pendant from the phen ligand, which will reduce the 

LUMO in energy and cause red-shifting of the associated Ruphen absorption. Excitation 

into the 1MLCT absorption profile afforded the characteristic broad, featureless (in fluid 

solution) 3MLCT luminescence band in each case, at 664 nm and 700 nm for Ru�Gd and 

Ru�Gd2, respectively (Fig. 2). These are slightly red-shifted from the emission maxima for 

Ru�L and Ru�L2, since coordination of the pyridyl groups pendant from the phen ligand to 

the 3+ ions reduces the LUMO energy slightly, which is also why a red-shift was observed in 

the absorption spectra.  Photophysical data for these complexes, including luminescence 

lifetimes and quantum yields, are included in Table 2.

The UV/Vis absorption spectra for the Ru/Yb and Ru/Nd complexes in water are 

identical within experimental error to those of the analogous Ru/Gd complexes described 

earlier, as the electronic effects of the peripheral Gd(III), Nd(III) and Yb(III) ions on the 

absorption features of the Ru(II) tris-diimine core are essentially identical and thus require 

no further discussion. However, the effects of the different lanthanide ions on the 

luminescence are substantial and are most easily discussed in terms of comparison with the 

Ru/Gd complexes, as in these complexes Gd(III) is non-luminescent: the lowest excited state 

for the Gd(III) ion (6P7/2 ≈ 32,000 cm-1) is far too high in energy to be directly populated by 

RuGd PEnT.
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Fig. 2 shows the emission spectra in the visible region of all six Ru�Ln and Ru�Ln2 

complexes (Ln = Gd, Nd, Yb) in water, recorded on samples prepared to have the same 

optical density at the excitation wavelength of 430 nm, such that comparisons of emission 

intensities are a meaningful indication of quantum yield variations. It is immediately clear 

that (i) the emission maxima for all three Ru�Ln2 complexes is at longer wavelength (700 

nm) than the emission maxima for all three Ru�Ln complexes (662 – 664 nm), for reasons 

discussed earlier, and (ii) the intensity of Ru(II)-based emission within each set of three 

complexes decreases in the order Gd > Yb > Nd. Thus, compared to Ru�Gd, the quenching 

arising from the presence of Yb(III) and then Nd(III) is 10 % and 45 %, respectively: and 

compared to Ru�Gd2, the quenching arising from the presence of Yb(III) and then Nd(III) is 

45 % and 90 %, respectively (Table 3). 

This quenching of Ru(II)-based emission by Yb(III) and Nd(III) is a consequence of 

PEnT from the Ru(II)-based 3MLCT state to lower-lying f-f excited states of the relevant 

Ln(III) ions.  The different degrees of quenching, arising from different extents of RuLn 

PEnT, can be readily understood in terms of the spectroscopic overlap between donor and 

acceptor states.1a,20  Yb(III) has a single f-f excited state at ca. 10,200 cm-1 (absorption at 980 

nm) which overlaps only with the low-energy tail of the Ru(II)-based emission profile that 

has vanishingly small intensity at 980 nm.  In contrast Nd(III) has a large number of closely-

spaced f-f excited states between 10,000 cm-1 and 15,000 cm-1, in the region covered by the 

Ru(II)-based emission spectrum, so donor/acceptor overlap will be much better.  Indeed, it 

is generally true that for excited states of donors in the visible region of the spectrum, 

Nd(III) is a far better energy acceptor than Yb(III) for this reason,1a,20 and we see this in both 

series of complexes Ru�Ln and Ru�Ln2.

Time-resolved measurements on the Ru(II)-based luminescence allows the RuLn 

PEnT rates to be quantified. For Ru�Gd the Ru(II)-based luminescence in air-equilibrated 

water at RT is 350 ns; in Ru�Yb and Ru�Nd the luminescence decay is dominated by shorter-

lived components with  = 73 ns and 22 ns respectively (Table 3), confirming the greater 

ability of the Nd(III) ion to act as a quencher of the Ru(II)-based excited state.  A very small 

contribution to the luminescence decay from a long-lived decay component with  ≈ 300 ns 

(< 5 %) is ascribed to a trace of free Ru�L.  
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kPEnT = 1/q – 1/u (2)

Using equation 2 [where u is the ‘unquenched’ lifetime of Ru�Gd, and q is the partially 

quenched lifetime of the Ru�Ln complexes (Ln = Yb, Nd)] the RuYb and RuNd energy-

transfer rates of 1.1 x 107 s-1 and 4.2 x 107 s-1, respectively, were estimated.  These values 

are broadly comparable to what we observed in the Ir/Ln complexes based on the same 

ligand skeleton,6a and these relatively high PEnT rates are a consequence of the fully 

conjugated pathway connecting the two metal complex components within each molecule.  

The decay of the Ru(II)-based emission in Ru�Gd2 showed two components: a longer 

lifetime of 1 = 402 ns (20% of total) and a dominant shorter component of 2 = 164 ns (80 % 

of total emission intensity).  We tentatively ascribed the presence of a second longer-lived 

component to the presence of different conformers of the complex arising from the 

presence of multiple diastereoisomers (see sections on the 1H NMR spectra of the 

analogous Ru/Zn complexes, and conformational flexibility of dinuclear complexes studied 

computationally). In Ru�Yb2 and Ru�Nd2 the luminescence decay profiles are dominated by 

short-lived components with  = 88 ns and 18 ns for Ru�Yb2 and Ru�Nd2 respectively, with 

(again) a small amount of a long-lived component likely corresponding to traces of free 

Ru�L2.  Application of eq. 2 (taking u = 164 ns, the dominant component of emission from 

Ru�Gd2) yields energy-transfer rates of 5.3 x 106 s-1 (for RuYb PEnT) and 4.9 x 107 s-1 (for 

RuNd PEnT), again confirming that Nd(III) is a better energy-acceptor than Yb(III) in these 

complexes due to its higher density of excited states in the relevant spectral region.1a,20

Final proof that RuLn PEnT has occurred in the Yb(III) and Nd(III) complexes is shown by 

the appearance of sensitised Ln(III)-based luminescence following excitation into the Ru(II)-

based 1MLCT absorption band of the complexes in D2O (the deuterated solvent is used to 

minimise solvent-based quenching of the low energy lanthanide luminescence).21  Fig. 3 

shows the spectra of Ru�Yb2 and Ru�Nd2; those of Ru�Yb and Ru�Nd are similar. Both 

Yb(III)-containing complexes display a characteristic Yb(III)-based emission feature centred 

at 980 nm arising from the 2F5/22F7/2 transition. Time-resolved measurements afforded 

Yb(III)-based luminescence lifetimes of 13 µs for Ru�Yb and 11 µs for Ru�Yb2 (Table 3). 

Lifetimes in this region are typical of Yb(III)-based luminescence in fluid solution where the 

effect of the solvent is minimised by encapsulation of the metal ion in a polydentate ligand, 
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and/or by deuteriation of the solvent (as here).22  The two Nd(III)-containing complexes 

show luminescence bands at 1060 nm and 1380 nm, arising from the 4F3/24IJ transitions (J 

= 11/2 and 13/2), respectively. Time-resolved measurements on the 1060 nm signal 

afforded Nd(III)-based emission lifetimes of 0.8 µs for Ru�Nd and 0.7 µs for Ru�Nd2. Again, 

these are typical values for Nd(III)-based emission in fluid solution when there are no OH 

oscillators in the solvent,22 with the much shorter luminescence from Nd(III) centres 

compared to Yb(III) arising from the lower energy associated with luminescence which is 

more readily quenched by molecular (or solvent) vibrations. Finally, excitation spectra – 

monitoring the Ln(III)-based emission intensity as a function of excitation wavelength – 

revealed areas of absorbance between 400 and 500 nm associated with the Ru(II)-based 

1MLCT transitions, confirming the occurrence of RuLn PEnT in all cases (see SI, Fig. S22 for 

examples).

Heteronuclear Ru�M and Ru�M2 complexes (M = Mn, Zn). 

UV/Vis absorption spectra for the set of four Ru/Mn and Ru/Zn complexes (Table 2) 

follow the same pattern that we saw with the Ru/Ln complexes, i.e. the absorption spectra 

are essentially the same as the complexes Ru�Gd and Ru�Gd2 with no significant 

contributions from the Mn(II) or Zn(II) ions, as would be expected given their high-spin d5 

and d10 electronic configurations. To confirm that the low luminescence intensity from the 

Ru/Mn complexes is specifically associated with the presence of the Mn(II) ions, we 

compared the luminescence properties of the Ru/Mn complexes to the Ru/Zn analogues 

Ru�Zn and Ru�Zn2 (see Fig. 5). The substantial additional quenching caused by Mn(II) ions 

over Zn(II) ions – as shown by reduction in emission intensity by approximately 80 % – 

confirms the role of Mn(II) in the quenching.  

