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ABSTRACT: 

This paper presents analytical elastic-plastic solutions for static stress loading analysis and quasi-static 

expansion analysis of a cylindrical cavity in Tresca materials, considering biaxial far-field stresses and 

shear stresses along the inner cavity wall. The two-dimensional static stress solution is obtained by 

assuming that the plastic zone is statically determinate and using the complex variable theory in the 

elastic analysis. A rigorous conformal mapping function is constructed, which predicts that the elastic-

plastic boundary is in an elliptic shape under biaxial in-situ stresses and the range of the plastic zone 

extends with increasing internal shear stresses. The major axis of the elliptical elastic-plastic boundary 

coincides with the direction of the maximum far-field compression stress. Furthermore, considering the 

internal shear stresses, an analytical large-strain displacement solution is derived for continuous cavity 

expansion analysis in a hydrostatic initial stress filed. Based on the derived analytical stress and 

displacement solutions, the influence of the internal shear stresses on the quasi-static cavity expansion 

process is studied. It is shown that additional shear stresses could reduce the required normal expansion 

pressure to a certain degree, which partly explains the great reduction of the axial soil resistance due to 

rotations in rotating cone penetration tests. In addition, through additionally considering the potential 

influences of biaxial in-situ stresses and shear stresses generated around the borehole during drillings, 

an improved cavity expansion approach for estimating the maximum allowable mud pressure of 

horizontal directional drillings (HDDs) in undrained clays is proposed and validated. 

Keywords: cavity expansion, conformal mapping function, shear stress, biaxial in-situ stresses, rotating 

cone penetration test, horizontal directional drilling 
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1 | INTRODUCTION 1 

Cavity expansion theory has been extensively applied in various fields of geotechnical engineering such 2 

as interpretation of cone penetration tests (CPTs), prediction of soil resistance experienced by plate 3 

anchors and piles, stability analysis of tunnels and boreholes (e.g. blow out failure associated with 4 

loading and local collapse associated with unloading) 1-6. These successful applications greatly 5 

stimulated the development of analytical cavity expansion solutions over the past decades. It is noted 6 

that analytical elastic-plastic solutions, in general, have been derived by assuming that the cavity is 7 

uniformly loaded by increasing internal normal pressures in a hydrostatic initial stress field. In reality, 8 

however, the in-situ soil stresses are not uniform in most cases, and the horizontal earth pressure at rest 9 

is often expressed as K0 times of that in the vertical direction instead (i.e. 0 0 0h vK  ) 7, 8. Meanwhile, 10 

a great amount of shear stress might be applied or generated around the inner cavity wall in the process 11 

of rotary drilling/excavation, accommodation of screw piles or rotating penetration tests 9-13. It has been 12 

reported that the biaxial in-situ stresses (K0 effect) and internal shear stresses need to be additionally 13 

taken into account for further improving the accuracy of the cavity expansion theory in many 14 

applications 13-16, for example, in estimating the tip resistance of rotating CPTs and predicting the 15 

maximum mud pressure of HDDs, in particular, at relatively shallow depths 17-19. To account for the 16 

additional influences of these two factors during loading/expansion of a cylindrical cavity in undrained 17 

clays, both static stress analysis and quasi-static expansion analysis adopting the linear elastic-perfectly-18 

plastic Tresca model are carried out in this paper. 19 

The stress field developed around a cavity primarily depends on the material strength and imposed 20 

boundary conditions. For a cavity with axisymmetric geometry and stress conditions, the stress analysis 21 

usually can be simplified to a one-dimensional equilibrium problem, which facilitated the development 22 

of a number of analytical elastic and elastic-plastic solutions 1. When non-axisymmetric geometry 23 

and/or stress boundary conditions are considered, more advanced mathematical techniques such as the 24 

complex variable theory 20, 21, perturbation methods 22, 23, variational approaches 24 and numerical 25 

techniques 25, 26 tend to be required. Among these methods, the complex variable theory in conjunction 26 

with the conformal mapping technique provides a very powerful analytical tool for the elastic analysis 27 
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around a cavity with various boundary conditions 20, 27. This method has also been extended to the 28 

analysis of a cylindrical cavity surrounded by strain-hardening materials obeying the power-law 28, 29. 29 

However, these methods cannot be directly applied to the analysis in materials characterised by elastic-30 

perfectly plastic models since the difference between elastic and plastic constitutive equations. To 31 

address this problem, Galin 30 creatively proposed an analytical approach for the analysis of a circular 32 

cavity embedded in an infinite plate under biaxial remote stretching loadings. By assuming that the 33 

plastic zone is statically determinate and using the complex variable theory in the elastic analysis, both 34 

constant and polynomial types of far-field stresses were studied by Galin 30. Although minor mistakes 35 

existed in these solutions as found and improved by Ochensberger, et al. 31 and Tokar 32 respectively, it 36 

is generally believed that this methodology greatly facilitated the development of analytical/semi-37 

analytical solutions for the two-dimensional elastic-plastic analysis of a series of problems with similar 38 

boundary conditions 33-38. 39 

Comparing with the problem of Galin 30, uniform shear stresses at the inner cavity wall are additionally 40 

considered in this study. As a consequence, Galin’s 30 approach to establishing the conformal mapping 41 

function cannot be applied to deal with this problem since the plastic state is no longer biharmonic 37. 42 

Although Parasyuk 37 has given the form of the conformal mapping function for this problem (see 43 

Appendix B) based on Harnack’s theorem, the mapping function has not been completely determined. 44 

Consequently, the range of the plastic zone is not known, and the elastic field cannot be obtained. In 45 

order to give a complete solution to this problem, the conformal mapping function is further explored 46 

by introducing Laurent decomposition theorem in the analysis of stress continuity conditions across the 47 

elastic-plastic boundary, and closed-form Kolosov-Muskhelishvili complex potentials 20 for the elastic 48 

analysis are then derived by using a Fourier series and the Cauchy integral method in this paper. This 49 

analytical stress solution is validated by comparing with the finite element method and Galin’s 30 50 

solution. 51 

To further demonstrate the necessity and importance of considering the internal shear stresses and/or 52 

biaxial in-situ stresses in practical geotechnical problems, the newly derived static stress solution and 53 
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quasi-static expansion solution are applied to estimate the normal soil resistance experienced by a 54 

vertically advancing cone with rotations and predict the maximum mud pressure during HDDs: 55 

