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ABSTRACT

The non-radially pulsating subdwarf B star PG 0014+067 has previously been presented as

a classic case for asteroseismological study, having a moderately rich mode spectrum un-

complicated by severe rotational splitting. Notwithstanding the excellence of previous work,

empirical evidence for mode identification is needed to test the modelling results. Conse-

quently high-speed multicolour photometry was obtained over six nights in 2004 August using

the high-speed multichannel photometer ULTRACAM on the 4.2-m William Herschel Telescope

with a sampling interval of 5 s. To ameliorate the window function, additional single-channel

photometry was obtained on five nights in the same time envelope using the 2-m Faulkes Tele-

scope North with a sampling interval of 23 s. 19 individual frequencies have been identified

in a combined ‘white light’ data set. Amplitudes have been measured in filtered light (u′, g′

and r′) for 13 of these. Three groups of closely spaced frequencies have spacings of 3, 13 and

2 µHz. Although on the cusp of the frequency resolution, there is evidence that the rotational

period should be nearer to 4 d rather than the 1.35 d reported previously, if we assume that

these close frequencies belong to a multiplet. It has not proved possible to identify modes

unambiguously using the amplitude ratio method because of the errors on the amplitudes, but

we do exclude that the two dominant modes have l = 3 or 4; they must be either l = 0, 1, 2.

Key words: stars: individual: PG 0014+067 – stars: interiors – stars: oscillations – subdwarfs

– stars: variables: other.

1 I N T RO D U C T I O N

Since the discovery of non-radial pulsations in subdwarf B (sdB)

stars (Kilkenny et al. 1997), much effort has been directed towards

asteroseismological studies of their internal structure (e.g. Brassard

et al. 2001; Kilkenny et al. 2002, 2003). Such effort is justified in

view of their significant roles in populations of evolved stars (D’Cruz

et al. 2000) and in the late evolution of close binary stars (Han et al.

2002, 2003).

Primarily manifest as multiperiodic light variations with periods

of 100–500 s, these pulsations have also been measured in colour

(Koen 1998), radial velocity (Jeffery & Pollacco 2000; O’Toole

⋆Based on observations obtained with the William Herschel Telescope op-

erated on the island of La Palma by the Isaac Newton Group in the Spanish

Observatorio del Roque de los Muchachos of the Instituto de Astrofisica de

Canarias, and on observations obtained with Faulkes Telescope North on the

island of Maui, Hawaii, operated by the Faulkes Telescope Project.

†E-mail: csj@arm.ac.uk

et al. 2000) and line strength (O’Toole et al. 2003). Jeffery et al.

(2004) have shown how, with a 4-m telescope and a multicolour

high-speed photometer, colour variations may be used to identify

the spherical degree of the principal modes of two pulsating sdB

stars, KPD 2109+4401 and HS 0039+4302.

Subdwarf B stars are helium-core burning stars with a total mass

M ∼ 0.5 M⊙ and a very thin hydrogen-rich envelope (M e ∼ 0–

0.01 M⊙; Heber 1986). Short-period pulsations are driven in ap-

proximately 10 per cent of sdBs by the κ-mechanism, mediated

by Fe-group abundances (Charpinet et al. 1996) enhanced in the

driving zone by selective diffusion (Charpinet et al. 1997). The ul-

timate goal of an asteroseismological study is to measure M , M e

and the chemical stratification directly. This represents a major chal-

lenge. Diffusion produces a complex chemical stratification, which

is superimposed on the chemical profile of the envelope at core

helium ignition. The latter is not trivial to determine, particularly

for such low-mass envelopes, because it carries its history from the

H-burning shell of the red giant progenitor. The situation may be

further complicated if the star rotates, if it rotates differentially, or

if it possesses a significant magnetic field.

C© 2005 RAS
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Colorimetry of pulsating sdB star PG 0014+067 67

To resolve so many unknowns, asteroseismology requires a sub-

ject with a rich pulsation spectrum and modes probing many lay-

ers at different depths. The two targets already studied by us, KPD

2109+4401 and HS 0039+4302, are relatively poor in respect to the

number of frequencies detected – although more sensitive studies

are certain to detect more.

Detailed asteroseismic analyses have been reported for only

two pulsating sdBs, namely PG 0014+067 (Brassard et al. 2001;

Charpinet et al. 2005a) and PG 1219+534 (Charpinet et al. 2005b,c),

with 16 and 12 positively identified frequencies, respectively. The

first study of PG 0014+067 (Brassard et al. 2001) was seminal in

demonstrating the power of asteroseismology in probing sdB star

structure and evolution; the accuracy of the mass measurement and

its agreement with canonical stellar evolution predictions have given

impetus to the entire field. However, the number and values of ob-

served frequencies appear to require either high values of spherical

degree l or splitting of the frequency-degenerate m-modes through

rapid rotation (Kawaler & Hostler 2004, 2005).

While it has been argued that models with l � 3 should be diffi-

cult to observe photometrically, our own observations have clearly

shown l = 4 modes present in KPD 2109+4401 and HS 0039+4302

(Jeffery et al. 2004). This is not unexpected, for the visibility bl of

even modes is known to fall off less steeply (b ∝ l−2.5) than that of

odd modes (b ∝ l−3.5; Balona & Dziembowksi 1999). Nevertheless,

the apparently slow surface rotation of most sdB stars may mask a

more rapidly rotating core (Sills & Pinsonneault 2000), which may

give rise to differential splitting between the frequencies of modes

of different radial order k (Kawaler & Hostler 2004, 2005). The

two exceptions are PG 1605+072, with vsin i = 31 km s−1 (Heber,

Reid & Werner 2000a) and KPD 1930+2752, which is likely to be

a fast rotator because of its short orbital period (Billères et al. 2000).

