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ABSTRACT:

This paper presents analytical elastic-plastic solutions fac stagéss loading analysis and quasi-static
expansion analysis of a cylindrical cavity in Tresca nterconsidering biaxial far-field stresses and
shear stregs along the inner cavity wall. The two-dimensional static stsedstion is obtained by
assuming that the plastic zone is statically determinatausind the complex variable theory in the
elastic analysisA rigorous conformal mapping function is constructed, whichiptethat the elastic-
plastic boundary is in an elliptic shape under biaxial in-siesses and the range of the plastic zone
extends with increasing internal shear stresses. The majoif éixéadliptical elastic-plastic boundary
coincides with the direction of the maximum far-field comgmesstress. Furthermareonsidering the
internal shear stresses, an analytical large-strain dispk solution is derived for continuous cavity
expansion analysis in a hydrostatic initial stress fiRBdsed on the derived analytical stress and
displacement solutions, the influence of the internal sheasseg®n the quasi-static cavity expansion
process is studied. It is shown that additional shear stremgiebreduce the required normal expansion
pressurdo a certain degree, which partly explains the great temuof the axial soil resistance due to
rotations in rotating cone penetration tests. In additioouth additionally considering the potential
influences of biaxial in-situ stresses and shear stresses geharatind the borehole during drillings,
an improved cavity expansion approach for estimating the maximlowable mud pressure of

horizontal directional drillings (HDDs) in undrained claggroposed and validated.

Keywords: cavity expansion, conformal mapping functishear stress, biaxial in-situ stresses, rotating

cone penetration tedtorizontal directional drilling
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1| INTRODUCTION

Cavity expansion theottyas been extensively applied in various fields of geotecheiggiheering such
asinterpretation of cone penetration tests (CPTs), predicticsoil resistance experienced by plate
anchors and pilesstability analysis of tunnels and boreholes (e.g. blow out fadss®ciated with
loading and local collapse associated with unloadifg)These successful applications greatly
stimulated the development of analytical cavity expansionisnkibver the past decades. It is noted
that analytical elastic-plastic solutions, in general, Haeen derived by assuming that the cavity is
uniformly loadedby increasing internal normal pressures in a hydrostatielisitiess field. In reality,

however, the in-situ soil stresses are not uniform in most casgshe horizontal earth pressure at rest
is often expressed as #mes of that in the vertical direction instead (g, = K,0,,) " & Meanwhile,

agreat amount of shear stress might be applied or generatetiahe inner cavity wall in the process
of rotary drilling/excavation, accommodation of screwspibe rotating penetration tests. It has been
reported that the biaxial in-situ stresses €Kect) and internal shear stresses need to be additionally
taken into account for further improving the accuracy h tavity expansion theory in many
applications™>*¢, for example, in estimating the tip resistance of rota@Rjls and predicting the
maximum mud pressure of HDDs, in particular, at relatigtlgllow depth$™*°. To account for the
additional influences of these two factors during loadiugasion of a cylindrical cavity in undrained
clays, both static stress analysis and quasi-static expansigeiamdopting the linear elastic-perfectly-

plastic Tresca model are carried out in this paper.

The stress field developed around a cavity primarily dependh@material strength and imposed
boundary conditions. For a cavity with axisymmetric geonmeatistress conditions, the stress analysis
usually can be simplified to a one-dimensional equilibrium @ropblvhich facilitated the development
of a number of analytical elastic and elastic-plasticitions®. When non-axisymmetric geometry
and/or stress boundary conditions are considered, more advaatteematical techniques such as the
complex variable theor§? % perturbation method€ # variational approache$ and numerical
techniqueg™ ?°tend to be required. Among these methods, the complexblatieory in conjunction

with the conformal mapping technique provides a very powerful acelyool for the elastic analysis
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around a cavity with various boundary conditiéh$” This method has also been extended to the
analysis of a cylindrical cavity surrounded by strain-hardematgrials obeying the power-l&f?°
However, these methods cannot be directly applied to the analysaterials characterised by elastic-
perfectly plastic modslsince the differere between elastic and plastic constitutive equatidis
address this problem, Galfihcreatively proposed an analytical approach for theyaisabf a circular
cavity embedded in an infinite plate under biaxial remotetcding loadingsBy assuming that the
plastic zone is statically determinate and using the complexolatlzeory in the elastic analysis, both
constant and polynomial types of far-field stemssere studied by Galiff. Although ninor mistakes
existed in theesolutions as found and improved by Ochensberger, ¥taaid Tokar? respectively, it

is generally believed that this methodology greatly facddathe development of analytical/semi-
analytical solutions for the two-dimensional elastic-ptaatialysis of a series of problems with similar

boundary condition8,

Comparing with the problem of Gafiy uniform shear stressasthe inner cavity wall are additionally
considered in this studys a consequence, Galin’s *° approachio establishing the conformal mapping
function cannot be applied to deal with this problem since tstiplstate is no longer biharmoffic
Although Parasyuk’ has given the form of the conformal mapping function fog prioblem (see
Appendix B) based on Harndsktheoremthe mapping function hast been completely determined
Consequently, the range of the plastic zone is not knownth@nelastic field cannot be obtained. In
order to give a complete solutitmthis problem, the conformal mapping function is further explored
by introducing Laurent decomposition theorem in the anabjsitress continuity conditions across the
elastic-plastic boundary, and closed-form Kolosov-Muskhelisbeihplex potential® for the elastic
analysis are then derived by using a Fourier series and tlehCitegral method in this paper. This
analytical stress solutiois validated by comparing with the finite element methad Galin’s *°

solution.

