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Abstract 9 

This paper presents a multiresolution discontinuous Galerkin scheme for the adaptive solution of 10 

Boussinesq-type equations. The model combines multiwavelet-based grid adaptation with a 11 

discontinuous Galerkin (DG) solver based on the system of fully nonlinear and weakly dispersive 12 

Green-Naghdi (GN) equations. The key feature of the adaptation procedure is to conduct a 13 

multiresolution analysis using multiwavelets on a hierarchy of nested grids to improve the efficiency of 14 

the reference DG scheme on a uniform grid by computing on a locally refined adapted grid. This way 15 

the local resolution level will be determined by manipulating multiwavelet coefficients controlled by a 16 

single user-defined threshold value. The proposed adaptive multiwavelet discontinuous Galerkin solver 17 

for GN equations (MWDG-GN) is assessed using several benchmark problems related to wave 18 

propagation and transformation in nearshore areas. The numerical results demonstrate that the proposed 19 

scheme retains the accuracy of the reference scheme, while significantly reducing the computational 20 

cost.  21 

Keywords: Multiwavelets; Discontinuous Galerkin; Boussinesq-type equations; Green-Naghdi 22 

equations; Multiresolution analysis; Nearshore wave processes 23 

1- Introduction 24 

The Boussinesq-type (BT) equations have been used as an alternative to the free-surface Euler 25 

equations for modelling of propagation and transformations of waves in nearshore areas. These types 26 
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of applications usually correspond to the shallow water regime, where the horizontal length scale 𝜆 is 27 

large compared to the water depth scale ℎ0, so that the shallowness parameter is 𝜇 = ℎ02/𝜆2 ≪ 1.  28 

Neglecting all the terms of order 𝑂(𝜇) from the Euler equations leads to the so-called Nonlinear Shallow 29 

Water (NSW) equations, whereas keeping them results in the simplest form of BT equations1. While 30 

this simple BT model is, in essence, weakly dispersive and only valid for long waves with  𝑘ℎ0 < 0.75 31 

(𝑘 being the wavenumber), better dispersive behaviour and more accurate BT models can be achieved 32 

by incorporation of more terms and related manipulations2. The nonlinearity parameter is another 33 

related identifier, which is defined as the ratio of the wave amplitude scale to the water depth scale, 𝜖 =34 𝑎/ℎ0. Most of the BT equations impose a smallness amplitude assumption as 𝜖 = 𝑂(𝜇2), which is too 35 

restrictive for many applications in nearshore areas. Removing this assumption (i.e. let 𝜖 = 𝑂(1)) while 36 

keeping all the 𝑂(𝜇) terms, gives the so-called Green-Naghdi (GN) equations3–5. The GN equations 37 

share the same characteristics of other BT models. However, they allow relative ease in computational 38 

implementation, which makes them very favourable in coastal engineering applications6,7. 39 

To numerically solve various BT wave models, different approaches have been used based on  40 

Finite Difference (FD), Finite Volume (FV), Finite Element (FE) and spectral element2,8. The 41 

Discontinuous Galerkin (DG) method is a more modern alternative for these approaches, which exploits 42 

the properties of the FV and FE methods. The DG method thereby provides faster convergence rates 43 

and better quality predictions on coarse meshes as compared to an equally accurate FV approach9–11. 44 

DG methods are becoming increasingly popular in solving BT equations7,11–19. However, the runtime 45 

cost of DG methods is high, given their demands for storage and evolution of local degrees of freedom 46 

within each computational cell and their restrictive CFL condition when applied with explicit Runge-47 

Kutta (RK) time stepping. These costs would even be higher when modelling wave propagation and 48 

transformation in coastal areas, where the multitude of spatial and temporal scales further increase the 49 

wave feature and complexity.  50 

Classical Adaptive Mesh Refinement (AMR) techniques were initially used in an attempt to reduce 51 

fine resolution costs by adapting the mesh resolution20–22. However, it turned out that classical AMR 52 

approaches bring about new issues owing to the inherently decoupled nature between the mesh and the 53 



numerical solution. In order to control grid refinement/coarsening, AMR methods usually either use 54 

Richardson extrapolation23 or heuristic criteria24, which gives no information about the errors related to 55 

the adaptation process, making the effectiveness of an AMR approach subject to a-posteriori error 56 

estimates25. Moreover, most of the available AMR developments lack a general adaptivity sensor, so 57 

that they either need separate criteria for refinement/coarsening26,27 or problem specific criteria28,29 or 58 

are reported to be highly dependent on the type of refinement criteria30. Also, deploying a classical 59 

AMR method dictates extra corrections in the numerical scheme to address the loss of well-60 

balancedness property for the case of the NSW equations24,31–33. 61 

Multiscale methods based on the Multiresolution Analysis (MRA) of wavelets provide an 62 

alternative that can preserve the quality of numerical methods on adaptive meshes34–38. Theoretical 63 

analyses show that only an error threshold value is needed with this category of adaptive solvers in 64 

order to bound the accumulated errors and preserve the accuracy of the reference uniform solver at the 65 

finest resolution grid39–41. Initially, this concept has been particularly verified with FV solvers, which 66 

later appeared to give marginal computational savings and introduce unacceptably large errors for low-67 

order schemes. Therefore, the combination of DG methods with Multiwavelets42 (MWs) has emerged 68 

recently. MWs preserve locality in line with the local and accurate structure of the DG method, which 69 

enables greater compression rates alongside small computational stencil compared to wavelets. 70 

Compared to the classic AMR methods, multiscale-based methods have been shown to exhibit larger 71 

compression rates and more gains in CPU time43,44.   72 

The MW-based DG solvers have been successfully used for adaptive modelling of Euler41,45,46 and 73 

NSW equations47–49, suggesting that just by the use of a single threshold value, the adaptive MWDG 74 

solver keeps the accuracy of the adaptive solution in the same order as the accuracy of the uniform 75 

solution, while reducing the computational cost.  76 

Among the few existing works on wavelet-based grid adaptation for solving BT models, Smith et 77 

al.50 extended the Haar Wavelet-Finite Volume (HWFV) model of Müller51 to the case of weakly 78 

nonlinear, weakly dispersive model of Madsen and Sørensen52. Their analysis reported good 79 



performance of the wavelet adaptation process, but also reported on instabilities in areas with fine 80 

resolutions, linking them to the treatment of the third spatial derivative in the BT equations. 81 

This work, therefore, presents a first exploration of MW-based grid adaptation combined with DG 82 

discretization for modelling the GN equations (denoted hereafter by MWDG-GN). An existing uniform 83 

mesh DG solver for the GN equations (DG-GN)11 is extended to adaptive form, following the MWDG 84 

method introduced in Kesserwani et al.47 applied to the NSW equations (MWDG-NSW). The behaviour 85 

of the adaptive MWDG-GN solver in modelling different levels of nonlinearity and dispersion related 86 

to wave propagation is studied from both accuracy and efficiency point of view. The suitable range for 87 

the threshold parameter to reach the same quality of the solutions as the uniform DG-GN solver is also 88 

identified. The rest of the paper is organized as follows: In Section 2 we briefly recall the governing 89 

GN equations and in Section 3 the main ingredients of the uniform DG-GN solver are introduced. 90 

Section 4 describes the main ideas behind the MRA, and Section 5 explains the details of the MWDG-91 

GN solver. Section 6 presents a series of numerical experiments that demonstrate the efficiency of the 92 

MWDG-GN solver. A summary of conclusions is presented in Section 7. 93 

2- The Green-Naghdi (GN) equations  94 

The one-dimensional (1D) GN system can be cast as the conventional NSW equations combined 95 

with source terms accounting for the dispersive effects, in the following conservative form53:  96 

𝜕𝑡𝐔+ 𝜕𝑥𝐅(𝐔, 𝑧) = 𝐒b(𝐔, 𝑧) − 𝐃(𝐔, 𝑧) (1) 