(1) The axial penetration resistance could be significantly reduced by rotations 9, 18, 19. Therefore, rotating 56 

a pushing cone penetrometer is regarded as one of the most feasible physical methods to eliminate the 57 

interface friction in modelling the root tip-soil interaction (lubricated interface due to the sloughing off 58 

of border cells and mucilage from roots) 9, 11, 18. In rotating CPTs, shear stresses would be generated 59 

around the sliding interface, which not only decrease the frictional resistance both on the cone tip and 60 

the shaft and may also lead to additional plastic failure in the surrounding soil 18, 19. The reduction of the 61 

axial tip resistance is usually attributed to the reorientation of the frictional resistance at the cone and 62 

the additional plastic deformation caused by the generated shear stresses 18, 19. The former effect has 63 

been explained by Bengough, et al. 18 based on quasi-static equilibrium analysis. Unfortunately, 64 

analytical methods accounting for the latter effect are still rarely available. According to the analogy of 65 

cone penetration and continuous expansion of a cylindrical cavity 39, 40, an analytical quasi-static 66 

expansion solution is developed to capture the additional influences of cone rotations on the normal soil 67 

resistance in this paper. 68 

(2) HDD becomes a popular alternative to traditional open-cut excavation for pipeline and underground 69 

utility conduit installation due to its higher flexibility in operation and potential economic and 70 

environmental benefits 41-43. During HDDs, it requires continuous circulation of pressurized fluid in the 71 

bore to remove the cutting out, stabilize the bore formation, cool and clean the drill bit, and lubricate 72 

the pipe during installation. To avoid inadvertent drilling fluid returns and also effectively return the 73 

soil cutting from the boring path to the ground surface, the determination or control of the applied 74 

drilling fluid pressure remains a serious concern in the design and implementation of HDDs, especially 75 

the maximum allowable mud pressure 44-46. Cylindrical cavity expansion solutions provide one of the 76 

most commonly used theoretical methods for estimating the maximum mud pressure during HDDs 5, 17, 77 

42, 47, for example, the Delft cylindrical cavity expansion model (Delft solution) proposed by Luger and 78 

Hergarden 48 by extending Vesic’s solution 49. In the Delft solution, the in-situ stress field is simplified 79 

to be hydrostatic 5, 47. However, for HDD practices implemented at relatively shallow depths, it has been 80 
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reported that the K0 effect may exert significant influences on the maximum allowable mud pressure 17, 81 

50. Considering the K0 effect, Xia and Moore 17 proposed an approximate method by replacing the elastic 82 

stresses in the Delft solution with Kirsch equations (i.e. m=0 in Appendix A) while estimating the 83 

maximum mud pressure in undrained clays. However, the elastic and plastic stresses were derived 84 

independently in their solution, and the elastic-plastic boundary was assumed to be circular regardless 85 

of the biaxial in-situ stresses. By using the more rigorous stress solution derived in this paper, the 86 

method of accounting for the K0 effect is further improved. Meanwhile, the shear stresses potentially 87 

generated during pilot hole boring and reaming of HDDs are also considered in the new method. 88 

2 | PROBLEM DEFINITION 89 

A sufficiently large and thick soil medium (in comparison with the cavity size) with an inside cylindrical 90 

cavity is considered. As depicted in Figure 1, biaxial initial stresses apply at infinity, and uniform shear 91 

stresses act on the inner cavity wall. The surrounding medium is loaded monotonically by normal 92 

compression pressures on the inner cavity wall to the value of inp  with a sufficiently slow speed. The 93 

stress and deformation analysis are conducted under the assumption of plane strain. For convenience, 94 

both Cartesian coordinates (x, y, z) and cylindrical polar coordinates (r, , z) with the same origin at the 95 

centre of the cavity are utilised. It is worth noting that the defined remote stress conditions are 96 

sufficiently general because we always can set a coordinate system with axes parallel to the directions 97 

of the principal stresses at infinity. Within the cylindrical polar coordinates, the stress equilibrium 98 

equations in the radial and circumferential directions, respectively, are 99 

1
0r rr

r r r
   


 
  

 
 (1) 100 

21
0r r

r r r
    


 
  

 
 (2) 101 

where r ,   and r  are the radial, circumferential and shear stress components, respectively. 102 

Taking tension as positive for normal stresses and rotation in the anticlockwise direction to the object 103 

as positive for shear stresses, the stress boundary conditions can be expressed as 104 
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r inr R
p


   ,  r r R

mk 
   ( -1 1m  ) (3) 105 

0 0( ) / 2 ( ) / 2y x v hxy
P     

      ,  0 0( ) / 2 ( ) / 2y x h vxy
     

      (4) 106 

where k  is the yield stress under pure shear loading. m gives the relationship between k  and the 107 

internal shear stress. 108 

The surrounding material is regarded as homogenous and isotropic, and it is characterised with an 109 

elastic-perfectly plastic model. Specifically, the elastic response is described by Hooke’s law until the 110 

onset of yielding which obeys the Tresca yield criterion (i.e. Equation 5). 111 

 2 2 24 4r r k       (5) 112 

3 | STATIC STRESS ANALYSIS 113 

3.1 | Plastic region 114 

As an extension of Galin’s 30 solution, this solution aims to provide an analytical method for the static 115 

stress analysis of the soil around a cavity under conditions of: (a) the inner cavity is fully enclosed by a 116 

connected plastic region, and the plastic stress field is statically determinate, (b) the plastic zone is 117 

developed under monotonic loading, and no elastic unloading occurs in any case, and (c) the out-of-118 

plane stress component zz  always remains as the intermediate principal stress regardless of other 119 

stresses 33, 35. 120 

The static determinacy of the plastic field determines that the plastic stress field entirely depends on the 121 

inner boundary conditions 35, 51. Therefore, according to the axisymmetric fact of the geometry and stress 122 

boundaries at the inner cavity wall, it is reasonable to assume 123 

0
p
r






 ,  0

p







 ,  0

p
r






 (6) 124 

where the superscripts e and p indicate the stress components in the elastic and plastic region respectively. 125 

The plastic stresses under loading can be obtained by solving the stress equilibrium equation (i.e. 126 