A recurrent spacing of ∼9 µHz between closely spaced frequencies

in PG 0014+067 has already been reported (Brassard et al. 2001).

2 O B S E RVAT I O N S

In order to address the questions outlined above, the Whole Earth

Telescope (WET) adopted PG 0014+067 as its principal target for

its campaign in the autumn of 2004 (Xcov24). The goal of these

observations would be to resolve rotationally split multiplets by im-

proving the frequency resolution. At 16 mag, PG 0014+067 would

represent a challenging target for the WET and so the authors ap-

plied for time on the 4.2-m William Herschel Telescope (WHT)

both to augment the WET campaign and to obtain multicolour in-

formation that would help to identify pulsation modes. Six WHT

nights were allocated to this project in 2004 August. The vagaries

of telescope scheduling prevented any overlap with the WET run

scheduled for 2004 October. In partial mitigation, 14 h on the 2.0-m

Faulkes Telescope North (FTN) were kindly made available by the

Faulkes Telescopes team, providing a stress test for the newly com-

missioned telescope. The latter observations were supported by tests

of timing accuracy and photometric stability, which were carried out

as summer projects by local high school students (O’Leary 2004;

Quinn 2004).

This paper describes results obtained from the WHT and FTN

data alone. However, it is emphasized that the data would probably

not have been obtained without the motivation provided by the WET

campaign. Both teams worked closely in preparation of the telescope

applications and in execution of the observations. For example, the

PI (Kawaler) for the WET campaign was promptly sent the quick-

look white light curve from the WHT, while one of us (Aerts) was

present at the WET headquarters shortly after the WET campaign.

So while the current data and the WET data are independent of one

another, the results they demonstrate in common represent a mutual

effort.

2.1 William Herschel Telescope

Observations were made with the WHT on 2004 August 20, 21,

22, 23, 24 and 25 using the high-speed three-channel photometer

ULTRACAM (Dhillon et al., in preparation). The Sloan filters u′, g′

and r′ (Fukugita et al. 1996) were used, one in each of the three

cameras. Conditions on the first two nights were excellent, with

seeing below 0.4 arcsec and no moon. Regrettably, approximately

3 h of observing time was lost due to a short circuit associated with

observing at very low elevations. This was traced and eliminated by

August 22. Subsequent nights were increasingly affected by poorer

seeing, higher humidity, some cloud and moonlight. A summary of

the observations is provided in Table 1.

Each ULTRACAM camera is capable of observing a 5 × 5 arcmin2

field of view. The time taken to read out each science frame depends

on the fraction of the frame required for subsequent analysis. To

achieve millisecond exposures, ULTRACAM must be operated with

very small windows. Exposure times are also dictated by the need to

avoid saturating any stellar image in any frame. Because a temporal

resolution of a few seconds is sufficient for studying pulsating sdB

stars, approximately half of the chip was used to obtain 5-s exposures

without image saturation. The dead time between exposures, due to

frame transfer, was 24 ms.

To allow good differential photometry, the chip was oriented and

windowed to include five potential comparison stars in the relatively

sparse field around PG 0014+067. Details are given in Table 2 and

Fig. 1, including magnitudes relative to the target (V) obtained from

the ratios of mean counts with the star close to the meridian. In all,

just over 60 000 usable science frames were recorded.

Table 1. Journal of ULTRACAM observations in 2004 August.

UT start UT end texp/s nexp

2004 Aug 21 01:33 21 06:04 5 3216

22 00:20 22 06:14 5 4353

22 23:24 23 06:02 5 4745

23 23:30 24 05:57 5 3726

25 03:02 25 06:00 5 1942

25 23:40 26 04:18 5 3293

Table 2. ULTRACAM and FTN comparison stars for PG 0014+067. δ repre-

sents the brightness relative to PG 0014+067 in u′, g′ and r′ (in magnitudes).

Coordinates (J2000.0) and magnitudes from Simbad (V), the Guide Star Cat-

alogue (C2–C4) and measured from the DSS2.J.POSS plate using ALADIN

v2.5 (C5, C6, Cf).

Id α δ m δu′ δg′ δr ′

PG 0014+067

V 00 16 55.4 +07 04 32 16.5

GSC 0000800513

C2 00 16 54.4 +07 05 16.9 13.8 −0.74 −2.09 −2.93

GSC 0000800475

C3 00 16 37.8 +07 03 22.6 13.6 +3.92 −2.48 −3.28

GSC 0000800043

C4 00 16 46.4 +07 04 42.6 15.0 +0.42 −0.95 −1.73

C5 00 16 42.8 +07 02 51.5 – +2.19 +0.98

C6 00 16 42.6 +07 06 14.4 – +2.04 +0.31

Cf 00 16 47.5 +07 03 46.1 – – –

C© 2005 RAS, MNRAS 362, 66–78
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68 C. S. Jeffery et al.