This quenching could have two possible origins: (i) photoinduced electron-transfer 

(PET) from Mn(II) to the Ru(III) centre that is photo-generated in the [Ru3+–phen�–] 3MLCT 

state;23 or (ii) photoinduced energy-transfer from the 3MLCT state to Mn(II), generating a d-

d excited state of Mn(II) that cannot be populated by direct absorption from the ground 

state as it is spin-forbidden, but could be generated by energy-transfer from the Ru-based 

3MLCT state acting as a sensitiser.24  Assemblies based on Ru(II) chromophores connected to 

mononuclear or polynuclear Mn(II) units have been extensively studied because of their 

relevance to the PET properties of photosystem II in green plants.  Indeed, Hammarström, 
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Åkermark and co-workers have demonstrated that Mn(II)Ru(III) PET occurs in a series of 

Ru(III)/Mn(II) dyads in which the Ru(III) centre has been generated by photo-oxidation of a 

Ru(II) unit, provided the metal centres are close together.23a-c 

Time-resolved luminescence measurements on Ru�Zn and Ru�Zn2 (in air-

equilibrated aqueous solution) revealed 3MLCT emission lifetimes that are similar to those 

of Ru�Gd and Ru�Gd2. For Ru�Zn a single-exponential luminescence decay of 329 ns was 

observed; for Ru�Zn2 the decay profile fitted to two components with 1 = 301 ns (55%) and 

2 = 117 ns (45%), very similar to what we also observed for Ru�Gd2. We therefore propose 

– for the same reason as suggested earlier – that the two lifetimes arise from a mixture of 

diastereoisomers with different conformations. We note that in this case individual lifetimes 

may not have specific physical meaning, as it is a distribution of lifetimes (multiexponential 

decay) which has been fitted satisfactorily with a two-exponential model.  In contrast the 

partial quenching in Ru�Mn and Ru�Mn2 leads to a shorter component dominating the 

3MLCT emission decay profiles, with lifetimes of 91 ns for Ru�Mn and 21 ns for Ru�Mn2. In 

both cases small contributions from a longer-lived component were also present, consistent 

with traces of free Ru�L and Ru�L2 being present due to loss of Mn(II) ions from the binding 

sites of Ru�Mn and Ru�Mn2 in the competitive solvent.  However, the dominant short-lived 

components indicate quenching of the Ru(II) excited state by the Mn(II) ions: these emission 

lifetimes did not change significantly over a range of concentrations from 4 µM to 90 µM, 

i.e. the quenching processes in Ru�Mn and Ru�Mn2 are intramolecular.  

The decreased luminescence lifetimes (tens of ns) are not the whole story however, 

since the limitation of our luminescence lifetime spectrometer (ca. 1 ns time resolution) 

means that any faster decay processes associated with e.g. rapid PET are not detectable on 

this instrument.  To investigate whether any ultrafast processes were occurring on the 

timescale faster than 1 ns, the excited state dynamic behaviour of Ru�Zn and Ru�Mn was 

investigated using femtosecond transient absorption spectroscopy (TA).  Here, Ru�Zn acts 

as a control since any inter-metal PET or PEnT processes that occur in Ru�Mn cannot occur 

in Ru�Zn. Excitation (λexc = 400 nm, 40 fs pulse, 3 mW) of a solution of either Ru�Zn or 

Ru�Mn in aerated water, followed by measurement of the absorption spectra at a series of 

time delays up to 5 ns, produced similarly shaped differential TA spectra for both complexes 

(Fig. 5a, 6a). There are negative signals (bleaches) of the MLCT transitions at 442/480 nm, 

and positive signals that have maxima at 367 nm and 456 nm present in both spectra, as 
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well as a broad absorption in the range 500-700 nm with a maximum at 620 nm. These 

transient spectral features approximately resemble those of the [phen]�– radical anion in 

other reduced metal complexes such as [ReICl(CO)3(phen�–)]–.25  Thus the transient 

absorption spectra are in agreement with the initial population of an MLCT state in both 

cases.

Analysis of the dynamics of the transient signals for each of the heteronuclear 

complexes reveals different decay kinetics for Ru�Zn and Ru�Mn. The dynamic behaviour of 

Ru�Zn (Fig. 5b) is described by two lifetime components; a long-lived component (blue trace 

in the figure) that does not completely decay over the pump-probe delay period, and a 

much shorter-lived component (red trace) with a lifetime of 6 ps.  Decay-associated spectra 

for the different lifetime components are in SI (Fig. S23).  The shorter-lived component can 

be ascribed to fast vibrational cooling within the complex, whereas the longer-lived 

component can be ascribed to the Ru-based 3MLCT state, for which an emission lifetime was 

measured as 329 ns in aerated water (see earlier).  An accurate lifetime for the 3MLCT state 

could not be determined by femtosecond TA as it is much longer than the maximum 

possible time delay of the experiment.

The dynamic behaviour of the transient absorption spectra for Ru�Mn is more 

complicated than for Ru�Zn (Fig. 6b), and requires three lifetime components to fit the 

decay profile satisfactorily. A short-lived component with a lifetime of 2 ps (green trace) is 

ascribed to fast vibrational cooling within the complex. A further decay process with a 

lifetime of 584 ps (red trace) is synchronous with the grow-in for a second state which then 

decays more slowly, with an estimated lifetime of 4.7 ns (blue trace).  As the processes on 

these timescales are not present in Ru�Zn, we suggest that they are a consequence of fast 

processes occurring between metal centres in the excited state of Ru�Mn, with one 

component decaying at the same rate as the other grows, in a PET or PEnT process.  Again, 

decay-associated spectra for the different lifetime components are in SI (Fig. S23), and the 

evolution-associated spectra (experimental TA at different time delays) for both Ru�Zn and 

Ru�Mn are in Fig. S24.  

If the 584 ps decay process were PEnT from the Ru(II)-based 3MLCT state to the 

Mn(II) centre, we would see decay of the intense (phen�–) transient signal with τ = 584 ps as 

the 3MLCT state converted to a [Mn(II)]* state. However, this is clearly not the case.  There 

is a small change in shape of the (phen�–) transient signal on this timescale, but it only 
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decays on the longer timescale of τ = 4.7 ns.  This is consistent with the 584 ps process being 

Mn(II)Ru(III) PET in which the bridging (phen�–) is preserved, i.e. the process can be 

written as MnII–(phen�–)–RuIII  MnIII–(phen�–)–RuII, generating a new and lower-energy 

MnIII/(phen �–) MLCT state which then decays with τ = 4.7 ns (and is not visible by 

luminescence spectroscopy). 

The occurrence of Mn(II)Ru(III) PET into the Ru-based 3MLCT state is in agreement 

with previous reports of the behaviour of [Ru(bipy)3]2+/Mn(II) dyads following 

photochemical oxidation of Ru(II) to Ru(III),23a-c which simply requires that the Mn(II)/Mn(III) 

redox potential is less positive than the Ru(II)/Ru(III) redox potential.  Attempts to 

determine the Mn(II)/Mn(III) redox potential of Ru�Mn by cyclic voltammetry in water were 

unsuccessful possibly because the large excess of electrolyte used (NaCl) resulted in the 

Mn(II) ion being stripped out of the complex.  Similar issues have occasionally prevented 

detection of Mn(II)/Mn(III) couples in other Ru/Mn complexes recorded in competitive 

media.23c  Ru�Mn is not sufficiently soluble in polar organic solvents such as MeCN or DMF 

to allow electrochemical measurements to be made.  However we note that (i) the harder 

N/O-donor anionic ligand donor set around the Mn(II) ions in Ru�Mn and Ru�Mn2, 

compared to the all-nitrogen donor sets used in the Hammarström/Åkermark complexes, 

will reduce the Mn(II)/Mn(III) redox potential which will facilitate the PET process; and (ii) 

the computational studies (next section) confirm that the Mn(II) centre oxidises before the 

Ru(II) centre, as required.  

Assuming that the lifetime of the PET process in Ru�Mn is 584 ps, the rate of ET can 

be estimated as ket = 1.7 x 109 s-1. This PET rate is much faster than was previously observed 

by Hammarström, Åkermark and co-workers who reported PET rates in the range ket = 2 x 

105 – 2 x 106 s-1;23a-c indeed it is faster than the radiative decay rate of the Ru(II) 

chromophore.  Thus, the Mn(II)Ru(III) process occurs rapidly in the MnII–(phen�–)–RuIII 

excited state, and does not require photo-oxidation of this state to generate a long-lived 

MnII–(phen)–RuIII species before the Mn(II)Ru(III) ET can occur. This high ET rate can be 

ascribed to the presence of a favourable pathway through the conjugated bridging ligand in 

Ru�Mn, which provides a “conductive” bridge for the ET process to occur, in contrast to the 

saturated bridging ligands described previously.23a-c
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Given that this PET process detected by TA spectroscopy is fast (sub-nanosecond 

timescale) the final question arises as to why it does not always occur, as shown by the 

observation of significant residual luminescence (see Fig. 4;  = 91 ns for Ru�Mn and 21 ns 

for Ru�Mn2). This can be ascribed to the presence of a mixture of conformers, as implied by 

some of the NMR studies (Ru/Zn complexes) and other luminescence measurements (Ru/Gd 

complexes. Rotation of the pyridyl group and its pendant aminocarboxylate units about the 

C-C single bond at the pyridyl C4 position could lead the pyridine ring to adopt a 

conformation perpendicular to the phen unit, which would electronically decouple the 

Mn(II) ion from the {Ru(bipy)2(phen)}2+ core. In this arrangement, through-bond PET would 

be much slower. If we assume this to be the case, we arrive at Mn(II)[Ru(III)]* PET rate 

constants kPET (using eq. 2) of ca. 8 x 106 s-1 in Ru�Mn and 4 x 107 s-1 in Ru�Mn2 for those 

decoupled conformers in which PET is slow, which is still fast compared to the timescale of 

Mn(II)Ru(III) ET across saturated spacers in several dyads.23a-c  To investigate this further, 

computational studies were performed on Ru�Mn using density functional theory.

Computational studies on the Ru�Mn dyad.

All calculations were performed using the procedures outlined in the experimental 

details section. The structure of the lowest sextet state of Ru�Mn is given in Fig. 7(a).  For a 

Mn(II) ion in this N/O-donor weak-field coordination environment we expect a high-spin 

configuration, which is what the spin density shows [Fig. 7(b)].  The Mn(II) ion is seven 

coordinate16 with an approximately pentagonal bipyramidal coordination geometry.16d  The 

three N-donor atoms are 2.5 Å from Mn(II), whereas the four Mn–O distances are shorter at 

ca. 2.2 Å, reflecting the partial negative charges on the carboxylate O atoms  The pyridine N-

donor is approximately co-planar with two of the carboxylate O-donors: one of the amine 

donors is slightly below this plane with the other amine donor a similar distance above it. 

However, to a first approximation, the Mn(II) ion is pentagonal bipyramidal.

