
This is a repository copy of Bridging Proprietary Modelling and Open-Source Model
Management Tools:The Case of PTC Integrity Modeller and Epsilon.

White Rose Research Online URL for this paper:
https://eprints.whiterose.ac.uk/144996/

Version: Published Version

Article:

Zolotas, Athanasios, Hoyos Rodriguez, Horacio, Hutchesson, Stuart et al. (5 more authors)
(2019) Bridging Proprietary Modelling and Open-Source Model Management Tools:The
Case of PTC Integrity Modeller and Epsilon. Software and Systems Modeling. ISSN 1619-
1366

https://doi.org/10.1007/s10270-019-00732-1

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse

Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless
indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by
national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of
the full text version. This is indicated by the licence information on the White Rose Research Online record
for the item.

Takedown

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

Software & Systems Modeling

https://doi.org/10.1007/s10270-019-00732-1

SPEC IAL SECT ION PAPER

Bridging proprietary modelling and open-source model management
tools: the case of PTC Integrity Modeller and Epsilon

Athanasios Zolotas1 · Horacio Hoyos Rodriguez1 · Stuart Hutchesson2 · Beatriz Sanchez Pina1 · Alan Grigg2 ·

Mole Li2 · Dimitrios S. Kolovos1 · Richard F. Paige1,3

Received: 25 July 2018 / Revised: 20 February 2019 / Accepted: 12 April 2019

© The Author(s) 2019

Abstract

While the majority of research on Model-Based Software Engineering revolves around open-source modelling frameworks

such as the Eclipse Modelling Framework, the use of commercial and closed-source modelling tools such as RSA, Rhapsody,

MagicDraw and Enterprise Architect appears to be the norm in industry at present. This technical gap can prohibit industrial

users from reaping the benefits of state-of-the-art research-based tools in their practice. In this paper, we discuss an attempt

to bridge a proprietary UML modelling tool (PTC Integrity Modeller), which is used for model-based development of safety-

critical systems at Rolls-Royce, with an open-source family of languages for automated model management (Epsilon). We

present the architecture of our solution, the challenges we encountered in developing it, and a performance comparison against

the tool’s built-in scripting interface. In addition, we use the bridge in a real-world industrial case study that involves the

coordination with other bridges between proprietary tools and Epsilon.

Keywords Model-driven engineering · Model management · Open-source

Communicated by Mr. Vinay Kulkarni.

B Athanasios Zolotas

thanos.zolotas@york.ac.uk

Horacio Hoyos Rodriguez

horacio.hoyos.rodriguez@ieee.org

Stuart Hutchesson

stuart.hutchesson@rolls-royce.com

Beatriz Sanchez Pina

basp500@york.ac.uk

Alan Grigg

alan.grigg@rolls-royce.com

Mole Li

mole.li@rolls-royce.com

Dimitrios S. Kolovos

dimitris.kolovos@york.ac.uk

Richard F. Paige

richard.paige@york.ac.uk; paigeri@mcmaster.ca

1 Department of Computer Science, University of York, York,

UK

2 Rolls-Royce, Control Systems, Derby, UK

3 Department of Computer Science, McMaster University,

Hamilton, Canada

1 Introduction

Large enterprises often use proprietary and closed-source

software and system modelling tools, such as Magic-

Draw [23], Rhapsody [13] and Enterprise Architect [28] as

these come with extensive documentation and are backed by

commercial vendors offering guaranteed maintenance and

support. By contrast, the majority of research in Model-

Based Software Engineering (MBSE) is conducted using

open-source modelling tools and frameworks (e.g. Eclipse

Modelling Framework (EMF) [29]). This technological gap

means that research outcomes are more often than not largely

inaccessible to enterprise users. This is clearly detrimental to

both enterprise users, who are often unable to readily exploit

recent advances in MBSE research, and to researchers, who

would benefit from the feedback of enterprise users on the

use of research outcomes in industrial-scale applications. In

addition, enterprise users are restricted to use only built-in

model analysis and management facilities provided by the

modelling tool. Companies may see the need to eventual

transition from proprietary tools to open-source modelling

and model management tools, in order to reduce costs or use

state-of-the-art MBSE technologies.

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10270-019-00732-1&domain=pdf

A. Zolotas et al.

The risks associated with this transition may be very high,

especially if the legacy model has been used to develop safety

critical software that has undergone safety assessment as part

of certification. In addition, the challenges of such an attempt

include the potential need of bridging different technologies

which might have an impact in the time required to execute

the model management tasks. Any proposed solution should

perform as fast as the built-in model management scripting

interface (or as close as possible to that).

In this paper, we present the results of collaboration

between researchers at the University of York and practition-

ers at Rolls-Royce, on bridging the gap between a proprietary

UML modelling tool, PTC Integrity Modeller (IM), which is

used extensively at Rolls-Royce to support MBSE activities,

and the open-source Epsilon family of model management

languages (http://www.eclipse.org/epsilon/), which is driven

by MBSE research primarily conducted at the University

of York and Ashton University. In particular, we discuss

the design and implementation of an interoperability layer

through which Epsilon model management programs (e.g.

validation constraints, model-to-model and model-to-text

transformations, etc.) can query and modify IM models

without needing to transform them to an intermediate rep-

resentation (e.g. XMI) first. We also report on the findings

of experiments which evaluate the performance and main-

tainability of equivalent model validation rules defined using

IM’s built-in scripting language (Visual Basic) and Epsilon’s

EVL language.

This paper is an extended version of the work presented

in [34]. Compared to [34], in this paper, we also:

1. Apply our solution to a real-world industrial case study

that involves the use of other bridges available in Epsilon.

This demonstrates the full potential of the implemen-

tation of bridges between open-source and proprietary

tools.

2. Include additional related work.

3. Discuss in detail the handling of UML stereotypes.

4. Propose and implement a solution that supports execution

in both 32-bit and 64-bit environments instead of the 32-

bit-only version presented previously.

The rest of the paper is structured as follows. Section 2

discusses the current practice of MBSE at Rolls-Royce and

motivates our work. Section 3 then describes the design

and implementation of the IM-Epsilon interoperability layer

(driver). In Sect. 4, examples of using the bridge are pre-

sented. In Sect. 5, the driver is evaluated by executing

validation rules on models of real systems provided by

Rolls-Royce. In addition, a new case study that involves the

coordination of two bridges built for MathWorks Simulink

and Microsoft Excel with the PTC IM bridge is presented

in the same section. Section 6 presents our observations and

the lessons learnt working on this project. Section 7 presents

related work, and Sect. 8 concludes the paper and presents

directions for future work.

2 Background andmotivation

Rolls-Royce has successfully used a combination of UML

class and structure models to define the software architecture

for Full-Authority Digital Engine Control (FADEC) systems

for over 15 years. This approach uses class models to describe

the software structure, and employs model-to-text transfor-

mation to generate a SPARK [2] implementation. A SPARK

profile is used to allow the structure of the SPARK program to

be fully described at the lowest modelled level of abstraction.

The UML modelling environment is used to define the

architectural framework and the design details for the hosted

components. Design artefacts are produced from the UML

models through automatic report generation. These are used

as configured design artefacts to support the software system

approval (certification) process.

The company has more recently started to employ Model-

Based Systems Engineering approaches to design and anal-

yse the FADEC system at a higher level of abstraction.

This makes use of SysML [11] to produce functional and

physical models of the control system and perform early val-

idation of the design choices. Rolls-Royce Control Systems

is using MBSE/SysML to capture system and software-level

requirements, in accordance with a Control Systems mod-

elling standard that defines the subset of SysML notation to

be used and the mandatory information content of the model.

This gives significant benefits in terms of both quality and

levelling of system requirements but is, however, currently

limited to the use of textual requirements within the structural

framework of the SysML model.

Automated validation scripts are executed against both

the systems and software-level models to ensure consistency,

correctness (where possible) and compliance to modelling

standards. Currently, the development of these validation

scripts is a specialist activity as it requires a relatively deep

knowledge of the underlying metamodel used by the mod-

elling tool (IM), plus Visual Basic programming skills to

interact with the tool’s scripting interface. This approach is

also highly coupled with the particular modelling tool, so the

validation checks are not easily portable across modelling

environments. To leverage higher-level model management

(e.g. model validation, M2M and M2T transformation) lan-

guages that provide support for different environments, the

only available option is to use IM’s model exporting facilities

which can serialise models in the form of XMI documents.

This option has two notable shortcomings:

1. It imposes a significant overhead as even when small

changes are made to models within the tool; the whole

123

http://www.eclipse.org/epsilon/

Bridging proprietary modelling and open-source model management tools: the case of PTC…

Fig. 1 Architecture of Epsilon

(https://www.eclipse.org/

epsilon/doc/)

model should be exported again to include the changed

elements.

2. Some of the information in the native model representa-

tion (particularly diagram layout information) cannot be

exported to XMI, which in practice makes programmatic

modification and re-importing of the XMI prohibitive.

3. Taking into account the fact that PTC IM can be deployed

on a server and the models can be edited by multiple

users, this can lead to situations where engineers work

with stale versions of the model which may be unde-

sirable especially in the development of safety-critical

applications.

To overcome these challenges, particularly with a view to

enabling heterogeneous modelling, analysis and code gener-

ation in the future, in this work, we developed a direct bridge

between IM and the Epsilon family of task-specific model

management languages, which provides Epsilon programs

with direct and full (read/write) access of in-memory IM

models. This solution tackles all the aforementioned short-

comings of the XMI serialisation approach.

3 Bridging Epsilon with PTC Integrity
Modeller

In this section, we briefly introduce Epsilon and the Epsilon

Model Connectivity (EMC) layer atop which the IM driver1

has been developed. We also provide a brief overview of IM

before and then discuss the architecture and implementation

of the driver along with appropriate examples.

1 The driver can be installed to an Epsilon distribution from this Eclipse

update site: http://zolotas.net/EpsilonPTC/updates/v1.0.1/.

3.1 Epsilon

Epsilon is a mature open-source family of interoperable

task-specific languages that can be used to manage mod-

els of diverse metamodels and technologies. At the core

of Epsilon is the Epsilon Object Language (EOL) [19],

an OCL-based imperative language that provides support

for querying and modifying models conforming to diverse

modelling technologies. Although EOL can be used as a

general-purpose model management language, its primary

aim is to be embedded as an expression language in hybrid

task-specific languages. Indeed, a number of task-specific

languages have been implemented atop EOL, including lan-

guages for model-to-model (ETL) and model-to-text (EGL)

transformation (ETL), model comparison (ECL), merging

(EML), validation (EVL), refactoring (EWL) and pattern

matching (EPL) as illustrated in Fig. 1.

One of the notable features of Epsilon is that its languages

are not bound to any particular metamodelling architecture.

To treat models of different technologies in a uniform manner

and to shield the languages of the platform (and the develop-

ers of model management programs) from the intricacies of

underlying technologies, Epsilon provides the Epsilon Model

Connectivity (EMC) layer (illustrated at the lower part of

Fig. 1).