Figure 1. Chart showing the comparison stars identified in Table 2 used for

ULTRACAM and FTN differential photometry (adapted from the DSS2.J.POSS

plate using ALADIN v2.5 and the GIMP).

All data frames were reduced using the ULTRACAM pipeline re-

duction software (Dhillon et al., in preparation). Owing to chang-

ing conditions from night to night, great care was taken to select

the most appropriate options offered in the reduction software. The

most important choices regard the apertures used to define the star

and sky. Aperture sizes may be ‘fixed’ or ‘variable’, while the ex-

traction method may be ‘normal’ or ‘optimal’. Because the number

of target counts was always large (�10 000) and after checking that

‘optimal’ did indeed give poorer results in this high signal regime,

‘normal’ extraction was always used. In general, ‘variable’ apertures

were used, because these track local changes in the seeing disc. In

the case of the u′ filter on nights August 22 and 23, it was found

preferable to use a ‘fixed’ aperture, in which the star apertures and

sky annuli are defined by direct examination of the raw image files.

Note that ‘variable’ and ‘fixed’ refer to the sizes of the apertures;

the aperture positions are updated to track image offsets from frame

to frame. It was also necessary to ensure that the ‘bad pixel’ files

used by the pipeline correctly reflected features near to any of the

targets corrected by examination of the flat-fields for each night.

The star counts were combined by ratio with the comparison

star, and converted to obtain a differential magnitude (V–C) in each

channel. Differential magnitudes were also formed for a check star

(Ck–C). To ensure the best photon statistics, the choice of compar-

ison and check stars was not the same for each filter. The principal

comparison was C4 (Table 2) in g′ and r′, and C2 in u′. The check

star was C2 in g′ and r′ and C4 in u′.

All differential magnitudes from the individual ULTRACAM runs

were merged into two data sets, one for each target. The data were

normalized by subtracting a low-order polynomial fit to the data for

each night, thus removing long-term trends including the nightly

variation in differential atmospheric extinction, to give a mean value

of zero in each channel. The data were cleaned by removing points

lying more than > ±0.1 mag from the mean, corresponding to only

39 points in the u′ filter, one in r′ and none in g′.

All data frames are individually time-stamped with the Modi-

fied Julian Date (UTC; MJD = JD 240 0000.5) at the centre of the

exposure. The time-stamp is obtained from typically six to seven

satellites in the Global Positioning System. No correction for light

travel time has been made at this stage on the bases that (i) the key

thing is to have a well-understood and correct time and (ii) the con-

sequences for frequency measurement are small for the time-base

of the present observations alone.

Hence, for each principal target, differential light curves of the

form (V–C) in each of u′, g′ and r′ have been constructed, and

are illustrated in Fig. 2. Differential light curves for the check star

(Ck–C) have also been constructed.

Several features are immediately apparent from Fig. 2. First, the

characteristic oscillations with periods of ∼140 s are apparent in all

three filters. Secondly, beating indicates that there is more than one

closely spaced frequency present. Thirdly, the variable conditions

from night to night are apparent, particularly in the quality of the

u′ data. Notwithstanding the latter, it is clear that the amplitude of

the oscillation is greatest in u′. It is also clear that the amplitude of

the dominant pulsations in all three filters, and particularly in g′ and

r′, appears to diminish between the first and the fourth night by a

factor of ∼2 before increasing again in night 6.

2.2 Faulkes Telescope North

The Faulkes Telescope Project consists of two identical 2-m tele-

scopes which are clones of the Liverpool Telescope (Steele 2001).

The telescope sites have been chosen so that observing during the

UK school day is possible. Faulkes Telescope North (FTN) is lo-

cated on the mountain of Haleakala, on the Hawaiian island of Maui

at an altitude of 3000 m above sea level with a mean seeing around

1 arcsec. Faulkes Telescope South is located at Siding Spring Ob-

servatory, New South Wales, Australia. Each telescope is designed

for both remote and robotic operation and is equipped with a 20482

CCD camera with a 4.6 × 4.6 arcmin2 field of view giving a pixel

resolution of 0.13 arcsec.

PG 0014+067 was observed on five nights in 2004 August with

the FTN in robotic mode. The CCD camera was used with a Bessell

V filter and an exposure time of 15 s. Instrumental overheads for

readout provided an overall cycle time of 23.25 s per exposure. A

journal of FTN observations is given in Table 3. At this time, the

camera could not compensate for field rotation due to the telescope

motion (alt-az mounting) so repeat frames are not well aligned and

could not be reduced using the ULTRACAM software.

Each of the FTN data sets was observed at a different rotator angle

and with a different pointing. The observations on August 21, 24 and

25 were each interrupted once, resulting in a total of eight individual

data sets. In addition to the different pointings, the tracking did not

work perfectly at the time of the observations, causing a significant

drift of field of view in some of the data sets.