Equation 3) and the yield criterion (i.e. Equation 5) with the given stress boundaries (i.e. Equation 3), 127 

which are known as the Mikhlin’s solution 13, 37 (i.e. Equations 7-9). 128 
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 (8) 130 

2

2
p
r

R
mk

r   (9) 131 

3.2 | Determination of conformal mapping function 132 

The elastic-plastic interface gives the outer boundary of the plastic zone and simultaneously provides 133 

the inner boundary for computing the elastic stress field, which is, therefore, of great importance for 134 

determining the range of the developed plastic zone and deriving the elastic stresses. The location of 135 

the elastic-plastic boundary is generally determined by analysing the continuity conditions of the elastic 136 

and plastic stresses across the interface. However, under non-equal far-field stresses, the elastic stress 137 

field cannot be obtained prior to knowing its inner boundary conditions, namely the location of the 138 

elastic-plastic boundary and stresses acting on it  30, 33, 35, 37. Therefore, the elastic-plastic boundary is 139 

described by a general form of the conformal mapping function first (i.e. Equation B1), and the elastic 140 

stresses are represented in terms of general forms of Kolosov-Muskhelishvili complex potentials, ( )  141 

and ( )  20. Based on the stress continuity conditions across the elastic-plastic boundary and the far-142 

field stress boundary conditions, the boundary values of ( )  and ( ) can be expressed as 143 

2 2 4 2
2

2

( )
( ) ( )

2

( ) ( ) [ ( ) ( )]
ln 1 ,at  (a)

1 1

, ( )

e e
r
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R R m
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m

P b
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 

       





  
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 (10) 144 

2
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
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
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 (11) 145 
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where 1i   .   represents the unit contour in the phase plane, corresponding to the elastic-plastic 146 

boundary.   is the unit complex variable, which describes points on  . cos sin ii e     . and 147 

1/  .   is the argument of  . The function of ( )   conformally maps the exterior of the elastic-148 

plastic boundary in the physical plane onto the exterior region of the unit circle in the phase plane; 149 

( )   is its conjugate function. ii e      .   and   are the real and imaginary part of the 150 

complex variable  , respectively.   is the modulus of  . Boundary conditions of Equation 10b and 151 

Equation 11b specified the behaviour of the complex potentials at infinity as 152 

2( ) ( )
2

P
O        ,  2( ) ( )O  

     (12) 153 

Owing to the additional consideration of the internal shear stresses, the plastic state is no longer 154 

biharmonic. Thus the mapping function cannot be determined by constructing a unified biharmonic 155 

stress function crossing the elastic-plastic interface as proposed by Galin 30. Instead, Equations 10 and 156 

11 are analysed based on Harnack’s theorem. With this method, the form of the mapping function (i.e. 157 

Equation 13) was derived by Parasyuk 37, and a more general derivation is presented in Appendix B. 158 

( ) ( )
   


   (13) 159 

where / k  . 160 

Equation 13 gives that the elastic-plastic boundary is in an elliptic shape while 0  , whose major axis 161 

is along the direction of the maximum far-field compression pressure under loading. However, the 162 

parameter   in Equation 13 has not been determined so far. Consequently, the range of the plastic zone 163 

and elastic stresses cannot be analytically obtained. To derive a complete solution to this problem, 164 

Equations 10 and 11 are further analysed as follows. 165 

As the far-field stress conditions bound the behaviour of the right-hand side of Equation 10a at infinity 166 

27, 52, the continuity condition of the mean stress can be re-expressed as 167 

2( ) ( ) ln[ ( , )] 1 ink F k m p          (14) 168 
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where 

2 2 4 2

12

( ) ( ) [ ( ) ( )] ( ) ( )
( , )

(1 1 )

R R m f f
F

m

          
 



     
   

. 169 

An elliptic elastic-plastic boundary is predicted by Equation 13, which is a closed smooth contour in 170 

the physical plane. ln[ ( , )]F    in Equation 14 continues analytically on both sides of   in an annulus 171 

of 0     . Thus, based on Laurent decomposition theorem 53, ln[ ( , )]F    can be decomposed 172 

as a sum of two mutually conjugate functions, ( )d   and 1( )d   , which are analytic in   ( 1  ) 173 

and   ( 1  ) respectively. Then by multiplying 1

2

d

i


  

 on both sides of Equation 14 and 174 

integrating it along  , we obtain 175 

1( ) ( ) ( )F d      (15 a) 176 

2( ) ( ) ( ) ( 1 )inF d k m p          (15 b) 177 

where ( ) ln[ ( ) / ]d k f    and 1 1( ) ln[ ( ) / ]d k f    . ( )F   and ( )F   are analytic 178 

everywhere within the region of   and  , respectively. Now the continuity condition of the mean 179 

stress across the unit circle   can be expressed as ( ) ( )F F   . Based on Liouville’s theorem, 180 

which states ( )F   and ( )F   are identically equal to one and same constant due to the complex 181 

potentials are bounded at infinity. The boundary values of ( )d   and 1( )d    are studied in the 182 

extended complex plane with the form defined in Equation 14. By analysing Equation 14, it is obtained 183 

that 184 

2 2 2 2
2

2 2

1 2 / 1 2 /
ln[ ] ln( ) 1

2 2 2 21 1 1 1
in

P PR R
k k k m p

m m

        
   

 (16) 185 

As a result, the undetermined parameter   in Equation 13 is obtained as 186 

21
[ 1 ]

2e
inp P k m

kR    
       (with 

1/2
2(1 1 ) / 2m     

) (17) 187 

By now the conformal mapping function is completely determined. A new parameter   is involved 188 

due to the additional consideration of the internal shear stresses comparing with Galin’s 30 mapping 189 
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function. Equation 17 indicates that the size of the plastic region monotonically expands with an 190 

increasing expansion pressure. The lengths of the semi-major axis and the semi-minor axis of the elliptic 191 

elastic-plastic boundary can be expressed as (1 )epa     and (1 )epb     respectively. It is 192 

shown that the axis ratio ( /ep epa b ) and axes directions of the elastic-plastic boundary entirely depend 193 

on the non-uniformity of far-field stresses (represented by the non-dimensional factor of  ). 194 