𝐔 = [ℎ𝑞],      𝐅(𝐔, 𝑧) = [ 𝑞𝑞2ℎ + 12𝑔ℎ2],      𝐒b(𝐔, 𝑧) = [ 0−𝑔ℎ𝜕𝑥𝑧],     𝐃(𝐔, 𝑧) = [ 0𝒟𝑐] (2) 

where 𝐔 is the vector of flow variables i.e. water depth ℎ and discharge 𝑞 = ℎ𝑢, 𝐅 represents the fluxes, 97 𝑧 is the topography, 𝑔 refers to the gravitational constant and 𝐒b is the topography source term. In this 98 

formulation, 𝐃 denotes the dispersive source term, with 𝒟𝑐 defined as 99 

 100 



𝒟𝑐 = −1𝛼 𝑔ℎ𝜕𝑥𝜁 + 

[1 + 𝛼𝕋[ℎ𝑏]]−1 [1𝛼 𝑔ℎ𝜕𝑥𝜁 + ℎ(𝒬1(𝑢) + 𝑔𝒬2(𝜁)) + 𝑔𝒬3 ([1 + 𝛼𝕋[ℎ𝑏]]−1(𝑔ℎ𝜕𝑥𝜁))] 
(3) 

where 𝑢(𝑥, 𝑡) is the horizontal velocity, ℎ𝑏 corresponds to the undisturbed state, ℎ(𝑥, 𝑡) = 𝜁(𝑥, 𝑡) + ℎ𝑏 101 

is the water height,  𝜁(𝑥, 𝑡) stands for the free-surface elevation and 𝑧(𝑥) is the variation of the bottom 102 

with respect to the rest state (Fig. 1), and α is an optimization parameter53. The differential operators 𝒬1 103 

and 𝒬2 are expressed as follows: 104 

𝒬1(𝑢) = 2ℎ𝜕𝑥ℎ(𝜕𝑥𝑢)2 + 43ℎ2𝜕𝑥𝑢(𝜕𝑥2𝑢) + ℎ𝜕𝑥𝑧(𝜕𝑥𝑢)2 + 𝑢ℎ𝜕𝑥𝑢(𝜕𝑥2𝑧) + 𝑢2𝜕𝑥𝜁(𝜕𝑥2𝑧)+ ℎ2 𝑢2(𝜕𝑥3𝑧) (4) 

𝒬2(𝜁) = −(𝜕𝑥𝜁𝜕𝑥𝑧 + ℎ2 𝜕𝑥2𝑧) 𝜕𝑥𝜁 (5) 

For a given scalar function 𝑤, the second-order differential operator 𝕋 is defined as: 105 

𝕋[ℎ𝑏](𝑤) = −ℎ𝑏33 𝜕𝑥2 (𝑤ℎ𝑏) − ℎ𝑏2𝜕𝑥ℎ𝑏𝜕𝑥 (𝑤ℎ𝑏) (6) 

and 𝒬3 admits the simplified notation: 106 

𝒬3(𝑤) = 16𝜕𝑥(ℎ2 − ℎ𝑏2)𝜕𝑥𝑤 + ℎ2 − ℎ𝑏23 𝜕𝑥2𝑤 − 16𝜕𝑥2(ℎ2 − ℎ𝑏2)𝑤 (7) 

3- The uniform DG-GN model 107 

The 1D computational domain Ω = [𝑥min, 𝑥max] is divided into N uniform and non-overlapping 108 

cells {𝐼𝑖}𝑖=1,…,𝑁 with cell 𝐼𝑖 = [𝑥𝑖−1/2, 𝑥i+1/2] having size ∆𝑥 = 𝑥𝑖+1/2 − 𝑥i−1/2 and centre ∆𝑥 =109 (𝑥𝑖+1/2 + 𝑥i−1/2)/2. Eq. (1) is approximated with a modal DG discretization with polynomials of 110 

degree 𝑝. Let 𝑉𝑝 be     111 

𝑉𝑝 = {𝑣 ∈ 𝐿2(Ω): 𝑣|𝐼𝑖 ∈ 𝛱𝑝(𝐼𝑖), 𝑖 = 1,… ,𝑁}          (8) 



where 𝛱𝑝(𝐼𝑖) is the space of polynomials of degree at most p on 𝐼𝑖. Here, Legendre polynomials will 112 

be used, define as (e.g. for 0 ≤ 𝑙 ≤ 3): 113 

𝑃0(𝜉) = 1,    𝑃1(𝜉) = 𝜉,    𝑃2(𝜉) = 12 (3𝜉2 − 1),    𝑃3(𝜉) = 12 (5𝜉3 − 3𝜉)    (𝜉 ∈ [−1,1]) (9) 

which are compactly-supported on [−1,1], inherently discontinuous, and orthogonal for the L2-norm 114 

based on the following inner product: 115 

〈𝑓, 𝑔〉Ω = ∫ 𝑓(𝜉)𝑔(𝜉)𝑑𝜉Ω           (10) 

The L2-orthonormal basis 𝜑𝑙(𝜉) can be defined by normalizing 𝑃𝑙(𝜉) for the L2-norm such that 116 〈𝜑𝑙 , 𝜑𝑙′〉𝐿2(Ω) = 𝛿𝑙𝑙′, where 𝛿 is the Kronecker delta. Since the reference domain spans [−1, 1], the 117 

orthonormal basis is54: 118 

𝜑𝑙(𝜉) = √2𝑙 + 12 𝑃𝑙(𝜉)    (𝜉 ∈ [−1,1]) (11) 

Accordingly, two sets of basis functions will be defined over 𝐼𝑖: the primal basis Φ𝑖 =119 {𝜑𝑖,0, 𝜑𝑖,1, … , 𝜑𝑖,𝑝}, and the dual basis Φ̃𝑖 = {𝜑̃𝑖,0, 𝜑̃𝑖,1, … , 𝜑̃𝑖,𝑝} 41: 120 

𝜑𝑖,𝑙(𝑥) = √2𝜑𝑙(𝜉)      and    𝜑̃𝑖,𝑙(𝑥) = 𝜑𝑖,𝑙(𝑥)∆𝑥  (12) 

The primal and dual basis are chosen so that they are biorthogonal  121 

〈𝜑𝑖,𝑙 , 𝜑̃𝑖′,𝑙′〉𝐿2(Ω) = 𝛿𝑖,𝑙𝛿𝑖′,𝑙′           (13) 

To get an FE local weak formulation, Eq. (1) is multiplied by a test function selected as the dual basis 122 𝜑̃𝑖,𝑙, then integrated by parts over the control volume 𝐼𝑖 to give: 123 



∫ 𝜕𝑡𝐔h(𝑥, 𝑡)𝜑̃𝑖,𝑙(𝑥)𝑑𝑥𝐼𝑖 − ∫ 𝐅(𝐔h(𝑥, 𝑡))𝜕𝑥𝜑̃𝑖,𝑙(𝑥)𝑑𝑥𝐼𝑖+ [𝐅̃ (𝐔h(𝑥𝑖+1/2, 𝑡)) 𝜑̃𝑖,𝑙(𝑥𝑖+1/2) − 𝐅̃ (𝐔h(𝑥𝑖−1/2, 𝑡)) 𝜑̃𝑖,𝑙(𝑥𝑖−1/2)]
= ∫ 𝐒b(𝐔h(𝑥, 𝑡), 𝑧h)𝜑̃𝑖,𝑙(𝑥)𝑑𝑥𝐼𝑖 − ∫ 𝐃h(𝐔h(𝑥, 𝑡), 𝑧h) 𝜑̃𝑖,𝑙(𝑥)𝑑𝑥𝐼𝑖  

(14) 

in which, 𝐔h, 𝐃h and 𝑧h are local approximations of 𝐔, 𝐃 and 𝑧, which are also spanned by FE 124 

expansion coefficients, and 𝐅̃ is a nonlinear numerical flux function based on an HLL approximate 125 

Riemann solver55. On 𝐼𝑖 the local solution can be expanded using the primal basis 𝜑𝑖,𝑙 as: 126 