Given the possibility for conformational flexibility which might affect the electronic 

coupling between the two metal complex units, as discussed above, we looked at the 

barrier to rotation of the Mn(II) unit with respect to the Ru(II) core, around the C-C single 

bond between the alkyne linker and the pendant pyridyl ring.  Calculations on this rotation 

show that an arrangement with the pendant pyridine unit perpendicular to the 

phenanthroline unit is not a local minimum. However, the energy of this ‘perpendicular’ 

Page 17 of 57 Dalton Transactions

D
al
to
n
Tr
an
sa
ct
io
ns

A
cc
ep
te
d
M
an
us
cr
ip
t

P
u
b
li

sh
ed

 o
n
 0

5
 A

p
ri

l 
2
0
1
9
. 
D

o
w

n
lo

ad
ed

 b
y
 U

n
iv

er
si

ty
 o

f 
S

h
ef

fi
el

d
 o

n
 4

/1
5
/2

0
1
9
 4

:1
5
:5

1
 P

M
. 

View Article Online

DOI: 10.1039/C9DT00954J



18

arrangement is only 4.6 kJ mol-1 (or 1.8 kT) above the energy of the co-planar orientation 

[Fig. 7(a)].  This small energy difference means that rotation around the C–C bond is quite 

facile such that a large part of the torsional space will be sampled in solution at RT.  This 

includes torsional conformations in which the pyridyl [coordinated to Mn(II)] and phen 

[coordinated to Ru(II)] units are orthogonal to each other and substantially electronically 

decoupled, in agreement with our explanation of the two observed PET rates for Ru�Mn.  

The overlay in Fig. 8(a) shows that rotation around this bond has little structural effect on 

the Ru(II) moiety.

TD-DFT calculations on the structure with a planar orientation of the bridging ligand 

[Fig. 7(a)] show that there are only a small number of strong electronic transitions (Fig. 9). 

Inspection of the major components of these transitions (see computational SI document) 

shows that all strong transitions at wavelengths longer than 450 nm are essentially 

Ruphen MLCT states, in agreement with a wealth of precedent,18 generating a local 

Ru(III)/phen�– moiety in a triplet excited state.  Depending on the interaction between this 

complex unit in its 3MLCT excited state, and the sextet state of the Mn(II) ion, overall either 

a quartet or an octet state can arise following photo-excitation of the Ru(II) centre. Our 

calculations show that the quartet state is the lower of the two possibilities, indicating weak 

antiferromagnetic coupling between the Ru(III)/phen�– (triplet) and Mn(II) (sextet) moieties.  

If this quartet state is optimized, then the resulting electron distribution will reflect the 

relaxation by PET from Mn(II) to the short-lived Ru(III) centre, and the structure depicted in 

Fig. 7(c) is obtained.  The associated spin density shows that the molecule in this state has 

no spin density on Ru, i.e. the Ru centre is now Ru(II), and there is spin density on the 

phen ligand, indicating a phen�– species.  As a result, the formal charge on Mn should be 3+: 

this is also evident from our inspection of the coordination geometry around this ion which 

reveals substantial shortening of all of the Mn-ligand bond distances [cf. the overlay of the 

ground-state sextet geometry of Ru�Mn and this quartet excited state, Fig. 8(b)].  The 

equatorial metal-ligand bond distances reduce by 0.1 Å (all amine and oxygen donors) or by 

0.2 Å (pyridine N donor).  The axial bond distances reduce by 0.4 Å.  Thus a MnII–(phen�–)–

RuIII state is shown to be the lowest-energy state following photo-excitation, confirming the 

occurrence of the PET process that was implied by the TA measurements: this is the species 

that has a lifetime of 4.7 ns according to transient absorption data.  
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Rotation of the pyridyl unit around the C–C bond separating it from the alkyne linker 

to give the ‘perpendicular’ orientation mentioned earlier increases the energy of the quartet 

excited state by 25.1 kJ mol-1 (or 10.1 kT) compared to the co-planar arrangement – a 

considerably larger difference that was found for the ground state. This suggests that in the 

quartet MnII–(phen�–)–RuIII excited state there is less torsional motion of the pyridyl unit 

with respect to the phenanthroline unit, such that the perpendicular arrangement in the 

quartet state can only be accessed from the same arrangement in the sextet state. 

Further confirmation of the occurrence of the intramolecular PET process is provided 

by examination of the localisation of redox processes in ground-state Ru�Mn.  Fig. 8(c) and 

9(d) show the overlay between Ru�Mn, Ru�Mn+ and Ru�Mn–, respectively. Both oxidised 

and reduced species were geometry-optimized in the quintet state. The overlay between 

Ru�Mn and Ru�Mn+ shows a similar structural change to that seen in the overlay between 

the sextet and quartet states of Ru�Mn, as shown in Fig. 8(b). This indicates that one-

electron oxidation does indeed happen at the Mn centre, yielding a formal charge of 3+, and 

that this is therefore the site of the first oxidation. This localisation for the first oxidation 

process is also evident if one considers the difference in the total electron density between 

Ru�Mn+ (at the geometry of Ru�Mn) and Ru�Mn as depicted in 7(e): there is a decrease in 

electron density on the Mn moiety consistent with formation of Mn(III), but the electron 

density of the Ru(II) centre does not change upon one-electron oxidation of the complex.    

In contrast, upon reduction of Ru�Mn to Ru�Mn– there is almost no structural 

change, as is clear from the overlay in Fig. 8(d). The difference electron density shown in Fig. 

7(f) (between Ru�Mn– and Ru�Mn at the Ru�Mn– geometry) confirms that the one-electron 

reduction is associated with the phen ligand.  These observations from computational 

studies support our experimental findings.

(iii) Applications for imaging: relaxivity properties and luminescence imaging studies

Ru/Gd complexes.

Relaxivity measurements for Ru�Gd and Ru�Gd2 were performed at 400 MHz and 

298 K in D2O by the inversion-recovery technique, alongside the commercial contrast agent 

Magnevist® for comparison purposes. Solutions of each complex were prepared at five 

different concentrations (0 – 2.0 mM) and the longitudinal relaxation time (T1) for the 
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residual H2O peak in each sample was measured using a standard inversion-recovery pulse 

sequence.  The concentration-normalised longitudinal relaxivity value (r1) for each complex 

was then determined from a linear plot of longitudinal relaxation time against contrast 

agent concentration (SI, Fig. S25) in accordance with eq. 1:

1/T1
obs = 1/T1

0  + r1[M] (1)

where r1 is the relaxivity value, [M] is the complex concentration, T1
obs is the observed T1 

value in the presence of complex, and T1
0 is the value of T1 in the absence of any complex. 

Under the conditions used the reference compound Magnevist® has r1 = 4.6 mM-1 s-1, and 

our new compounds Ru�Gd and Ru�Gd2 have r1 = 6.2 and 13.6 mM-1 s-1, respectively. The 

increase in relaxivity between Magnevist® and both Ru/Gd complexes can be ascribed to a 

combination of greater complex bulk (and hence slower tumbling in solution) for Ru�Gd and 

Ru�Gd2, and possibly also the fact that the Gd(III) ion binding site in both Ru/Gd complexes 

is heptadentate, which leaves room for potentially two water molecules (q = 2), whereas 

Magnevist® has q = 1.  In fact the q value for a Eu(III) complex with the same 

aminocarboxylate donor set was previously determined as 1.6 ± 0.5,6a implying a mixture of 

mono- and di-aqua coordination in solution. These r1 values compare favourably with those 

for other oligonuclear complexes.4a

Given the promising relaxivity properties of Ru�Gd and Ru�Gd2 we were also 

interested to see if the Ru(II)-based luminescence could be used as the basis of cellular 

imaging. Live HeLa cells were initially incubated with either of these complexes at 

concentrations of 25 μM, 50 μM and 75 μM for six or sixteen hours.  Cells stained with 

either of the probes for the longer incubation period (16 h) at all concentrations were 

visually unhealthy when viewed under the microscope, and cells stained with the lowest 

concentration of the probes (25 μM) demonstrated only weak Ru(II)-based emission even at 

the longer incubation times. These results suggested, therefore, that shorter incubation 

times and higher concentrations would provide the optimum imaging conditions for both 

complexes. Accordingly, further cellular staining was conducted with live HeLa cells 

incubated with probe concentrations of 50 μM, 75 μM and 100 μM for four hours, or with 

an increased probe concentration (75 μM, 100 μM and 150 μM) over a shorter incubation 

period (two hours). In this instance all of the cells stained for each incubation time and at 
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each concentration for both probes were visually healthy when viewed under the 

microscope, apart from the cells incubated with a probe concentration of 150 μM, which 

were beginning to detach from the sterile coverslip.

Ru(II)-based emission was observed from all of the healthy cells when imaged with a 

confocal microscope (λexc = 405 nm, λem = 570-620 nm): however, the emission from the 

cells incubated for only 2 h (with either complex) was weak, suggesting lower cellular 

uptake. The optimum imaging conditions for each complex were found to be an incubation 

time of 4 h using a concentration of 50 μM, which allowed for reasonable cellular uptake 

without high levels of cytotoxicity being observed.  Example emission images of HeLa cells 

incubated with Ru�Gd and Ru�Gd2 (Fig. 10) show punctate cytoplasmic staining, suggesting 

that both of the probes localise in a specific organelle within the HeLa cells, such as the 

lysosomes or the mitochondria. Co-localisation studies with the commercial lysosomal and 

mitochondrial stains LysoTracker® Red and MitoTracker® Red were not successful as some 

absorbance of these stains at the excitation wavelength used (405 nm) produced red 

luminescence which interfered with that of the Ru(II) complexes. 