The core abstractions provided by EMC are the IModel,

IPropertyGetter and IPropertySetter interfaces, which pro-

vide methods for creating, retrieving (by ID or by type) and

deleting model elements, and for retrieving and setting the

values of their properties, respectively. These interfaces are

discussed in more detail in the section that follows while

presenting the implementation of the IM driver for Epsilon.

123

https://www.eclipse.org/epsilon/doc/
https://www.eclipse.org/epsilon/doc/
http://zolotas.net/EpsilonPTC/updates/v1.0.1/

A. Zolotas et al.

Fig. 2 Metamodel hierarchy in

IM repository (taken from [26])

Fig. 3 High-level architecture

of the solution

3.2 PTC integrity modeller

PTC Integrity Modeller (formerly known as Atego Artisan

Studio) allows the definition of UML and SysML models

and diagrams. Among other functionalities, IM offers facil-

ities for synchronisation with other modelling tools (e.g.

Simulink [32], Doors [14]) and automatic code synchroni-

sation for many programming languages (e.g. C, Ada, Java).

In IM, models are stored in a centralised object database

called Enabler [12], developed by Fujitsu. The model repos-

itory consists of three layers: the repository services, the

integration services and the user access layer. Models, model

elements, relationships, attributes and their values are stored

in Enabler’s datastore kernel files. The datastore also provides

a cache that stores recently accessed elements to improve per-

formance.

Figure 2 shows the organisation of an IM model reposi-

tory. The Projects item holds all the projects in the repository.

Each project consists of one Dictionary where all model ele-

ments (Dictionary Item) and a diagram object (Diagrams),

which holds all the diagrams in the model, are stored. Each

model element has a set of attributes and associations (col-

lectively referred to as properties) that are common between

all types. For example, each element has a unique id, a name

and a type attribute. There are also properties which are spe-

cific for each type of elements. For example, IsAbstract has a

value for each element of type Class which value is ‘true’ for

a class that is abstract (e.g. AbstractPersonClass1). In addi-

tion, each property is characterised by four boolean flags:

isReadOnly, isAssociation, isMultiple and isPublic (e.g. the

property IsAbstract of the AbstractPersonClass1 has a value

‘false’ for the isAssociation property). These flags allow the

tool to identify which operations are permitted on each prop-

erty (e.g. if a property is read-only, then setting its value is

not allowed).

Engineers are able to access and manipulate model ele-

ments programmatically through a scripting API in Visual

Basic (VB). Listing 1.1 shows an example VB script that

prints the names of all the elements of type Activity in the

HSUV model, which is one of the examples that ship with

the tool.

1 Dim projects = CreateObject(”OMTE.Projects”)

2 Dim project = projects.Item(”Reference”, ”\\Enabler\Desktop\Examples\Filling

Station\0”)

3 Dim dictionary = project.Item(”Dictionary”, ”Dictionary”)

4 Dim activities = dictionary.Items(”Activity”)

5 Do While activities.MoreItems

6 a = activities.NextItem

7 Console.WriteLine(a.Property(”Name”))

8 Loop

Listing1.1 Example of a Visual Basic program that queries an IM model

3.3 The IM-Epsilon bridge

This section presents the details on providing the IM-Epsilon

bridge as an Epsilon EMC Driver. An overview of the high-

level architecture of the bridge developed between IM and

Epsilon is presented in Fig. 3. IM exposes models through

the Automation Interface (the one that is also used for the VB

scripting functionality) that provides model query and mod-

ification operations. Access to the Automation Interface is

given through a Windows COM layer. As the Epsilon Model

Connectivity layer requires the extension of three Java inter-

faces, our integration (labelled PTC IM Driver in Fig. 3)

needs to use an intermediate layer that realises Java/COM

communication. Our initial implementation was based on the

open-source Jawin [31] library. This was replaced in the cur-

123

Bridging proprietary modelling and open-source model management tools: the case of PTC…

PtcimModel

+allContentsFromModel(): Collection<PtcimObject>
+deleteElementInModel(instance: PtcimObject): boolean
+getAllOfKindFromModel(kind: String): Collection<PtcimObject>
+getAllOfTypeFromModel(kind: String): Collection<PtcimObject>
+getElementById(id: String): PtcimObject
+getElementId(instance: PtcimObject): String
+createInstance(type: String, params: Collection<Object>): PtcimObject

PtcimObject

-id: String

+getType(): String
+equals(obj: Object): boolean
+getProperty(name: String): Object
+setProperty(name: String, value: Object)

PtcimProperty

-name: String
-isReadOnly: Boolean
-isMultiple: Boolean
-isAssociation: Boolean
-isPublic: Boolean

PtcimPropertyGetter

+invoke(object: Object, property: String): PtcimObject

PtcimPropertySetter

-comProperty: PtcimProperty

+invoke(value: Object)

PtcimPropertyManager

+getPtcProperty(obj: PtcimObject, property: String): PtcimProperty
+normalise(propertyName: String): String

AbstractPropertySetter AbstractPropertyGetter

+propertyManager1

«interface»
IPropertyGetter

+getter

1

«interface»
IModel

«interface»
IPropertySetter

+setter

1

+elements

0..*

+properties

0..*

Fig. 4 Class diagram of the IM-Epsilon driver

rent implementation by the com4j [16] library - we discuss

the rationale behind this decision in Sect. 3.4.

By using the IM-Epsilon bridge, developers are able to

query the IM models, access and modify all model element

properties exposed through the COM interface using any of

the model management languages that are part of the Epsilon

suite. Examples of properties include the name, type and last

change date attributes, or the child object, scoping iItem and

stereotype associations. A comprehensive list of supported

types, attributes and references (i.e. IM’s metamodel) can be

found in the IM documentation [25].

Figure 4 shows a class diagram of the driver. Every Epsilon

driver consists of three main classes that implement the

IModel, IPropertyGetter and IPropertySetter interfaces. For

the PTC IM driver presented in this work, these are the

PtcimModel, PtcimPropertyGetter and PtcimPropertySetter

classes (see Fig. 4), respectively. The PtcimModel class pro-

vides (among other) implementations of functions that create

new elements, delete existing elements, return all the ele-

ments in a model, return all elements of a specific type, etc.

The most important methods in the PtcimModel class are pre-

sented below. For each of them, a mapping to the equivalent

IM’s COM interface method is given.

– getAllOfTypeFromModel(type : String) : PtcimObject[]:

This method returns all the elements of the given type.

– getAllOfKindFromModel(kind : String) : PtcimObject[]:

Returns all the elements of the type including all the ele-

ments whose type extends the given type. However, IM

does not have a notion of meta-type hierarchy; thus, this

method delegates its functionality to getAllOfTypeFrom-

Model(…).

– allContentsFromModel() : PtcimObject[]: Returns all the

elements in the model.

– getElementById(id : String) : PtcimObject: This method

returns the element that has a specific id.

– createInstance(type : String) : PtcimObject: Creates new

elements of a specified type. This is realised by calling

the Add(type) method in IM COM.

– deleteElementInModel(element : PtcimObject): Deleted

elements from the model. By invoking this method, IM

also automatically removes all the elements that are con-

nected to this element via associations that are flagged

with the Propagate Delete value set to true.

A PtcimModel consists of a number of PtcimObjects

which are proxies for the elements of the model and which

provide the following methods.

– getId() : String: This method returns the unique id of the

element.

– getType() : String: Returns the type of the element.

– getProperty(name : String) : Object: This method retrie-

ves the value of a property. If the property is an attribute,

this is achieved by invoking the Property(arg) method,

else the Items(property) or Item(property) are invoked

123

A. Zolotas et al.

depending on whether the association is multi-valued or

single-valued.

– setProperty(name : String, value : Object): This method

sets the value of a model element property by invoking

the Add(value) method of the COM API if the property is

an association or the PropertySet(value) method in case

the property is an attribute.

Each model element has a number of properties which

are represented as instances of the PtcimProperty class. As

discussed above, each property in IM has four boolean flags

that characterise it (e.g. isAssociation, etc.). These flags are

retrieved by a method in the PtcimPropertyManager class

which is described below.

– getPtcProperty(obj, property): This method invokes the

Property(‘All Property Descriptors’) method of the IM

automation interface. The later returns a string containing

the four boolean values, separated by the new line char-

acter (\n), which are used to create a newPtcimProperty.

A getter and a setter are instantiated for each PtcimModel

and are attached to it. They include methods for getting and

setting the value(s) of model element properties, which del-

egate to the getProperty(…) and setProperty(…) methods of

PtcimObject discussed above.

Finally, all property names are normalised using the

normalise(propertyName : String) method of the Ptcim-

PropertyManager class (see Fig. 4). This method turns all

characters to lower case and strips all white space. As a result,

the user can refer to attributes and associations using different

aliases without the need of paying attention to capitalisation

and word separation. For example, developers can access the

Child Object association using any of the following aliases:

childObject, childobject, ChildObject, child object, etc.

3.4 Java/Windows COM integration

IM exposes all the functionality available to the native

scripting facility (using VB), through the Windows Com-

ponent Object Model (Windows COM). As Epsilon is

written in Java, the bridge should also be built using Java.

Although COM allows direct interaction with many program-

ming languages, calling COM objects using Java cannot be

achieved natively. For that reason, a number of Java/Windows

COM interoperability libraries were developed, including

Jawin [31], com4j [16] and Jacob [1].

In our previous work [34], we used Jawin as the Java/-

COM bridge. IM is a 32-bit Windows application and Jawin,

which (only) supports 32-bit execution environments, was

a good candidate. As described in Sect. 3.1, Epsilon sup-

ports the execution of model management scripts on models

that are based on a variety of modelling technologies (e.g.

Table 1 Time (in seconds) each library needed to execute a set of simple

commands 10,000 to IM through COM

Library 32-bit (first/second repeat) 64-bit (first/second repeat)

Com4j 296/304 s 311/322 s

Jacob 304/312 s 315/322 s

Jawin 285/297 s –

EMF, CSV, Spreadsheets, etc.). It is often the case that more

than one of the supported modelling technologies are used

in the same Epsilon script, as shown in the case study pre-

sented in Sect. 5.2, where SysML models are transformed

to Simulink models and the latter are simulated using values

taken from an Excel spreadsheets. Some of the supported

modelling technologies (e.g. Simulink) only support 64-bit

execution environments, thus combining 64-bit-only bridges

with the 32-bit-only PTC IM bridge was not possible.

In order to overcome this problem, we investigated the

possibility of using a 32/64-bit Java/COM bridge instead.

Com4j and Jacob are two libraries that support both 32

and 64-bit execution environments. However, a direct con-

nection of 64-bit environments with PTC IM’s 32-bit-only

COM interface is not possible. Either a 64-bit DLL should

be provided instead (but this requires PTC to develop it) or a

workaround of using a surrogate 64-bit COM interface can be

used instead. The later will be visible to the 64-bit Java envi-

ronments and will delegate to the 32-bit provided by PTC IM.

This can be done by asking through the OLE/COM Object

Viewer the default dllhost to act as the needed surrogate for

the 32-bit IM interface. We opted for this second solution.

In order to decide which library we should use for re-

implementing the driver, we ran a small-scale experiment.

We invoked a set of eleven simple commands to IM through

the COM interface using each of the libraries, 10,000 times.