𝐔h(𝑥, 𝑡)|𝐼𝑖 = ∑ 𝐔𝑖,𝑙(𝑡)𝜑𝑖,𝑙(𝑥)𝑝𝑙=0          (𝑥 ∈ 𝐼𝑖) (15) 

𝐃h(𝑥, 𝑡)|𝐼𝑖 = ∑ 𝐃𝑖,𝑙(𝑡)𝜑𝑖,𝑙(𝑥)𝑝𝑙=0          (𝑥 ∈ 𝐼𝑖) (16) 

𝑧h(𝑥, 𝑡)|𝐼𝑖 = ∑ 𝑧𝑖,𝑙(𝑡)𝜑𝑖,𝑙(𝑥)𝑝𝑙=0          (𝑥 ∈ 𝐼𝑖) (17) 

where 𝐔𝑖,𝑙, 𝐃𝑖,𝑙 and 𝑧𝑖,𝑙 are time-dependent expansion coefficients. These initial states are obtained by 127 

projecting a given initial condition onto the dual basis. The local semi-discrete DG formulation for each 128 

l-th coefficient of polynomial accuracy over a cell 𝐼𝑖 reads: 129 

𝜕𝑡 (𝐔𝑖,𝑙(𝑡)) = −√2𝑙 + 1∆𝑥 {[𝐅̃𝑖+12 − (−1)𝑙𝐅̃𝑖−12] − ∫ 𝐅(𝐔ℎ (𝑥𝑖 + 𝜉 Δ𝑥2 , 𝑡)) (𝜕[𝑃𝑙(𝜉)]𝜕𝜉 )𝑑𝜉+1
−1

− ∫ 𝐒𝐛 (𝐔ℎ (𝑥𝑖 + 𝜉 Δ𝑥2 , 𝑡) , 𝑧ℎ)𝑃𝑙(𝜉)𝑑𝜉+1
−1 } − 𝐃𝑖,𝑙(𝑡) (18) 

Here, piecewise linear polynomial basis (i.e. l = 0, 1) are chosen, resulting in a second order DG scheme, 130 

hereafter called DG2. The local integral terms are computed by the two-point Gauss-Legendre rule and 131 

time integration is achieved by locally applying a 2-stage explicit RK time stepping scheme to solve 132 

the ODEs in Eq. (18) with a CFL number less than 1/3 for stability. In order to consistently discretize 133 

the higher order derivatives in dispersive terms, the so-called Local Discontinuous Galerkin (LDG) 134 



approach56 is used. The complete explanations regarding the DG solving procedure e.g. slope limiting, 135 

wetting/drying and solving the dispersive source terms can be found in Sharifian et al.11. 136 

4- Multi-resolution analysis 137 

Considering the reference interval [-1,1], a hierarchy of nested grids, {𝐼𝑗𝑛}𝑗=0,1,…,2𝑛−1 with 138 

increasing resolution 𝑛 = 0, 1, 2, … is defined by midpoint sub-division of the reference interval, i.e. 139 𝐼𝑗𝑛 = [−1 + 2−𝑛+1𝑗, −1 + 2−𝑛+1(𝑗 + 1)]. On each sub-interval 𝐼𝑗𝑛 at resolution 𝑛, any continuous 140 

function is approximated as a vector space 𝑉𝑝𝑛 denoting the space of piecewise polynomial functions of 141 

degree at most p. The spaces 𝑉𝑝𝑛 have degrees of freedom 2𝑛(𝑝 + 1) and form a nested structure of 142 

closed subspaces (Fig. 2) 143 

𝑉𝑝0 ⊂ 𝑉𝑝1 ⊂ ⋯ ⊂ 𝑉𝑝𝑛 ⊂ ⋯ (19) 

For the Legendre polynomials used in the DG method (Eqs. 15-17) Φ = {𝜑0, 𝜑1, … , 𝜑𝑝} consisting of 144 𝑝 + 1 functions spanning the space 𝑉𝑝0 on [-1,1], it is possible to obtain the basis Φ𝑗𝑛 =145 {𝜑𝑗,0𝑛 , 𝜑𝑗,1𝑛 , … , 𝜑𝑗,𝑝𝑛 } containing 2𝑛(𝑝 + 1) functions, spanned over a sub-space 𝑉𝑝𝑛 supported on 𝐼𝑗𝑛, by 146 

translation and dilation of Φ 42: 147 

𝜑𝑗𝑙𝑛(𝑥) = 2𝑛 2⁄ 𝜑𝑙(2𝑛(𝑥 + 1) − 2𝑗 − 1),     𝑙 = 0,… , 𝑝,   𝑗 = 0,… , 2𝑛 − 1,   𝑥 ∈ 𝐼𝑗𝑛 
(20) 

in which j denotes the translation or shifting factor over sub-intervals {𝐼𝑗𝑛}𝑗=0,1,…,2𝑛−1 and 2𝑛 is the 148 

dilatation factor. Functions 𝜑𝑙 are called scaling functions. By considering the nested property (Eq. 19), 149 

the multiwavelet sub-space 𝑊𝑝𝑛 can be defined as the orthogonal complement of 𝑉𝑝𝑛 inside 𝑉𝑝𝑛+1, i.e. 150 

𝑉𝑝𝑛⨁𝑊𝑝𝑛 = 𝑉𝑝𝑛+1 (21) 

such that 𝑉𝑝𝑛 ⊥ 𝑊𝑝𝑛 and 𝑊𝑝𝑛 ⊂ 𝑉𝑝𝑛+1. The orthonormal basis 𝑊𝑝0 comprises p + 1 polynomials Ψ =151 {𝜓0, 𝜓1, … , 𝜓𝑝} defined on [-1,1], also known as multiwavelet Legendre polynomials (Fig. 3)41,54,57. 152 

Similarly, space 𝑊𝑝𝑛 is spanned by functions Ψ𝑗𝑛 = {𝜓𝑗,0𝑛 , 𝜓𝑗,1𝑛 , … , 𝜓𝑗,𝑝𝑛 }, obtained by translation and 153 

dilation as 154 



𝜓𝑗𝑙𝑛(𝑥) = 2𝑛 2⁄ 𝜓𝑙(2𝑛(𝑥 + 1) − 2𝑗 − 1),     𝑙 = 0,… , 𝑝,    𝑗 = 0,… , 2𝑛 − 1,   𝑥 ∈ 𝐼𝑗𝑛 (22) 

Using functions 𝜑𝑗𝑙𝑛 , any arbitrary function 𝑓 ∈ 𝐿2(−1,+1) can be reconstructed or decomposed across 155 

multiple scales of resolution. This is because by recursively applying Eq. (21), 𝑉𝑝𝑛 can be decomposed 156 

into a single 𝑉𝑝0 space along with a sequence of 𝑊𝑝: 157 

𝑉𝑝𝑛 = 𝑉𝑝0⨁𝑊𝑝0⨁𝑊𝑝1⨁⋯⨁𝑊𝑝𝑛−1 (23) 

The orthogonal projection of 𝑓(𝑥) onto 𝑉𝑝𝑛 takes the following form: 158 

𝑃𝑝𝑛𝑓(𝑥) = ∑ ∑𝑠𝑗,𝑙𝑛𝑝
𝑙=0

2𝑛−1
𝑗=0 𝜑𝑗,𝑙𝑛 (𝑥) (24) 

where 𝑃𝑝𝑛 is the projection operator. Eq. (24) gives the so-called single-scale decomposition of the 159 

approximate solution on level n. The single-scale coefficients, 𝑠𝑗,𝑙𝑛 , can be derived from a L2 projection 160 

onto an orthonormal basis: 161 

𝑠𝑗,𝑙𝑛 = 〈𝑓, 𝜑𝑗,𝑙𝑛 〉 = ∫ 𝑓(𝑥)𝜑𝑗,𝑙𝑛 𝑑𝑥−1+2−𝑛+1(𝑗+1)
−1+2−𝑛+1(𝑗)  (25) 