The cytotoxicity of Ru�Gd and Ru�Gd2 towards HeLa cells under the optimum 

imaging conditions (50 μM, 4 h) and also at an increased probe concentration (200 μM, 4 h) 

was assessed by clonogenic assay (SI, Fig. S26). Both of the complexes exhibited low toxicity 

under the conditions used to image the cells, with survival fractions of > 0.85 being 

observed in both cases. Increasing the probe concentration four-fold to 200 μM had the 

expected effect of lowering the cell survival fraction in comparison to the lower 

concentration, but good survival levels were still observed for both probes (> 0.8). The 

trinuclear probe Ru�Gd2 causes lower cell survival fractions at both probe concentrations 

when compared to dinuclear Ru�Gd. Overall, the ability of these complexes to act as stains 

in luminescence imaging – in addition to providing high relaxivity for water protons – is 

clear.  

Ru/Mn complexes

To see how the Mn(II) centres fared for relaxivity purposes compared to Gd(III), 

relaxivity experiments on Ru�Mn and Ru�Mn2 were carried out in D2O at 400 MHz and 298 

K, alongside the commercial Gd(III)-based contrast agent Magnevist® for comparison 

purposes (SI, Fig. S27).  Exactly the same methodology was used as for the Ru/Gd 
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complexes, affording relaxivity values of r1 = 3.7 mM-1
 s-1 and 4.8 mM-1

 s-1 for Ru�Mn and 

Ru�Mn2 respectively, which compare favourably to a range of mononuclear Mn(II) 

complexes in a similar N/O-donor coordination environment based predominantly on amine 

and carboxylate ligands.14c  Under the same experimental conditions, Magnevist® has a 

relaxivity value of r1 = 4.6 mM-1
 s-1. We recall that Ru�Gd and Ru�Gd2 have larger relaxivity 

values (r1 = 6.2 mM-1
 s-1 and 13.6 mM-1

 s-1, respectively). The smaller relaxivity values for the 

Ru/Mn complexes compared to the Ru/Gd analogues are of course principally attributable 

to the smaller magnetic moment of Mn(II) compared to Gd(III), but the smaller number of 

water molecules coordinated to the metal centre in solution will be significant too. In 

Magnevist® the Gd(III) ion is 9-coordinate from an octadentate DTPA ligand and one water 

molecule, whereas the smaller Mn(II) ion in the same ligand is coordinatively saturated by 

the ligand (q = 0).14d  We observed a hydration number of 1.6 ± 0.5 for Eu(III) ions in the 

heptadentate binding site used in these complexes,6a and by analogy with the DTPA 

complexes this value will be smaller when Mn(II) is coordinated at the same binding site due 

to its smaller size and preference for lower coordination numbers.  Although Ru�Mn2 does 

show relaxivity similar to that of Magnevist®, its use as a dual magnetic resonance / 

luminescence imaging agent is inhibited by the fact that the Ru(II)-based 3MLCT 

luminescence is partly quenched by the Mn(II) ions; the same is true for Ru�Mn. 

Conclusion

The ligand skeleton containing a phenanthroline unit (for coordination to a 

photosensitising complex core) with one or two pendant pyridyl/aminodicarboxylate units 

connected via alkyne linkages has been used to prepare a variety of d/d and d/f 

heterodinuclear and heterotrinuclear complexes. The central photosensitising unit is 

{Ru(bipy)2(phen)}2+ in all cases. The secondary metal ions at the pendant sites are either 

from the f-block [Gd(III) for its relaxivity; Nd(III) or Yb(III) for their near-infrared 

luminescence] or the d-block [Mn(II) for its relaxivity and ability to effect PET to the excited 

state of the Ru(II) unit; and Zn(II) as a control for comparison with the Mn(II) complexes].

A range of interesting behaviours has emerged. The complexes Ru�Gd and Ru�Gd2 

show relaxivity of water protons that is high for the number of Gd(III) ions that they contain 

because of their size and, therefore, slow rotation in solution; in addition they retain the 

characteristic phosphorescence of the {Ru(bipy)2(phen)}2+ core which can be used for 
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luminescence imaging of cells such that they have potential as dual (luminescence and MRI 

relaxivity) imaging agents. The analogous Ru/Yb and Ru/Nd complexes display RuYb and 

RuNd (respectively) photoinduced energy-transfer, leading to partial quenching of the 

Ru(II)-based emission and sensitised near-infrared luminescence from the lanthanide unit. 

The energy-transfer to Nd(III) is much faster than to Yb(III) because of the higher density of 

f-f excited states in the correct spectral region on Nd(III), which can act as energy acceptors.

In the Ru/Mn complexes Ru�Mn and Ru�Mn2 the presence of the Mn(II) ions 

likewise provide a basis for relaxivity of water protons, with relaxivity values competitive 

with other Mn(II)-based complexes. In this case however the phosphorescence of the 

{Ru(bipy)2(phen)}2+ core is substantially quenched by the Mn(II) ions – similar quenching 

does not occur when Mn(II) is replaced by Zn(II). Ultrafast transient absorption experiments 

on Ru�Mn (and Ru�Zn as a control) reveal the presence of fast (< 1 ns) PET from the Mn(II) 

ion to the Ru(II)-based 3MLCT state, i.e. MnII–(phen�–)–RuIII  MnIII–(phen�–)–RuII.  The 

resulting MnIII–(phen�–) state decays with  ≈ 5 ns and is non-luminescent. This fast 

quenching mechanism does not always occur, as shown by the presence of residual Ru(II)-

based luminescence in Ru�Mn and Ru�Mn2 (tens of ns lifetime), which we ascribe to the 

presence of a conformer in which the central and peripheral metal complex centres are 

decoupled by rotation of the pyridyl units such that they are perpendicular to the phen unit.
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Experimental

General details. 

All reagents, unless otherwise stated, were purchased from commercial sources 

(Sigma-Aldrich, Alfa Aesar, Fluorochem) and used as received. All solvents were of HPLC 

grade quality and obtained from Fisher, excluding deuterated solvents (Sigma-Aldrich, Acros 

Organics, VWR). Dry solvents were obtained from the Grubbs dry solvent system at the 

University of Sheffield. The following materials were prepared using literature procedures: 

4-bromo-2,6-bis[N,N-bis(tert-butoxycarbonylmethyl)aminomethyl]pyridine (compound B),12 

3-bromo-1,10-phenanthroline,9 3,8-dibromo-1,10-phenanthroline,9 [Ru(bipy)2Cl2]�2H2O.26

Instrumentation. 

One-dimensional 1H and 13C NMR spectra and two-dimensional COSY spectra were 

recorded using either a Bruker Avance III HD 400 spectrometer or a Bruker Avance III HD 

500 spectrometer. Electrospray ionisation (ES) mass spectra were recorded on an Agilent 

Technologies 6530 Accurate-Mass Q-TOF LC/MS instrument (University of Sheffield). High-

resolution spectra were recorded on a Bruker MaXis plus instrument (University of 

Warwick). UV/Vis spectra were measured on a Varian Cary 50 Bio UV-Visible 

Spectrophotometer.  

Photoluminescence spectra were recorded on a Horiba Jobin Yvon Fluoromax-4-

Spectrofluorimeter and were corrected using correction files included within the 

FluorEssenceTM software. Near-IR emission and excitation spectra of the Yb(III) and Nd(III) 

complexes were recorded on an Edinburgh Instrument FP920 Phosphorescence Lifetime 

Spectrometer equipped with a 450 watt steady state xenon lamp; a 5 watt microsecond 

pulsed xenon flashlamp (with single 300 mm focal length excitation and emission 

monochromators in Czerny Turner configuration); a red sensitive photomultiplier in a Peltier 

(air cooled) housing (Hamamatsu R928P); and a liquid nitrogen cooled NIR photomultiplier 

(Hamamatsu), and were corrected using correction files included within the software. Near-

IR emission spectra were recorded using a 645 nm longpass filter. Low-temperature 

emission spectra in the visible region were measured in frozen (77 K) glasses of 

ethanol/methanol (4:1, v:v). Decay curves generated by single photon counting (SPC) were 
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fitted using Origin® software and the quality of fit judged by minimization of reduced chi-

squared and sum-of-residuals squared values.

NMR relaxivity measurements.

Relaxivity measurements for Ru�Gd, Ru�Gd2, Ru�Mn, Ru�Mn2 and the commercial 

contrast agent gadopentetic acid (‘Magnevist®’) were performed on a Bruker Avance III 400 

spectrometer at 298 K. Each compound under investigation was dissolved in D2O at five 

different concentrations (0 – 2.0 mM) and the spin-lattice relaxation time (T1) for the 

residual H2O peak in each sample measured using a standard inversion-recovery pulse 

sequence with 12 recovery times varying between 0.001-60 seconds for gadopentetic acid 

and 15 recovery times varying between 0.001-15 seconds for the four new complexes. 

Relaxivity values were determined from a linear plot of spin-lattice relaxation time (T1) 

against contrast agent concentration (0 – 2.0 mM) in accordance with eq. 1.

Cell imaging studies.

HeLa cells were cultured in Dulbecco’s modified eagle medium (DMEM, high glucose 

with L-glutamine) purchased from Lonza (500 mL) and supplemented with 10 % (v/v) foetal 

bovine serum (FBS). Cultures were grown as monolayers in T-75 flasks at 37 °C in a 5 % CO2 / 

95 % air (v/v) environment. Once at 75-80 % confluency, cells were subcultured using 

trypsin- EDTA (2 mL). Subcultures for live cell staining were seeded on to sterile coverslips 

(15 mm x 15 mm) in 6-well plates (100,000/well) and those for clonogenic assays were 

seeded directly in to 6-well plates (200-400/well). All subcultures were incubated in DMEM 

at 37 °C in a 5 % CO2 / 95 % air (v/v) environment overnight to allow for adhesion to the 

well-plate or coverslip.