We executed the experiment twice for each of the 32 and 64-

bit variations. Table 1 summarises the execution times for

Jacob and com4J, while the 32-bit times for Jawin are also

presented for reference.

As one can see from the results, there are no notable dif-

ferences between the libraries. We decided to use com4j as

it was slightly faster in 32-bit environments than Jacob.

3.5 Caching

In order to be able to offer comparable performance to the

built-in scripting interface, the driver provides two different

caches. The first one caches the boolean flags for each prop-

erty and the second the actual value of each property. Both are

implemented as instances of the WeakHashMap data struc-

ture which allow the key to be garbage-collected when there

is no reference to it outside the map, making them useful

for the implementation of caches. Three new classes are cre-

123

Bridging proprietary modelling and open-source model management tools: the case of PTC…

PtcimModel

-propertiesValuesCache: WeakHashMap<String, Object>
-propertiesValuesCacheEnabled: Boolean

+setPropertiesValuesCacheEnabled(flag: boolean)

PtcimCachedPropertyGetter

+invoke(obj: Object, property: String): PtcimObject

PtcimCachedPropertySetter

+invoke(value: Object)

PtcimCachedPropertyManager

+elementPropertiesNamesCache: WeakHashMap<String, PtcimProperty>

+getPTCProperty(obj: PtcimObject, property: String): PtcimProperty

PtcimPropertyGetterPtcimPropertySetter

PtcimPropertyManager

AbstractPropertySetter AbstractPropertyGetter

+propertyManager1

«interface»
IPropertyGetter

+getter

1

«interface»
IModel

«interface»
IPropertySetter +setter

1

Fig. 5 Class diagram of the caches in IM-Epsilon driver

ated to implement caching. Their relationships with the other

classes described before are shown in Fig. 5 and are explained

below.

– PtcimCachedPropertyManager: The first of the caches

(i.e. elementPropertiesNamesCache) is hosted in the

PtcimCachedPropertyManager which extends the Ptcim-

PropertyManager class. Elements of the same type have

common properties; thus, they share the same boolean

flags. This cache maps the fully qualified name of each

property to the property’s boolean flags following a

type.propertyName → PtcimProperty pattern. For exam-

ple, all elements of type Activity have a property called

isReentrant. The first time an element of type Activ-

ity is accessed, an entry in the map is created with

Activity.isReentrant as key. The four boolean values are

queried when creating the PtcimProperty object using

the overridden getPtcProperty(…) method. If the key

(e.g. Activity.isReentrant) exists in the cache, the boolean

values are returned. If a property of a type has not

been visited before (thus the key is not in the cache),

this method delegates to the super getPtcProperty(…)

method which queries the boolean flags through the COM

interface and stores them in the cache.

– PtcimCachedPropertyGetter: The second cache (i.e.

propertiesValuesCache), hosted in the PtcimModel class,

is used in the PtcimCachedPropertyGetter which extends

the PtcimPropertyGetter class. This cache stores the

actual values of the properties of each element. The key

used in this cache is constructed by concatenating the

unique id of the element and the name of the property that

is accessed. For example, the value of the name attribute

of an element with id 5eg494 is mapped using the key

5eg494.name to its value. PtcimCachedPropertyGetter

overrides the invoke(…) method of PtcimPropertyGetter.

Every time the value of a property needs to be retrieved,

the invoke method queries the cache first. If a property

has not been accessed before (hence the key is not in

the cache), the invoke method delegates to its superclass

implementation to query the value through the COM

interface and then stores it in the cache.

– PtcimCachedPropertySetter: Caching can lead to incon-

sistencies when values of properties are changed for the

reasons explained below. Thus, value caching is optional.

When value caching is enabled, a PtcimCachedProper-

tySetter is created instead of the default PtcimProper-

tySetter. The former overrides the invoke(…) method of

its superclass. This method adds or updates the mapping

id.property → value to the values cache and then calls

its superclass method that updates the property’s value in

IM.

As mentioned above, value caching can lead to incon-

sistencies when values of properties are set as a result of

opposite references in a model. Consider the following exam-

ple depicted in Fig. 6, the user retrieves the package in

which a class is contained via the Scoping Item relation-

ship (see Fig. 6b). The package will be stored in the values

cache. Next, the user retrieves the contents of that package

by navigating the Child Object relationship and removes the

aforementioned class from its contents (effectively remov-

ing the class from the package). The cache will be updated

(thus the Child Object relationship of the package will not

include the class). However, if now the user navigates again

the Scoping Item relationship of the class, the returned value

will be the same package (while it should now be null). This

123

A. Zolotas et al.

Fig. 6 Example of a value

caching failing scenario

(b)(a)

is because IM does not expose a special relationship between

the two properties (in Ecore terminology these would be

opposite references) and as such the driver fails to update

the cache on both ends consistently. As such, value caching

is only safe to use when an IM model is accessed in read-only

mode.

Moreover, even in read-only mode, the property values

cache—like all caches—has a memory overhead which may

not be justifiable (i.e. if the majority of property accesses

occur only once). As such, value caching is optional and

needs to be enabled/disabled by the developer according to

the nature of the model management program.

3.6 Working with stereotypes

Stereotypes in SysML (and UML) are important because they

provide the means to extend the meaning of a model element.

A stereotype can be used to specialise the type of an element,

for example to clarify its purpose or to change its semantics.

Additionally, a stereotype can also define additional prop-

erties for an element, referred to as tagged definitions. This

allows a model of the system to capture additional informa-

tion that can be used throughout the modelling life cycle.

Profiles are managed differently by different modelling

frameworks. Ideally, if profile A can be applied to elements

of type Class and it defines an ‘isSerializable’ (boolean) prop-

erty, all classes to which the profile is applied should have

an additional ‘isSerializable’ attribute that can be set by the

users. Implementation wise, making the profile properties

available as attributes of the class is very difficult. The reason

is that since profiles are defined by the user, it is impossible

to foresee them and attach them to the Class implementa-

tion. Depending on the implementation, adding additional

attributes dynamically can be difficult or impossible.

A common pattern to solve the aforementioned issue is to

model applied profiles as a feature/attribute of Classes. Each

of the applied profiles is an instance of the profile definition,

and this instance holds the values of the profile attributes for

that particular Class. Figure 7 presents this in practice. The

Bean stereotype is applied to Class elements (blue elements

in the diagram). The Person and Account classes (in vio-

let) have the Bean stereotype applied. The appliedStereotype

reference contains Bean stereotype instances.

The use of this pattern means that attributes provided via

stereotypes cannot be accessed directly when navigating the

SysML model. For example, to get the value of the isSeri-

alizable, the following property access (see Listing 1.2) is

necessary:

1 Class . a l l () . f i r s t () . appliedStereotypes () . selectOne(s | s .name == ”Bean

”) . isSerializable ;

Listing 1.2 Stereotype attribute access.

On the contrary, IM handles the definition of stereotypes

in a dynamic way. That is, once a stereotype is applied to an

element, the stereotype properties are directly accessible in

the class. That is, Listing 1.2 can be rewritten as shown in

Listing 1.3.

1 Class . a l l () . f i r s t () . isSerializable ;

Listing 1.3 Stereotype attribute access.

Our bridge provides full support for the dynamic stereo-

type property access as implemented by IM. Consider the

following example in which pieces of MATLAB code need

to be attached to action nodes in UML activity diagrams. In

PTC IM, end users might decide to implement this by creating

a new stereotype (e.g. MATLAB Action) that has a property

(e.g. MATLAB code), of type text, where the MATLAB code

will be stored. Listing 1.4 shows how the MATLAB code

property defined in the MATLAB Action stereotype applied

to an UML action node can be retrieved using EOL.

1 var allActionNodes = IM!ActionNode.all();

2 var allActionNodesWithMatlabActionStereotype = allActionNodes.select(n|n.

appliedStereotypes.name.includes(”MATLAB Action”));

3 for (node in allActionNodesWithMatlabActionStereotype) {

4 (node.name + ” MATLAB code: ” + node.MATLABCode).println();

5 }

Listing 1.4 Example of EOL code that prints the content of a custom

property created through a stereotype.

123

Bridging proprietary modelling and open-source model management tools: the case of PTC…

Fig. 7 SysML profiles modelled

as class attributes

4 Demonstration

Epsilon scripts can be run either from pure Java applications

or within the Eclipse IDE.2 In this section, we show how to set

up run configurations for Epsilon programs to be executed on

IM models from within the Eclipse IDE. Information on how

to run Epsilon scripts from Java applications can be found in

the Epsilon website.3 Following, we give two examples of

Epsilon scripts that access information in an IM model. The

examples demonstrate that IM model element properties can

be accessed directly by property name via dot navigation.

Further, the model-to-model transformation script demon-

strates that by using other EMC drivers, it is possible to use

multiple combinations of proprietary and open-source tools.

Finally, we also discuss how UML stereotypes defined in

an IM model can be accessed via the Epsilon-IM bridge.

Model management scripts can be run through a configura-

tion dialogue which is part of the driver’s user interface and

allows developers to select and configure IM models to be

used in Epsilon programs. The dialogue allows developers to

set

– the name through which the Epsilon program can refer

to the model (in case the program operates on more than

one models concurrently)

– the server that hosts the repository of interest

– the repository that holds the model of interest

– the name of the model in the repository

– whether property value caching should be enabled during

execution

– the element to be treated as the root of the model (to limit

the scope of a program to a sub-tree of the model)

2 https://www.eclipse.org, last accessed May 9, 2019.

3 https://www.eclipse.org/epsilon/examples/index.php?example=org.

eclipse.epsilon.examples.standalone, last accessed May 9, 2019.

4.1 Runningmodel management programs

Listings 1.5 and 1.6 show a validation constraint (in EVL [20])

and a fragment of a model-to-model transformation (in

ETL [18]) that can be executed against IM models. The con-

straint of Listing 1.5 checks that the names of all elements

in the IM model which are of type Class start with an upper-

case letter. In line 1, the context keyword is used to define

the elements to which the constraint applies. In line 2, we

declare that this is a soft constraint (critique), and in line 3 of

the script, the condition to be satisfied is provided following

the check keyword. If the condition is not satisfied for a par-

ticular class, a context-aware warning message is produced

in line 4.

1 context Class {

2 critique NameShouldStartWithUpperCase {

3 check : self .name. substring(0 ,1) = self .name. substring(0 ,1) .

toUpperCase()

4 message : ”The name of class ” + self .name + ” (” + self . Id + ”

) should star t with an upper−case le t te r”

5 }

6 }

Listing 1.5 Example of an EVL critique which checks if the name of a

class starts with upper-case letter

It is important to note that the bridge implementation sup-

ports not only reading from models created in PTC IM, but

also writing to them. The user can create new elements and

set or change the values of their properties. This is achieved

by using the CreateInstance() and SetProperty() methods of

the bridge which delegate to the appropriate PTC IM COM

methods as described in Sect. 3.3.

One of the distinguishing features of Epsilon is that it is

metamodelling technology agnostic and thus its languages

can manage different types of models. Listing 1.6 demon-

strates a fragment of a model-to-model transformation that

produces a Papyrus [21] UML model from an IM model.