3.3 | Elastic stress analysis 195 

The derived elastic-plastic boundary and plastic stresses provide the inner geometry and stress 196 

boundaries for the analysis of the outside elastic field. In other words, now the elastic field is equivalent 197 

to the problem that an elliptic cavity embedded in an infinite plane subjecting to non-uniform stresses 198 

at the inner cavity wall and biaxial stresses at infinity. At first, the elastic stresses are represented by 199 

the general forms of the elastic complex potentials (i.e. Equations 18 and 19) according to the complex 200 

potential method proposed by Muskhelishvili 20. 201 

0

1
( ) ( )

2 (1 )

X iY 
  


  


 (18) 202 

0

( ) 1
( ) ( )

2 (1 )

X iY 
  

    


 (19) 203 

where 0 1
1

( ) n
n

n

a









  , 0 1
1

( ) n
n

n

b









  , which are holomorphic in the whole elastic region. 204 

/ 2P   and   , which describe the stress conditions at infinity. X and Y are components of the 205 

resultant vector of forces acting on the elastic-plastic boundary. 3 4    for the plane strain problem. 206 

  is Poisson’s ratio. 207 

The complex potentials are first sought with the assumption that both the stress and displacement 208 

components remain bounded at infinity, which implies that the resultant stresses vanish at infinity 20. 209 

Mathematically, it requires 0     and 0X Y  . In this case, the complex potentials remain 210 

holomorphic in the outside region of contour  . 0( )  and 0( )  fully satisfy the above 211 

requirements. According to the stress boundary conditions at the elastic-plastic boundary given in 212 
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Equations 10 and 11, it is not easy to derive the elastic complex potentials directly with simple algebraic 213 

transformations, if possible. Alternatively, the inner stress boundaries of the mean stress (i.e. Equation 214 

10a) are transformed into a Fourier series form as 215 

22 2 2 2 2 4 2

2
0 0 2

( ) ( )
( ) ( ) ln 1

1 1

( )

ep ep ep ep

in

in n
n n

x y R x y R m
k k m p P

m

G A e A

 

 



 

 

    
       
   

   

 (20) 216 

where 
2

0

1
( )

2
in

nA G e d
  


  . (1 )cosepx      and (1 )sinepy     . 217 

In Equation 20, an even function of ( )G   is formed, which is a continuous real function in terms of the 218 

argument   within the interval of 0 2   . It means that n nA A  (real numbers) and coefficients 219 

of the odd terms in 0( )  are infinitesimal. As n nA A   and 1   , naturally both sides of Equation 220 

20 can be split into two mutually conjugate parts. As a result, 221 

2
0 0 2

1

( ) / 2 / n
n

n

A A 





    (21) 222 

As 0A  is vanishingly small, the requirement of 0( )  at infinity, namely 2
0( ) ( )O     , is fulfilled. 223 

More strictly in the mathematical formulation, the term with coefficients of 0A  in Equation 21 is 224 

equivalently modified at the unit circle as 225 

2 20 0
0 0 2 222

1 1

1
( ) ( )

22
n

n nn
n n

A A
A A   

 

 


 

        (22) 226 

By multiplying both sides with 
1

2

d

i


  

 (here   is a point within  ) and then integrating it along 227 

the circumference of  , Equation 22 gives 228 

0 2
0 2 2

1

( )
2

n
n

n

A A









    (23) 229 

Then the general form of ( )  can be obtained by releasing the previous assumption in the process of 230 

deriving 0( ) . The resultant vectors still equal to zero ( 0X Y  ) because of the continuous 231 
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distribution of stresses along the elastic-plastic boundary. With the use of Equation 12 and 23, the first 232 

complex potential goes to 233 

0( ) ( )
2

P     (24) 234 

Then the complex potential ( )  is derived by integrating the continuity condition of the deviatoric 235 

stress (i.e. Equation 11a) along   from the side of   with the Cauchy integral method. As discussed 236 

in Appendix B, all terms in Equation 11a are holomorphic in  , therefore ( )  goes to 237 

2 4 2 4 2 2

2 2 2

( 1) ( 1)
( ) '( )

( )

r m R mR i
k

r

   
   

   
   

 
 (25) 238 

where 2 2 2 2 2(1 )r         . '( )  is the derivative of the complex potential ( )  with 239 

respect to  , which can be easily calculated with 
2 2 2     and 

1
( )

2
i

  
  

 
  

. Hence, 240 

0 2
2 2 1

1

'( ) 2
2

n
n

n

A A
n
 







     (26) 241 

Now this stress boundary value problem is analytically solved through the combination use of the 242 

Cauchy integral method and Fourier series as shown in Equations 23-26. 243 

4 | DISCUSSION ON RESTRICTIONS FROM THE ASSUMPTIONS 244 

As stated in Section 3.1, the above static stress solution was derived based on several prior assumptions. 245 

Restrictions due to these assumptions are discussed as follows. 246 

(1) The cavity is fully enclosed by a plastic region 247 

This assumption requires that the inner cavity is fully enclosed by a continued plastic region. Limit 248 

conditions of this requirement will be approached while the vertices of the predicted elastic-plastic 249 

boundary in the minor axis direction just reach the cavity wall 33. It gives 250 

(1 )epb R     (27) 251 

(2) Intermediate principal stress 252 
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It was assumed that the out-of-plane stress zz  always remains as the intermediate principal stress. 253 

Although this assumption is always justified for incompressible conditions, restrictions will be 254 

produced in compressible materials. The plastic stress solutions show that the principal stresses in the 255 

plastic zone vary from the inner cavity wall to the elastic-plastic boundary monotonically. Therefore, it 256 

just needs to ensure that values of zz  at the inner cavity wall and at the vertices on the major axis of 257 

the elastic-plastic boundary always remain as the intermediate principal stress 33. Relationships between 258 

the principal stresses and other stress components are given in Appendix A. With the aid of Equations 259 

7, 8, and 9, this restriction for compressible Tresca materials can be expressed as 260 

2 21 1
1 ln( ) 1

1 2 1 2
inp

m m
k 

       
 

 (28) 261 

where 
2 4 2

2

[ (1 ) / ] [ (1 ) / ]
1

1 1

R R m

m

      
  

 
. 262 

(3) Static determinacy of the plastic zone 263 

The plastic stresses were derived by assuming that the plastic zone is statically determinate. 264 