To further demonstrate the necessity and importance sfdming the internal shear stresses and/or

biaxial in-situ stresses in practical geotechnical problénesnewly derived static stress solution and
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guasi-static expansion solution are applied to estimate the nenihaksistance experienced by a

vertically advancing cone with rotations and predict the mara mud pressure during HDDs:

(1) The axial penetration resistance could be signifigaetiuced by rotatior’s'® '° Therefore, rotating

a pushing cone penetrometer is regarded as one of the most fpagiital methods to eliminate the
interface frictionin modelling the root tip-soil interaction (lubricated intedatue to the sloughing off
of border cells and mucilage from roots) '8 In rotating CPTs, shear stresses would be generated
around the sliding interface, which not only decrease itigoinal resistance both on the cone tip and
the shaft and may also lead to additional plastic failutbé surrounding soif > The reduction of the
axial tip resistance is usually attributed to the reorientatioheffrictional resistancat the cone and
the additional plastic deformation caused by the generated sthesses® '° The former effect has
been explained by Bengough, et &.based on quasi-static equilibrium analysisfortunately
analytical methods accounting for the latter effectséilerarely availableAccording to the analogy of
cone penetration and continuous expansion of a cylindricatycivi® an analytical quasi-static
expansion solution is developed to capture the additional influehcese rotations on the normal soil

resistance in this paper.

(2) HDD becomes a popular alternative to traditional open-cutvaxica for pipeline and underground
utility conduit installation due to its higher flexibilitynioperation and potential economic and
environmental benefit$*. During HDDs, it requires continuous circulation of pressurféd in the
bore to remove the cutting out, stabilize the bore formatiool, and clean the drill bit, and lubricate
the pipe during installation. To avoid inadvertent drillihgd returns and also effectively return the
soil cutting from the boring path to the ground surface, theraiation or control of the applied
drilling fluid pressure remains a serious concern in the desidimplementation of HDDs, especially
the maximum allowable mud pressté. Cylindrical cavity expansion solutions provide one of the
most commonly used theoretical methods for estimating the maximud pressure during HDBs"
42,47 for example, the Delft cylindrical cavity expansion mo@elft solution) proposed by Luger and
Hergarderf® by extending Vesic’s solution *°. In the Delft solution, the in-situ stress field is simplified

to be hydrostati¢ *’. However, for HDD practices implemented at relativelyleladepths, it has been
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reported that the feffect may exert significant influences on the maximulowalble mud pressuré

*0, Considering the #effect, Xia and Mooré’ proposed an approximate method by replacing the elastic
stresses in the Delft solution with Kirsch equations (i.e. m=Bppendix A) while estimating the
maximum mud pressure in undrained clays. However, thacetastl plastic stresses were derived
independently in their solution, and the elastic-plastic boyndas assumed to be circular regardless
of the biaxial in-situ stresses. By using the more rigorous ssmdgton derived in this paper, the
methodof accounting for the Keffect is further improved. Meanwhile, the shear stresses @Edhent

generated during pilot hole boring and reanoh@lDDs are also consider@uthe new method.

2| PROBLEM DEFINITION

A sufficiently large and thick soil medium (in comparison with cavity size) with an inside cylindrical
cavity is consideredAs depicted in Figure 1, biaxial initial stresses apply aniiyfi and uniform shear
stresses act on the inner cavity wall. The surrounding medidoaded monotonically by normal
compression pressures on the inner cavity wall to the valye, oith a sufficiently slow speed. The
stress and deformation analysis are conducted under the assuofigtiane strain. For convenience,
both Cartesian coordinates Yxz) and cylindrical polar coordinates @ z) with the same origin at the
centre of the cavity are utilised. It is worth notirteatt the defined remote stress conditions are
sufficiently general because we always can set a coordipstiem with axes parallel to the directions
of the principal stresses at infinity. Within the cylindricalgpocoordinates, the stress equilibrium

eguations in the radial and circumferential directions,eetbely, are

oo. 1ot o, —0
r+_ r€+ r 4

=0 1
or r o6 r @

100, N 07, N 2.,

=0 2
r o6 or r @)

whereo,, o, andr,, are the radial, circumferential and shear stress compgmenpectively.

Taking tension as positive for normal stresses and rotation emnti@ockwise direction to the object

as positive for shear stresses, the stress boundary conditionseqrdmsed as
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Gf'r:R:_pln ) Try|r R:mk ('13 mSl) (3)

%:@%km+a ﬂ2=—bw+qQ/2,%:@%km—quHZZ@m—JWHZ (4)

X|X~>oo

where K is the yield stress under pure shear loading. m gives theonshipp betweerk and the

internal shear stress.

The surrounding material is regarded as homogenous and iso@odiat is characterised with an
elastic-perfectly plastic model. Specifically, the elastgponse is describ&y Hooke’s law until the

onset of yielding which obeys the Tresca yield criteriom &quatio[r).

(0, —0,) +4z,2 = 4 (5)
3| STATIC STRESSANALYSIS

3.1 | Plastic region

As an extension ofialin’s ° solution, this solution aims to provide an analytical methothieistatic
stress analysis of the soil around a cavity under conditiorfa)dhe inner cavity is fully enclosed by
connected plastic region, and the plastic stress ifieffatically determinate, (b) the plastic zone is

developed under monotonic loading, and no elastic unloading docany case, and (c) the out-of-
plane stress component,, always remains as the intermediate principal stressdlegarof other

stresse®>

The static determinacy of the plastic field determinesttigaplastic stress field entirely depends on the
inner boundary conditiori$ ®* Therefore, according to the axisymmetric fact of the gegraei stress

boundaries at the inner cavity wall, it is reasonable to assum

p p p
do,; do, 0ty _

=0, —+=0, 0 (6)
00 00 00

where the superscriptaind®indicate the stress components in the elastic and plastic regjectively.

The plastic stresses under loading can be obtained by solvirgirdss equilibrium equation (i.e.

Equatioﬂ and the yield criterion (i.e. Equatiof With the given stress boundaries (i.e. Equn 3)

which are known as thdikhlin’s solution®* %’ (i.e. Equation

n

719).