The Package2Package rule in line 1 transforms all packages

in the IM model to packages in the Eclipse UML model. In

particular, it copies across the name of the IM package (line

123

https://www.eclipse.org
https://www.eclipse.org/epsilon/examples/index.php?example=org.eclipse.epsilon.examples.standalone
https://www.eclipse.org/epsilon/examples/index.php?example=org.eclipse.epsilon.examples.standalone

A. Zolotas et al.

1 rule Package2Package

2 transform s : IM!Package

3 to t : UML!Package {

4

5 t.name = s.name;

6 t.nestedPackage ::= s.scopedPackage;

7 t.ownedType ::= s.packageItem.

8 select(pi|pi.isTypeOf(IM!Class));

9 }

10

11 rule Class2Class

12 transform s : IM!Class

13 to t : UML!Class {

14

15 t.name = s.name;

16 }

Listing 1.6 Fragment of an ETL M2M transformation that produces

Eclipse/Papyrus UML models from IM models.

5), it recursively transforms the IM package’s sub-packages

(line 6), and then, it populates the owned types of the UML

package with the transformed equivalents of classes under

the IM package (lines 7 and 8). The Class2Class rule in line

12 transforms IM classes to Eclipse UML classes and copies

names across.

5 Evaluation

Having presented the architecture and implementation of the

Epsilon-IM driver and how to use it within the Eclipse IDE,

in this section we present an evaluation of the IM-Epsilon

bridge from two perspectives. The first is an experimental

setup to evaluate the performance of the driver against the

native Visual Basic support in executing model management

tasks on the models stored in PTC IM. The second, which is a

new evaluation added to this extended version of the original

work presented in [34], is an applicability setup to evaluate

the ability to use the driver in a real-world case scenario. The

experimental setup is based on a set of validation constraints

that capture some of the Rolls-Royce internal modelling stan-

dards. The real-world case study describes how an existing

manual process can be automated by using Epsilon languages

and a combination of EMC drivers.

5.1 Performance experiment

The objective of the experiment is to compare the perfor-

mance, measured as execution time, of a validation script

written in Epsilon’s EVL (and run from Eclipse) against

equivalent constraints expressed in Visual Basic (and run

from within IM). The complete EVL and Visual Basic imple-

mentations are listed in the appendix of the paper.

Table 2 The evaluated constraints

Id Description

#1 Classes’ names should start with upper-case letter

#2 Attributes’ names should start with lower-case letter

#3 Classes should not have more than seven operations

#4 Operations should not have more than seven parameters

#5 Classes must not have multiple inheritance

#6 The upper multiplicity of aggregation ends must be 1

#7a The lower bound of an association start must not be

greater than its upper bound

#7b The lower bound of an association start must not be

greater than its upper bound

#8a Numeric upper bounds of association starts must be

positive integers

#8b Numeric upper bounds of associations ends must be

positive integers

5.1.1 Experiment setup

Our experiments involved the execution of ten constraints

that look for common errors and violations of naming con-

ventions in IM models. Table 2 summarises these constraints.

We executed the constraints on three real models of Rolls-

Royce engine controllers constructed using IM and ranging

from 13,823 to 116,251 model elements, and on 16 smaller

example models that ship with IM. Column # Elements of

Table 3 summarises the sizes of all 19 models used for our

experiments.

Five configurations were used in total: (1) Visual Basic,

(2) EVL and the Epsilon-IM driver without caching, (3) with

both caches enabled and finally (4, 5) two experiments with

only one of the two caches enabled each time. The constraints

were executed three times on each model, and the execution

time was logged for each iteration. The Epsilon cache was

empty before each run. To avoid any overheads due to warm-

up effects on the Java and database level, the first run of each

experiment was ignored.

5.1.2 Results

Table 3 summarises the execution times4 of evaluating the

constraints on all models for all five configurations. The

models marked with an asterisk are the real-world models

constructed by Rolls-Royce. Two line graphs (see Figs. 8

and 9) present the execution times of Visual Basic and EVL

(with both caches turned on).

As illustrated in Table 3, the native Visual Basic imple-

mentation is faster than all four EVL configurations. In

4 Execution environment. Operating System: Windows 10 Pro 64-bit,

CPU: Intel Core i7-6560 @ 2.2GHz, RAM: 16GB @ 1066MHz, Disc:

Toshiba XG3 SSD (512GB).

123

Bridging proprietary modelling and open-source model management tools: the case of PTC…

Table 3 Execution time for different models for all five configurations

Average execution time (in seconds)

Model Name #Elements VB Epsilon

(both caches)

Epsilon

(flags cache)

Epsilon

(values cache)

Epsilon

(no cache)

Template - Small Project 21 0.024 0.066 0.072 0.064 0.068

Template - Incremental Process 32 0.037 0.082 0.082 0.088 0.088

Heart Monitor C 109 0.015 0.196 0.163 0.224 0.284

BallCpp 123 0.024 0.296 0.296 0.400 0.520

Heart Monitor Java 159 0.022 0.212 0.218 0.274 0.306

Template - Component-based Products 227 0.328 0.390 0.380 0.402 0.392

Traffic Lights 297 0.067 0.446 0.442 0.814 0.948

Distributed Ball Game MDA Example 395 0.074 0.476 0.469 1.035 1.133

VB Another Block (Tetris) Example 675 0.295 2.046 2.050 4.780 5.021

C# Another Block (Tetris) Example 695 0.301 2.098 2.119 4.607 5.144

Waste System 815 0.152 1.273 1.304 2.856 3.296

Traffic Lights - SySim 1323 0.267 1.517 1.586 4.206 5.984

Speed Controller 1405 0.442 2.143 2.264 5.946 8.191

Filling Station 1519 1.010 3.432 3.556 7.636 8.363

HSUV 2186 1.304 5.210 5.504 12.693 16.602

Search and Rescue 5956 0.965 3.886 4.083 11.418 15.450

Large Civil Aero-Engine 1 Small Model* 13,823 7.974 42.797 46.167 141.310 216.010

Large Civil Aero-Engine 2 Control SW* 90,221 65.091 410.509 489.496 851.138 1450.564

Large Civil Aero-Engine 3 Control SW* 116,251 79.721 713.034 708.492 1474.994 2243.216

particular, EVL (with both caches enabled) is up to almost

10× slower than Visual Basic for the biggest model we have

experimented with (116K model elements). This is to be

expected given that EVL execution has the overhead of cross-

ing the (expensive) Java-COM bridge every time it needs to

fetch new information from the model. Indeed, by profiling

the EVL execution we observed that the majority of the exe-

cution time (more than 90%) is consumed in the method of

the Jawin interface that invokes the COM layer of IM.

The driver configuration that uses no caching is up to five

times slower than the configuration that uses both caches.

Looking at the respective columns of Table 3, this is largely

due to the use of the first (property flags) cache as the con-

straints do not make heavy reuse of the same property values

in order to benefit substantially from the second (property

values) cache. This justifies the design decision to make prop-

erty value caching optional, as its cost (memory overhead)

can sometimes outweigh its benefits (performance).

Figures 8 and 9 present the results of Table 3 for the Visual

Basic experiment and the Epsilon (both caches enabled con-

figuration).

5.1.3 Threats to validity

For all models, the constraints were violated 12,901 times

in total in the case of the Visual Basic and 12,887 for the

0

200

400

600

800

1
3
8
2
3

9
0
2
2
1

1
1
6
2
5
1

se
co

n
d

s

of model elements

Visual Basic Epsilon (both caches)

Fig. 8 Execution time of the constraints using VB and Epsilon (both

caches enabled) with Rolls-Royce real models

0

1

2

3

4

5

6

2
1

3
2

1
0
9

1
2
3

1
5
9

2
2
7

2
9
7

3
9
5

6
7
5

6
9
5

8
1
5

1
3
2
3

1
4
0
5

1
5
1
9

2
1
8
6

5
9
5
6

se
co

n
d

s

of model elements

Visual Basic Epsilon (both caches)

Fig. 9 Execution time of the constraints using VB and Epsilon (both

caches enabled) with the IM example models

123

A. Zolotas et al.

Fig. 10 Overview of the IM to

Simulink case study

Epsilon script. By examining the error report, we identi-

fied that 12,887 errors and warnings were identical, while

the 14 extra constraint violations in the Visual Basic imple-

mentation were on model elements whose name started with

a special character (i.e. <) or a space. The Epsilon script

treated the upper-case of this special character as the same

of the lower-case, which was not the case in Visual Basic.

These 14 additional violations do not significantly impact

the logged execution times as the properties and the values

of the elements were actually accessed to check the con-

straint conditions in both cases. However, this highlights the

risks in migrating certified applications implemented in one

technology to another, as corner cases might be overlooked.

The experiments were run three times on each model. The

first execution was ignored to avoid any overhead due to the

Enabler database and Epsilon/Java cache warm-up. We ran

a small-scale experiment on the example models provided

by the tool where we evaluated all five solutions by running

the constraints for ten iterations and we identified that the

execution time was consistent after the second (first, if one

does not take into account the warming-up run) execution.

As a result, we do not have reasons to believe that the same

would not be the case for the three remaining larger models

constructed by Rolls-Royce.

5.2 UML activity diagrams to Simulink

One important aspect of modelling is the ability to vali-

date and verify the models. In the previous experiment, we

used a model validation DSL, EVL, against the IM models

to validate if they have been built according to the project

specifications and comply to internal and external standards.

However, for verification, it is often the case that separate

activities like testing, simulation, among others, must be car-

ried out in order to determine if the system is error-free,

produces the correct outputs given a set of known inputs,

and such. Currently, IM models must be manually recreated

in Simulink in order to simulate them. In this section, we

present how Epsilon transformations can be used to auto-

mate this process. In particular, we use three proprietary EMC

Drivers for IM, Simulink and Excel [10]. A model-to-model

transformation written in ETL performs the IM to Simulink

transformation, while a script written in EOL performs the

simulation and validates the results. This gives the ability to

perform early validation of the functional requirements cap-

tured in the SysML model (IM) at any given level of system

definition by executing the corresponding Simulink model

against defined test cases. The proposed solution was applied

to a real-world model developed in Rolls-Royce.5

Figure 10 presents an overview of the case study. Initially,

activity diagrams in PTC IM are transformed to Simulink

models (step 1 in Fig. 10). For each of the input pins of

the activity diagram, an instantiation value is taken from the

Excel document (step 2). The simulation is run (step 3) based

on these inputs, and the results produced in the output pins

are then stored in the Excel spreadsheet and compared with

the expected results (written by the engineers) also stored in

the same file (step 4). If all the expected values are the same

with those returned, the simulation is marked as ‘PASSED’

in the spreadsheet.6 More simulations are run until all the

given input values are used. Engineers are able to compare

the returned result of the simulation with the expected results.

A more detailed explanation of the transformation follows.

Listing 1.7 shows fragments of the M2M transformation

(step 1 in Fig. 10). We explain the transformation through

a running example. In this, the activity diagram shown in

Fig. 11 is transformed to a Simulink model presented in

Figs. 12 and 13.

In lines 1–5 of the transformation, the activity diagram (i.e.

‘Protection Activity’ in Fig. 11) is transformed to a Simulink

subsystem (i.e. ‘Protection Activity’ element in Fig. 12),

5 The original names of the elements and variables appearing in the

models used in this work and provided by Rolls-Royce have been

replaced with descriptive ones.