For cell staining, Ru�Gd and Ru�Gd2 were dissolved in sterile, double-distilled water 

to form stock solutions with a concentration of 1 mM. Further dilution to generate working 

solutions of 50-200 μM was achieved using DMEM supplemented with 10 % (v/v) FBS. After 

removal of the growth media, cells were washed with sterilised phosphate-buffered saline 

(PBS, 3 x 2 mL/well) before being treated with a solution of the appropriate Ru/Gd complex 

at concentrations of 50 – 200 μM (2 mL/well). Cells were incubated for 2 h or 4 h at 37 °C in 

DMEM in a 5 % CO2 / 95 % air (v/v) environment. After the desired incubation time the 

growth medium was removed and the cells were washed with PBS (3 x 2 mL/well) to 

remove excess metal complex. The cells were then treated with paraformaldehyde solution 

Page 25 of 57 Dalton Transactions

D
al
to
n
Tr
an
sa
ct
io
ns

A
cc
ep
te
d
M
an
us
cr
ip
t

P
u
b
li

sh
ed

 o
n
 0

5
 A

p
ri

l 
2
0
1
9
. 
D

o
w

n
lo

ad
ed

 b
y
 U

n
iv

er
si

ty
 o

f 
S

h
ef

fi
el

d
 o

n
 4

/1
5
/2

0
1
9
 4

:1
5
:5

1
 P

M
. 

View Article Online

DOI: 10.1039/C9DT00954J



26

(4 % in PBS, 1 mL/well) for 20 minutes, before being washed again with PBS (3 x 2 mL/well). 

The coverslips were mounted on to microscope slides (Immu-MountTM, Thermo Scientific) 

and left to dry for a minimum of 30 minutes before imaging. Confocal images of fixed HeLa 

cells were recorded using an inverted Nikon A1 confocal microscope with a 60x lens (CFI 

Plan Apochromat VC 60x oil, NA 1.4). A diode laser (405 nm) was used for excitation of the 

Ru/Gd complexes and a 570-620 nm emission filter was used.

Toxicity assay

After removal of the growth media, live HeLa cells were treated with a solution of 

Ru�Gd or Ru�Gd2 complex in media at both 50 μM and 200 μM (1 mL/well). Cells in four 

control wells were left untreated and immersed in DMEM (2 mL/well). Cells were incubated 

for 4 h at 37 °C in a 5 % CO2 / 95 % air (v/v) environment. Following incubation, the 

treatment solution was removed, and the cells immersed in fresh DMEM (2 mL/well) and 

incubated for seven to ten days at 37 °C in a 5 % CO2 / 95 % air (v/v) environment until 

visible cell colonies had formed. The growth medium was removed, and the cells were fixed 

and stained with methylene blue in methanol (4 g/L) for a minimum of 30 minutes. The 

staining solution was removed, and the number of colonies counted, with each colony 

representing a surviving cell. The ‘survival fraction’ for cells treated with the Ru/Gd 

complexes is the number of colonies formed after treatment with Ru/Gd complexes 

compared to controls in the absence of complex. Experiments were conducted in duplicate 

for seeding densities of 200 and 400 cells/well and repeated on three separate occasions. 

Survival fractions quoted are averages of the three repeats.

Transient absorption spectroscopy measurements

A Ti:Sapphire regenerative amplifier (Spitfire ACE PA-40, Spectra-Physics) provided 

800 nm pulses (40 fs fwhm, 10 kHz, 1.2mJ); 400 nm for sample excitation was provided by 

doubling a portion of the 800 nm output, in a β-barium borate crystal within a commercially 

available doubler/tripler (TimePlate, Photop Technologies). White light, supercontinuum, 

probe pulses were generated in situ by using a portion of the Ti:sapphire amplifier output, 

focused onto a CaF2 crystal, allowing for the generation of light spanning 340 – 790 nm. 

Detection was achieved using a commercial transient absorption spectrometer (Helios, 

Ultrafast Systems) and was performed by a CMOS sensor for the UV/Vis spectral range. The 
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relative polarisation of the pump and probe pulses was set to the magic angle of 54.7˚ for 

anisotropy-free measurements.  Samples were held in 1 mm path length quartz cells. The 

optical density at the excitation wavelength was kept at approximately 0.5. The optical 

density across the probe range was kept below 0.8.

Excited state dynamics were elucidated by global lifetime analysis, performed in 

Glotaran.27 Difference spectra were baseline corrected through subtraction of an average of 

the pre-excitation spectra.  Sequential kinetic models were then applied to each dataset to 

model the excited state dynamics. A polynomial curve was fit to the data to account for the 

group velocity dispersion of the probe light in the kinetic model. The number of lifetime 

components was systematically varied in order to minimise the residual intensity between 

the experimental and model data, where the minimum χ2 value had been obtained.

Synthesis

4-(Trimethylsilyl)ethynyl-2,6-bis[N,N-bis(tert-butoxycarbonylmethyl)-

aminomethyl]pyridine (compound CSi). A mixture of 4-bromo-2,6-bis[N,N-bis(tert-

butoxycarbonylmethyl)-aminomethyl]pyridine (compound B; 6.89 g, 10.2 mmol), 

Pd(PPh3)2Cl2 (0.50 g, 0.712 mmol), CuI (0.30 g, 1.58 mmol) and PPh3 (0.10 g, 0.381 mmol) 

were added to anhydrous iPr2NH (30 cm3) and the mixture deoxygenated with argon gas for 

30 minutes. Trimethylsilyl-acetylene (15 cm3, 108 mmol) was added with vigorous stirring 

and the resulting mixture heated at 83 °C for 24 hours. Once cooled, the reaction was 

filtered through celite® and washed with CH2Cl2 until the washings ran clear. The solvent 

was then removed under reduced pressure to afford a black residue, which was flash-

filtered through silica gel (200-300 mesh) with CH2Cl2 as eluent. The crude product was then 

purified further using column chromatography on silica gel (200-300 mesh) with petroleum 

ether/ ethyl acetate (9:1 to 8:2, v:v) as the eluent to afford 4-(trimethylsilyl)ethynyl-2,6-

bis[N,N-bis(tert-butoxy-carbonylmethyl)aminomethyl]pyridine (CSi: 4.25 g, 60 %) as a dark 

yellow oil. 1H NMR (400 MHz, CDCl3): δ = 0.18 (s, 9H, SiMe3); 1.42 (s, 36H, tBu); 3.43 (s, 8H, 

NCH2–ester); 3.96 (s, 4H, NCH2–pyridyl); 7.48 (s, 2H, pyridyl H3/H5). ESMS: m/z = 690.4 [M + 

H]+, 712.4 [M + Na]+.

4-Ethynyl-2,6-bis[N,N-bis(tert-butoxycarbonylmethyl)-aminomethyl]pyridine 

(compound C). Protected compound CSi (0.75 g, 1.09 mmol) and tetra-n-butylammonium 

fluoride (0.43 g, 1.63 mmol) were dissolved in THF (45 mL) and stirred at RT for 16 hours. 
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The solvent was then removed under reduced pressure and the resulting residue dissolved 

in CH2Cl2 (30 cm3), washed with water (2 x 30 cm3) and dried (MgSO4). The solvent was 

removed under reduced pressure to afford compound C (0.62 g, 92 %) as a dark yellow oil. 

Due to the reactivity of the alkyne substituent this compound was used immediately after 

preparation without further characterisation.

[Ru(bipy)2(Br-phen)](PF6)2 (compound A). A mixture of 3-bromo-1,10-

phenanthroline (0.95 g, 3.68 mmol) and cis-[Ru(bipy)2Cl2]�2H2O (1.90 g, 3.65 mmol) in 

CH3OH (30 cm3) was heated to reflux for 16 hours. Once cooled, the solution was 

concentrated under reduced pressure and an excess of saturated KPF6(aq) solution (20 cm3) 

was added. The solution was left at 4 °C for 16 hours and the resulting precipitate dissolved 

in CH2Cl2 (30 cm3) and washed with water (3 x 25 cm3). The combined aqueous layers were 

then re-extracted with further portions of CH2Cl2 (2 x 25 cm3) and the resulting organic 

extracts combined and dried (MgSO4). The solvent was removed under reduced pressure to 

afford compound A (3.51 g) as a red solid in quantitative yield. 1H NMR (400 MHz, d6-

acetone): δ = 7.36-7.42 (m, 2H, bipy); 7.60-7.66 (m, 2H, bipy); 7.85 (dd, 1H, J = 1.5 and 5.6 

Hz, bipy); 7.94 (dd, 1H, J = 5.2 and 8.2 Hz, phen); 8.04 (dd, 1H, J = 1.5 and 5.6 Hz, bipy); 8.10 

(dd, 1H, J = 1.5 and Hz, bipy); 8.12-8.18 (m, 2H, bipy); 8.19 (dd, 1H, J = 1.5 and 5.6 Hz, bipy); 

8.25 (tt, 2H, J = 1.5 and 7.9 Hz, bipy); 8.35 (d, 1H, J = 8.9 Hz, phen); 8.44 (dd, 1H, J = 1.2 and 

5.2 Hz, phen); 8.45 (d, 1H, J = 8.9 Hz, phen); 8.47 (d, 1H, J = 1.9 Hz, phen); 8.78 – 8.87 (m, 

5H, 4 x bipy, 1 x phen); 9.06 (d, 1H, J = 1.9 Hz, phen).  ESMS: m/z = 337 [M – 2PF6]2+. High 

resolution ESMS: m/z = 337.0101 (calculated for [C32H23N6BrRu]2+, 337.0099).