We have reduced the FTN data with the pipeline described by

Gänsicke et al. (2004). In brief, the FTN data are delivered pre-

processed for bias and flat-field correction. Our software then per-

forms aperture photometry on each image using SEXTRACTOR (Bertin

& Arnouts 1996). The aperture radius was adjusted for each image

to 1.5 times the median seeing computed from all the detected stars,

a value that empirically results in the best signal-to-noise (S/N) ra-

tio. The object lists produced by SEXTRACTOR were then matched by

comparing the distance vectors of all possible pairs of stars. Dif-

ferential light curves of PG 0014+067 were computed with respect

to C2 (Table 2). As a consequence of the different pointings, not

all data sets contain the same set of secondary comparison stars and

different check stars had to be used, including Cf (Table 2). The tim-

ing of the individual data points was computed from the exposure

C© 2005 RAS, MNRAS 362, 66–78
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Colorimetry of pulsating sdB star PG 0014+067 69

Figure 2. ULTRACAM light curve for PG 0014+067 on 2004 August 20–25 (top to bottom). The differential light curves (V–C) are shown for each filter u′,
g′ and r′ (top to bottom in each panel, labelled and, in the on-line version, coloured blue, green and red). The panels are labelled with the date of observation

given as JD 245 3230. The g′ and u′ data are offset vertically by an arbitrary amount.

start, as given in the fits headers of the images, adding half of the

exposure time, and applying the appropriate heliocentric correction.

Again, the data were normalized by subtracting a low-order poly-

nomial fit to the data for each night, thus removing long-term trends

including the nightly variation in differential atmospheric extinction,

to give a mean value of zero in each channel. This also compensates

for the use of different comparison stars on different nights. A plot of

the light curve from one night is shown in Fig. 3. While these data

are substantially noisier than the ULTRACAM data, they do contain

similar periodic content. This is demonstrated in Fig. 3 by the

Scargle periodogram for an individual night.

2.3 Combined data: ‘white light’

In order to obtain the highest quality data set possible, the data from

all three ULTRACAM channels have been combined to form a pseudo

white light curve. This was achieved by forming a mean weighted

by the nominal counting statistics nk for variable and comparison

C© 2005 RAS, MNRAS 362, 66–78
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70 C. S. Jeffery et al.

Table 3. Journal of FTN observations in 2004 August.

UT start UT end texp/s nexp

2004 Aug 21 13:52 21 15:25 15 240

22 09:00 22 10:33 15 240

22 11:49 22 13:22 15 240

24 12:08 24 13:15 15 172

25 08:39 25 09:29 15 130

25 12:42 25 14:14 15 240

26 08:26 26 08:59 15 84

Figure 3. FTN light curve for PG 0014+067 on 2004 August 21. The

differential photometry (V–C, black) and (Ck–C, grey or red) is shown in

magnitudes in the upper panel, the latter offset by an arbitrary amount. Time

(t) is JD 245 3230. A part of the Scargle periodograms for these data alone

is shown in the lower panel for V–C (solid black) and Ck–C (broken grey

or red).

stars in each channel k, i.e.

wk =
(

n−1
kV + n−1

kC

)−(1/2)
(1)

resulting in relative weights of 0.39, 1.0 and 0.77 for the u′, g′ and

r′ contributions to the V–C differential light curve, respectively, and

of 0.22, 1.0 and 1.05 for the Ck–C light curve. The nominal error

on an individual V–C observation is 5.5 mmag, and there are some

20 056 data points in the light curve. There has been some discussion

concerning the weights to be used in forming these means. One

alternative would have been to use the inverse variances for the

differential light curves measured in each filter. This would have

given relative weights of 0.42, 1.0 and 0.80 for V–C, and 0.30,

1.0 and 0.92 for Ck–C, respectively. These are sufficiently close

to the former values to have little impact on either the resulting

frequencies or their relative amplitudes. Another would have been

to use wk = (n−2
kV + n−2

kC )−(1/2), giving relative weights of 0.16, 1.0

and 0.56 in V–C resulting in the g′ data dominating the overall light

curve. In retrospect, the particular choice of weights was arbitrary,

but provides a compromise between a photon-limited noise model

and a variance model.

This ULTRACAM pseudo white light curve was then combined with

1300 data points from the FTN, resulting in a light curve spanning

5.29 d with a duty cycle of 31 per cent.

3 F R E QU E N C Y A NA LY S I S

3.1 Methods

The frequency analysis presented here assumes that the varia-

tions seen in the data comprise a multiperiodic sinusoidal oscil-

lation. In order to identify the principal components in this oscilla-

tion, the Lomb–Scargle periodogram (LSP; Scargle 1982) has been

constructed. Although the data are well sampled locally, the window

function is complicated by the cycle d−1 alias (0.0116 mHz) and by

the brevity of the time series (Fig. 4).

The procedure used to identify significant frequencies from

the LSP was iterative and is illustrated in Fig. 5. First, the fre-

quency fi corresponding to the highest peak was measured di-

rectly from the LSP. The data were then pre-whitened by fitting

a sine function at this (fixed) frequency. The amplitude ai and

phase φ i of this sine function were recorded, with errors. The er-

ror on the frequency was computed from the expression given by

Cuypers (1987)

σ fi =
bσind√
Nai T

(2)

where σ ind is the average error on N independent observations, ai

is the amplitude of the signal with frequency fi and T is the length

of the time series. The value for b is still a matter of debate, but we

have adopted it to be 4.9, which is conservative (see Cuypers 1987,

p. 21 for a discussion).