129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

Grp=k<m R TR | [ R /_1—m2>— N -
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o) k<|n (r/R)"+(r/R)" — + /1— mz(?R)4 ++41- m2>— R, (8)

2
oh = mkSs ©)
3.2 | Determination of conformal mapping function

The elastic-plastic interface gives the outer boundary oplstic zone and simultaneously provides
the inner boundary for computing the elastic stress field, wibjctherefore, of great importance for
determining the range of the developed plastic zone and deriviredaistee stresses. The location of
the elastic-plastic boundaig/generally determined by analysing the continuity conditiotiseoélastic
and plastic stresses across the interface. However, undegoahfar-field stresses, the elastic stress
field cannot be obtained prior to knowing its inner boundary camditinamely the location of the
elastic-plastic boundary and stresses acting #h** * 37 Therefore, the elastic-plastic boundisy
describedy a general form of the conformal mapping function first &@Jatio), and the elastic

stresses are represented in terms of general forms of Kalbsskhelishvili complex potentialsp(£)
and ¥(¢) %. Based on the stress continuity conditions across the elagtt@filaundary and the far-

field stress boundary conditions, the boundary valueb(@f) and ¥ (¢) can be expressed as

(o7 +0y)

D) +O() = >

1+ /1—

P ,& —> o0 (b)

)

k<|n{a)(0)a)(a)/R +J[w(a)w<a)]2/R“—nf]+ 1mz>an @ O

@ ' _ (O-g B Gre +2i Tree) —2i0
—w.(§)®(§)+‘1’(§)— > e

k<\/[w(a)@]2 PR’ + MR i> o) o, (11)

o(o)w(o)

T , & > (b)

©
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wherei =/-1. » represents the unit contour in the phase plane, corresponding ¢lastic-plastic

boundary.o is the unit complex variable, which describes pointgono = cosg+i sing =€ . and
o=1/c. ¢ is the argument of . The function ofw(¢) conformally maps the exterior of the elastic-
plastic boundary in the physical plane onto the exterior redidheounit circle in the phase plgne
@ is its conjugate functions =&+in=pe?. £ andy are the real and imaginary part of the
complex variableS , respectively.p is the modulus of . Boundary conditionsf Equatiob and

Equatiob specified the behaviour of the complex potentiaifirsity as

D) == +0(C?) | W)=z, +O(C) (12)

Owing to the additional consideration of the internal sheas®g the plastic state is no longer
biharmonic. Thus the mapping function cannot be determined byrecinsg a unified biharmonic

stress function crossing the elastic-plastic interface as popnsGalir. Instead, EquatioO and
are analysed based on Harriatkeorem. With this methpthe form of the mapping function (i.e.

Equatiowas derived by Parasydk and a more general derivation is presented in Appendix B.

mm=a@+§) (13)

wheref=7,/k.

Equatio gives that the elastic-plastic boundary is ifliptieshape whilef # 0, whosemajor axis

is along the direction of the maximum far-field compressiosgume under loading. However, the
parametera in Equatio has not been determined so far. Consegjuaettange of the plastic zone

and elastic stresses cannot be analytically obtained. Maede complete solutioto this problem,

Equation arﬁl are further analysed as follows.

As the far-field stress conditions bound the behaviour of the-highdl side of EquatiOa at infinity

27.52 the continuity conditiorof the mean stress can tmeexpresseds

®(c) +D(o) = KN[F(o, 5)] + kfL— 1T — . (14)
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(1L+V1-m* oG

o o

An elliptic elastic-plastic boundary is predicted by Equvﬂlﬂch is a closed smooth contour in

the physical planen[F(o,a)] in Equatio continues analytically on both sideg-ofin an annulus

of O§|§—a| <o . Thus, based on Laurent decomposition thedfein[F (o, )] can be decomposed

as a sum of two mutually conjugate functiod$() and d(¢ ™), which are analytic i (|¢]<1)

and Q" (|¢|>1) respectively. Thenybmultiplying zi d"g on both sides of Equati4 and
Tl o —

integrating it alongy , we obtain

F/(§)=d(¢M - (15 a)

F () =0(0)-d(¢) - (k1-nf - ,) (15 b)
where d(&)=KIn[f()/¢] and d(CY)=KIn[f()/ ¢ . F(¢) and F (&) are analytic
everywhere within the region €2 and ™, respectivelyNow the continuity condition of the mean

stress across the unit circje can be expressed & (o) =F (o). Based on Liouville’s theorem
which statesF"({) and F™({) are identically equal to one and same constant due toothplex

potentials are bounded at infinity. The boundary valuesi(d@f) and d(¢™) are studied in the

extenadcomplex plane with the form defined in Equ 14. By alhaiyEquatio, it is obtained

that

P 1 20° |R? P 1 2’ IR?
e Sl = = - SUn(—E ) kWl + (16)
2 2 T1t1-m?t 2 2 141

As a result, the undetermined parameten Equatiorﬁis obtainedhs

1 1/2
=R ™ T i s [(1+ Ji=n?)/ 2} ) (17)

By now the conformal mapping function is completely determiledew paramete® is involved

due to the additional consideration of the internal sheassasreomparing with Galin’s *® mapping
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function. Equatio indicates that the size of the plastjomemonotonically expands with an

increasing expansion pressure. The lengths of the semi-mgj@mal the semi-minor axis of the elliptic

elastic-plastic boundary can be expressedgs a(1+|4|) and b, =a(1—|3|) respectively It is
shown that the axis ratica, / b,;) and axes directions of the elastic-plastic boundary entiegend

on the non-uniformity of far-field stresses (representethéyon-dimensional factor g8 ).