[Ru(bipy)2(Br2-phen)](PF6)2 (compound D). This was prepared from 3,8-dibromo-

1,10-phenanthroline (0.33 g, 0.98 mmol) and cis-[Ru(bipy)2Cl2]�2H2O (0.51 g, 0.98 mmol) 

exactly as described above for complex A, to afford compound D (1.02 g) as a red solid in 

quantitative yield. 1H NMR (400 MHz, d6-acetone): δ = 7.40 (ddd, 2H, J = 1.2, 5.6 and 7.9 Hz, 

bipy); 7.63 (ddd, 2H, J = 1.2, 5.6 and 7.9 Hz, bipy); 8.01 (dd, 2H, J = 1.5 and 5.6 Hz, bipy); 8.12 

(dd, 2H, J = 1.5 and 5.6 Hz, bipy); 8.16 (td, 2H, J = 1.5 and 7.9 Hz, bipy); 8.25 (td, 2H, J = 1.5 

and 7.9 Hz, bipy); 8.40 (s, 2H, phen); 8.48 (d, 2H, J = 1.9 Hz, phen); 8.79 (d, 2H, J = 7.9 Hz, 

bipy); 8.83 (d, 2H, J = 7.9 Hz, bipy); 9.07 (d, 2H, J = 1.9 Hz, phen).  ESMS: m/z = 376.0 [M – 

2PF6]2+. High resolution ESMS: m/z = 375.9650 (calculated for [C32H22N6Br2Ru]2+, 375.9648).

Compound Ru�E. A mixture of compound A (0.53 g, 0.55 mmol), (dppf)PdCl2.CH2Cl2 

(0.05 g, 0.06 mmol) and CuI (0.01 g, 0.05 mmol) in anhydrous DMF / iPr2NH (6 cm3, 5:1, v:v) 
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was deoxygenated with argon for 30 minutes. To this was added dropwise a solution of 

compound C (0.62 g, 1.00 mmol) in deoxygenated anhydrous DMF / iPr2NH (3 cm3, 5:1, v:v). 

The solution was stirred at room temperature for 16 hours under argon, before removal of 

the solvent under reduced pressure. The resulting brown solid was purified by column 

chromatography on silica gel (200-300 mesh) with CH3CN/H2O/sat. KNO3(aq) (100:0:0 to 

100:4:2, v:v:v) as the eluent. The solvent was then removed under reduced pressure and the 

solid dissolved in CH2Cl2 (30 cm3), washed with an excess of saturated KPF6(aq) solution (20 

cm3) and separated. The aqueous layer was extracted with further portions of CH2Cl2 (2 x 15 

cm3) and the combined organic layers then washed with water (2 x 15 cm3) and dried 

(MgSO4). The solvent was removed under reduced pressure to afford complex Ru�E (0.41 g, 

50 %) as a dark red solid. 1H NMR (400 MHz, d6-acetone): δ = 1.45 (s, 36H, tBu); 3.49 (s, 8H, 

N–CH2–ester); 4.00 (s, 4H, CH2–pyridyl); 7.37-7.45 (m, 2H, bipy); 7.61 (s, 2H, pyridyl H3/H5); 

7.62-7.67 (m, 2H, bipy); 7.88 (d, 1H, J = 5.6 Hz, bipy); 7.96 (dd, 1H, J = 5.2 and 8.2 Hz, phen); 

8.09 (d, 1H, J = 5.6 Hz, bipy); 8.13 (d, 1H, J = 5.6 Hz, bipy); 8.14-8.20 (m, 2H, bipy); 8.21 (d, 

1H, J = 5.6 Hz, bipy); 8.26 (t, 2H, J = 7.9 Hz, bipy); 8.40-8.50 (m, 3H, phen); 8.67 (d, 1H, J = 1.9 

Hz, phen); 8.79-8.88 (m, 5H, 4 x bipy,1 x phen); 9.04 (d, 1H, J = 1.9 Hz, phen). ESMS: m/z = 

604.7 [M – 2PF6]2+. High resolution ESMS: m/z = 604.7318 (calculated for [C65H73N9O8Ru]2+, 

604.7316).

Compound Ru�L. A solution of Ru�E (73 mg, 0.049 mmol) in CH2Cl2 (3 cm3) and 

trifluoroacetic acid (TFA, 3 cm3) was stirred at room temperature for 18 hours. The solvent 

was then removed under reduced pressure to yield a red solid. To remove any residual TFA 

the solid was dissolved in CH2Cl2 (10 cm3) and then evaporated to dryness in vacuo. This 

process was repeated ten times. The solid was then washed with CH3OH (10 x 10 cm3) 

following the same procedure. Finally, the red solid was dissolved in the minimum amount 

of CH3OH and precipitated with an excess of diethyl ether. The solid was collected by 

centrifugation and dried under a stream of N2 to yield Ru�L (61 mg, 98 %) as a red solid. 1H 

NMR (500 MHz, d6-DMSO, 303 K): δ = 3.46 (s, 8H, N–CH2–acid); 3.94 (s, 4H, CH2–pyridyl); 

7.33-7.38 (m, 2H, bipy); 7.53 (d, 1H, J = 5.3 Hz, bipy); 7.56 (s, 2H, pyridyl H3/H5); 7.56-7.62 

(m, 2H, bipy); 7.75 (d, 2H, J = 5.3 Hz, bipy); 7.87 (d, 1H, J = 5.3 Hz, bipy); 7.90 (dd, 1H, J = 5.2 

and 8.2 Hz, phen); 8.07-8.16 (m, 3H, 2 x bipy, 1 x phen); 8.21 (t, 2H, J = 7.8 Hz, bipy); 8.29 (d, 

1H, J = 1.0 Hz, phen); 8.35 (d, 1H, J = 8.8 Hz, phen); 8.44 (d, 1H, J = 8.8 Hz, phen); 8.78-8.90 

(m, 5H, 4 x bipy, 1 x phen); 9.16 (d, 1H, J = 1.0 Hz, phen).  ESMS: m/z = 492.6 [M – 2PF6]2+, 
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328.7 [M – 2PF6 + H]3+. High resolution ESMS: m/z = 492.6056 (calculated for 

[C49H41N9O8Ru]2+, 492.6055). 

Compound Ru�E2. A mixture of compound D (1.02 g, 0.98 mmol), (dppf)PdCl2.CH2Cl2 

(0.05 g, 0.06 mmol) and CuI (0.01 g, 0.05 mmol) dissolved in anhydrous DMF / iPr2NH (6 cm3, 

5:1, v:v) was deoxygenated with argon for 30 minutes. To this was added dropwise a 

solution of C (1.28 g, 2.07 mmol) in deoxygenated anhydrous DMF / iPr2NH (3 cm3, 5:1, v:v). 

The solution was stirred at room temperature for 16 hours under argon before the addition 

of an additional portion of C (1.28 g, 2.07 mmol) in the same deoxygenated solvent mixture. 

The reaction was stirred under argon for 24 hours before the solvent was removed under 

reduced pressure. The resulting brown solid was purified by column chromatography on 

silica gel (200-300 mesh) with CH3CN/H2O/sat. KNO3(aq) (100:0:0 to 100:4:2, v:v:v) as the 

eluent. The solvent was then removed under reduced pressure and the solid dissolved in 

CH2Cl2 (30 cm3), washed with an excess of saturated KPF6(aq) solution (20 cm3) and 

separated. The aqueous layer was extracted with further portions of CH2Cl2 (2 x 15 cm3) and 

the combined organic layers then washed with water (2 x 15 cm3), dried (MgSO4) and the 

solvent removed under reduced pressure. Further purification was then achieved by size 

exclusion chromatography on Sephadex® LH-20 in CH3OH. The solvent was removed under 

reduced pressure to afford Ru�E2 (0.94 g, 45 %) as a dark red solid. 1H NMR (400 MHz, d6-

acetone): δ = 1.45 (br s, 72H, tBu); 3.49 (br s, 16H, N–CH2–ester); 3.99 (br s, 8H, CH2-pyridyl); 

7.40-7.45 (m, 2H, bipy); 7.56 (s, 4H, pyridyl H3/H5); 7.60-7.66 (m, 2H, bipy); 8.05 (d, 2H, J = 

5.6 Hz, bipy); 8.12-8.21 (m, 4H, bipy); 8.25 (t, 2H, J = 7.9 Hz, bipy); 8.48 (s, 2H, phen); 8.67 (d, 

2H, J = 1.9 Hz, phen); 8.85 (m, 4H, bipy); 9.05 (d, 2H, J = 1.9 Hz, phen). ESMS: m/z = 912.4 [M 

– 2PF6]2+, 608.6 [M – 2PF6 + H]3+. High resolution ESMS: m/z = 912.4073 (calculated for 

[C98H122N12O16Ru]2+, 912.4067).

Compound Ru�L2. A solution of Ru�E2 (92 mg, 0.044 mmol) in CH2Cl2 (3 cm3) and TFA 

(3 cm3) was stirred at room temperature for 18 hours. The solvent was then removed under 

reduced pressure to yield a red solid. This was purified and isolated exactly as described for 

Ru�L (above) and dried under a stream of N2 to yield Ru�L2 (71 mg, 98 %) as a red solid. 1H 

NMR (400 MHz, D2O): δ = 4.16 (br s, 16H, N–CH2–acid); 4.74 (br s, 8H, CH2-pyridyl); 7.17-

7.31 (br m, 2H, bipy) 7.37-7.48 (br m, 2H, bipy); 7.65 (br d, 2H, J = 4.0 Hz, bipy); 7.69 (br s, 

4H, pyridyl H3/H5); 7.90 (br d, 2H, J = 4.8 Hz, bipy); 7.98-8.06 (br m, 2H, bipy); 8.06-8.16 (br 

m, 2H, bipy); 8.25 (br s, 2H, phen); 8.35 (br s, 2H, phen); 8.51-8.63 (br m, 4H, bipy); 8.74 (br 
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s, 2H, phen). ESMS: m/z = 688.2 [M – 2PF6]2+. High resolution ESMS: m/z = 688.1568 

(calculated for [C66H58N12O16Ru]2+, 688.1563).