Theoretically, it implies that every point in the plastic region can be connected to the cavity rim by two 265 

characteristic lines (slip-lines) of different families, and every slip-line cuts the elastic-plastic boundary 266 

only once 51. Therefore, the limit condition will be reached while one, and only one, characteristic line 267 

is tangent to the elastic-plastic interface within one quadrant. 268 

It is known that directions of the slip-lines take an angle of ʌ/4  with the principal stress directions in 269 

Tresca materials. While internal shear stresses apply, the radial and circumferential directions are no 270 

longer the principal stress directions in the plastic zone. As shown in Figure 2, the direction of the minor 271 

principal stress takes an anticlockwise rotation to the radial direction of the cylindrical coordinates with 272 

positive shear stresses at the inner cavity wall. Contrarily, a clockwise rotation would be caused by 273 

negative shear stresses. Here taking the anticlockwise direction of   as positive, according to Figure 274 

3, the requirement of this assumption can be expressed as 275 

ʌ
4

      (29) 276 
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where   is the angle between the radial direction and the x-axis.   represents the angle between the 277 

outward normal to the elastic-plastic interface and the x-axis. 278 

Angles in Equation 29 all can be expressed in terms of the unit complex variable   as 279 

2 2
2 ( ) 2

2 2

( ) ( ) ( ) (1 )

( ) (1 ) ( )( )
ie         

     
   

 
  

  ; 
2

2 arcsin
( ) ( )

R
m
   

 
  

 
 (30) 280 

where 1( ) ( )       ; 1( ) ( )      . 281 

To ensure that only one characteristic line reaches the limit condition within one quadrant, it restricts 282 

that the equality condition holds only when the function ( )g        reaches its extremum 35. The 283 

extremum values of ( )g   lie at the zero points of its first derivative. If  no shear stress is applied, this 284 

restriction becomes ( 2 1)    33, 35. 285 

With the defined boundary conditions, stress states developed around the inner cavity can be broadly 286 

categorized into three conditions 26, 33: a) purely elastic state (i.e. zone A); b) the cavity is partially 287 

surrounded by plastic regions (e.g., zone B and zone E); and c) the cavity is fully enclosed by a plastic 288 

region (e.g. zone C and zone D). The stress field in a purely elastic state can be readily calculated with 289 

the solution given in Appendix A. The limit pressure that a plastic zone starts forming from the inner 290 

cavity wall under loading is useful in estimating the plastic initiation pressure of fracturing 14, and, 291 

therefore, it is also given in Equation 31. 292 

2( ) 1 2inp P k m       (31) 293 

In the other two stress states, distributions of the plastic regions are various, mainly depending on the 294 

material strength and boundary conditions 26, 33. By using Equations 27-31, example boundaries of 295 

different stress states are shown in Figure 4 for illustration. As previously discussed, the present solution 296 

is dedicated to problems with boundary stresses belonging to Zone C. 297 

Without the internal shear stresses, Figure 4 shows that Equations 27-31 give the same results as that 298 

given by Yarushina et al. 33 for the problem of Galin 30, and the distribution patterns of the plastic regions 299 

in Zones D and E refer to Yarushina et al. 33. When additional shear stresses apply, the limits of different 300 
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stress states would change. In specific, Line 2 (representing the limit given by Equation 27) moves 301 

leftwards with increasing shear stresses. Line 3 (determined by Equation 29) represents the limit of 302 

static determinacy of the plastic region. It is a horizontal line with a constant value of ( 2 1)    in 303 

the case without internal shear stresses, but becomes curved due to the rotation of principal stresses 304 

caused by the internal shear stresses. Opposite rotations will be produced by the shear stresses with 305 

different applying directions. As a result, the bounds of this requirement distribute in opposite sides of 306 

the horizontal line of ( 2 1)   , but they both gradually approach to ( 2 1)  with an increasing 307 

value of /inP p k  . Line 4 reflects the restriction specified by Equation 28. The additional shear 308 

stresses exert little impact on this restriction. Example lines calculated with 0inp   and 0.4   are 309 

shown in Figure 4. Line 4 moves rightwards (or leftwards) with an increasing (or decreasing) Poisson’s 310 

ratio, and this restriction will be released in incompressible materials. 311 

5 | SOLUTION VALIDATION AND DISCUSSION 312 

Within the permissible stress states specified by Equations 27, 28, and 29, the above solution for static 313 

stress analysis under loading can be calculated with the following steps. 314 

(a) determine the elastic-plastic boundary by using the mapping function given in Equation 13. Then 315 

the plastic stress field can be obtained from Equations 7, 8, and 9 directly. One-to-one corresponding 316 

relations between the physical plane and the phase plane can be established by using Equation 32; 317 

cos ( )cosx r
   


    , sin ( )siny r
   


    (32) 318 

(b) calculate the coefficients of the established Fourier series (e.g. Equation 23), which stay the same 319 

values in the whole elastic filed (setting 5n  in Equation 23 in the following calculations). The elastic 320 

complex potentials given in Equations 24 and 25 can then be calculated. By substituting the complex 321 

potentials into Equations 33 and 34, stresses in the elastic region can be readily obtained by separating 322 

the real and imaginary parts. 323 

4Re[ ( )]e e
x y      (33) 324 
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( )
2 2[ '( ) ( )]

'( )
e e e
y x xyi

     
 

      (34) 325 

5.1 | Comparison with Galin’s solution and finite element method 326 

The analytical solution is validated by comparing with Galin’s 30 solution (i.e. the special case of zero 327 

internal shear stress) and the finite element method (FEM) as shown in Figures 5 and 6 respectively. 328 