Note that, for any 𝑓 ∈ 𝑉𝑝𝑛, the following relation holds42: 162 

𝑃𝑝𝑛𝑓 = 𝑓 (26) 

It is also possible to expand f by deploying multiwavelets as 163 

𝑄𝑝𝑛𝑓(𝑥) = 𝑃𝑝𝑛+1𝑓(𝑥) − 𝑃𝑝𝑛𝑓(𝑥) = ∑ ∑𝑑𝑗,𝑙𝑛𝑝
𝑙=0

2𝑛−1
𝑗=0 𝜓𝑗,𝑙𝑛 (𝑥) (27) 

where the detail coefficients are obtained from 164 

𝑑𝑗,𝑙𝑛 = 〈𝑓, 𝜓𝑗,𝑙𝑛 〉 = ∫ 𝑓(𝑥)𝜓𝑗,𝑙𝑛 𝑑𝑥−1+2−𝑛+1(𝑗+1)
−1+2−𝑛+1(𝑗)  (28) 

Recursive use of Eq. (27), leads to multi-scale decomposition of f on level n 165 



𝑃𝑝𝑛𝑓(𝑥) = 𝑃𝑝𝑛−1𝑓(𝑥) + 𝑄𝑝𝑛−1𝑓(𝑥) = 𝑃𝑝𝑛−2𝑓(𝑥) + 𝑄𝑝𝑛−2𝑓(𝑥) + 𝑄𝑝𝑛−1𝑓(𝑥) = ⋯
= 𝑃𝑝0𝑓(𝑥) + ∑ 𝑄𝑝𝑚𝑓(𝑥)𝑛−1

𝑚=0 =∑𝑠0,𝑙0 𝜑𝑙(𝑥)𝑝
𝑙=0 + ∑ ∑ ∑𝑑𝑗,𝑙𝑚𝑝

𝑙=0 𝜓𝑗,𝑙𝑚(𝑥)2𝑚−1
𝑗=0

𝑛−1
𝑚=0  

(29) 

The single scale coefficients {𝑠0,𝑙0 }𝑙=0𝑝
 represent the information on the coarsest level m = 0, while detail 166 

coefficients {𝑑𝑗,𝑙𝑚} carry multi-scale information, or fluctuations of the solution which, if added to the 167 

lowest-resolution information, enrich it up to level n of resolution48.  168 

4-1- Two-scale transformation for down- and up-scaling local information 169 

In order to reconstruct or decompose the local solution expansion between two successive 170 

resolution levels, a two-scale transformation can be derived. Without loss of generality, the two-scale 171 

transformation is considered between levels m = 0 and m = 1.  The so-called Quadrature Mirror Filter 172 

(QMF) coefficients will be used in decomposition and reconstruction steps, which are of two types47: 173 

low-pass filter coefficients (derived from scaling functions), and high-pass filter coefficients (derived 174 

from multiwavelet functions). The low-pass filter coefficients are defined as ℎ𝑙,𝑟𝑗 = 〈𝜑𝑙 , 𝜑𝑗,𝑟1 〉 (𝑗 = 0, 1; 175 𝑟 = 0,… , 𝑝). Considering ℎ𝑙,𝑟0  we will have: 176 

ℎ𝑙,𝑟0 = 〈𝜑𝑙 , 𝜑0,𝑟1 〉 = ∫ 𝜑𝑙(𝑥)𝜑0,𝑟1 (𝑥)𝑑𝑥+1
−1 = √2∫ 𝜑𝑙(𝑥)𝜑𝑟(2𝑥 + 1)𝑑𝑥0

−1  (30) 

in which 𝑥 ∈ [−1,0] comes from the fact that 𝜑𝑟(2𝑥 + 1) is nonzero only if (2𝑥 + 1) ∈ [−1,+1]. 177 

Accordingly, by changing the variables the following holds: 178 

ℎ𝑙,𝑟0 = 〈𝜑𝑙 , 𝜑0,𝑟1 〉 = √2∫ 𝜑𝑙(𝑥)𝜑𝑟(2𝑥 + 1)𝑑𝑥0
−1  

= 1√2∫ 𝜑𝑙 (𝑦 − 12 )𝜑𝑟(𝑦)𝑑𝑦+1
−1 ≈ 1√2∑𝑤𝐺𝜑𝑙 (𝑥𝐺 − 12 )𝑝

𝐺=0 𝜑𝑟(𝑥𝐺) (31) 

where the Gauss-Legendre quadrature rules are deployed to compute the integral. Similarly, for ℎ𝑙,𝑟1  179 

ℎ𝑙,𝑟1 = 〈𝜑𝑙 , 𝜑0,𝑟1 〉 = √2∫ 𝜑𝑙(𝑥)𝜑𝑟(2𝑥 − 1)𝑑𝑥1
0  (32) 



= 1√2∫ 𝜑𝑙 (𝑦 + 12 )𝜑𝑟(𝑦)𝑑𝑦+1
−1 ≈ 1√2∑𝑤𝐺𝜑𝑙 (𝑥𝐺 + 12 )𝑝

𝐺=0 𝜑𝑟(𝑥𝐺) 
Based on multiwavelet functions 𝜓𝑙 ∈ 𝑊𝑝0, 𝑙 = 0,… , 𝑝, the relation 𝑊𝑝0 ⊂ 𝑊𝑝1 leads to 𝜑𝑙 ∈ 𝑊𝑝1. 180 

Therefore, following the same procedure, the high-pass filter coefficients will be derived as: 181 

𝑔𝑙,𝑟0 ≈ 1√2∑𝑤𝐺𝜓𝑙 (𝑥𝐺 − 12 )𝑝
𝐺=0 𝜑𝑟(𝑥𝐺) (33) 

𝑔𝑙,𝑟1 ≈ 1√2∑𝑤𝐺𝜓𝑙 (𝑥𝐺 + 12 )𝑝
𝐺=0 𝜑𝑟(𝑥𝐺) (34) 

Now, in order to define the multiwavelet decomposition, Eqs. (20) and (25) will result in 182 

𝑠𝑗,𝑙𝑛−1 = 〈𝑓, 𝜑𝑗,𝑙𝑛−1〉 = ∑(ℎ𝑙,𝑟0 𝑠2𝑗,𝑟𝑛 + ℎ𝑙,𝑟1 𝑠2𝑗+1,𝑟𝑛 )𝑝
𝑟=0  (35) 

and in the same manner, 183 

𝑑𝑗,𝑙𝑛−1 =∑(𝑔𝑙,𝑟0 𝑠2𝑗,𝑟𝑛 + 𝑔𝑙,𝑟1 𝑠2𝑗+1,𝑟𝑛 )𝑝
𝑟=0  (36) 

in which 𝑙 = 0,… , 𝑝, 𝑗 = 0,… , 2𝑛−1 − 1. By forming matrices 184 

𝐇𝑏 = {ℎ𝑖,𝑙𝑏 }, 𝐆𝑏 = {𝑔𝑖,𝑙𝑏 },       𝑏 = 0, 1;    𝑖, 𝑙 = 0,… , 𝑝    (37) 

and introducing the following vectors (for 𝑗 = 0,… , 2𝑛 − 1) 185 

𝐬𝑗𝑛 = (𝑠𝑗,0𝑛 … 𝑠𝑗,𝑝𝑛 )T 

𝐝𝑗𝑛 = (𝑑𝑗,0𝑛 … 𝑑𝑗,𝑝𝑛 )T 

(38) 

the decomposition relations in Eqs. (35-36) can be reformulated as54: 186 

𝐬𝑗𝑛−1 = 𝐇0𝐬2𝑗𝑛 +𝐇1𝐬2𝑗+1𝑛  (39) 

𝐝𝑗𝑛−1 = 𝐆0𝐬2𝑗𝑛 + 𝐆1𝐬2𝑗+1𝑛     (40) 

Now, left-multiplying Eq. (39) by 𝐇0T and Eq. (40) by 𝐆0T, then summing them would result in 187 