Compound Ru�Gd. To a solution of Ru�L (45 mg, 0.035 mmol) in water (3 cm3) at 0 

°C was added dropwise a solution of GdCl3.6H2O (14 mg, 0.038 mmol) in water (0.5 cm3); 

the mixture was stirred and allowed to reach room temperature. After 1 hour the solution 

was adjusted to pH 5-6 using a solution of NaOH(aq) (1M) and was then left to stir at room 

temperature for a further 18 hours. Saturated KPF6(aq) solution was then added to produce a 

red precipitate (hexafluorophosphate salt of mono-cationic Ru�Gd) which was filtered and 

washed with water. This red solid was dissolved in the minimum amount of CH3OH and 

precipitated with an excess of diethyl ether. The precipitate was collected by centrifugation 

and purified further using Sephadex® LH-20 with CH3OH. The solvent was removed under 

reduced pressure and the resulting red solid dried under a stream of N2. Counterion 

exchange was then achieved using Dowex® 1x2 chloride form (100-200 mesh) in water. The 

aqueous solution was filtered, the water removed under reduced pressure, and the 

resulting solid dried under a stream of N2 to yield Ru�Gd (chloride salt; 35 mg, 84 %) as a red 

solid. ESMS: m/z = 570.1 [M – Cl + H]2+, 380.4 [M – Cl + 2H]3+. High resolution ESMS: m/z = 

570.0562 (calculated for [C49H37N9O8RuGd + H]2+, 570.0558).

Compound Ru�Gd2 was prepared using the same method as described above for 

Ru�Gd, from Ru�L2 (100 mg, 0.060 mmol) and GdCl3.6H2O (59 mg, 0.159 mmol) in water, 

but without the counter-ion exchange step as Ru�Gd2 is neutral. At the end of the reaction 

the solution was purified by chromatography on Sephadex® LH-20 with water. Evaporation 

of the solvent afforded Ru�Gd2 (70 mg, 69 % yield) as a red solid. ESMS: m/z = 842.1 [M + 

2H]2+, 852.5 [M + Na + H]2+, 864.6 [M + 2Na]2+. High resolution ESMS: m/z = 842.5664 

(calculated for [C66H50N12O16RuGd2+2H]2+, 842.5530). 

Compound Ru�Nd. A solution of Ru�L (15 mg, 0.012 mmol) in water (3 cm3) was 

adjusted to pH 5-6 using NaOH(aq) (0.1 M). With stirring, a solution of Nd(OTf)3 (11 mg, 0.019 

mmol) in water (0.5 cm3) was added dropwise. The mixture was stirred at room 

temperature and the pH readjusted to 5-6 using NaOH(aq) (0.1 M) when necessary. After 18 

hours, a small portion of Dowex® 1x2 chloride form (100-200 mesh) was added and the 

mixture stirred at room temperature for a further 24 hours. The solution was then filtered, 

concentrated under reduced pressure and purified on Sephadex® G-15 eluting with water. 

The solvent was removed under reduced pressure and the resulting solid dried under a 
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stream of N2 to yield Ru�Nd (chloride salt; 13 mg, 95 %) as a red solid. ESMS: m/z = 563.0 [M 

– Cl + H]2+, 375.7 [M – Cl + 2H]3+. High resolution ESMS: m/z = 563.0497 (calculated for 

[C49H37N9O8
102Ru144Nd + H]2+, 563.0488).

Compound Ru�Yb was prepared in exactly the same way as Ru�Nd, with Ru�L (18 

mg, 0.014 mmol) and Yb(OTf)3 (14 mg, 0.023 mmol) affording 14 mg (83 % yield) of Ru�Yb as 

a red solid. ESMS: m/z = 578.1 [M – Cl + H]2+. High resolution ESMS: m/z = 578.0632 

(calculated for [C49H37N9O8
102Ru173Yb + H]2+, 578.0632). 

Compound Ru�Nd2 was prepared in the same way as for Ru�Gd2, with Ru�L2 (11.4 

mg, 0.007 mmol) and Nd(OTf)3 (10 mg, 0.017 mmol) affording 11 mg (97 % yield) of Ru�Nd2 

as a red solid after purification on Sephadex® G-15 eluting with water. ESMS: m/z = 829.0 

[M + 2H]2+, 553.0 [M + 3H]3+, 415.0 [M + 4H]4+. High resolution ESMS: m/z = 829.0404 

(calculated for [C66H50N12O16
102Ru144Nd2 + 2H]2+, 829.0429).

Compound Ru�Yb2 was prepared in the same way as for Ru�Gd2, with Ru�L2 (7.4 

mg, 0.004 mmol) and Yb(OTf)3 (7 mg, 0.011 mmol) affording 7.5 mg (99 % yield) of Ru�Yb2 

after purification on Sephadex® G-15 eluting with water. ESMS: m/z = 858.1 [M + 2H]2+, 

572.4 [M + 3H]3+, 429.5 [M + 4H]4+. High resolution ESMS: m/z = 858.0683 (calculated for 

[C66H50N12O16
102Ru173Yb2 + 2H]2+, 858.0710).

Compound Ru�Mn. To a stirred solution of Ru�L (130 mg, 0.102 mmol) in water (3 

cm3), adjusted to pH 5 – 6 with NaOH(aq), was added dropwise a solution of MnCl2.4H2O (26 

mg, 0.131 mmol) in water (0.5 cm3). The mixture was stirred at room temperature and the 

pH re-adjusted to 5 – 6 if necessary. After 18 hours the reaction mixture was concentrated 

under reduced pressure and purified on Sephadex® G-15, eluting with water. The solvent 

was removed under reduced pressure and the resulting red solid dried under a stream of N2 

to yield Ru�Mn (100 mg, 95 %) as a red solid. ESMS: m/z = 519.1 [M + 2H]2+. High resolution 

ESMS: m/z = 519.0658 (calculated for [C49H37N9O8RuMn + 2H]2+, 519.0674).

Compound Ru�Zn. This was prepared in exactly the same way as Ru�Mn, from Ru�L 

(38 mg, 0.03 mmol) and ZnCl2.xH2O (10 mg, ca. 0.049 mmol) to give Ru�Zn (25 mg, 80 %) as 

a red solid. 1H NMR (400 MHz, D2O): δ = 3.34-3.52 (m, 8H, NCH2-CO2); 4.15 (s, 4H, NCH2-

pyridyl); 7.16-7.26 (m, 2H, bipy); 7.39-7.46 (m, 2H, bipy); 7.48 (s, 1H, pyridyl H3 or H5); 7.52 

(s, 0.5H, pyridyl H3 or H5); 7.54 (s, 0.5H, pyridyl H3 or H5); 7.58 (d, 1H, J = 5.3 Hz, bipy); 7.68 

(d, 1H, J = 5.3 Hz, bipy); 7.73 (t, 1H, J = 6.5 Hz, phen); 7.91 (d, 1H, J = 5.3 Hz, bipy); 7.94 (d, 

1H, J = 5.3 Hz, bipy); 7.99 (t, 2H, J = 7.5 Hz, bipy); 8.09 (t, 2H, J = 7.5 Hz, bipy); 8.18 (d, 1H, J = 
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4.8 Hz, phen); 8.19-8.29 (m, 2H, phen); 8.35 (d, 1H, J = 4.5 Hz, phen); 8.50-8.64 (m, 5H, 4 x 

bipy, 1 x phen); 8.76 (s, 0.5H, phen); 8.79 (s, 0.5H, phen). ESMS: m/z = 523.6 [M + 2H]2+. 

High resolution ESMS: m/z = 523.5632 (calculated for [C49H37N9O8RuMn + 2H]2+, 523.5626).

Compound Ru�Mn2. This was prepared in the same way as Ru�Mn, from Ru�L2 (41 

mg, 0.025 mmol) and MnCl2�4H2O (12 mg, 0.061 mmol), affording after purification 

(Sephadex® G-15, eluting with water) pure Ru�Mn2 as its disodium salt (25 mg, 67 %). ESMS: 

m/z = 739.1 [M – 2Na]2–. High resolution ESMS: m/z = 739.0598 (calculated for 

[C66H50N12O16
102RuMn2]2–, 739.0631).

Compound Ru�Zn2. This was prepared in the same way as Ru�Zn, from Ru�L2 (9 mg, 

5.2 µmol) and ZnCl2�xH2O (10 mg, ca. 49 µmol), affording after purification (Sephadex® G-

15, eluting with water) pure Ru�Zn2 as its disodium salt (7 mg, 82 %). ESMS: m/z = 748.1 [M 

– 2Na]2–. High resolution ESMS: m/z = 748.0532 (calculated for [C66H50N12O16
102Ru64Zn2]2–, 

748.0553).

Computational Details

All calculations were performed with Gaussian 09 v. D.0128 using density-functional 

theory. The functional used was B3LYP29 with empirical dispersion corrections through the 

GD3BJ keyword.30  The basis set used consisted of SDD31 on Ru or lanthanide atoms, and 6-

311G(d,p)32,33 on all other atoms. All bulk solvent was described using the PCM method34,35 

as implemented in Gaussian using the provided parameters for water. No additional water 

molecules were included to simulate hydrogen bonding. 

All Ru�Mn complexes (and their reduced/oxidized forms) were assumed to be in the 

high-spin configuration for Mn, where relevant. During the calculations it was found that 

there is a large manifold of potential sextet states for Ru�Mn.  Different starting geometries 

will lead to different final electronic states for a similar final geometry with the pyridine 

fragment of the Mn(II) moiety co-planar with the phen fragment of the Ru(II) moiety. In fact, 

the lowest sextet energies were obtained by starting from a geometry in which the pyridine 

fragment of the Mn(II) moiety is perpendicular to the phen fragment of the Ru(II) fragment, 

i.e. through restricting the size of the conjugated system.  Coupling between the excited-

state (3MLCT) Ru(II) and ground-state Mn(II) moieties was assumed to be weakly anti-

ferromagnetic upon excitation: preliminary calculations on the octet state (which would 

arise from ferromagnetic coupling) of photo-excited Ru�Mn all show a higher energy than 
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the corresponding quartet states.  For all optimised structures frequencies were calculated 

in the harmonic approximation. Only small imaginary frequencies (< 15 cm−1) were found. 

These molecules were considered to be true minima, since such small imaginary values are 

commonly associated with errors in the integration grids used. 