6 In principle, the simulations could be run automatically taking inputs

from Simulink DataSource elements. However, in the process followed,

we use the Excel spreadsheet to take the input values as in the same

file we need to store the actual output, compare the results against the

expected output and also mark if the test has passed or failed. Hav-

ing everything stored in the same file makes debugging easier for the

engineers.

123

Bridging proprietary modelling and open-source model management tools: the case of PTC…

Fig. 11 Example activity diagram in IM

Fig. 12 Simulink generated

model for activity diagram of

Fig. 11

Fig. 13 The contents of the

‘Protection Activity’ subsystem

of Fig. 12

while the name is also copied (line 4). In the transforma-

tion rule presented in lines 7–14, a new MATLAB function

(e.g. ‘DetectEvent’ block in Fig. 13) is created for each UML

Action Node7 (e.g. ‘Detect Event: Detection Function’ in

Fig. 11) appearing in the activity diagram. The parent of the

Action Node can be found by querying the Scoping Item rela-

tionship on it. This will return an activity diagram. By using

the equivalent notation (::=) in Epsilon, we can get the equiv-

alent MATLAB object that was created for this IM object (i.e.

the Subsystem created in the previous rule). The transforma-

tion sets the parent of the newly created Function block to

this returned element. MATLAB code is stored in a stereo-

7 In SysML and PTC IM these are called SysML Call Behaviour Action

nodes.

type for each of the action nodes. For example, the ‘Detect

Event: Detection Function’ action node has ‘Detected_Event

= Rate_Input_2 > 5’ MATLAB code stored. This code is

retrieved and stored in the attribute script of each MATLAB

Function block in line 12 (the content of the getScript() oper-

ation is omitted for reasons of brevity).

The rule in lines 16–20 create input ports for each UML

Input (e.g. ‘Rate_Input_1’ in Fig. 11) pin. The parent of each

pin is identified using again the equivalent (::=) function-

ality as explained before. In the same manner, output ports

and links between the ports are created. The transformation

rules for these are not shown here for reasons of brevity.

New Simulink elements are created in a default position on

the canvas. As a result, the elements overlap, while Simulink

123

A. Zolotas et al.

Fig. 14 Simulation scenarios

stored in an Excel Spreadsheet

does not offer an auto-layout function. For this reason, in line

13, we assign a position to the newly created element taking

its coordinates from the position of the equivalent element

in the PTC IM model. The getPosition() operation that we

defined takes the position of the element in PTC IM (coordi-

nates of the top-left corner) and the width and height of the

element and calculates the top-left and bottom-right coordi-

nates that are needed by Simulink. This demonstrates how

our bridge can exploit the graphical information provided by

PTC IM COM interface. Finally, links are created to connect

the output and input pins between activities in lines 32–36.

(Low-level implementation details are omitted as these are

beyond the scope of this paper.)

1 rule Activity2Subsystem

2 transform s : UML! ‘UMLAD Activity ’

3 to t : Simulink! ‘simulink / Ports & Subsystems/Subsystem’ {

4 t .name = s . ‘DictionaryItemName‘;

5 }

6

7 rule CallBehaviourAction2Function

8 transform s : UML! ‘UMLAD Action Node’

9 to t : Simulink! ‘simulink /User−Defined Functions /MATLAB Function’ {

10 t . parent ::= s . ‘ScopingItem’;

11 t .name = s . ‘DictionaryItemName’;

12 t . script = s . getScript (t) ;

13 t . position = s . getPosition () ;

14 }

15

16 rule InputPin2Inport

17 transform s : UML! ‘UMLAD Pin’

18 to t : Simulink! ‘simulink / Ports & Subsystems/ In1’ {

19 . . .

20 }

21

22 operation Any getPosition () {

23 var le f t = self . position . spl i t (” ,”) . get (0) . asInteger () /5;

24 var top = self . position . spl i t (” ,”) . get (1) . asInteger () /5;

25 var right = lef t . asInteger () + self .width . asInteger () /4;

26 var bottom = top . asInteger () + self . height . asInteger () /10;

27 return (”[” + lef t + ” ,” + top + ” ,” + right + ” ,” + bottom + ”]”

) ;

28 }

Listing 1.7 Fragment of an ETL M2M transformation that produces

Simulink models from IM models.

At this point, the generated Simulink model is executable.

However, one needs to create sample inputs that will resemble

test input data and output sinks where the results of the sim-

ulation will be stored. This is done in a post-transformation

script shown in Listing 1.8 (lines 2–13). We create one ‘Con-

stant’ input block for each of the input ports in the top-level

subsystem and one ‘ToWorkspace’ output sink for each of the

output ports. The values for the inputs in each simulation are

taken from the Excel spreadsheet (see Fig. 14—columns A–

C). Each row represents one simulation, and as such, we parse

the file line by line using the loop in lines 16–33 (see List-

ing 1.8). For each line, using the Epsilon’s Excel spreadsheet

bridge, we collect the values for each input and we set them in

the constant inputs created in the Simulink model (lines 17–

20). We then execute the simulation (line 21). Then, in lines

22–32, the simulation results, stored in the ‘To Workspace’

variables, are moved to the appropriate Excel columns (F

and G in Fig. 14) and are compared with the expected ones

(columns D and E). If they match, the script prints the word

‘PASSED’ in the results column (H in Fig. 14), otherwise it

prints ‘FAILED’.

6 Observations and lessons learnt

This section summarises the main observations and lessons

learnt through our attempt to bridge Epsilon with IM.

Performance Despite using caching aggressively, the per-

formance of the Epsilon IM driver is still substantially

inferior (up to 10×) to that of IM’s native Visual Basic. While

this may not be an issue for smaller models and simple model

management activities, it can become disruptive as models

and model management programs grow in size and com-

plexity. This observation is consistent with our experiences

from attempting to bridge out to other modelling tools such

as MetaEdit+8 and Simulink9 in a live manner through their

APIs.

The performance difference was mostly occurred in the

communication between our bridge, built-in Java and the

COM. In our experiments, over 90% of the execution time

was spent in the commands exchange between the two tech-

nologies and not internally (i.e. in the handling of objects

and the execution of the model management commands by

Epsilon). Thus, bridging the Java/COM gap is expensive –

but not prohibitive—in terms of performance. This sheds

light on the value of open/standard model persistence formats

(e.g. XMI) for which performing support can be implemented

8 https://github.com/epsilonlabs/emc-metaedit.

9 https://github.com/epsilonlabs/emc-simulink.

123

https://github.com/epsilonlabs/emc-metaedit
https://github.com/epsilonlabs/emc-simulink

Bridging proprietary modelling and open-source model management tools: the case of PTC…

1 post {

2 / / Create constants for inputs

3 for (i in Sequence{1.. inports . size () }) {

4 var constant : new Simulink! ‘simulink /Sources /Constant ‘ ;

5 . . .

6 }

7

8 / / Create workspace variables to store the output

9 var myOuts : new Sequence;

10 for (i in Sequence{1.. outports . size () }) {

11 var out : new Simulink! ‘simulink /Sinks /To Workspace‘ ;

12 . . .

13 }

14

15 ”Starting Simulations” . println () ;

16 for (v in XL!Values . a l l) {

17 for (inport in inports) {

18 var simulinkConstant = Simulink!Constant . a l l . selectOne(c | c .Name.

equals(inport . ‘DictionaryItemName‘)) ;

19 simulinkConstant .Value =

getValueOfPropertyWhichNameIsOnlyKnownAtRuntime(v, inport

. ‘DictionaryItemName‘) ;

20 }

21 Simulink . simulate () ;

22 var testPassed = ”PASSED” ;

23 for (anOutport in outports) {

24 var returnValue = Simulink .getWorkspaceVariable(anOutport . ‘

DictionaryItemName‘) [0]. println () ;

25 var expectedValue =

getValueOfPropertyWhichNameIsOnlyKnownAtRuntime(v,

anOutport . ‘DictionaryItemName‘) . println () ;

26 var colName = anOutport . ‘DictionaryItemName‘;

27 v.setValueOfPropertyWhichNameIsOnlyKnownAtRuntime(v, colName,

returnValue) ;

28 i f (returnValue . asString () <> expectedValue . asString ()) {

29 testPassed = ”FAILED” ;

30 }

31 v. TestResult = testPassed ;

32 }

33 }

34 ”Finished Simulations” . println () ;

35 }

Listing 1.8 Fragment of an ETL M2M transformation that executes the

simulations on the produced Simulink models.

across different platforms. Yet, not many proprietary prod-

ucts expose the totality of the modelling concepts [6] in these

formats.

Interoperability The development of the Epsilon-IM driver

has opened a wide range of possibilities for further model-

based activities in Rolls-Royce, which were not considered

previously, including bespoke Epsilon-based transforma-

tions between IM and EMF-based models, between IM and

Simulink models (as shown in Sect. 5.2) and synchronisation

facilities between IM models and Ada source code. (The

latter can be parsed into XML using the AdaCore GNAT

toolkit.10)

Incrementality While the constraints in VB execute faster

than those in EVL, their execution time is far from negligible

10 https://docs.adacore.com/gnat_ugn-docs/html/gnat_ugn/gnat_ugn/

gnat_utility_programs.html#the-ada-to-xml-converter-gnat2xml.

(almost 80 s for the largest model in our experiments), which

means that re-evaluating them upon every model change to

discover problems as they are being introduced is not a real-

istic option. To provide near-instant feedback, in the future,

constraints need to be executed incrementally as demon-

strated in [8]. While this is not easy to achieve using a

general-purpose language like VB, it is straightforward to

implement using a task-specific language such as EVL or

OCL, whose engines provide support for recording property

access events [8,24]. IM provides a built-in facility for record-

ing fine-grained model element changes, which is another

essential component for achieving performant incremental

re-execution of model management programs [24].

Usability Domain-specific languages offer an advantage

compared to general-purpose languages in terms of concise-

ness and expressive power [33]. Model management pro-

grams are noticeably more concise—and therefore arguably

easier to write and maintain—when expressed in the task-

specific languages of Epsilon compared to Visual Basic.

Thus, bridging a modelling tool, like PTC IM, with a model

management suite, helped towards the direction of increased

conciseness compared to the built-in Visual Basic solution.

For example, the same constraints used as part of the per-

formance evaluation (see Sect. 5 and Listings 1.9 and 1.10)

are expressed in 119 lines of code using EVL compared to

the 200 that the VB approach requires. In addition, although

knowledge of VB is a much less rare skill compared to the

knowledge of a DSL, like EVL, the latter due to their rela-

tively small size and the fact that they target a specific domain

are easier to learn and use. In fact, after a few days of personal

study, our collaborators were able to use various Epsilon lan-

guages with the bridge we implemented, and they were able

to develop complicated scripts after a one-day workshop. In

contrast, the bridge offers no gains in terms of the knowledge

one should have on the underlying metamodel that PTC IM

uses in order to be able to write model management programs.

The bridge uses the same metamodel as the native solution,

thus, regardless of the language one picks (i.e. a DSL or the

built-in general-purpose language) they need to understand

the modelling tool’s structure of the stored models.