𝐇0T𝐬𝑗𝑛−1 + 𝐆0T𝐝𝑗𝑛−1 = 𝐬2𝑗𝑛     (41) 

and in the same way, multiplication by 𝐇1T and 𝐆1T leads to 188 

𝐇1T𝐬𝑗𝑛−1 + 𝐆1T𝐝𝑗𝑛−1 = 𝐬2𝑗+1𝑛     (42) 

In summary, Eqs. (39-40) and (41-42) define decomposition (also called multi-scale transformation) 189 

and reconstruction (also called inverse multi-scale transformation) formulas, respectively.  190 

5- The Adaptive MWDG-GN model 191 

In order to combine the DG-GN solver with the MW-based grid adaptation, the multi-resolution 192 

analysis introduced in Section 4 is applied to each cell 𝐼𝑖 of the baseline grid. The DG formulation of 193 

multi-resolution scheme follows the same procedure as the non-adaptive case (Section 3), however, in 194 

the adaptive framework the computational domain would be a heterogeneous grid comprised of 195 

selectively chosen resolution levels of the grid hierarchy (see Section 5-2), on which the time evolution 196 

is actually performed.  197 

5-1- Local multi-scale DG formulation 198 

Therefore, each cell 𝐼𝑖 = [𝑥𝑖−1/2, 𝑥i+1/2] is recursively subdivided into 2𝑛 sub-intervals 199 {𝐼𝑖,𝑗𝑛 }𝑗=0,1,…,2𝑛−1 in a way that each cell 𝐼𝑖,𝑗𝑛 = [𝑥𝑖−1/2 + ∆𝑥(𝑛)𝑗, 𝑥𝑖−1/2 + ∆𝑥(𝑛)(𝑗 + 1)] would have the 200 

local resolution-dependent size of ∆𝑥(𝑛) = 2−𝑛∆𝑥, centred by 𝑥𝑖,𝑗𝑛 = 𝑥𝑖−1/2 + ∆𝑥(𝑛)(𝑗 + 1/2). In this 201 

notation, the sub-index 𝑖 is introduced for referring to the respective baseline cell. Also, since DG 202 

approximations and scaling function expansions are composed of the same basis functions, there is a 203 

direct relation between them. By considering the baseline cell 𝐼𝑖 = [𝑎, 𝑏] and denoting ∆𝑥(𝑛) = (𝑏 −204 𝑎)/2𝑛 as the mesh size on level n, and 𝑥𝑗𝑛 = 𝑎 + (𝑗 + 12)∆𝑥(𝑛) as the centre of cell 𝐼𝑗𝑛, using Eq. (20) 205 

the global DG approximation of the solution on the domain can be expanded as: 206 



𝐔h(𝑥, 𝑡) = ∑ ∑𝐔𝑗,𝑙(𝑛)(𝑡)𝜑𝑙(𝜉)𝑝
𝑙=0 = ∑ ∑𝐔𝑗,𝑙(𝑛)(𝑡)𝜑𝑙 ( 2∆𝑥(𝑛) (𝑥 − 𝑥𝑗𝑛))𝑝

𝑙=0
2𝑛−1
𝑗=0

2𝑛−1
𝑗=0

= ∑ ∑𝐔𝑗,𝑙(𝑛)(𝑡)𝜑𝑙 (2𝑛+1𝑏 − 𝑎 (𝑥 − 𝑎) − 2𝑗 − 1)𝑝
𝑙=0

2𝑛−1
𝑗=0

= ∑ ∑𝐔𝑗,𝑙(𝑛)(𝑡)𝜑𝑙(2𝑛(𝑦 + 1) − 2𝑗 − 1)𝑝
𝑙=0

2𝑛−1
𝑗=0 = 2−𝑛2 ∑ ∑𝐔𝑗,𝑙(𝑛)(𝑡)𝜑𝑗,𝑙𝑛 (𝑦)𝑝

𝑙=0
2𝑛−1
𝑗=0  

(43) 

in which 𝑦 = −1 + 2(𝑥 − 𝑎)/(𝑏 − 𝑎). On the other hand, over the reference domain [-1,1], based on 207 

properties of Eqs. (24) and (26), it holds that 208 

𝐔h(𝑥, 𝑡) = 𝑃𝑝𝑛𝐔h(𝑥, 𝑡) = ∑ ∑𝑠𝑗,𝑙𝑛𝑝
𝑙=0

2𝑛−1
𝑗=0 𝜑𝑗,𝑙𝑛 (𝑦) (44) 

Therefore, Eqs. (43) and (44) will lead to 209 

2−𝑛2𝐔𝑗,𝑙(𝑛) = 𝑠𝑗,𝑙𝑛  (45) 

which gives the relation between DG and single-scale coefficients.  210 

5-2- Resolution adaptivity 211 

In order to select the appropriate resolution levels to form the adaptive grid, a selection process is 212 

applied on the multiwavelet coefficients resulting in a set of the significant details denoted by 𝑆𝐷 ∈213 {(𝑖, 𝑠,𝑚), 0 ≤ 𝑖 ≤ 𝑁, 0 ≤ 𝑠 ≤ 2𝑚 − 1}, which will be used to determine those sub-cells across the 214 

different resolution levels that need to be active within the adaptive grid. In other words, the set of active 215 

cells {𝐼𝑖,𝑠𝑚}(𝑖,𝑠,𝑚)∈𝑆𝐷 will merge as ⋃ {𝐼𝑖,𝑠𝑚} = [𝑥min, 𝑥max](𝑖,𝑠,𝑚)∈𝑆𝐷 . To clarify this concept, if we express 216 

the local polynomial approximation of the flow vector 𝐔h, over a cell 𝐼𝑖,𝑠 in the form of the multi-scale 217 

decomposition up to a highest resolution n (Eq. 29) with coefficients 𝑠𝑖,0,𝑙0  and 𝑑𝑖,𝑠,𝑙𝑚  (index 𝑖 refers to 218 

the baseline cell), respective detail coefficients at a resolution 𝑚 ≤ 𝑛, i.e. 𝑑𝑖,𝑠,𝑙𝑚 , would become 219 

increasingly smaller with increasing level of spatial resolutions, when the underlying function is 220 

smooth. In the opposite way, if discontinuities are present, the details usually stay significant for 221 



increasing refinement level41,46. This property enables us to select the active cells by comparing the 222 

magnitudes of these details with a user-specified threshold value.  223 

5-2-1- Thresholding and prediction 224 

To apply the thresholding, a prescribed value 𝜀 will be defined by the user, based on which the 225 

level-dependent threshold value 𝜀𝑚 = 2𝑚−𝑛𝜀 is introduced. The detail coefficients 𝑑𝑖,𝑠,𝑙𝑚  whose absolute 226 

values, scaled with the maximum value of the solution, fall below 𝜀𝑚 will be discarded from selection, 227 

i.e. 228 

𝑑̂𝑖,𝑠,𝑙𝑚 = { 
 𝑑𝑖,𝑠,𝑙𝑚 if max𝑙=0,…,𝑝𝑖,𝑠,𝑚∈𝑆𝐷( |(𝑑𝑖,𝑠,𝑙𝑚 )𝑟|max { max𝑖,𝑠,𝑚∈𝑆𝐷 |(𝐔𝑖,𝑠,0𝑚 )𝑟| , 1}) > 𝜀𝑚0 else  (46) 

in which (𝐔𝑖,𝑠,0𝑚 )𝑟 is the average coefficient of the respective conserved quantity r, in cell 𝐼𝑖,𝑠𝑚. This 229 

procedure is called hard thresholding. Also, since the flow field evolves in time, after each evolution 230 

step, adaptivity is performed to update the grid at the new time level. To guarantee that no significant 231 

future of the solution is lost at the new time level, a prediction step will be further applied on a selected 232 

set of significant details, in which the following constraints are considered46,49:  233 

1- On account of the finite speed of propagation, the details in a local neighbourhood (in the same 234 

level) of a cell with significant detail may also become significant within one time step, and 235 

will be refined subsequently. 236 

2- Formation of shocks may steepen the gradients, resulting in significant details on higher levels. 237 