Subsequently the LSP of the residual data was computed, the

highest peak identified, its frequency measured, and the pre-

whitening process repeated. In some cases, two or more well-

separated frequencies would be identified and the data pre-whitened

using a simultaneous fit for each sine function. This iterative

process was terminated when no further frequencies could be iden-

tified with S/N > 4σ , where σ is the average amplitude of the peri-

odogram of the final residuals, computed over the frequency interval

[4, 12] mHz. This stop criterion was derived empirically for δ Scuti

network campaigns by Breger et al. (1993). Kuschnig et al. (1997)

have shown from simulations that this criterion corresponds to a

99.9 per cent confidence limit of having detected a true frequency

rather than a peak resulting from the noise. A 99 per cent con-

fidence limit would result in the requirement S/N > 3.6σ . Note

that Brassard et al. (2001) have adopted the acceptance criterion

S/N > 3σ , which corresponds to an 80 per cent confidence limit

(Kuschnig et al. 1997). We are hence far more conservative than

Brassard et al. (2001) in accepting frequencies. After finalization

of the frequency search, a multifrequency sine fit was made to the

original data for all significant frequencies, keeping the values fi

fixed to those derived from the LSP.

The above procedure was followed for the combined ‘white light’

C© 2005 RAS, MNRAS 362, 66–78
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Colorimetry of pulsating sdB star PG 0014+067 71

Figure 4. The window function for the combined ULTRACAM pseudo white

light and FTN photometry of PG 0014+067. The lower panel also shows

part of the window function for the ULTRACAM data alone (dotted grey or

red).

curve and for the light curves obtained in individual ULTRACAM fil-

ters. The bottom panel in Fig. 5 shows the residual LSP over the

interval [4, 12] mHz for the ‘white light’ data after removal of all sig-

nals given in Table 4. Furthermore, there are no peaks approaching

the 4σ limit in the range [12, 23] mHz.

As an additional measure of consistency, two authors (Aerts and

Jeffery) carried out the entire data reduction and analysis proce-

dure independently. In these preliminary studies, different aperture

options and different comparison stars were selected for the pho-

tometry extraction. Although one approach yielded a lower S/N

light curve than that presented here, the same frequencies were ob-

tained. Secondly, one of us carried out the frequency analysis using

a number of different methods. In all cases, the top 10 frequencies

identified were identical.

3.2 Solutions

The final solutions, including frequencies and amplitudes, are shown

in Table 4, together with the phase shifts between signals in different

filters. Table 4 also lists the frequencies and amplitudes identified

by Brassard et al. (2001) and Charpinet et al. (2005a) with a > 3σ .

We have identified our frequencies (to within 10 µHz) with those

obtained in earlier studies wherever possible; in many cases the fre-

quency differences correspond to a cycle d−1 alias. This solution is

compared with two sections of the white light data in Fig. 8. The

frequency solution for the combined 2004 August data is compared

with the Brassard et al. (2001) and Charpinet et al. (2005a) solu-

tions in Figs 6 and 7. These solutions provoke a number of general

remarks.

(i) The amplitudes of the oscillations are strongly wavelength-

dependent, being generally strongest in the ultraviolet. This is ex-

pected for non-radial oscillations in B stars, because temperature

variations are the dominant cause of light variation, and these pro-

duce the largest flux changes in the ultraviolet.

(ii) The relative amplitudes of principal frequencies have altered

since the measurements carried out in previous analyses (Brassard

et al. 2001; Charpinet et al. 2005a). It has already been established

that the amplitudes of individual modes in non-radially oscillating

sdB stars vary on time-scales of days, weeks or months (cf. Kilkenny

et al. 1999). The phenomenon was also reported in KPD 2109+4401

and HS 0039+4302 from ULTRACAM observations made by ourselves

(Jeffery et al. 2004). The question arises as to whether this behaviour

is due to a physical change in the star or to long-period beating

between very closely spaced modes.

(iii) The phase difference between the light variations in u′, g′

and r′ is almost universally smaller than 0.1 cycles. This is antici-

pated because, for hot stars, the variations at optical wavelength are

dominated by the temperature effect (cf. Ramachandran, Jeffery &

Townsend 2004).

(iv) The frequencies around 7.09 and 6.64 mHz show a multiplet-

like structure, corresponding to mean splittings of ∼1.3 and

13.5 µHz, respectively (see Fig. 7). Here, the question arises as

to the veracity of these multiplet structures. The spacing of the

two strongest modes in the first group (2.6 µHz) is approximately

2–3 σ f , but for the remainder σ f is substantially larger. The spacing

in the second group is close to the 11.6 µHz or 1 cycle d−1 alias.

Brassard et al. (2001) and, subsequently, Charpinet et al. (2005a)

report that up to four of their identified frequencies ‘are in fact well

resolved, evenly spaced multiplets with a mean frequency spacing

of � f ∼ 9.36 µHz.’

(v) 13 of the frequencies identified by us (Table 4) were also

identified by either Brassard et al. (2001) or Charpinet et al. (2005a)

or both. Six of our frequencies have not been identified before. Three

frequencies detected by both Brassard et al. (2001) and Charpinet

et al. (2005a) (a > 3σ ) were not seen above 4σ by us (i.e. at 6.2,

7.67 and 7.9 mHz).

3.3 Amplitude variability

It was noted above that the amplitude of the dominant mode could

be seen to vary from night to night by inspection of the light curve

(see Figs 2 and 8). To examine this phenomenon, the data sets were

divided by night, and a two-frequency solution was computed for

each night in each of the u ′, g′ and r′ filters and in the combined

light curve. The amplitudes and phases for each night and for each

filter are shown in Table 5, and for the combined light curve only in

Figs 9 and 10.

The amplitude appears to vary sinusoidally with a period of ∼5 d.