All absorption spectra were calculated with the TD-DFT method36 as implemented in 

G09.  All images were created with in-house developed software, which is available upon 

request. The overlays were created using ROCS.37,38 Finally, the computational ESI was 

created using in-house developed software based on the Open Eye Toolkit.39 
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Scheme 1: Previously-reported Ir(III)/Ln(III) complexes based on a bridging ligand skeleton 

combining phenanthroline and polyaminocarboxylate binding sites for the Ir(III) and Ln(III) 

metal centres, respectively, connected by an alkyne spacer (see ref. 6).

Page 40 of 57Dalton Transactions

D
al
to
n
Tr
an
sa
ct
io
ns

A
cc
ep
te
d
M
an
us
cr
ip
t

P
u
b
li

sh
ed

 o
n
 0

5
 A

p
ri

l 
2
0
1
9
. 
D

o
w

n
lo

ad
ed

 b
y
 U

n
iv

er
si

ty
 o

f 
S

h
ef

fi
el

d
 o

n
 4

/1
5
/2

0
1
9
 4

:1
5
:5

1
 P

M
. 

View Article Online

DOI: 10.1039/C9DT00954J



41

S
ch

e
m

e
 2

.  P
re

p
a

ra
tio

n
 o

f R
u

�
E

, R
u

�
L a

n
d

 h
e

te
ro

d
in

u
cle

a
r co

m
p

le
xe

s R
u

�
M

.

P
a

g
e

 4
1

 o
f 5

7
D

a
lto

n
 T

ra
n

sa
ctio

n
s

Dalton Transactions Accepted Manuscript

Published on 05 April 2019. Downloaded by University of Sheffield on 4/15/2019 4:15:51 PM. 

V
ie

w
 A

rtic
le

 O
n

lin
e

D
O

I: 10
.10

3
9

/C
9

D
T

0
0

9
5

4
J



42

Scheme 3. Preparation of ester-protected alkyne intermediate C (used in Schemes 2 and 4)
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Table 1.  UV/Vis absorption and luminescence data for the new mononuclear Ru(II) 

complexes.

abs
RT / nm

[103  / M-1 cm-1]a

em
RT / nm 

[ / ns]a

em
77K / nm 

[ / µs]b

Ru�E 286 [88], 321 (sh) [39], 444 

(br) [14]

647 [240] 611, 660 (sh), 711(sh) [6.2]

Ru�L 285 [120], 325 (sh) [55], 

442 (br) [16]

661 [340] 611, 662 (sh), 706 (sh) 

[5.8]

Ru�E2 351 [56], 437 [14], 476 (sh) 

[10].

683 [271] 645, 701 (sh) [3.8]

Ru�L2 349 [46], 434 [6.5], 485 

(sh) [3.7]

697 [209, 102] Not soluble

a Absorption and emission spectra at RT measured in MeCN (Ru�E and Ru�E2) or 

water (Ru�L and Ru�L2).  Estimated uncertainty in lifetimes is ±10% for single 

component decays.

b Emission spectra at 77 K measured in EtOH/MeOH (4:1, v/v) glass
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Table 2.  UV/Vis absorption and luminescence data for the Ru/M heterometallic complexes 

(M = Gd, Mn, Zn).

abs
RT / nm

[103  / M-1 cm-1]a

em
RT / nm 

[ / ns]a

em
77K / nm 

[ / µs]b

Ru�Gd 286 [56], 326 (sh) [25], 443 

(br) [7.5]

664 [351] 612, 662 (sh), 706 

(sh) [5.3]

Ru�Gd2 286 [99], 350 [74], 435 [11], 

486 (sh) [5.9]

699 [402, 104] not soluble

Ru�Mn 285 [80], 325 (sh) [34], 441 

(br) [10]

657 [410, 91] 612, 660, 709 [1.8, 

0.45]

Ru�Mn2 286 [86], 350 [59], 435 [7.9], 

481 (sh) [4.4]

700 [456, 164, 21] not soluble

Ru�Zn 285 [80], 326 (sh) [34], 440 

(br) [10]

666 [329] 617, 668, 720 [5.6]

Ru�Zn2 285 [88], 348 [55], 435 [9.2], 

478 (sh) [5.3]

695 [301, 117] not soluble

a Absorption and emission spectra at RT measured in water.  Estimated uncertainty in 

lifetimes is ±10% for single component decays.

b Emission spectra at 77 K measured in EtOH/MeOH (4:1, v/v) glass.
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Table 3.  Luminescence data for the Ru/Yb and Ru/Nd heterometallic complexes.

em
RT / nm [ / ns] in H2O

for Ru(II) emission a

em
RT / nm [ / µs] in D2O

for Ln(III) emission

Ru�Yb 663 [242, 73] 980 [13]

Ru�Yb2 700 [223, 88] 980 [10.5, 0.3] b

Ru�Nd 662 [358, 22] 1060, 1380 [0.8]

Ru�Nd2 703 [408, 18] 1060, 1380 [0.7]

a  Two Ru(II)-based luminescence components: the shorter one is assumed to be associated 

with maximum quenching by the lanthanide (see main text).

b The shorter luminescence component detected at 980 nm is from the tail of unquenched 

Ru(II)-based emission which overlaps with the Yb(III)-based emission.
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Fig. 1.  Normalised, corrected luminescence spectra of the four mononuclear Ru(II) 

complexes in aerated EtOH/MeOH (4:1, v/v) at 298 K and in a glass at 77 K, 

excitation wavelength 435 nm. 
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Fig. 2. Corrected luminescence spectra in water at RT showing the Ru(II)-based 

luminescence of the three dinuclear Ru�Ln and three trinuclear Ru�Ln2 complexes 

(Ln = Gd, Yb, Nd); all solutions were isoabsorbing at the excitation wavelength (exc 

= 430 nm).
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Fig. 3. Corrected luminescence spectra in D2O at 298 K in the near-infrared region, 

showing the sensitised lanthanide-based luminescence from the complexes Ru�Yb2 

and Ru�Nd2 complexes (exc = 440 nm for both spectra).
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Fig. 4. Corrected luminescence spectra in water at 298 K for the four Ru/Mn and Ru/Zn 

complexes; all solutions were isoabsorbing at the excitation wavelength (exc = 435 

nm).
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Fig. 5. Top: differential transient absorption spectra in air-equilibrated water of Ru�Zn at 

a range of different time delays following excitation (exc = 400 nm, 40 fs, 3 mW 

pulse).  Bottom: dynamics of the transient signals over a 5 ns period.
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Fig. 6. Top: differential transient absorption spectra in air-equilibrated water of Ru�Mn at 

a range of different time delays following excitation (exc = 400 nm, 40 fs, 3 mW 

pulse).  The small sharp feature at 400 nm is scattering of the pump light. Bottom: 

dynamics of the transient signals over a 5 ns period.
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Fig. 7.  Results of computational studies on Ru�Mn.  (a) Optimized structure for Ru�Mn in 

its sextet ground state.   (b) Spin density for Ru�Mn in its ground state sextet state 

(isosurface at density = 0.0004; blue = -spin, red = -spin).  (c) Spin density for 

Ru�Mn in its lowest excited quartet state (isosurface at density=0.0004, blue = -

spin, green = -spin). (d) Spin density for Ru�Mn in lowest excited quartet state 

(isosurface at density = 0.0004, blue = -spin, red = -spin) with rotated pyridyl unit 

at 90° to the phenanthroline unit.  (e) Difference density for Ru�Mn between 

neutral and mono-oxidised form (isosurface at density = 0.0004, green = increase, 

purple = decrease). (f) Difference density for Ru�Mn between mono-reduced and 

neutral form (isosurface at density = 0.0004, green = increase, purple = decrease) 

with rotated pyridyl unit at 90° to the phenanthroline unit.
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Fig. 8 Overlays of the neutral form of Ru�Mn with other forms accessed in the 

computational experiments.  In all panels, the neutral form of Ru�Mn is shown in 

the majority grey colour, the other form being compared to is shown in green. (a) 

Overlay of Ru�Mn in its ‘planar’ form, with the ‘perpendicular’ form arising from 

twisting the pyridyl group with respect to the phen group. (b) Overlay of Ru�Mn (6A 

ground state) with Ru�Mn (4A excited state): the significant change in geometry 

around the Mn centre indicates its transient oxidation to Mn(III). (c) Overlay of 

[Ru�Mn]0 (6A) with [Ru�Mn]+ (5A): the significant change in geometry around the 

Mn centre indicates its oxidation to Mn(III). (d) Overlay of [Ru�Mn]0 (6A) with 

[Ru�Mn]– (5A): the lack of significant changes in coordination geometry around 

either metal ion is consistent with a phen-based reduction.
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Fig. 9 Simulated UV-VIS spectrum for Ru�Mn. The stick spectrum (green lines) indicates 

the transitions as calculated by TD-DFT with their calculated oscillator strengths. 

The simulated full spectrum is generated using Gaussian shapes with a FWHM of 

1500 cm-1; this may be compared with the real spectrum in SI.
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Fig. 10. Confocal microscopy images of HeLa cells incubated with (a) Ru�Gd or (b) Ru�Gd2 

(50 µM, 4h incubation in each case). exc = 405 nm; em = 570 – 620 nm. Scale bars 

= 20 µm.
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Heteronuclear d-d and d-f Ru(II)/M complexes [M = Gd(III), Yb(III), Nd(III), 

Zn(II) or Mn(II)] of ligands combining phenanthroline and aminocarboxylate 

binding sites: combined relaxivity, cell imaging and photophysical studies.

Table of Contents entry

A series of complexes in which a phosphorescent [Ru(NN)3]2+ core is attached to one or two 

pendant f-block [Gd(III), Nd(III), Yb(III)] or d-block [Mn(II), Zn(II)] ions have been studied for 

their relaxivity and cell imaging properties, and photophysical properties which include Ru-

to-lanthanide photoinduced energy-transfer and Mn-to-Ru photoinduced electron transfer.
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