Therefore, another constraint with the criterion 2𝑀̅+1𝜀𝑚 (𝑀̅ = 𝑝 denotes the number of 238 

vanishing moments of the multiwavelets) is introduced, according to which the details at the 239 

higher level m + 1 will be set as significant.  240 

3- The set of cells characterized with significant details possess a tree-like structure; i.e. if a cell 241 

in level m is detected significant, all its substructure cells on lower resolution levels are set as 242 

significant, regardless of the thresholding based on their respective details.  243 

5-2-2- Adaptive MWDG-GN algorithm 244 



In order to apply the adaptivity procedure, first the initialization is performed in the following steps: 245 

1- The initial grid is formed by projection of the initial data on a fully refined grid at the finest 246 

level n (Fig. 4(a)).  247 

2- The multi-scale transformations (Eqs. (39-40)) are applied to determine the detail coefficients 248 

on levels 𝑚 = 0,… , 𝑛 − 1 (Fig. 4(b)). 249 

3- Initial hard thresholding is applied to obtain the initial set of significant details (Fig. 4(c)). 250 

After the initial significant details are determined, the main steps of the computations are performed in 251 

the following steps: 252 

4- The prediction step is performed based on the available set of significant details.  253 

5- The inverse multi-scale transformations (Eqs. (41-42)), will be recursively applied; proceeding 254 

level-wise from coarse to fine, in order to refine those cells flagged as significant from the 255 

previous steps, and also determines the respective DG coefficients (Fig. 4(d)). At the end of 256 

this step, the active cells which form the appropriate multi-scale adaptive grid are detected. The 257 

RKDG calculations will be performed over this grid. 258 

6- The RKDG evolution is performed, following the same procedure as the non-adaptive RKDG. 259 

The only difference is the slope limiting. As previously stated, by choosing a suitable threshold 260 

value the grid is refined up to the finest level near discontinuities and if the solution is locally 261 

smooth, we expect the grid not to be refined up to the finest level in this region. This property 262 

has been used as an additional indicator for the limiting process such that the limiting process 263 

is only applied in cells on the finest level n. 264 

7- The multi-scale transformations (Eqs. (39-40)) will be applied again for decomposition of the 265 

RK-updated solutions. 266 

8- The new set of significant details is computed by hard thresholding. 267 

Steps 4 to 8 will be performed in the main time loop of the computations.  268 

5-2-3- Considerations regarding well-balancing  269 



To justify the well-balancing property, some considerations are applied in the adaptivity 270 

process48,49. Since the topography, as opposed to the flow variables, does not evolve in time, a static 271 

(but not necessarily uniform) grid is considered for it. The corresponding set of significant details of 272 

the topography is then added in each time step to significant details of the flow variables as an additional 273 

constraint to the coarsening and the refinement procedure. Moreover, since depth is a poor indicator of 274 

regularity/complexity of the solution, in all the steps involved in the adaptivity process (except for 275 

RKDG evolution) the conserved variables vector must be rearranged as 𝐔 = [ℎ + 𝑧, 𝑞]T, so that water 276 

surface elevation is analyzed by the multiresolution transformations, instead of flow depth.  277 

6- Numerical results 278 

The main idea behind the adaptive MWDG2 approach is to increase the computational efficiency 279 

of the reference DG2 scheme without losing accuracy. To do this, a choice of the threshold value 𝜀 is 280 

needed: a too large threshold would spoil the accuracy of the solution as a result of dominating 281 

additional error, while a too small threshold leads to over-refinement and inefficiency41. With NSW 282 

equations, a threshold value ranging between 𝜀 = 10−2 and 𝜀 = 10−3 is found to be enough for the 283 

adaptive MWDG2 solver to yield an appropriate balance between accuracy and efficiency47,49. For a 284 

wave with dispersive behaviour, the use of BT equations generally dictates finer resolutions to resolve 285 

more complex physical features of interest, and also higher computational costs compared to NSW 286 

equations. To find out the effects of these characteristics, the choice for a suitable range for the threshold 287 

value is here re-investigated for the GN solver for tests considering the propagation and transformation 288 

of solitary waves. The solitary waves can be considered as a balance between the nonlinearity and the 289 

frequency dispersion that maintains the permanent waveform. These waves have been generally used 290 

to model certain behaviours of nonlinear long waves, such as the leading wave of tsunamis and storm 291 

surges. Moreover, due to their locality, they are more likely to benefit from grid adaptation, compared 292 

to periodic waves. The first test provides an analytical investigation of the propagation of a solitary 293 

wave over a flat bottom, where convergence and thresholding criteria are analysed. The other test cases 294 

show the capability of the proposed MWDG-GN model compared to experimental data with wave 295 

transformation. The second test depicts the interaction of a solitary wave with a mild-slope beach and 296 



the third test deals with the interaction of two solitary waves. In all the tests, the boundary conditions 297 

are imposed based on solid wall, inflow and outflow boundary and the optimization parameter of the 298 

GN equations is set to 𝛼 = 1. Regarding computational efficiency measurements, it should be noted 299 

that all the simulations are performed on a 3.6 GHz Intel i7 quad-core processor. 300 

6-1- Propagation of a solitary wave 301 

To identify and analyse the properties of the MWDG-GN solver, the propagation of a solitary wave 302 

over a flat bed is considered. The wave has a finite amplitude and permanent form resulting from the 303 

balance between nonlinear and dispersive effects, and has an exact solution given by3 304 

ℎ(𝑥, 𝑡) = ℎ0 + 𝑎sech2( √3𝑎2ℎ0√ℎ0 + 𝑎 (𝑥 − 𝑐𝑡)) 

𝑢(𝑥, 𝑡) = 𝑐 (1 − ℎ0ℎ(𝑥, 𝑡)) 
(47) 

where ℎ0 is the initial local water depth, 𝑎 the wave amplitude and 𝑐 = √𝑔(ℎ0 + 𝑎) the wave speed. 305 

The solitary wave propagates in a 200 m long domain over a constant water depth of ℎ0 = 1 m, and its 306 

wave crest is initially centred at 𝑥0 = 50 m. This wave is moderately nonlinear with a relative amplitude 307 

of 𝑎/ℎ0 = 0.2. 308 

The adaptive MWDG-GN simulations are performed up to 𝑡 = 30 s for a range of resolution 309 

settings, where each setting is defined by the pair {Nb, L} with Nb and L indicating the number of cells 310 

of the baseline grid and the maximum refinement level, respectively. The settings are taken by fixing L 311 

= 7 and considering different size for the baseline grid Nb = 1, 2, 3, 4 and 5, yielding grids with a 312 

maximum of 128, 256, 384, 512 and 640 cells, respectively. On these fine uniform grids, simulations 313 

using the DG-GN solver are also carried out to enable a relative comparison of accuracy and efficiency 314 

for adaptive MWDG-GN solver over a range of threshold values between 𝜀 = 10−5 and 𝜀 = 10−2. 315 

6.1.1 Choice of the threshold value with the adaptive MWDG-GN solver 316 

The accuracy of the adaptive MWDG-GN scheme is measured using the normalized L2 errors of 317 

water height h and discharge hu based on the following formula 318 



𝐿2𝑒𝑟𝑟𝑜𝑟 = √(𝑈−𝑈𝑇)2∆𝑥𝐿𝑈𝑇2∆𝑥𝐿     (48) 

where 𝑈𝑇 is the analytical solution based on Eq. (47) and ∆𝑥𝐿 denotes the grid size on the finest level 319 

of resolution. Fig. 5 shows the water depth (Fig. 5(a)) and flow discharge (Fig. (5b)) errors computed 320 

at 𝑡 = 5 s  with both MWDG-GN and DG-GN solvers for all the settings except the coarsest one with 321 

{1,7}, which was not included to save space. With increasingly finer resolution of the uniform DG-GN 322 

solver, the adaptive MWDG-GN solver requires increasingly smaller threshold values to keep the same 323 

error magnitudes. As compared to a NSW solver for numerical modelling of non-dispersive flows, a 324 