3.3 | Elagtic stressanalysis

The derived elastic-plastic boundary and plastic stresses prdvwdénner geometry and stress
boundaries for the analysis of the outside elastic fieldtHar words, now the elastic field is equivalent
to the problem that an elliptic cavity embedded in aimitef plane subjecting to non-uniform stresses
at the inner cavity wall and biaxial stresses at infinityfirst, the elastic stresses are represented by

the general forms of the elastic complex potentials (i.e.tﬁmﬁ anElQ) according to the complex

potential method proposed by Muskhelish/ili

X+iY 1
®(§)=F——2”(1+Z)E+<Do(§) (18)
(X)) 1
Y()=T"+ 2t ) §+‘Po(éf) (19)

where d)o(g“)zz &, ‘Po(g“):z b”ﬂ , which are holomorphic in the whole elastic region.

e é/ml 1 et é«n
'=P, /2 andI" =7, which describe the stress conditions at infinity. X amdevcomponents of the
resultant vector of forces acting on the elastic-plastic boyngas 3— 4 for the plane strain problem.

v 1s Poisson’s ratio.

The complex potentials are first sought with the assumptionbibifit the stress and displacement

components remain bounded at infinity, which implies tharéBaltant stresses vanish at infirfty
Mathematically, it required"=1"=0 and X =Y =0. In this case, the complex potentials remain

holomorphic in the outside region of contowr . ®,({) and ¥,(¢) fully satisfy the above

requirements. According to the stress boundary conditions atidkicelastic boundary given in

10
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Equation arml, it is not easy to derive the elastic cemplentials directly with simple algebraic

transformations, if possible. Alternatively, the innersdreoundaries of the mean stress (i.e. Equation

) are transformed into a Fourier series form as

2 2 R2 2 22 /R4 m?
Do (c) + Do(0) =KIn O + Yo )/ R+ (Xes +2 Vo) /RO +kyl-m* - p, - P
1++1-m (20)

—G(g)=3 A" =3 A"
where A, = Zi 2”G(qﬁ)e’"”’ dg. X, =a(l+p)cosp andy, =a(l-B)sing.
7 90

In Equatio, an even function 6f(¢) is formed, which is a continuous real function in termhef

argumentg within the interval of0<¢ < 27 . It means tha#), = A , (real numbers) and coefficients

of the odd terms ib, (o) are infinitesimalAs A = A and & = o ", naturally both sides of Equation

can be split into two mutually conjugate parts. As a result,

Dy(0)=A2+D A, ™ (21)
n=1

As A, is vanishingly smallthe requirement ofb (o) at infinity, namelyd,(c0) = O(£ ) , is fulfilled.
More strictly in the mathematical formulation, the terrthwcoefficients of A, in Equatiois

equivalently modifiedat the unit circle as

1

Dy(0) +@y(0) = ZA |a| +ZA2n (22)

By multiplying both sides W|th2—d—é, (here ¢ isapoint within Q") and then integrating it along

7Tl o —
the circumference of/, Equatio gives
A) S A—2n
®y(¢) = Z (23)
2|’

Then the general form ab(¢) can be obtained by releasing the previous assumption in the pobcess

deriving ®,(c) . The resultant vectors still equal to zer& €Y =0) because of the continuous

11



232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

distribution of stresses along the elastic-plastic boundfdith the use of Equati2 23, the first

complex potential goes to

POC
®(§)=7+®o(§) (24)
Then the complex potentiat (¢) is derived by integrating the continuity condition of the devia

stress (i.e. Equatipn [llalong  from the side of)™ with the Cauchy integral method. As discussed

in Appendix B, all terms in Equatila are holomorphiQin thereforew(¢) goes to

Y(o)=k () (25)

r

(B +1) [T —=m?R* + MR _4’(,8§2+1)(D,
&%+ ) re ;-p

where F? =a®(1+ %+ S+ fC7) . @'(¢) is the derivative of the complex potenti@l(c) with

. . 0 1.0 .0
respect toc” , which can be easily calculated w 22y p?and-L =LY, Hence,
p - y " =&%+n % 2(65 'an)
+o0 A
s — Y= (26)

- 2 2n+1
2l = ¢
Now this stress boundary value problem is analytically sothiealigh the combination use of the

Cauchy integral method and Fourier series as shown in Em@.

4| DISCUSSION ON RESTRICTIONS FROM THE ASSUMPTIONS

As stated in Section 3.1, the above static stress solution wasdleeased on several prior assumptions.

Restrictions due to these assumptions are discussed as follows.
(1) The cavity is fully enclosed kgyplastic region

This assumption requires that the inner cavity is fully endldsea continued plastic region. Limit
conditions of this requirement will be approached while theicesrtof the predicted elastic-plastic

boundaryin the minor axis direction just reach the cavity Wallt gives

b, =a@l-|4))=R (27)

(2) Intermediate principal stress

12
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It was assumed that the out-of-plane stregsalways remains as the intermediate principal stress.
Although this assumption is always justified for incompressible ¢tiondi restrictions will be
produced in compressible materidl$ie plastic stress solutions show that the principal stresses in the
plastic zone vary from the inner cavity wall to the elastas{it boundary monotonically. Therefore, it
just needs to ensure that valuesogf at the inner cavity wall and at the vertices on the magisr et

the elastic-plastic boundary always remain as the inthateeprincipal stresS. Relationships between

the principal stresses and other stress components are givenendipp With the aid of Equations

7“8 anﬁ, this restriction for compressible Tresca matargaie expressed as

1 P _ [ 1
1—mz—1 2V+In(®)£?£\/1 ' + % (28)

[aa+mp/m2+ﬁaa+mp/a4—nﬁ>1

where® =
1+ 1-m?