The FEM simulations are implemented in Abaqus/Standard 6.12 using the same linear elastic-perfectly-329 

plastic Tresca model as the above analytical solution. Biaxial far-field stresses are applied at the outer 330 

boundaries (100 times of the cavity radius away from the centre) of the plane-strain FEM model, and 331 

the same stress boundary conditions are applied at the inner cavity wall as depicted in Figure 1. An 8-332 

node biquadratic plane-strain quadrilateral element is utilised for meshing. 333 

It was introduced that Galin’s 30 solution is a special case that without shear stresses on the inner cavity 334 

wall of the present solution. Although different methods to decomposing the stress continuity conditions 335 

have been adopted in these two solutions, Figure 5 demonstrated that the present solution can fully 336 

recover to Galin’s 30 solution while taking m=0. When internal shear stresses apply, the analytical 337 

predictions are in good agreements with the FEM simulations as shown in Figure 6. It is found that the 338 

influence of the additional shear stress mainly concentrates in the plastic region, and the shear stress 339 

rapidly attenuates from the boundary value at the cavity wall to a stable level that varies in directions 340 

and depends on non-uniformity of the far-field stresses. Overall, it is shown that the developed series-341 

form elastic complex potentials have good convergence precision and speed in computations, and the 342 

analytical solution can accurately calculate the surrounding elastic and plastic stress fields in the defined 343 

stress state. 344 

5.2 | Distribution of elastic-plastic boundary 345 

The range of the plastic zone developed around the inner cavity can be predicted by Equation 13. It is 346 

shown in Figure 7 that additional internal shear stresses extend the range of the plastic zone, but it 347 

imposes no influence on the shape of the elastic-plastic boundary (the major to minor axis ratio remains 348 

unchanged as / (1 ) / (1 )ep epa b     . The major axis of the elliptic elastic-plastic boundary under 349 
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loading lies in the x-axis direction while 0  , whereas it is along the y-axis direction while 0  . 350 

In other words, the direction of the major axis coincides with the direction of the minor principal stress 351 

(i.e. maximum compression stress) at infinity. 352 

6 | QUASI-STATIC CAVITY EXPANSION SOLUTION IN A HYDROSTATIC 353 

STRESS FIELD 354 

As previously discussed, rotations during cone penetrations may cause additional plastic failure in the 355 

surrounding soil comparing with non-rotated cone penetrations. It is believed that this effect contributes 356 

to the great reduction of the axial soil resistance measured by a rotating penetrometer 18, 19. Based on the 357 

analogy of cone penetration and continuous cavity expansion, cylindrical cavity expansion solutions 358 

have been applied to estimate the normal soil pressure acting on non-rotated cones with some successes 359 

39, 40. In rotating CPTs, a rotating cone displaces the ahead soil increasingly cylindrical 18. Therefore, a 360 

cylindrical quasi-static expansion analysis considering internal shear stresses is developed to account 361 

for the impact of the additional plastic deformation on the normal soil resistance measured in rotating 362 

CPTs as follows. 363 

The quasi-static analysis of a cylindrical cavity models the lateral soil response caused by a vertically 364 

advancing cone. The confining in-situ soil stresses in a horizontal plane are assumed to be uniform. 365 

With uniform in-situ stresses, the mapping function of the elastoplastic interface (i.e. Equation 13) will 366 

reduce to ( )   . Therefore, the inner pressure during expansion can be expressed as 367 

22ln( ) 1
h h

in cp P r
m

k R

    (35) 368 

where h
cr  is the elastic-plastic radius under the corresponding hydrostatic initial stress of hP . 369 

Radial displacements during continuous cavity expansions can be obtained by using the derived large-370 

strain displacement solution in Appendix C. By letting r R  and 0 0r R  in Equation C8, the radius 371 

ratio ( /h
cr R ) of the elastic-plastic boundary to the current cavity at any expansion instant can be 372 

expressed as Equation 36. 373 
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       

 (36) 374 

While regarding the material as incompressible (i.e. 0.5v ), the displacement solution of Zhou et al.13 375 

can be recovered by Equation 36 as: 376 

2
2 204 [(1 ( ) ]

h
cr RG

m
R k R

     
 (37) 377 

Equation 36 gives that a limit value of /h
cr R  exists during continuous expansions. This limit can be 378 

approached by putting 0 /R R . In the special case of zero internal shear stress (i.e. 0m ), the 379 

limit ratio of /h
cr R  given by Yu 1 from a rigorous similarity analysis, considering the material 380 

compressibility, can be recovered as given in Equation 38, neglecting the small quantities. 381 

1

2( 1)
2( 1)(1 ) 1

2

h
cr k

R G




      
 (38) 382 

A rigorous quasi-static expansion solution is obtained by the combination use of Equations 35 and 36. 383 

In the simplified cases of 0.5v  and 0m , the well-known limit expansion pressure derived by 384 

Gibson and Anderson 54 (i.e. Equation 39) can be recovered by substituting the limit value of /h
cr R  385 

into Equation 35. 386 

limit [1 ln( )] hG
p k P

k     (39) 387 

By using Equations 35 and 36, influences of the internal shear stress on the continuous pressure-388 

expansion response and the limit expansion pressure are depicted in Figures 8 and 9, respectively. It is 389 

shown that additional shear stresses reduce the required normal pressure during continuous expansions, 390 

and the limit expansion pressure declines with increases of the applied shear stresses and decreases of 391 

Poisson’s ratio. These reductions are due to the additional plastic failure caused by the internal shear 392 

stresses. With fully mobilised shear stresses (i.e. m=1), a reduction of 6% of the limit expansion pressure 393 
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may be produced within the Tresca material, and this influence would be intensified in materials with 394 

greater interface shear stress holding capacity. In addition to the stress reorientation effect considered 395 

by Bengough, et al. 18, this solution provides an analytical method to further explain the great reduction 396 

of soil resistance measured in rotating CPTs. 397 

7 | ESTIMATION OF MAXIMUM MUD PRESSURE IN HORIZONTAL 398 

DIRECTIONAL DRILLINGS 399 

In the cavity expansion approach, the maximum mud pressure (mp ) in HDD practices is usually 400 

expressed in terms of the maximum allowable plastic radius (cR ). Based on the derived mapping 401 

function in Equation 13, mp  in terms of cR  can be expressed as 402 

2
02 ln 1c

m

R
p k P k m u

R 
      
 

 (40) 403 

where 0u  is the groundwater pressure at the depth of the borehole. 404 

According to Equations 13 and 35, the propagation distance of the plastic failure zone (cr  ) under 405 

biaxial stress conditions within the admissible stress range can be expressed as 406 

( ) ( )h
c cr r

  