GN solver necessitates finer grid resolution to ensure capturing both dispersive and nonlinear features11. 325 

This implies that the adaptive MWDG-GN solver would require smaller threshold values compared to 326 

an adaptive MWDG-NSW solver47,49 to accommodate finer resolution needs. For this test where ∆𝑥𝐿 is 327 

near 10−1, settings {3,7}-{5,7} are identified as appropriate for the adaptive MWDG-GN solver in 328 

combination with threshold values in the neighbourhood of 𝜀 = 10−4. This seems to suggest a threshold 329 

value 𝜀 that is at least 2 to 3 orders of magnitude smaller than ∆𝑥𝐿 to meet the uniform resolution 330 

accuracy required for an equivalent DG-GN solver, in line with an increase in relative wave amplitude 331 𝑎/ℎ0. 332 

To evaluate efficiency of the adaptive MWDG-GN solver with reference to the same range of 333 

threshold values, its compression rate (decrease in the number of cells due to use of wavelet adaptivity, 334 

in percent) and speed up ratio (CPU time ratio of uniform to adaptive solvers) are measured after 335 

completing the full 30 s simulation. Fig. 6a and Fig. 6b show speedup and compression rate against the 336 

threshold values for settings {3,7}-{5,7}, both showing an increase in speed up ratio and compression 337 

rate with decreasing threshold values. In the neighbourhood of 𝜀 = 10−4, the observed speedup ratio 338 

with setting {5,7} shows maximum efficiency (around 30 times) while setting {3,7} shows minimum 339 

efficiency (around 18 times). Nonetheless, compression rates are noted to be consistently closer, in the 340 

range of 75-80%. These suggest that more costs are entailed due to wavelet adaptivity overhead with 341 

decreasing size of the baseline mesh. Overall, a threshold value around 𝜀 = 10−4 is an appropriate 342 

choice in this test for the adaptive MWDG-GN solver to preserve the accuracy of an equivalent DG-343 



GN solver on the finest uniform resolution accessible to the adaptive MWDG-GN solver, while being 344 

up to 30 times more efficient to run. 345 

6.1.2 Mesh convergence analysis of accuracy and efficiency  346 

To quantify the extent to which the adaptive MWDG-GN solver converges to the uniform DG-GN 347 

solver, an error convergence analysis is performed considering both accuracy and efficiency. Accuracy 348 

convergence is evaluated by plotting the L2 errors of water height (Fig. 7(a)) and discharge (Fig. 7(b)) 349 

against the finest grid sizes corresponding to settings {Nb, L} from {1,7} to {5,7} and computed at time 350 

t = 5 s. The uniform DG-GN solver delivers optimal convergence rates in the order of 2.5, and the 351 

adaptive MWDG-GN solver is observed to converge to the same asymptotic behaviour of the uniform 352 

solver showing slightly larger errors with coarsening in grid resolution. In terms of efficiency, the same 353 

L2 errors are re-examined but with respect to the maximum number of cells entailed in the adaptive 354 

MWDG-GN and the uniform DG-GN solvers at the same output time t = 5 s (Fig. 8). As can be seen 355 

from Fig. 8, the rate of efficiency convergence of the adaptive MWDG-GN model is much faster than 356 

the uniform DG-GN solver in terms of yielding errors of the same order but with considerably fewer 357 

cells. 358 

6.1.3 Qualitative comparisons and analysis of refinement levels 359 

The predicted numerical profile of the solitary wave at different instants using the adaptive 360 

MWDG-GN model with the two settings {3,7} and {5,7} are compared with the exact solution and the 361 

predictions associated with their equivalent uniform DG-GN solvers (see Fig. 9). In order to distinguish 362 

possible difference among the adaptive and uniform solver predictions, only zoom-in portions near the 363 

wave crest are plotted in the sub-figures forming Fig. 9. For setting {5,7}, which allows up to a 364 

maximum of 640 cells, the adaptive MWDG-GN and uniform DG-GN solver predictions are seen to 365 

provide the best agreement with the exact solution throughout the 30 s simulation. For setting {3,7}, 366 

the maximum number of cells within the adaptive and uniform solvers is roughly halved, which is 367 

probably the main reason why these solvers consistently provided slightly poorer agreement with the 368 

exact solution. In particular, by t = 20 s (Fig. 9c), discrepancies become clearly visible and eventually 369 



intensify, by t = 30 s (Fig. 9d), to form small amplitude (unphysical) tails. This deficiency detected in 370 

setting {3,7} could be indicating that the finest grid resolution allowed by this setting, i.e. ∆𝑥𝐿 =371 0.52 𝑚, may not be enough for the uniform DG-GN to fully capture the wave nonlinearities at a relative 372 

wave amplitude close to 𝑎/ℎ0 = 0.2 11, hence for the adaptive MWDG-GN solvers too. 373 

To analyse resolution prediction ability of adaptive MWDG-GN solver, Fig. 10 illustrates the 374 

associated spatial refinement levels in line with the free-surface elevations over the full domain, 375 

considered at the same output times as in Fig. 9. For both {5,7} and {3,7} settings, the adaptive MWDG-376 

GN solver is found to favourably select the finest resolution (i.e. at the maximum level L = 7) around 377 

the crest of the solitary wave. Therein, a wider extent of fine resolution prediction (i.e. so-called over-378 

refinement) is observed with setting {3,7} than with setting {5,7}, and this can be attributed to the 379 

aforementioned discrepancies in terms of small amplitude tails at t = 20 s and t = 30 s that could have 380 

exaggerated wavelet coefficients, thereby causing spurious over-refinement. In the regions of quiescent 381 

flow, the adaptive MWDG-GN solver selects the coarsest resolution (i.e. levels L = 1 to 2) in both 382 

settings. 383 

To further analyse the efficiency of the MWDG-GN solver over the full 30 s simulation, its 384 

instantaneous number of cells have been recorded. Fig. 11 shows the time variation of the number of 385 

cells used by the adaptive solver for both settings {5,7} and {3,7}, as well as the constant cell numbers 386 

entailed in their associated DG-GN solvers. As previously shown in Fig. 6, the setting {3,7} is found 387 

less efficient than the finer setting {5,7} despite having a compression rate of the same order. Fig. 11 388 

further shows that these similar compression rates hold during the full length of the simulation, with the 389 

number of cells in the adaptive grid being about 15-18% of the number of cells in the uniform 390 

counterparts, for both settings {3,7} and {5,7}. The relative decrease in efficiency with setting {3,7} is 391 

likely to have been caused by deficiencies observed previously in Fig. 10 (i.e. the trailing unphysical 392 

fluctuations), which lead to over-refinements therein, in turn causing extra costs associated with wavelet 393 

adaptivity overhead. In can be therefore concluded from this test, that choosing a right setting, even if 394 

based on finer resolution, is central to meet both accuracy and efficiency needs within the adaptive 395 

MWDG-GN solver.   396 



6-2- Run-up and run-down of a solitary wave over a sloped beach 397 

To examine the performance of the adaptive MWDG-GN model in dealing with wet/dry fronts and 398 

topography, it is also tested for solitary wave run up on a sloping beach supported by the experimental 399 

work of Synolakis58. The computational domain consists of a channel with the initial free-surface 400 

elevation of 1 m approaching a sloped beach (1:19.85). In order for the solitary wave to be initially 401 

located in the channel, the computational domain is extended to 77 m, which is longer than the actual 402 

experiments (Fig. 12). Here, a solitary wave with a non-breaking wave with weak nonlinearity is 403 

selected, which has a lower relative amplitude than in test 6.1 (𝑎/ℎ0  =  0.019). Based on the domain 404 

size, the adaptive MWDG-GN model is run for 𝑡 =  25 𝑠 using a setting {4,7}, which allows up to 512 405 

cells (∆𝑥𝐿  =  0.15 m). The uniform DG-GN simulation is also run on the finest resolution grid to allow 406 

for a relative comparison. Following the observations in test 6.1, the following three threshold values 407 

are selected and tested with the adaptive MWDG-DG solver: 𝜀 =  10−3, 𝜀 =  5 × 10−4 and 𝜀 =  10−4 408 