(3) Static determinacy of the plastic zone

The plastic stresses were derived by assuming that the plasie is statically determinate
Theoretically, it implies that every point in the plagtgion can be connected to the cavity rim by two
characteristic lines (slip-lines) of different familieadaevery slip-line cuts the elastic-plastic boundary
only once™. Therefore, the limit condition will be reached while one, anly one, characteristic line

is tangent to the elastic-plastic interface within one quddra

It is known that directions of the slip-lines take an angla/4 with the principal stress directiois
Tresca materialdNVhile internal shear stressapply, the radial and circumferential directions are no
longer the principal stress directions in the plastic zone. As stmoiigure 2 the direction of the minor
principal stress takes an anticlockwise rotation to thelrdidéction of the cylindrical coordinates with
positive shear stresses at the inner cavity.v@dhtrarily, a clockwise rotation would be caudsd

negative shear stresses. Here taking the anticlockwiseidlired ¢o as positive, according to Figure

3, the requirement of this assumption can be expressed as

M—ﬂs%+¢ (29)
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where @ is the angle between the radial direction and the x-gxisepresents the angle between the

outward normal to the elastic-plastic interface and tagis-

Angles in Equatiole all can be expressed in terms of the unileongriablec as

0 _ y2@0) 00) _ (0" =p) (+fo”) Zq,:arcsi{m RZ_} 0)
W) @(0) (- po”) (f+o) o(0)(0)

wherew(c) =a(c+ o) ; w(o)=a(c ™+ Bo).

To ensure that only one characteristic line reaches the limit tiamdvithin one quadrant, it restricts

that the equality condition holds only when the funct@or) =|1 — 6| — ¢ reaches its extremuth The
extremum values ofj(c) lie at the zero points of its first derivativé no shear streds applied, this

restriction becomefs| < (v2 -1) ¥ %

With the defined boundary conditions, stress states developed d@hauimher cavity can be broadly
categorized into three conditioffs®3 a) purely elastic state (i.e. zone A); b) the cavity isiglyrt
surrounded by plastic regions (e.g., zone B and zone E); almel caity is fully enclosed by a plastic
region (e.g. zone C and zone D). The stress field in aypelatic state can be readily calculated with
the solution given in Appendix A. The limit pressure that a glasthe starts forming from the inner

cavity wall under loading is useful in estimating the plastitiation pressure of fracturing, and

therefore, ifis also giverin Equatio.

(P, +P) > k/1- nf — 27, | (31)

In the other two stress states, distributions of the plasgioms are various, mainly depending on the

material strength and boundary conditiéhs® By using Equations 47

3Example boundaries of

different stress stag@are shown in Figure 4 for illustration. As previously discussedyritsent solution

is dedicatedo problems with boundary stresses belonging to Zone C.

Without the internal shear stresses, Figure 4 shows that Eql2e81| give the same results as that

given by Yarushina et &F for the problem of Gali?f, and the distribution patterns of the plastic regions

in Zones D and E refer to Yarushina efaMWhen additional shear stresses apply, the limits of different
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stress states would chande specific Line 2 (representing the limit given by Equa 27) moves

leftwards with increasing shear stresd.ine 3 (determined by Equati erresents the limit of
static determinacy of the plastic region. It is a horizdinta with a constant value ¢f| < (2-1)in

the case without internal shear stresses, but becomes curveal tteerdtation of principal stresses
caused by the internal shear stresses. Opposite rotatiortsewiloduced by the shear stresses with

different applying directions. As a result, the bounds of thigsirement distribute in opposite sides of
the horizontal line of 8| < (v2-1), but they both gradually approach (@2 — 1) with an increasing
value of|P, + p,|/ k. Line 4 reflects the restriction specified by Equ PBe additional shear

stresses exert little impact on this restriction. Examples lzadculated withp,, =0 andy=0.4 are

shown in Figure 4. Line 4 moves rightwards (or leftwards) witimareasing (or decreasin@gisson’s

ratio, and this restriction will be released in incompressitrterials.

5| SOLUTION VALIDATION AND DISCUSSION

Within the permissible stress states specified by Equ 1ti<1|1%823n, the above solution for static

stress analysis under loading can be calculated with the foliosteps.

(a) determine the elastic-plastic boundary by using the mappimgidargiven in Equati 3. Then
the plastic stress field can be obtained from Equ 85 and 9 directly. Ones-one corresponding

relations between the physical plane and the phase plane established by using Equa 32;

x=rcos¢9=a(o+£)co$ﬁ : y=rsin(9=a(p—£)sin¢ (32)
P p

(b) calculate the coefficients of the established Fourieesée.g. Equati3), which stay the same
values in the whole elastic filed (settimg=5 in Equatio n the following calculations). The elastic
complex potentials given in Equati 24 » 25 can then balataid. By substituting the complex
potentials into Equati03 Mesesin the elastic region can be readily obtained by separating

the real and imaginary parts.

o, + 0'; =4Re[® )] (33)
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oy -0, + 2, =220 ')+ V()] (34)

o(¢)
o'(¢)

5.1 | Comparison with Galin’s solution and finite element method

The analytical solution is validated by comparing vitiiin’s *° solution (i.e. the special case of zero
internal shear stress) and the finite element method (FEMh@wn in Figures 5 and 6 respectively.
The FEM simulations are implemented in Abaqus/Standard 6.4@ th& same linear elastic-perfectly-
plastic Tresca model as the above analytical solution. Biaxidikeld stresses are applied at the outer
boundaries (100 times of the cavity radius away from the cerfttee plane-strain FEM model, and
the same stress boundary conditions are applied at the inngrwallias depicted in Figure 1. An 8-

node biquadratic plane-strain quadrilateral element is utifgrecheshing.