Other Despite their independent implementations and their

different model representations, IM provided a relatively

similar API to that provided by EMF. A notable difference

is that the IM API provides built-in support for retrieving all

instances of a type, whereas when using the standard EMF

interfaces, this needs to be achieved by iterating through all

the contents of a model. On the other hand, IM does not

support explicit inheritance among meta-types and does not

123

https://docs.adacore.com/gnat_ugn-docs/html/gnat_ugn/gnat_ugn/gnat_utility_programs.html#the-ada-to-xml-converter-gnat2xml
https://docs.adacore.com/gnat_ugn-docs/html/gnat_ugn/gnat_ugn/gnat_utility_programs.html#the-ada-to-xml-converter-gnat2xml

A. Zolotas et al.

provide metadata that allow external tools to identify pairs

of opposite properties.

From all the above, we believe that a bridging solution

could be useful in scenarios where the performance is not

an issue (e.g. scripts are run overnight, or only once, or their

execution takes a minimal amount of time). In addition, if

conciseness and expressiveness is of value and performance

is an acceptable trade-off, then bridging solutions offer some

benefits. However, we believe that the most important aspect

of such a solution is the fact that it allows the seamless

integration and exchange of information between multiple

modelling technologies (e.g. PTC IM, Simulink, Rhapsody,

etc.) as shown in the experiment presented in Sect. 5.2.

7 Related work

In order to manage models from a variety of proprietary

modelling tools, we might need a common-ground mod-

elling framework. [6] proposed the definition of a pivot

language based on UML profiles and fUML in the open-

source Papyrus project to bridge models from an arbitrary

number of proprietary tools such as Bridgepoint and Rational

Software Architect. The authors discuss how the approach

removes the need for import and export facilities tailored

for each involved tool [6] although bidirectional mappings

between the pivot language and each proprietary tool are

still required. In a similar approach, all the Epsilon family of

languages (e.g. ETL [18], EVL [20]) can manipulate mod-

els or arbitrary modelling technologies, either proprietary

(e.g. IM, Simulink) or open source (e.g. EMF), as long as

there is an implementation of the Epsilon Model Connectiv-

ity (EMC) interface for the technology. Another example is

MDEForge [3], which is an extensible software-as-a-service

modelling platform that can be used to foster models and exe-

cute model-to-model transformations [7] although currently

only EMF models and the execution of ATL[30] transforma-

tions are supported.

An alternative to manipulate models managed by other

modelling tools is to use the import and export facilities

of the tools regarding common exchange modelling for-

mats such as XMI. Unfortunately, sometimes tools that

provide these import/export facilities do not fully comply

with these formats (e.g. PTCIM11 and GenMyModel12).

Sometimes, it is open-source projects such as the MATLAB

Simulink Integration Framework (MASSIF)13 that provide

these import/export facilities that the proprietary tools do not

offer. Work by [15] shows how Simulink models are exported

11 https://bit.ly/2WtOOOJ.

12 https://bit.ly/2Uvsy59.

13 https://github.com/viatra/massif.

into EMF using MASSIF facilities so they can be consumed

by an open-source analysis tool.

When import/export facilities into exchange modelling

formats are missing from a modelling tool, developers rely on

any available API that could be used to bridge the tool with

others. As in our case study, transformations from SysML

to Simulink models have motivated several research works

such as [5,22,27]. Those three papers have used model-to-

text transformation that produce MATLAB scripts which are

used to create and populate Simulink models from SysML.

In addition, [27] proposes a way back from Simulink into

SysML through a MATLAB script that parses the Simulink

model and produces an XML model description file that

can be parsed by the SysML tool. Further differences in

their approaches are that [22] generates several MATLAB

scripts that populate different parts of the Simulink model,

while [5] proposes a UML profile to annotate the SysML

diagrams before the MATLAB code generation. In contrast,

our case study used a direct model-to-model transformation

that involved three heterogeneous models: IM, Simulink and

Excel.

The Open Services for Lifecycle Collaboration (OSLC)14

is an initiative that aims at simplifying the software tool

integration problem among proprietary tools. Built atop the

W3C Resource Description Framework (RDF) [17], Linked

Data [4], and the REST architecture, OSLC provides a set of

specifications targeted at different aspects of application and

product lifecycle management. OSLC is becoming widely

popular among proprietary tool vendors (e.g. IBM Rational

DOORS [14]) who are exposing a range of services following

these specifications, and it has also been adopted by open-

source tools (e.g. [9]). The comprehensiveness of the model

information exposed by these services is at the discretion of

the service provider. PTC Integrity Modeller, as of version

8.4 (2017/08), claims to be OSLC-compliant with require-

ment and architecture management provider services.

8 Conclusions and future work

In this paper, we presented a solution that bridges a pro-

prietary modelling tool, used for modelling safety-critical

systems in Rolls-Royce, with the Epsilon open-source model

management suite. The Epsilon-IM driver enables programs

written in languages of the Epsilon platform to read and write

IM models in the context of a wide range of model manage-

ment activities such as model validation and model-to-model

and model-to-text transformation, in conjunction with arte-

facts captured using different technologies such as Simulink,

EMF and Excel spreadsheets.

14 http://open-services.net/.

123

https://bit.ly/2WtOOOJ
https://bit.ly/2Uvsy59
https://github.com/viatra/massif
http://open-services.net/

Bridging proprietary modelling and open-source model management tools: the case of PTC…

Our evaluation has demonstrated that the price to pay

for this flexibility and interoperability is increased execution

time, compared to the native Visual Basic scripting facilities

provided by IM.

We are currently working on a robust and extensible imple-

mentation of incremental model management infrastructure

for Epsilon (a proof of concept has already been implemented

for EGL [24]), which will enable Epsilon to strengthen its

position as the preferred option for interacting with IM mod-

els in Rolls-Royce not only from a conciseness and openness

but also from a performance point of view.

Acknowledgements This work was partially supported by Innovate

UK and the UK aerospace industry through the SECT-AIR project, the

Mexican National Council for Science and Technology (CONACyT)

under Grant No.: 602430/472773 and the Engineering and Physical

Sciences Research Council (EPSRC) through the National Productiv-

ity Investment Fund in partnership with Rolls-Royce under Grant No.:

EP/R512230/1.

Open Access This article is distributed under the terms of the Creative

Commons Attribution 4.0 International License (http://creativecomm

ons.org/licenses/by/4.0/), which permits unrestricted use, distribution,

and reproduction in any medium, provided you give appropriate credit

to the original author(s) and the source, provide a link to the Creative

Commons license, and indicate if changes were made.

Appendix

Listing 1.9 presents the EVL implementation of the evalua-

tion constraints of Section 5, and Listing 1.10 presents the

equivalent implementations in Visual Basic.

1 context Class {
2 critique NameShouldStartWithUpperCase {
3 check : self.name.substring (0,1) =

self.name.substring (0,1).
toUpperCase ()

4 message : "The name of class " +
self.name + " (" + self.Id + ")
should start with an upper -case
letter. [#1]"

5 }
6 }
7

8 context Attribute {
9 critique NameShouldNotStartWithUpperCase

{
10 check : self.name.substring (0,1) =

self.name.substring (0,1).
toLowerCase ()

11 message : "The name of attribute " +
self.name + " (" + self.Id + ")
should not start with an upper -

case letter. [#2]"
12 }
13 }
14

15 context Class {
16 critique

OperationsShouldeBeLessThanSeven {
17 check : self.‘operation ‘.size <= 7
18 message : "Class " + self.name + "

(" + self.Id + ") has more than
7 operations. [#3]"

19 }
20 }
21

22 context Operation {
23 critique

OperationsShouldHaveLessThanSeven
24 Parameters {
25 check : self.parameter.size <= 7
26 message : "Operation " + self.name +

" (" + self.Id + ") has more
than 7 parameters. [#4]"

27 }
28 }
29

30 context Class {
31 constraint

MultipleInheritanceIsNotAllowed {
32 check : self.superclass.size - self.

superclass.select(i|i.
isInterface.equals ("TRUE")).size
() < 1

33 message : "Class " + self.name + "
(" + self.Id + ") has multiple
inheritance. [#5]"

34 }
35 }
36

37 context Association {
38 constraint

AggregateStartMultiplicityShould
39 BeAlwaysOne {
40 check {
41 if (self.aggregate.equals ("Start

") and (not self.
EndMultiplicityUML.equals
("1"))) {

42 return false;
43 }
44 return true;
45 }
46 message : "Aggregation " + self.name

+ " (" + self.Id + ") has
multiplicity different than 1.
[#6]"

47 }
48 }
49

50 context Association {
51 constraint

LowerBoundShouldBeSmallerThanUpper
52 BoundStart {
53 check {
54 var startMultiplicity = self.

startMultiplicityUML;
55 if (startMultiplicity.matches

("(-) ?[0 -9]+\\.{2}(-)
?[0 -9]+")) {

56 var lowerBound =
startMultiplicity.split
("\\.{2}").get(0);

57 var upperBound =
startMultiplicity.split
("\\.{2}").get(1);

58 if (lowerBound.asInteger () >
upperBound.asInteger ())
{

59 return false;
60 }
61 }
62 return true;
63 }
64 message : "Lower bound is bigger

than upper bound in the start of
association " + self.name + "

(" + self.Id + "). [#7a]"
65 }
66 }

64

65 context Association {
66 constraint

LowerBoundShouldBeSmallerThanUpper
67 BoundEnd {
68 check {

123

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

A. Zolotas et al.

69 var endMultiplicity = self.
endMultiplicityUML;

70 if (endMultiplicity.matches
("(-) ?[0 -9]+\\.{2}(-)
?[0 -9]+")) {

71 var lowerBound =
endMultiplicity.split
("\\.{2}").get(0);

72 var upperBound =
endMultiplicity.split
("\\.{2}").get(1);

73 if (lowerBound.asInteger ()
> upperBound.asInteger
()) {

74 return false;
75 }
76 }
77 return true;
78 }
79 message : "Lower bound is bigger

than upper bound in the end of
association " + self.name + "
(" + self.Id + "). [#7b]"

80 }
81 }
82

83 context Association {
84 constraint

UpperBoundShouldBePositiveStart {
85 check {
86 var startMultiplicity = self.

startMultiplicityUML;
87 if (startMultiplicity.matches

("(-) ?[0 -9]+\\.{2}(-)
?[0 -9]+")) {

88 var upperBound =
startMultiplicity.split
("\\.{2}").get(1);

89 if (upperBound.asInteger ()
<= 0) {

90 return false;
91 }
92 }
93 return true;
94 }
95 message : "Upper bound in the start

of association " + self.name +
" (" + self.Id + ") should be

a positive integer. [#8a]"
96 }
97 }
98

99 context Association {
100 constraint

UpperBoundShouldBePositiveEnd {
101 check {
102 var endMultiplicity = self.

endMultiplicityUML;
103 if (endMultiplicity.matches

("(-) ?[0 -9]+\\.{2}(-)
?[0 -9]+")) {

104 var upperBound =
endMultiplicity.split
("\\.{2}").get(1);

105 if (upperBound.asInteger ()
<= 0) {

106 return false;
107 }
108 }
109 return true;
110 }
111 message : "Upper bound in the end

of association " + self.name +
" (" + self.Id + ") should be a
positive integer. [#8b]"

112 }
113 }

Listing 1.9 Evaluation constraints implemented in EVL

1 Private Function CheckConstraint1(dictionary
As Object)

2 Dim errorBuilder As New StringBuilder
3 Dim c
4 Dim Number As Integer
5 Dim classes = dictionary.Items("Class")
6 Do While classes.MoreItems
7 c = classes.NextItem
8 Dim cName = c.Property("Name")
9 If ((Not Integer.TryParse(cName.