(i.e. being 2-3 orders of magnitude smaller than ∆𝑥𝐿 and in the neighbourhood of 10−4). 409 

The numerical free-surface elevation profiles produced by both MWDG-GN and DG-GN solvers 410 

at different (normalized) output times 𝑡∗ = 𝑡(𝑔/ℎ0)1/2 are compared in Fig. 13 with reference to the 411 

experimental profiles of Synolakis58. The wave profiles computed by the adaptive MWDG-GN solver 412 

closely match the profiles computed by the uniform DG-GN on the fine grid, while remaining in a good 413 

agreement with the experimental data during the run-up and run-down phases. Using smaller threshold 414 

values (𝜀 =  5 × 10−4 and 𝜀 =  10−4)  only makes improvements in certain areas of the flow, e.g. the 415 

wet/dry front at run-up phase at 𝑡∗ = 45. In other areas, the adaptive MWDG-GN solver predictions 416 

based on the largest threshold value (𝜀 =  10−3) found similar to those relative to the smallest threshold 417 

(𝜀 =  10−4). With 𝜀 =  10−3, the MWDG-GN solver used lower resolution levels while preserving 418 

close predictive accuracy even with smaller 𝜀, and hence is here the most efficient option. Outside the 419 

vicinity of the wet/dry fronts, during the run-up and run-down phases, the adaptive MWDG-GN solver 420 

predicted relatively coarse-to-moderate resolution levels, varying between L = 2 to 4. For this test, all 421 

adaptive MWDG-GN solvers did not excessively use the finest resolution level around the wave crest 422 



barely. This can be attributed to the relatively weak nonlinearity of the solitary wave in contrary to the 423 

moderately nonlinear wave explored in test 6.1.  424 

To analyse the efficiency of the adaptive MWDG-GN solver in relation to the choice of the 425 

threshold value, the time evolution of their mesh size is plotted in Fig 14, which also contains the size 426 

of the uniform grid relative to the DG-GN. This figure reinforces that 𝜀 =  10−3 provides the most 427 

efficient option with the adaptive MWDG-GN solver: it consistently activated around 8% (i.e. 45 cells) 428 

of the cells accessible to it, while delivering predictions as close as the other adaptive MWDG-GN 429 

solvers and the DG-GN simulation using 512 cells. With 𝜀 =  5 × 10−4 and 𝜀 =  10−4, the adaptive 430 

MWDG-GN is seen to activate higher cell percentage. However, the percentage of active cells required 431 

did not exceed 18% in this test, even at 𝜀 =  10−4. In terms of speedup, it is found between 30 to 55 in 432 

this test, which is expected given the weak magnitude of wave nonlinearity and less dispersive effects 433 

as compared to test 6.1. 434 

6-3- Head-On Collision of Two Solitary Waves 435 

A final test is introduced to study the behaviour of the adaptive MWDG-GN solver, when there are 436 

more than one solitary wave propagating, each featured by a higher relative amplitude (𝑎/ℎ0 > 0.2). 437 

Therefore, the experimental test of Craig et al.59 is selected as it involves the head-on collision of two 438 

solitary waves propagating in opposite directions. This problem is characterised by the change of the 439 

shape as well as a small phase-shift of the waves as a consequence of the nonlinearity and dispersion. 440 

The setup consists of a 3.6 m long flume with still water depth of ℎ0 = 5 𝑐𝑚. The left wave with an 441 

amplitude of 𝑎1 = 1.063 𝑐𝑚 is initially located at 𝑥 = 0.5 𝑚 while the right one is initially located at 442 𝑥 = 3.1 𝑚 with an amplitude of 𝑎2 = 1.217 𝑐𝑚. These values result in relative amplitudes 𝑎/ℎ0 equal 443 

to 0.212 and 0.243, for the left and right waves respectively. Each of these solitary waves can be 444 

considered to have moderate-to-high nonlinearity and are expected to cause an even higher nonlinearity 445 

at the instant when they merge into a bigger solitary wave. 446 

Adaptive MWDG-GN simulations are performed up to 𝑡 = 2.5 𝑠 and based on setting {3,7} that 447 

permits a maximum of 384 cells. As the flume experiment is 3.6 m long, adopting this setting means 448 



the adaptive MWDG-GN solver can access a resolution as fine as ∆𝑥𝐿 = 0.0093 𝑚. As before, the 449 

uniform DG-GN model is also run on the grid using the finest level of resolution. For the threshold 450 

value parameter, 𝜀 =  10−6 is selected for this test informed by the analysis of test 6.1 (see Sec.6.1.1). 451 

The spatial evolution of the solitary waves simulated by the adaptive MWDG-GN solver and the 452 

uniform DG-GN counterpart at different output times are shown in Fig. 15, as well as experimental 453 

profiles59. At the instant of head-on collision (around 𝑡 = 1.693 𝑠), the wave amplitude reaches around 454 

to a level larger than the sum of the amplitudes of the two incident solitary waves (equivalent of a ratio 455 𝑎/ℎ0 = 0.5). After the collision (around 𝑡 = 1.865 𝑠), two waves come out with reduced amplitudes, 456 

returning to their initial form. As an outcome of this collision (during 𝑡 = 1.693 to 1.824 𝑠), the two 457 

waves lose momentum, which results in lower amplitudes (compared to the initial values) and a phase 458 

lag. 459 

In terms of free-surface elevation predictions, it can be seen from Fig. 15 that the predictions 460 

produced by the adaptive and uniform solvers are almost identical, both providing a close agreement 461 

with experimental profiles at all output times. Due to the high nonlinearity of the two waves and the 462 

strong interactions between them, the adaptive MWDG-GN solver needed resolution levels that are 463 

higher compared to the previous test cases (Sec. 6.1 and 6.2). Fine resolution levels are also observed 464 

in areas away from the wave crests, with at least L = 4. This is also evident in Fig. 16, which shows the 465 

time evolution of the number of cells in adaptive and uniform schemes. Initially, the adaptive MWDG-466 

GN solver activated 57% of cells with an increasing trend with the propagation of the two solitary 467 

waves, reaching a final percentage of 85%. As a consequence of these low compression rates, the final 468 

speedup is here only equal to 1.6, suggesting that the adaptive MWDG-GN solver may not be ideal for 469 

the problems with poor locality such as involving multiple waveforms or periodic waves. 470 

7- Conclusions 471 

In this work, we applied a multiwavelet-based grid adaptation technique to Green-Naghdi (GN) 472 

equations. This is achieved by extending a previously developed uniform mesh Discontinuous Galerkin 473 

(DG) solver to the GN equations (DG-GN) from an adaptive Multiwavelet-based DG (MWDG) method 474 



for the NSW equations (MWDG-NSW). The performance of the MWDG-GN solver is demonstrated 475 

by several benchmark tests. The adaptive solver is shown to provide a robust method for driving grid 476 

adaptation, with the adaptivity being controlled only by a single threshold value and with inherent error 477 

control. For the threshold parameter, it has been verified that choosing a value between 2 to 3 orders of 478 

magnitude smaller than the size of the grid cells on the finest level of resolution, would result in an 479 

optimal combination of efficiency and accuracy to resolve small scale features of dispersive wave 480 

propagations. Therefore, the same accuracy as the uniform DG-GN solver can be achieved by the 481 

adaptive MWDG-GN solver, but with significantly fewer cells. For the case of single solitary waves, 482 

compression rates of at least 80% and speedups around 30 are achieved. It is also found that the 483 

efficiency gain of using grid adaptation depends on the amount of nonlinear and dispersive effects. 484 

Accordingly, the best performance of the proposed solver MWDG-GN solver is sought to be in case of 485 

moderate nonlinearity and dispersion. The 2D extension of the present MWDG scheme is the subject 486 

of future work. 487 
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