It was introduced that Galin’s *° solution is a special case that without shear stresses on theanitg
wall of the present solutioAlthough different methods to decomposing the stress contirarityittons
have been adopted in these two solutidtigure 5 demonstrated that the present solution can fully

%0 solution while taking m0. When internal shear stresses apply, the analytical

recover to Galin’s
predictions are in good agreements with the FEM simulations asnishdvigure 61t is found that the
influence of the additional shear stress mainly concestiatéhe plastic region, and the shear stress
rapidly attenuates from the boundary vafu¢he cavity wall to a stable level that varies in dimtd

and depends on non-uniformity of the far-field stresses. @vielia shown that the developed series-
form elastic complex potentials have good convergence precisiapand in computations, and the

analytical solution can accurately calculate the surroundistiend plastic stress fields in the defined

stress state.
5.2 | Digtribution of elastic-plastic boundary

The range of the plastic zone developed around the inner cavitige predicted by Equat 18is
shown in Figure 7 that additional internal shear steegtend the range of the plastic zone, but it
imposes no influence on the shape of the elastic-plastic bguftlkda major to minor axis ratio remains

unchanged as,, / b, = (1+||)/ @—|A]). The major axis of the elliptic elastic-plastic boundary under
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loading liesin the x-axis direction while >0, whereas it is along the y-axis direction whi¥e< 0.

In other words, the direction of the major axis coincideh tie direction of the minor principal stress

(i.e. maximum compression stress) at infinity.

6 | QUASI-STATIC CAVITY EXPANSION SOLUTION IN A HYDROSTATIC

STRESSFIELD

As previously discussed, rotations during cone penetrations may calisenal plastic failure in the
surrounding soil comparing with non-rotated cone penetratiosddtieved that this effect contributes
to the great reduction of the axial soil resistance measyradotating penetrometér’® Based on the
analogy of cone penetration and continuous cavity expansiandigghl cavity expansion solutions
have been applied to estimate the normal soil pressure actimgnerotated cones with some successes
3949 |n rotating CPTsarotating cone displaces the ahead soil increasingly cylindficEherefore, a
cylindrical quasi-static expansion analysis considering iatesinear stregsis developed to account
for the impact of the additional plastic deformation on thenabisoil resistance measured in rotating

CPTs as follows.

The quasi-static analysis of a cylindrical cavity modeldateral soil response caused by a vertically
advancing coneThe confiningin-situ soil stresses in a horizontal plane are assumed to loenanif
With uniformin-situ streses the mapping function of the elastoplastic interfaceEicpalatio) will
reduce tow(o) = ac . Therefore, the inner pressure during expansion can be expressed a

h h
pm_kaFio =2 In(%)+ J1-n? (35)

Whererch is the elastic-plastic radius under the corresponding hydrostaitit stiess ofPOf .

Radial displacements during continuous cavity expansions calntdi@ed by using the derived large-

strain displacement solution in Appendix By lettingr =R andr, =R, in Equatio, the radius

ratio (rch/R) of the elastic-plastic boundary to the current cavityam@t expansion instant can be

expressed as Equat36.
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K e RY ] e Ry
1ZGlm(rchj RI-R

(36)

1 (rch/R)2+ (rch/ R)4_ mz ’ 2 rch 2 rch 4 2
— { » “,_1_m2 ] L+ z\1-m )-[E) +a €)'~ m’]

While regarding the material as incompressible {f.e.0.5), the displacement solution of Zhou etal.

can be recovered by Equaﬂ%

. ‘{/[%(1‘ [ e @7

Equatio . gives that a limit value Qtf / R exists during continuous expansiofis limit canbe
approached by putting, / R— . In the special case of zero internal shear stressi-e0), the

limit ratio of rch/R given by Yu * from a rigorous similarity analysis, considering the miake

compressibility, can be recovered as given in Equn 38, niagl¢lse small quantities.

1
k ) 2(@-1)

— 1 38
ZG) " } (38)

r.h

| @-na-

A rigorous quasi-static expansion solution is obtained by the coritrinate of Equatio5 36
In the simplified cases of =0.5 and m=0, the well-known limit expansion pressure derived by

Gibson and Andersott (i.e. Equatiocan be recovered by substituting the limit value bf R

into Equatio.

P =KL+ (D] - P (39)

By using EquationES arlﬂ%, influences of the internal shear simed® continuous pressure-
expansion response and the limit expansion pressure are depiEigdries 8 and 9, respectively. It is
shown that additional shear stresses reduce the required poessire during continuous expansions
and the limit expansion pressure declines with increases apfiied shear stressand decreases of

Poisson’s ratio. These reductions are due to the additional plastic faimmeed by the internal shear

streses With fully mobilised shear streas(i.e. m=1), a reduction of 6% of the limit expansion pressure
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may be produced within the Tresca material, and this imflei@vould be intensified in materials with
greater interface shear stress holding capacity. In addditre stress reorientation effect considered
by Bengough, et at®, this solution provides an analytical method to further explargreat reduction

of soil resistance measured in rotating CPTs.

7 | ESTIMATION OF MAXIMUM MUD PRESSURE IN HORIZONTAL

DIRECTIONAL DRILLINGS

In the cavity expansion approach, the maximum mud pressye (n HDD practices is usually
expressed in terms of the maximum allowable plastic radrlg.(Based on the derived mapping

function in Equatioﬂ3 P, interms of R, can be expressed as
P :2kln(5iRj— P+ ki1-nf+y (40)
whereu, is the groundwater pressure at the depth of the borehole.

According to Equations 13 apd [35, the propagation distance of akicplailure zone I{, ) under

biaxial stress conditions within the admissible stress range oaxpbessed as

Iy =|e(o)|=r|(c+ g) (41)

It has been demonstrated that the average cavity displacemenbiaxial stress field can be
approximated by the solution derived in the corresponding hydmstegss conditiotf > Therefore,
the borehole radius pressurised under a uniform mud pressureriatedtby using the displacement

solution given in Appendix C. With known initial borehole diaene{2R, = D) and radius of the

elastic-plastic boundary," / R can be obtained by letting=R andr, = R, in Equatios

L-MY - (%)2

C

o1 | LI P (R )2

(42)

Neglecting the internal shear streg8/ R can be explicitly expressed as:
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A K2 Ry, |2 .
E: (w—l)[(l—ﬁ) - ?) ]+1 (special case an=0) (43)
In undrained clays, the plastic volumetric change under loadirajtén negligible Therefore, the

displacement solution can be further simplified to the Delft soluh this casé® as Equatiom4.