It can be explained entirely by the effect of beating between the

closely spaced modes at 7.0916 and 7.089 mHz. In the multifre-

quency solution to the entire data set, the apparent night-to-night

variation is well reproduced (Fig. 8). The frequency difference

between the two principal modes contributing to the beat is 2.6 ±
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72 C. S. Jeffery et al.

Figure 5. Periodogram analysis of the ULTRACAM light curve for PG 0014+067. The top panel shows the window function for a sinusoid sampled in the same

way as the data. The second panel shows a section of the LSP for the combined ULTRACAM pseudo white light and FTN data sets. Subsequent panels show the

LSPs for data successively pre-whitened by the frequencies indicated in the preceding panel. The lower panels show the 4σ threshold (dashed red/grey line)

below which candidate frequencies were rejected. The bottom panel shows the LSP for the Ck–C light curve, including the 4σ threshold (dashed red/grey) for

that data set.

1.2 µHz, corresponding to 4.4 ± 2.1 d. This gives substantial cre-

dence to the resolution of these two very closely spaced modes,

despite the relatively short total coverage. In contrast, the isolated

mode at 6.826 mHz shows less evidence for amplitude variation.

A second reason for attributing the amplitude variation to beating

is the apparent phase variation. If this were due simply to amplitude

modulation of a single frequency, then the phase would not vary, as

seen in the 6.826-mHz mode (Fig. 10). That the 7.089-mHz mode

does so on the same time-scale as the amplitude points strongly to

interference between two closely spaced frequencies.

Such an interpretation for the apparent amplitude variation pro-

vides a probable explanation for the difference in amplitudes ob-

served by us and by Brassard et al. (2001) and Charpinet et al.

(2005a). With sufficient closely spaced frequencies, the instanta-
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Colorimetry of pulsating sdB star PG 0014+067 73

Table 4. Frequencies f , amplitudes a (mmag) and phase differences φ (2π radians) of periodic variations in the ULTRACAM photometry of pulsating sdB star

PG 0014+067 obtained in 2004 August. fB and aB (per cent) are taken from table 3 of Brassard et al. (2001). fC and aC (per cent) are taken from table 2 of

Charpinet et al. (2005a), data in angled brackets refer to evenly spaced multiplets with ∼9.36 µHz spacing. Values for σ in all three ‘white light’ data sets and

for aw/σ in the current data are also shown. ” indicates a frequency which may be present in the multiplet shown above by angled brackets.

f /mHz aw aw/σ au′ a g′ ar ′ φu′ − φ g′ φu′ − φr ′ fB aB fC aC

σ 0.0078 0.010 0.0093

f 1 5.780(9) 0.35(6) 4.5 – – – – – – – 5.7802 0.0423
5.8962 0.0388

f 2 5.921(9) 0.35(6) 4.5 0.2(2) 0.34(8) 0.5(1) 0.3(2) 0.2(2) 5.9232 0.0481 〈5.9270〉 〈0.0539〉
f 3 5.924(8) 0.40(5) 5.1 0.6(2) 0.41(7) 0.4(1) −0.10(3) −0.09(4) – – ” ”

6.2277 0.0390 6.19373 0.0584

f 4 6.454(4) 0.71(5) 9.1 0.7(2) 0.67(6) 0.78(8) 0.03(4) 0.02(4) – – 〈6.4562〉 〈0.1142〉
f 5 6.632(6) 0.49(5) 6.3 0.8(1) 0.57(7) 0.6(1) 0.02(3) 0.04(3) 6.6211 0.2183 〈6.6265〉 〈0.0689〉
f 6 6.646(5) 0.60(6) 7.7 0.9(2) 0.69(7) 0.62(9) −0.01(4) −0.05(4) 6.6307 0.0548 ” ”

f 7 6.659(9) 0.34(6) 4.3 – – – – – – – ” ”

f 8 6.726(8) 0.37(6) 4.7 – – – – – – – – –

f 9 6.826(1) 2.95(4) 37.7 4.0(2) 3.03(6) 2.68(8) 0.014(5) 0.015(5) 6.8375 0.1729 6.82618 0.2412

f 10 7.076(6) 0.50(7) 6.4 – – – – – 7.0791 0.0393 〈7.07968〉 〈0.2645〉
f 11 7.089(1) 2.94(6) 37.5 4.5(2) 3.20(7) 3.04(9) 0.001(7) 0.002(7) 7.0887 0.1950 ” ”

f 12 7.0916(7) 4.60(9) 58.7 5.9(3) 5.03(9) 4.6(1) −0.004(7) −0.002(7) – – – –

f 13 7.093(4) 0.78(9) 10.0 1.2(3) 1.1(1) 1.0(1) −0.01(4) 0.00(4) – – – –

f 14 7.094(8) 0.36(7) 4.6 0.5(2) 0.51(8) 0.6(1) 0.00(4) 0.03(4) – – – –

f 15 7.187(5) 0.66(6) 8.4 0.8(2) 0.71(8) 0.8(1) −0.07(4) −0.07(4) 7.1502 0.1435 7.16640 0.0808
7.2862 0.0318 – –
7.6703 0.0281 7.6703 0.0284
7.9521 0.0466 7.9283 0.0357

f 16 8.588(9) 0.32(6) 4.1 – – – – – 8.5521 0.0312 8.5521 0.0298
9.7976 0.0337 – –

f 17 9.971(5) 0.59(5) 7.5 0.9(2) 0.69(7) 0.6(1) 0.00(4) −0.02(4) 9.9703 0.1061 9.9711 0.1040

f 18 11.547(9) 0.34(6) 4.3 0.4(2) 0.33(7) 0.37(9) 0.02(3) −0.05(3) – – – –
12.3868 0.0462 – –

f 19 12.910(9) 0.32(5) 4.1 – – – – – – –

neous appearance of the light curve can develop substantially on a

time-scale of weeks. The more substantial baseline to be provided

by the WET campaign will be instructive in this regard.