    (41) 407 

It has been demonstrated that the average cavity displacement in a biaxial stress field can be 408 

approximated by the solution derived in the corresponding hydrostatic stress condition 34, 55. Therefore, 409 

the borehole radius pressurised under a uniform mud pressure is estimated by using the displacement 410 

solution given in Appendix C. With known initial borehole diameter ( 02R D ) and radius of the 411 

elastic-plastic boundary, /h
cr R can be obtained by letting r R  and 0 0r R  in Equation C8 as: 412 
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 (42) 413 

Neglecting the internal shear stress, /h
cr R  can be explicitly expressed as: 414 
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    (special case of 0m ) (43) 415 

In undrained clays, the plastic volumetric change under loading is often negligible. Therefore, the 416 

displacement solution can be further simplified to the Delft solution in this case 56 as Equation 44. 417 

1

2
20( )

h
c

h
c

r Rk

R G r


 

  
 

        (special case of 0m  and 0.5  ) (44) 418 

The failure model caused by pressurized drilling fluids in clays is considered to be either tensile or shear 419 

failure 57-59. The limit failure pressure varies with the failure model significantly. In general, the tensile 420 

fracture pressure is lower than that with shear failure 17, 58. The failure model primarily depends on the 421 

material strength and stress conditions (e.g. the K0 effect) within homogenous materials 50, 60. Both 422 

elastic (e.g. Kirsch equations) and elastic-plastic (e.g. Delft solution) cavity expansion solutions are 423 

often applied to estimate the limit pressure based on different failure criteria 5, 14, 17, 60. Based on the 424 

cavity expansion analysis, the potential failure models under loading may refer to the discussion given 425 

in Section 4. Taking Figure 4 as an example, tensile fracture failure tends to occur within the stress 426 

ranges of Zones B and E; shear failure may dominate in the Zone C; and a mixed failure may take place 427 

in the Zone D. As discussed earlier, the present stress solution was derived under stress conditions 428 

within the Zone C. Therefore, Equations 40, 41, and 42 are preferable for estimating the maximum mud 429 

pressure of HDDs implemented under stress conditions within this stress range. 430 

For horizontal boreholes excavated at relatively shallow depths, apart from the considered K0 effect, the 431 

free ground surface and soil strength and stress gradient with depths may also influence the failure 432 

model. The cavity expansion solutions used for this application were mostly developed in an infinite 433 

plane. Therefore, different criteria have been proposed in the cavity expansion approach to estimating 434 

the maximum mud pressure during HDDs, for example, the maximum allowable plastic radius criterion 435 

42, 61 and maximum hoop strain criterion 5. Evaluation of the reliability of these criteria is out of the 436 

scope of this paper. Instead, the most commonly adopted maximum allowable plastic radius criterion is 437 

followed in this solution. 438 
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Comparing with the elastic-plastic radius calculated in the corresponding hydrostatic stress condition 439 

(Equation 42), a shape factor of /    is introduced by Equation 41 due to the biaxial in-situ 440 

stresses. It is shown in Figure 10 (a) that Equation 41 describes that the plastic zone develops farther in 441 

the vertical direction while 0 1K   (e.g. in normally consolidated or lightly overconsolidated clays), 442 

whereas the farthest yielding point is along the horizontal direction before failure while 0 1K   (e.g. 443 

heavily overconsolidated clays). Similar trends have also been reported in numerical and experimental 444 

studies 56, 62. However, it needs to point out that the propagation of the plastic zone in cases of 0 1K   445 

may rapidly extend to the free ground surface at the ultimate failure stage instead of propagating farther 446 

in the horizontal direction, and, consequently, caution should be exercised when the maximum 447 

allowable plastic radius criterion is applied in this case. Therefore, the following discussion 448 

concentrates on the performance of the present solution in cases of 0 1K  . 449 

Following the failure criterion suggested by the Delft solution, which states that the maximum allowable 450 

mud pressure will be reached when the plastic region expands to a distance equalling to half of the 451 

burial depth, the new method given by Equations 40-42 is applied to estimate mp  for cases while 452 

0 1K  . While 0 1K  , the farthest yielding point locates above the crown of the borehole with a centre 453 

distance of  1 0.5h
c cR r H   . Based on numerical simulation results, Xia and Moore 17 reported 454 

that the Delft solution may overestimate the mud pressure by up to 15% while 0 1K  , and better 455 

agreements with the numerical results have been achieved by their solution considering the K0 effect 56. 456 

Figure 10 (b) demonstrated that the K0 effect is also well captured by the present solution in the given 457 

stress states. Additionally, it is shown that internal shear stresses may lead to further decreases of the 458 

maximum allowable mud pressure. Hence, the ignorance of the internal shear stresses may be another 459 

noticeable reason that leads to that the Delft solution generally tends to overestimate mp  in practice 45, 460 

47. 461 

8 | SUMMARY AND CONCLUSIONS 462 
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An analytical elastoplastic stress solution was developed for a cylindrical cavity under loading in Tresca 463 

materials, subjected to biaxial stresses at infinity and uniform normal and shear stresses on the cavity 464 

wall. The solution was derived by three steps: a) plastic stresses were derived by assuming that the 465 

plastic zone is statically determinate, b) a conformal mapping function describing the outside elastic 466 

region was determined through analysing the stress continuity conditions across the elastic-plastic 467 

boundary based on Laurent’s decomposition theorem and Harnack’s theorem, and c) Kolosov-468 

Muskhelishvili complex potentials for the elastic analysis were obtained by using the Cauchy integral 469 

method and Fourier series method. Within the admissible application range, the analytical solution 470 

showed excellent agreement with FEM simulations and Galin’s solution in the special case without 471 

internal shear stresses. It was demonstrated that both the internal shear stress and biaxial in-situ soil 472 

stresses have fairly significant influences on the distribution of the plastic zone. It was shown that the 473 

elastic-plastic boundary is in an elliptic shape under biaxial stress conditions, whose major axis 474 

coincides with the direction of the maximum far-field compression stress under loading on the internal 475 

cavity wall. The additional shear stresses extend the plastic region, but apply no influence on the shape 476 

of the elastic-plastic boundary. In addition, considering the internal shear stresses, an analytical large 477 

strain displacement solution was developed for a cylindrical cavity expanding in a hydrostatic in-situ 478 

stress field. The derived stress and displacement solutions were applied to account for the additional 479 

influence of the shear stresses generated during rotating CPTs and to estimate the maximum allowable 480 

mud pressure of HDDs considering both biaxial in-situ stresses and the possibly generated internal shear 481 

stresses. 482 

To explain the reduction of the normal soil resistance in rotating CPTs due to the shear stresses 483 

generated around the interface, an analytical quasi-static cavity expansion solution was developed by 484 

combing the derived static stress solution and the continuous displacement solution. It was found that 485 

the internal shear stresses would lead to additional plastic failure in the surrounding soil. As a result, 486 

the required normal pressure during expansions and the limit normal expansion pressure decline, 487 

depending on the shear stress level. These findings further explained the great reduction of the tip 488 