)
e — {g + (%)2} (special case ah=0 andv =0.5) (44)

o
The failure model caused by pressurized drilling fluidsaysis considered to be either tensile or shear
failure®°, The limit failure pressure varies with the failure modghgicantly. In general, the tensile
fracture pressure is lower than that with shear faflié The failure model primarily depends on the
material strength and stress conditions (e.g. thefféct) within homogenous material$ ®© Both
elastic (e.g. Kirsch equations) and elastic-plastic (2eift solution) cavity expansion solutions are
often applied to estimate the limit pressure based on ditféadure criteria> * *” ®° Based on the
cavity expansion analysis, the potential failure models udeling may refer to the discussion given
in Section 4. Taking Figure 4 as an example, tensilduradailure tends to occur within the stress

ranges of Zones B and E; shear failure may dominate in the Zarel@; mixed failure may take place

in the Zone D. As discussed earlier, the present stress soludi®mevived under stress conditions

within the Zone C. Therefore, Equatipng(4Q, an are preferable for estimating the maximum mud

pressure of HDDs implemented under stress conditiongniils stress range.

For horizontal boreholes excavated at relatively shallonhdepipart from the considereddffect, the
free ground surface and soil strength and stress gradigndepths may also influence the failure
model. The cavity expansion solutions used for this applicatioa mestly developed in an infinite
plane. Therefore, different criteria have been propasée cavity expansion approach to estimating
the maximum mud pressure during HDDs, for example, the maxiatlowable plastic radius criterion
4261 and maximum hoop strain criteriénEvaluation of the reliability of these criteria is outtioé
scope of this paper. Instead, the most commonly adopted maxihowalde plastic radius criterion is

followed in this solution.
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Comparing with the elastic-plastic radius calculated in gmeesponding hydrostatic stress condition
(Equatior] 42), a shape factor |of+ 8/ 0| is introducedby Equatior] 4] due to the biaxial in-situ
stresses. It is shown in Figure 10 (a) that Equn 41 descthibiethe plastic zone develops farther in
the vertical direction whil&K, <1 (e.g. in normally consolidated or lightly overconsolidatea/s),
whereas the farthest yielding point is along the horizontatttre before failure whilek, >1 (e.qg.

heavily overconsolidated clays). Similar trends have alsa beported in numerical and experimental
studies™® ®2 However, it needs to point out that the propagation of thetiptaone in cases df, > 1
may rapidly extend to the free ground surface at the ukifadtire stage instead of propagating farther
in the horizontal direction, and, consequently, caution Ishbe exercised when the maximum
allowable plastic radius criterion is applied in this case. &beg, the following discussion

concentrates on the performance of the present solutiosés céK, <1.

Following the failure criterion suggested by the Delft dohytwhich states that the maximum allowable

mud pressure will be reached when the plastic region expanddistance equalling to half of the

burial depth, the new method given by Equat|ong 410-42 is appliestitna¢e p,, for cases while

K, <1. While K, <1, the farthest yielding point locates above the crown of thehode with a centre
distance ofR, =r.'(1- #)=0.5H. Based on numerical simulation results, Xia and Mdbreported

that the Delft solution may overestimate the mud pressure by 4p% while K, <1, and better

agreements with the numerical results have been achigwbdibsolution considering they kéffect™.
Figure 10 (b) demonstrated that thgelect is also well captured by the present solution in thengi
stress states. Additionally, it is shown that internal sheesssrmay lead to further decreases of the

maximum allowable mud pressure. Hence, the ignorance dfitéraal shear stressmay be another

noticeable reason that leads to that the Delft solution ggnteatis to overestimatg,, in practice’™

a7

8| SUMMARY AND CONCLUSIONS
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An analytical elastoplastic stress solutwes developed for a cylindrical cavity under loading in Tresca
materials subjected to biaxial stresses at infinity and uniform normalshedr stresses on the cavity
wall. The solution was derived by three stepsplastic stresses were derived by assuming that the
plastic zone is statically determinatg,abconformal mapping function describing the outside elastic
region was determined through analysing the stress contiowiitglitions across the elastic-plastic
boundary based on Lauremtdecomposition theorem and Harnackheorem, and c) Kolosov-
Muskhelishvili complex potentials for the elastic analysis wétained by using the Cauchy integral
method and Fourier series methduithin the admissible application range, the analytical solution
showed excellent agreement with FEM simulations adin’s solution in the special case without
internal shear stressds was demonstrated that both the internal shear stressiaidl in-situ soil
stresses have fairly significant influences on the distribuifdhe plastic zone. It was shown that the
elastic-plastic boundary is in an elliptic shape under bissti®ss conditions, whose major axis
coincides with the direction of the maximum far-field coagsion stress under loading on the internal
cavity wall The additional shear stresextend the plastic region, but apply no influence on the shape
of the elastic-plastic boundary. In addition, consideringnternal shear stresses, an analytical large
strain displacement solution was developed for a cylindcaaity expanding in a hydrostatic in-situ
stress field. The derived stress and displacement solutienesapplied to account for the additional
influence of the shear stresses generated during rotating @G&1s estimate the maximum allowable
mud pressure of HDDs considering both biaxial in-situ stressat@apdssibly generated internal shear

stresses.

To explain the reduction of the normal soil resistaimceotating CPTs due to the shear stresses
generated around the interface, an analytical quasi-statity expansion solution was developed by
combing the derived static stress solution and the continuous dislaicgolution. It was found that
the internal shear stresswould lead to additional plastic failure in the surroundioily #\s a result

the required normal pressure during expansions and the limitah@xpansion pressure decline,

depending on the shear stress level. These findings furthelinexplidoe great reduction of the tip
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489 resistance measured in rotating CPTs in addition to thréergation effect of the interface frictional

490 resistance.