4 A S T E RO S E I S M O L O G Y

The multiperiodic light variations in sdB stars are ascribed to an

ensemble of non-radial oscillations, each mode of oscillation being

characterized by the number of radial (k), spherical (l) and azimuthal

(m) nodes. To carry out a quantitative analysis of stellar properties, it

is preferable to identify, as far as possible, which oscillations corre-

spond to which mode. If this can be achieved, then observed frequen-

cies may be compared with the spectrum of frequencies predicted

for a theoretical model of the stellar interior. Fig. 12 compares, for

example, the surface properties of all three ‘ULTRACAM’ sdBs with

evolution tracks for extreme horizontal branch stars with M c ≈
0.46 M⊙. PG 0014+067 lies at the evolved edge of this sequence,

but only part way across equivalent sequences with more massive

cores. Asteroseismology can lift the degeneracy between these se-

quences, as amply demonstrated by Brassard et al. (2001).

4.1 Amplitude ratios

In terms of light variations, a key discriminant of the spherical de-

gree l has been shown to be the ratio of the light amplitudes at

different wavelengths (Heynderickx, Waelkens & Smeyers 1994),

represented here by a x ′/a g′ where a x ′ is the amplitude in filter x′.

These are shown for PG 0014+067 as a function of wavelength in

Fig. 11 for all frequencies where a could be measured in all three

filters. Equivalent measures for a theoretical model (Ramachandran

et al. 2004) are also shown.

The amplitude of the oscillation is a function of wavelength be-

cause it reflects the response of the spectrum to changes in temper-

ature, surface gravity and radius, projected over the visible hemi-

sphere of the star. In the case of an early-type star, the variation at

u′ dominates that at longer wavelengths primarily because of the

effective temperature variation which affects the overall flux. This

is also in phase with the variation in surface gravity which changes

the Balmer decrement. Radius effects, which tend to be out of phase

(by ∼π radians) with the temperature variation, are roughly inde-

pendent of wavelength for stars of this temperature. The wavelength

dependence of the amplitude ratio as a function of oscillation mode

is more complicated, affected by the degree of cancellation across

the surface (more for higher-degree modes) and by limb-darkening,

which reduces cancellation by concentrating light towards the disc

centre.

In practice, for these sdB stars, the measured amplitude ratio can

only distinguish between l = 3, l = 4 and l = 0, 1, 2, the latter

three modes being essentially degenerate in this diagnostic in the

adiabatic approximation. Furthermore, in the case of PG 0014+067

the formal errors in the measured amplitudes (particularly au′ ) pre-

clude positive mode assignments. However, it is possible to argue

that individual modes are unlikely to be due to a certain spher-

ical degree. This situation occurs for the three largest-amplitude

modes with frequencies f 12, f 9 and f11 (see Fig. 11). Indeed, we can
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74 C. S. Jeffery et al.

Figure 6. The frequency amplitude spectrum for the combined 2004 August data for PG 0014+067 is compared with the spectrum published by Brassard

et al. (2001) (top panel) and Charpinet et al. (2005a). In the upper two panels, dashed lines refer to mode detections between 3σ and 4σ . In the top panel only,

dotted lines refer to peaks in the amplitude spectrum <3σ coincident with frequencies predicted by the Brassard et al. (2001) asteroseismic solution. All solid

lines (all panels) refer to >4σ detections.

Figure 7. As Fig. 6 showing expansions around the main peaks at 7.09 and 6.65 mHz in the 2004 August data.

exclude f 12 = 7.0916 mHz to be due to an l = 3 mode at 95 per cent

confidence level. For f 9 = 6.826 mHz we can exclude both l = 3

and l = 4 at 95 per cent confidence level. The situation is more

complex for f 11 = 7.089 mHz, for which the blue amplitude ratio

is compatible with l = 0, 1, 2, 3 but the red one only with l = 0,

1, 2, 4. In principle, this implies that l = 0, 1, 2 for this mode at

95 per cent confidence level. However, given the large uncertainty

for the amplitude in the u′ filter, we caution against overinterpreta-

tion. We also note that f 11 = 7.089 mHz is identified as an l = 3

mode in the optimum solution obtained by Brassard et al. (2001).

For all the additional modes, the error bars are too large to discrim-

inate between l = 0, . . . , 4. This accords with prior expectation

and is not surprising because the amplitudes drop by about a factor

of 4 between the three dominant modes and the minor modes (all

�1 mmag). While we can exclude l > 2 for the two principal modes,

this is no longer true for the lower-amplitude ones. Hence we cannot

exclude the possibility that modes with l > 2 occur among those

listed in Table 4.
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Colorimetry of pulsating sdB star PG 0014+067 75

Figure 8. Two sections of the white light curve of PG 0014+067 together

with the 19-frequency solution shown in Table 4. Time (t) is JD 245 3230.