23 

resistance measured in rotating CPTs in addition to the reorientation effect of the interface frictional 489 

resistance. 490 

Considering the K0 effect and influences of the shear stresses generated during drillings, a new 491 

approximate method for estimating the maximum allowable mud pressure during HDDs was developed. 492 

With the same maximum allowable plastic radius as in the Delft solution, the new method predicted 493 

lower maximum mud pressures than those by the Delft solution in cases of 0 1K   and showed that the 494 

maximum mud pressure declines with a decreasing value of K0. These findings are consistent with that 495 

reported in numerical simulations. In addition, it was found that the internal shear stresses may also 496 

cause a considerable reduction of the maximum mud pressure in HDDs, which suggested that this effect 497 

may need to be considered while a significant amount of shear stresses between the rotating drill 498 

bit/reamer and the surrounding soil are unavoidably generated during drillings. 499 

Appendix A. Purely elastic stress solutions and expressions of principal stresses 1 500 
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Appendix B. Re-derivation of the mapping function 37 507 

To transform the exterior of the elastic-plastic boundary in the physical plane onto the exterior region 508 

of the unit circle in the phase plane, a general form of conformal mapping function is introduced 63 as 509 
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Due to the symmetry of the geometry and stress boundaries, the mapping function ( )   has the 511 

following features 35. 512 

( ) ( )        ,  ( ) ( )     (B2) 513 

As a result, 0  and coefficients of the even order terms are equal to zero, and remaining coefficients 514 

are real numbers. ( )   can be rewritten as 515 
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By multiplying both sides of Equation 11a with 1
2

d

i


  

, a Cauchy integral is established as: 517 
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The right part of Equation B4 should be bounded at infinity 27, 52, hence terms of 1j   in the mapping 519 

function vanish as shown in Equation B5. 520 
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where ( )M   is analytic on the exterior of contour  , and ( ) 0M   . Similarly, we find 522 
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where ( )N  is analytic on the exterior of contour  , and ( ) 0N   . 524 

Meanwhile, ( )  is holomorphic in   (including infinity points). Finally, according to Harnack’s 525 

theorem 20, integrating Equation B4 along   from   side gives 526 

1 1 k


     (B7) 527 

Therefore, the mapping function is in the form of Equation 13. Detailed knowledge about the complex 528 

variable methods in elasticity refers to the references of Muskhelishvili 20 and England 63. 529 

Appendix C. Displacement solution for continuous expansions in a hydrostatic stress field 530 
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For a cavity deforms in a hydrostatic initial stress state, the radial displacement during continuous 531 

expansions can be obtained by a one-dimensional deformation analysis. Note that Zhou et al.13 presented 532 

an analytical expansion solution for this problem by ideally regarding the material as volumetric 533 

incompressible. More generally, a new large-strain displacement solution considering the material 534 

compressibility is presented here. The elastic displacement is derived based on the small strain theory, 535 

and finite strain definitions are adopted in the plastic deformation analysis 64, 65. 536 

During purely elastic expansions, the radial displacement (ru ) can be expressed as 537 
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According to the elastic stress solution (i.e. Equations A1, A2, and A3, ignoring the angle-dependent 539 

terms) and the yield criterion (i.e. Equation 5), it is found that a plastic zone starts forming from the 540 

inner cavity wall while 21 h
inp k m P   . While plastic zone appears, the radial displacement in the 541 

outside elastic zone can be obtained by replacing inp  with the compression pressure at the elastic-542 

plastic boundary ( h
cr

p ) and R  with the radius of the elastic-plastic boundary (h
cr ) in the solution of 543 

Equation C1. h
cr

p  can be calculated by substituting the elastic stress solution into the yield criterion as 544 
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Then the radial displacement at the elastic-plastic boundary is obtained based on the elastic solution as 546 
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Due to the plastic volumetric strain rate is zero in Tresca materials, the compressibility equation in the 548 

plastic region 1 can be expressed as 549 

1 2
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v
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With the initial stress boundary conditions, integrating Equation C4 gives 551 
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By adopting the definition of logarithmic strain to characterise the accumulative deformation, the radial 553 

strain and circumferential strain respectively are 554 
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By substituting the plastic stresses and Equation C6 into Equation C5, it gives 556 
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With the use of Equation C3, Equation C7 can be integrated over the interval [r, h
cr ], leading to 558 
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Now the continuous radial expansion of a cylindrical cavity in a hydrostatic in-situ stress field can be 560 

modelled by using Equation C8 without limitation of the deformation level. 561 
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Figures: 710 

 711 

Figure 1 Stress boundaries and coordinate systems 712 

 713 

 714 

Figure 2 Direction of principal stresses 715 
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 716 

Figure 3 Illustration of slip lines intersecting with the elastic-plastic boundary (taking m>0 as an 717 

example) 718 

 719 

 720 

Figure 4 Example limits of different stress states (0.4  ) 721 
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 722 

Figure 5 Comparison between the present solution with m=0 and Galin’s 30 solution 723 

 724 

 725 

Figure 6 Comparison of stress components between the analytical solution and FEM simulations 726 
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 727 

Figure 7 Influences of the internal shear stress and biaxial in-situ stresses on the elastic-plastic 728 

boundary 729 

 730 

 731 

Figure 8 Example continuous pressure-expansion curves 732 
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 733 

Figure 9 Influences of the internal shear stress on the limit expansion pressure 734 

 735 

 736 
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 737 

Figure 10 K0 effect: (a) elastic-plastic boundaries with the same mud pressure; (b) limit mud pressures 738 

with the same value of Rc(=0.5H) (H=3m, D=0.5m, G/k=200, v=0.5, k=40kPa kN/m3) 739 