Substring(0, 1), Number)) And (
Not Char.IsUpper(cName , 0)))
Then

10 errorBuilder.AppendLine("[VB],
Class " + cName + " (" + c.
Property("Id") + ") does not
start with uppercase .,[#1]"

)
11 numberOfTotalErrors += 1
12 End If
13 Loop
14 Return errorBuilder.ToString
15 End Function
16

17 Private Function CheckConstraint2(dictionary
As Object)

18 Dim errorBuilder As New StringBuilder
19 Dim a
20 Dim Number As Integer
21 Dim attributes = dictionary.Items("

Attribute")
22 Do While attributes.MoreItems
23 a = attributes.NextItem
24 Dim aName = a.Property("Name")
25 If ((Not Integer.TryParse(aName.

Substring(0, 1), Number)) And (
Char.IsUpper(aName , 0))) Then

26 errorBuilder.AppendLine("[VB],
Attribute " + aName + " (" +
a.Property("Id") + ")

should not start with
uppercase . ,[#2]")

27 numberOfTotalErrors += 1
28 End If
29 Loop
30 Return errorBuilder.ToString
31 End Function
32

33 Private Function CheckConstraint3(dictionary
As Object)

34 Dim errorBuilder As New StringBuilder
35 Dim c
36 Dim classes = dictionary.Items("Class")
37 Do While classes.MoreItems
38 c = classes.NextItem
39 Dim cName = c.Property("Name")
40 If (c.ItemCount("Operation") > 7)

Then
41 errorBuilder.AppendLine("[VB],

Class " + cName + " (" + c.
Property("Id") + ") has more
than 7 operations . ,[#3]")

42 numberOfTotalErrors += 1
43 End If
44 Loop
45 Return errorBuilder.ToString
46 End Function
47

48 Private Function CheckConstraint4(dictionary
As Object)

49 Dim errorBuilder As New StringBuilder
50 Dim o
51 Dim operations = dictionary.Items("

Operation")
52 Do While operations.MoreItems
53 o = operations.NextItem
54 Dim oName = o.Property("Name")
55 If (o.ItemCount("Parameter") > 7)

Then
56 errorBuilder.AppendLine("[VB],

Operation " + oName + " (" +
o.Property("Id") + ") has

123

Bridging proprietary modelling and open-source model management tools: the case of PTC…

more than 7 parameters .,[#4]
")

57 numberOfTotalErrors += 1
58 End If
59 Loop
60 Return errorBuilder.ToString
61 End Function
62

63 Private Function CheckConstraint5(dictionary
As Object)

64 Dim errorBuilder As New StringBuilder
65 Dim c
66 Dim classes = dictionary.Items("Class")
67 Do While classes.MoreItems
68 c = classes.NextItem
69 Dim cName = c.Property("Name")
70 Dim superClasses = c.Items("

SuperClass")
71 ’Dim numOfSuperClasses = c.ItemCount

(" SuperClass ")
72 Dim numOfNonInterfaces = 0
73 Dim s
74 Do While superClasses.MoreItems
75 s = superClasses.NextItem
76 If (s.Property("IsInterface") =

"FALSE") Then
77 numOfNonInterfaces += 1
78 End If
79 Loop
80 If (numOfNonInterfaces > 1) Then

81 errorBuilder.AppendLine("[VB],
Class " + cName + " (" + c.
Property("Id") + ") has
multiple inheritance . ,[#6]")

82 numberOfTotalErrors += 1
83 End If
84 Loop
85 Return errorBuilder.ToString
86 End Function
87

88 Private Function CheckConstraint6(dictionary
As Object)

89 Dim errorBuilder As New StringBuilder
90 Dim a
91 Dim associations = dictionary.Items("

Association")
92 Do While associations.MoreItems
93 a = associations.NextItem
94 Dim aName = a.Property("Name")
95 If (a.Property("Aggregate") = "Start

") Then
96 If (a.Property("

EndMultiplicityUML") <> "1")
Then

97 errorBuilder.AppendLine("[VB
],Aggregation " + aName
+ " (" + a.Property("Id"
) + ") has multiplicity
different than 1. ,[#7]")

98 numberOfTotalErrors += 1
99 End If

100 End If
101 Loop
102 Return errorBuilder.ToString
103 End Function
104

105 Private Function CheckConstraint7a(
dictionary As Object)

106 Dim errorBuilder As New StringBuilder
107 Dim a
108 Dim associations = dictionary.Items("

Association")
109 Do While associations.MoreItems
110 a = associations.NextItem
111 Dim aName = a.Property("Name")
112 Dim startMultiplicity = a.Property("

StartMultiplicityUML")
113 If (Regex.IsMatch(startMultiplicity ,

"(-)?[0 -9]+\.{2}(-) ?[0 -9]+"))
Then

114 Dim splitMultiplicity =
startMultiplicity.Split(New
String () {".."},
StringSplitOptions.None)

115 Dim lowerBound =
splitMultiplicity (0)

116 Dim upperBound =
splitMultiplicity (1)

117 If (lowerBound > upperBound)
Then

118 errorBuilder.AppendLine("[VB
],Lower bound is bigger
than upper bound in the
start of association " +
aName + " (" + a.

Property("Id") + ").,[#8
a]")

119 numberOfTotalErrors += 1
120 End If
121 End If
122 Loop
123 Return errorBuilder.ToString
124 End Function
125

126 Private Function CheckConstraint7b(
dictionary As Object)

127 Dim errorBuilder As New StringBuilder
128 Dim a
129 Dim associations = dictionary.Items("

Association")
130 Do While associations.MoreItems
131 a = associations.NextItem
132 Dim aName = a.Property("Name")
133 Dim endMultiplicity = a.Property("

EndMultiplicityUML")
134 If (Regex.IsMatch(endMultiplicity , "

(-)?[0 -9]+\.{2}(-) ?[0 -9]+"))
Then

135 Dim splitMultiplicity =
endMultiplicity.Split(New
String () {".."},
StringSplitOptions.None)

136 Dim lowerBound =
splitMultiplicity (0)

137 Dim upperBound =
splitMultiplicity (1)

138 If (lowerBound > upperBound)
Then

139 errorBuilder.AppendLine("[VB
],Lower bound is bigger
than upper bound in the
end of association " +
aName + " (" + a.
Property("Id") + ").,[#8
b]")

140 numberOfTotalErrors += 1
141 End If
142 End If
143 Loop
144 Return errorBuilder.ToString
145 End Function
146

147 Private Function CheckConstraint8a(
dictionary As Object)

148 Dim errorBuilder As New StringBuilder
149 Dim a
150 Dim associations = dictionary.Items("

Association")
151 Do While associations.MoreItems
152 a = associations.NextItem
153 Dim aName = a.Property("Name")
154 Dim startMultiplicity = a.Property("

StartMultiplicityUML")
155 If (Regex.IsMatch(startMultiplicity ,

"(-)?[0 -9]+\.{2}(-) ?[0 -9]+"))
Then

156 Dim splitMultiplicity =
startMultiplicity.Split(New
String () {".."},
StringSplitOptions.None)

157 Dim upperBound =
splitMultiplicity (1)

123

A. Zolotas et al.

158 If (upperBound <= 0) Then
159 errorBuilder.AppendLine("[VB

],Upper bound in the
start of association " +
aName + " (" + a.

Property("Id") + ") must
be a positive integer

.,[#9a]")
160 numberOfTotalErrors += 1
161 End If
162 End If
163 Loop
164 Return errorBuilder.ToString
165 End Function
166

167 Private Function CheckConstraint8b(
dictionary As Object)

168 Dim errorBuilder As New StringBuilder
169 Dim a
170 Dim associations = dictionary.Items("

Association")
171 Do While associations.MoreItems
172 a = associations.NextItem
173 Dim aName = a.Property("Name")
174 Dim endMultiplicity = a.Property("

EndMultiplicityUML")
175 If (Regex.IsMatch(endMultiplicity , "

(-)?[0 -9]+\.{2}(-) ?[0 -9]+"))
Then

176 Dim splitMultiplicity =
endMultiplicity.Split(New
String () {".."},
StringSplitOptions.None)

177 Dim upperBound =
splitMultiplicity (1)

178 If (upperBound <= 0) Then
179 errorBuilder.AppendLine("[VB

],Upper bound in the end
of association " +

aName + " (" + a.
Property("Id") + ") must
be a positive integer

.,[#9b]")
180 numberOfTotalErrors += 1
181 End If
182 End If
183 Loop
184 Return errorBuilder.ToString
185 End Function

Listing 1.10 Evaluation constraints implemented in Visual Basic

References

1. Adler, D.: The JACOB project: a JAva-COM bridge (2004). http://

danadler.com/jacob/

2. Barnes, J.: High integrity Ada: the SPARK approach. Addison-

Wesley Professional, Boston (1997)

3. Basciani, F., Di Rocco, J., Di Ruscio, D., Di Salle, A., Iovino, L.,

Pierantonio, A.: MDEForge: an extensible web-based modeling

platform. CEUR Work. Proc. 1242(619583), 66–75 (2014)

4. Bizer, C., Heath, T., Berners-Lee, T.: Linked data-the story so far.

Int. J. Semant. Web Inf. Syst. 5(3), 1–22 (2009)

5. Chabibi, B., Douche, A., Anwar, A., Nassar, M.: Integrating SysML

with simulation environments (Simulink) by model transformation

approach. In: Proceedings—25th IEEE International Conference

on Enabling Technologies: Infrastructure for Collaborative Enter-

prises, WETICE 2016, pp. 148–150 (2016)

6. Cucchiella, S., Cicchetti, A., Ciccozzi, F.: An open-source pivot

language for proprietary tool-chaining. In: Proceedings—18th

IEEE International Conference and Workshops on Engineering of

Computer-Based Systems, ECBS 2011, pp. 241–250 (2011)

7. Di Rocco, J., Di Ruscio, D., Pierantonio, A., Cuadrado, J.S., De

Lara, J., Guerra, E.: Using ATL transformation services in the

MDEForge collaborative modeling platform. Lect. Notes Comput.

Sci. 9765, 70–78 (2016)

8. Egyed, A.: Instant consistency checking for the UML. In: Proceed-

ings of the 28th International Conference on Software Engineering,

pp. 381–390. ICSE ’06, ACM, New York, NY, USA (2006)

9. El-Khoury, J., Ekelin, C., Ekholm, C.: Supporting the linked data

approach to maintain coherence across rich EMF models. Lecture

Notes in Computer Science, vol. 7949, pp. 36–47. Springer, Berlin

(2016)

10. Francis, M., Kolovos, D.S., Matragkas, N., Paige, R.F.: Adding

spreadsheets to the MDE toolkit. In: International Conference on

Model Driven Engineering Languages and Systems, pp. 35–51.