491 Considering the Keffect and influences of the shear stessgenerated during drillings, a new
492  approximate method for estimating the maximum allowablepnessure during HDDs was developed.
493  With the same maximum allowable plastic radius as in the Belifition, the new method predicted

494  lower maximum mud pressures than those by the Delft solution in chdés <1 and showed that the

495 maximum mud pressure declines watbecreasing value ofKThese findings are consistent with that
496 reported in numerical simulations. In addition, it wasrfd that the internal shear stresses may also
497  causeaconsiderable reduction of the maximum mud pressure in HBBish suggested that this effect
498 may need to be considered while a significant amount of diegsses between the rotating drill

499  bit/reamer and the surrounding soil are unavoidably generated dulimgys.

500 Appendix A. Purely elastic stress solutions and expressions of principal stresses?

2 4 2 2
501 0, =P.0-")-r, @+ 2 -2 )cosp- p (A1)
R]Z 3R)4 R)Z
502 o,=P (1+ r_2)+ T (1+r—4)0032?+ B % (A2)
4 2 2

503 r,=7,(1- 3';‘) + 25) )sin + mk% (A3)
O'r+O'9 [ O-r_o-é) 2 2_1/2

504 o, = > +1 ( > )+, (A4)
o, +0, [ O, — 0y 2_1/2

505 o= > ( > )+, (A5)

506 o,=v(0,+0,) (AB)

507 Appendix B. Re-derivation of the mapping function ¥’

508 To transform the exterior of the elastic-plastic boundamhé physical plane onto the exterior region

509 of the unit circle in the phase plaregeneral form of conformal mapping function is introdutes

an

é/n

510 w(@)=a'¢+ai+ i (B1)
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Due to the symmetry of the geometry and stress boundaries, gEnadunction»(S) has the

following features®.

() =—a(=¢) , o) =o(Z) (B2)

As a result ¢, and coefficients of the even order terms are equal i) aed remaining coefficients

are real numberso(<) can be rewritten as

z=x+iy=co(§)=oc§+i%j+l (B3)

= §2H1

27i o —¢

By multiplying both sides of Equatila withl— do , a Cauchy integral is established as:

1 {5&71) (B4)

- @'(a)w(a)}—d“ :LJ<J[MG)@]2—m2R)4+mFsZi>@ do
271 77| w(o) y

o—-¢ 2n w(o)w(o) o(c) o ¢

The right part of Equatign B4 should be bounded at infffiif§; hence terms of >1 in the mapping

function vanish as shown in Equ

w(c) @(c) act+aoc+a,ci+-

&1
=24+ M BS
o(c) o(c) ac+aoc i +a o+ a (@) (B5)

where M (o) is analytic on the exterior of contoyr , and M () =0. Similarly, we find

a(c™)
(o)

where N (o) is analytic on the exterior of contoyr , and N(«) =0.

®'(c)=N(o) (B6)

Meanwhile, ¥ (o) is holomorphic inQ (including infinity points). Finally, according to Harnask

theorent®, integrating Equati4 along from Q" side gives

o= =2q (B7)
k
Therefore, the mapping function is in the foofrEquatio. Detailed knowledge about the complex

variable methods in elasticity refers to the referent@&suskhelishvili?® and England®,

Appendix C. Displacement solution for continuous expansionsin ahydrostatic stressfield
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For a cavity deforms in a hydrostatic initial stress stdue radial displacement during continuous
expansions can be obtained by a one-dimensional deformatiosianédye that Zhou et &f presented
an analytical expansion solution for this problem by idealbarding the material as volumetric
incompressibleMore generally, a new large-strain displacement solution considéne material
compressibility is presented here. The elastic displaceisydatived based on the small strain theory,

and finite strain definitions are adopted in the plastfordeation analysi&* °>

During purely elastic expansions, the radial displacementdan be expresse

h
U =r—r= erI:,( ) (C1)

According to the elastic stress solution (i.e. EquationsA®1 and A3, ignoring the angle-dependent

terms) and the yield criterion (i.e. Equaﬁ‘u 5), it is foumat & plastic zone starts forming from the
inner cavity wall whilep,, > kyv1—n? — P". While plastic zone appears, the radial displacement in the

outside elastic zone can be obtained by replagpgwith the compression pressure at the elastic-
plastic boundary prh) and R with the radius of the elastic-plastic boundaréh/)(in the solution of

Equatio p, can be calculated by substituting the elastic stress solatiothie yield criterioras

0

4
P, =k [1- mz[th - P (C2)

c rC
Then the radial displacement at the elastic-plastic boynsl@btained based on the elastic solutien

3 kr

Ur|r:rc—z 1- mz[r J (C3)

Due to the plastic volumetric strain rate is zird resca materials, the compressibility equation in the

plastic regiort can be expressed as

1-2v
E+E,=——|0, +0 C4
Héy =16, +6,] (C4)

With the initial stress boundary conditions, integrating Equrgives
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8r+89:2—év[0'r+0'9—2P£] (C5)

By adopting the definition of logarithmic strain to charastethe accumulative deformation, the radial

strain and circumferential strain respectively are

e=-mI oot (C6)
dr, A

By substituting the plastic stresses and Equn C6 into Eqdngﬁves

|n[Lﬂ] — win rayr - mR (with zU:w) (C7)
ro dry M2+ - m?R G

With the use of EquatiEquatio can be integrated over the intervaﬂﬂ, leading to

2
4
1—% 1—m2(r—F:] (A
(C8)

_wzl_l [(Q:j:\/@] (r2+wm)_[(rch)2+w\/m

Now the continuous radial expansion of a cylindrical cavitg ftydrostatic in-situ stredseld can be
modelled by using Equati8 without limitation of the defoiomalevel.
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