Springer (2013)

11. Friedenthal, S., Moore, A., Steiner, R.: A practical guide to SysML:

the systems modeling language. Morgan Kaufmann, Burlington

(2014)

12. FUJITSU Enabling Software Technology GmbH: Enabler Admin-

istration, Release 7.0 Service Pack 1 (2006)

13. IBM: IBM—Rational Rhapsody family. Online (2017). http://

www-03.ibm.com/software/products/en/ratirhapfami

14. IBM: Rational DOORS. Online (2017). http://www-03.ibm.com/

software/products/en/ratidoor

15. Iyenghar, P., Wessels, S., Noyer, A., Pulvermueller, E., West-

erkamp, C.: A novel approach towards model-driven reliability

analysis of Simulink models. In: IEEE International Conference

on Emerging Technologies and Factory Automation, ETFA 2016-

Novem(d), pp. 1–6 (2016)

16. Kawaguchi, K.: com4j - Type-safe Java/COM bridge (2014). http://

com4j.kohsuke.org/

17. Klyne, G., Carroll, J.J.: Resource description framework (RDF):

concepts and abstract syntax (2006)

18. Kolovos, D.S., Paige, R.F., Polack, F.A.: The epsilon object lan-

guage (EOL). In: Rensink, A., Warmer, J. (eds.) Model Driven

Architecture – Foundations and Applications. ECMDA-FA 2006.

Lecture Notes in Computer Science, vol. 4066, pp. 128–142.

Springer, Berlin, Heidelberg (2006)

19. Kolovos, D.S., Paige, R.F., Polack, F.A.: The epsilon object lan-

guage (EOL). In: Model Driven Architecture–Foundations and

Applications, pp. 128–142. Springer, Berlin (2006)

20. Kolovos, D.S., Paige, R.F., Polack, F.A.: On the evolution of OCL

for capturing structural constraints in modelling languages. In:

Abrial, J.R., Glässer, U. (eds.) Rigorous Methods for Software

Construction and Analysis. Lecture Notes in Computer Science,

vol. 5115, pp. 204–218. Springer, Berlin, Heidelberg (2009)

21. Lanusse, A., Tanguy, Y., Espinoza, H., Mraidha, C., Gerard, S.,

Tessier, P., Schnekenburger, R., Dubois, H., Terrier, F.: Papyrus

UML: An open source toolset for MDA. In: Proceedings of the Fifth

European Conference on Model-Driven Architecture Foundations

and Applications (ECMDA-FA 2009), pp. 1–4 (2009)

22. Natale, M.D., Chirico, F.: An MDA approach for the generation of

communication adapters integrating SW and FW components from

Simulink. Model Driv. Eng. Lang. Syst. 8767, 353–369 (2014)

23. No Magic Inc.: MagicDraw. Online (2017). https://www.nomagic.

com/products/magicdraw

24. Ogunyomi, B., Rose, L.M., Kolovos, D.S.: Property Access Traces

for Source Incremental Model-to-Text Transformation, pp. 187–

202. Springer, Cham (2015)

25. PTC: PTC Integrity Modeller. Online (2017). https://www.

ptc.com/-/media/Files/PDFs/ALM/Integrity/PTC-Integrity-

Modeler-Data-Sheet.pdf

26. PTC Inc.: PTC Integrity Modeler Automation Interface User’s

Guide Version 8.2 (2015)

27. Sindico, A., Di Natale, M., Panci, G.: Integrating SysML with

Simulink using open-source model transformations. SIMULTECH

123

http://danadler.com/jacob/
http://danadler.com/jacob/
http://www-03.ibm.com/software/products/en/ratirhapfami
http://www-03.ibm.com/software/products/en/ratirhapfami
http://www-03.ibm.com/software/products/en/ratidoor
http://www-03.ibm.com/software/products/en/ratidoor
http://com4j.kohsuke.org/
http://com4j.kohsuke.org/
https://www.nomagic.com/products/magicdraw
https://www.nomagic.com/products/magicdraw
https://www.ptc.com/-/media/Files/PDFs/ALM/Integrity/PTC-Integrity-Modeler-Data-Sheet.pdf
https://www.ptc.com/-/media/Files/PDFs/ALM/Integrity/PTC-Integrity-Modeler-Data-Sheet.pdf
https://www.ptc.com/-/media/Files/PDFs/ALM/Integrity/PTC-Integrity-Modeler-Data-Sheet.pdf

Bridging proprietary modelling and open-source model management tools: the case of PTC…

2011—Proceedings of 1st International Conference on Simulation

and Modeling Methodologies, Technologies and Applications, pp.

45–56 (2011)

28. Sparx Systems Pty Ltd.: Enterprise Architect (2019). https://

sparxsystems.com/products/ea/

29. Steinberg, D., Budinsky, F., Merks, E., Paternostro, M.: EMF:

Eclipse Modeling Framework. Pearson Education, London (2008)

30. The Eclipse Foundation: The ATLAS Transformation Language

Project. https://www.eclipse.org/atl/

31. The Jawin Project: Jawin—a Java/Win32 interoperability project.

Online (2005). http://jawinproject.sourceforge.net/

32. The MathWorks Inc.: Simulation and model-based design. https://

www.mathworks.com/products/simulink.html

33. Van Deursen, A., Klint, P., Visser, J.: Domain-specific languages:

an annotated bibliography. ACM Sigplan Not. 35(6), 26–36 (2000)

34. Zolotas, A., Rodriguez, H.H., Kolovos, D.S., Paige, R.F., Hutches-

son, S.: Bridging proprietary modelling and open-source model

management tools: the case of PTC integrity modeller and epsilon.

In: 2017 ACM/IEEE 20th International Conference on Model

Driven Engineering Languages and Systems (MODELS), pp. 237–

247. IEEE (2017)

Publisher’s Note Springer Nature remains neutral with regard to juris-

dictional claims in published maps and institutional affiliations.

Athanasios Zolotas is a Research

Fellow at the Computer Science

Department of University of York,

UK. Athanasios received his EngD

in Large-Scale Complex IT Sys-

tems from the University of York

in 2017. His research interests are

in model-driven engineering, big

data analytics, safety critical sys-

tems and requirements engineer-

ing while he is collaborating with

leading companies in the aero-

space and automotive domain such

as Rolls-Royce and Vollskwagen.

Horacio Hoyos Rodriguez is a

Research Associate at the Uni-

versity of York, where he cur-

rently researches on incremental

execution of model management

languages. His main interests are

model management languages and

model persistence technologies.

Dr. Stuart Hutchesson is Senior

Software Specialist in the Control

Systems division of Rolls-Royce.

He has over 30 years’ experience

in the development of real-time

embedded software for safety-

critical systems, primarily FADEC

systems for civil aerospace gas-

turbine applications. Stuart’s cur-

rent interests include the use of

model-based techniques for the

specification, generation and ver-

ification of systems and software,

and in the use of Product Line

techniques to develop high-integrity

applications. Stuart was a member of the working group that produced

DO-331/ED-218 (the Model-Based Supplement to DO-178C/ED-

12C). He is a Chartered Engineer and Fellow of both the BCS and IET.

Beatriz Sanchez Pina is a PhD

candidate at the Department of

Computer Science of the Univer-

sity of York where she received

an MSc in Software Engineering

in 2017. Her main research focus

is on Model-Driven Engineering,

Workflows and Traceability. She

has been a contributor of the

Eclipse Foundation Epsilon project

since 2017, in particular, on its

integration with the MATLAB

Simulink and Stateflow toolboxes.

Alan Grigg graduated in Math-

ematics at Thames Polytechnic

(now University of Greenwich) in

1985. After a spell in BAE Sys-

tems working on Integrated Mod-

ular Avionics (IMA) standardiza-

tion programmes, he undertook

a PhD at University of York to

research timing analysis for dis-

tributed real-time systems which

he completed in 2002 entitled

’Reservation-based Timing Anal-

ysis’. He then worked as part of

the BAE Systems Hawk Advanced

Jet Trainer software development

team to pursue the first project deployment of IMA. He then spent

6 years in the BAE Systems Engineering Innovation Centre at

Loughborough University working on collaborative industrial/aca-

demic research into novel system and software architectures for avion-

ics. In 2012, he joined Rolls-Royce Control Systems to work on

Model-Based Systems Engineering process improvements for Engine

Control Systems.

123

https://sparxsystems.com/products/ea/
https://sparxsystems.com/products/ea/
https://www.eclipse.org/atl/
http://jawinproject.sourceforge.net/
https://www.mathworks.com/products/simulink.html
https://www.mathworks.com/products/simulink.html

A. Zolotas et al.

Mole Li received the MSc degree

from Loughborough University in

2013. Currently, he is finishing

the Ph.D. degree at Loughborough

University. His research is in the

integration of Software Product

Line Engineering with Model-

based Systems Engineering. He

is a control systems engineer at

Rolls-Royce where he is currently

working on Model Based Sys-

tems Engineering (MBSE) pro-

cesses, Co-simulation and Model

Based Safety Engineering research

for Engine Control Systems. Mr.

Li is a member of the IEEE, OMG and INCOSE.

Dimitris S. Kolovos is a Profes-

sor of Software Engineering in the

Department of Computer Science

at the University of York, where

he researches and teaches auto-

mated and model-based software

engineering. He is also an Eclipse

Foundation committer, leading the

development of the open-source

Epsilon model-based software

engineering platform, and an asso-

ciate editor of the IET Software

journal. Prof. Kolovos has co-

authored more than 150 peer-

reviewed papers and his research

has been supported by the European Commission, UK’s Engineering

and Physical Sciences Research Council (EPSRC), InnovateUK and

by companies such as Rolls-Royce and IBM.

Richard F. Paige is a Professor in

the Department of Computing and

Software at McMaster University,

Hamilton, Canada, and holds a

part-time appointment at the Uni-

versity of York, UK. His research

interests are in modelling, model

transformation, model validation,

open-source software and safety-

critical systems. He is on the edi-

torial boards of the journals Soft-

ware and Systems Modelling,

Empirical Software Engineering

and the Journal of Object Tech-

nology. He chairs the steering com-

mittee for the STAF conference series, and is on the steering commit-

tee for the MoDELS conference.

123

	Bridging proprietary modelling and open-source model management tools: the case of PTC Integrity Modeller and Epsilon
	Abstract
	1 Introduction
	2 Background and motivation
	3 Bridging Epsilon with PTC Integrity Modeller
	3.1 Epsilon
	3.2 PTC integrity modeller
	3.3 The IM-Epsilon bridge
	3.4 Java/Windows COM integration
	3.5 Caching
	3.6 Working with stereotypes

	4 Demonstration
	4.1 Running model management programs

	5 Evaluation
	5.1 Performance experiment
	5.1.1 Experiment setup
	5.1.2 Results
	5.1.3 Threats to validity

	5.2 UML activity diagrams to Simulink

	6 Observations and lessons learnt
	7 Related work
	8 Conclusions and future work
	Acknowledgements
	Appendix
	References