The change of amplitude of the dominant mode on a time-scale of days is

clearly visible.

Table 5. Amplitudes (mmag) and phases (in units 2π radians) of the two

dominant modes with frequencies f 1 = 7.0916 mHz and f 2 = 6.826 mHz

for each night n in the 2004 August photometry of pulsating sdB star PG

0014+067. Phases were computed with respect to an arbitrary epoch.

a1 a2 φ1 φ2

w n1 6.89(15) 3.13(11) 0.8901(35) 0.4986(54)

n2 7.45(13) 2.82(12) 0.9785(27) 0.5091(60)

n3 5.82(12) 3.11(10) 1.0584(15) 0.5036(47)

n4 1.60(15) 2.68(11) 1.0810(42) 0.4895(68)

n5 2.69(21) 3.07(16) 0.8397(122) 0.5163(69)

n6 5.13(14) 3.02(11) 0.9282(44) 0.5101(52)

u′ n1 9.26(48) 4.37(34) 0.8813(82) 0.4972(125)

n2 10.16(33) 3.69(34) 0.9787(51) 0.5260(104)

n3 7.12(49) 4.28(44) 1.0686(41) 0.5343(105)

n4 1.83(63) 3.48(11) 1.1238(04) 0.4938(211)

n5 3.91(46) 4.43(38) 0.8089(188) 0.5118(118)

n6 6.97(49) 4.18(41) 0.9173(112) 0.5266(112)

g′ n1 7.26(18) 3.32(13) 0.8895(39) 0.5028(60)

n2 8.22(13) 2.92(11) 0.9763(25) 0.5009(62)

n3 5.75(17) 3.04(13) 1.0593(21) 0.4981(70)

n4 1.76(17) 2.93(13) 1.0697(56) 0.5014(69)

n5 3.29(23) 3.34(18) 0.8342(109) 0.5163(70)

n6 5.16(21) 2.96(16) 0.9319(64) 0.5042(83)

r′ n1 6.77(25) 2.59(18) 0.8860(60) 0.4988(111)

n2 7.28(20) 2.81(19) 0.9814(44) 0.5055(100)

n3 5.55(24) 2.73(20) 1.0542(33) 0.4907(115)

n4 1.35(28) 2.31(20) 1.0957(61) 0.5027(135)

n5 2.74(27) 3.23(22) 0.8332(156) 0.5240(82)

n6 4.78(29) 2.81(22) 0.9309(95) 0.5002(122)

Table 6. Frequency resolution of data sets. Bra01 denotes Brassard et al.

(2001) and Cha05 denotes Charpinet et al. (2005a).

Bra01 Cha05 Current Current
ULTRACAM All

T/d 4.07 4.09 5.11 5.31

1/T /(µHz) 2.84 2.82 2.26 2.18

1.5/T 4.26 4.24 3.39 3.27

2.5/T 7.11 7.07 5.66 5.45

4.2 Multiplicity

A clear consequence of both the current results and those of

Brassard et al. (2001) and Charpinet et al. (2005a) is that there

are several groups of closely spaced frequencies. For example, our

data (Table 4) show a pair of frequencies at f 2, f 3 separated by

∼3 µHz, a triplet at f 5, f 6, f 7 separated by 13.5 µHz and another

triplet at f 11, f 12, f 13 separated by ∼2 µHz, with f 10 and f 14 only

13 and 1 µHz away, respectively,

Brassard et al. (2001) reported possible multiplet structures at

7.08, 6.63 and 5.90 mHz, with spacings of 9.6, 9.6 and 27.0 µHz,

respectively, while Charpinet et al. (2005a) identify evenly spaced

multiplets corresponding to those identified by us, as well as at f 4,

with a mean spacing � f ∼ 9.36 µHz.

It has been established that the p-mode oscillations typical of the

pulsating sdB stars are of low radial order. As is well known from

asymptotic analyses of the stellar oscillation equations, a charac-

teristic frequency spacing occurs only for high-order p modes with

the same low degree and with subsequent values of the radial order.

Therefore, we do not expect to find such a uniform frequency spac-

ing in PG 0014+067. However, the frequencies cannot be crowded

together closely either, and, in general, will be spaced by ∼1 mHz

(cf. Charpinet et al. 2002). Let us suppose that the multiplets identi-

fied above comprise spherical harmonics with the same wavenum-

bers k and l, and that rotation has broken the frequency degeneracy

of modes with different m. There are then from eight to 10 inde-

pendent frequencies between 5.7 and 7.2 mHz, depending on how

f 10 and f 14 are related to the f 11,12,13 triplet. With 1-mHz spacings,

this space is large enough for only two modes of a given l, or by

including modes with l = 0, . . . , 4, up to approximately 10 modes.

Under the same supposition, the multiplets cannot, of course, be due

to l = 0 modes.

4.3 Rotation

Assuming that the spacings of 9.6, 9.6 and 27.0 µHz are due to

rotational splitting and realizing that the likely modes demand an

approximately constant common spacing between adjacent m com-

ponents, Brassard et al. (2001) determine a mean value � f ≈ 9.5 ±
0.3 µHz and an estimate for the rotational period of P rot ≈ (� f )−1 =
29.2 ± 0.9 h.

The smallest reliable frequency spacing found by us is � f =
2.6 ± 1.2 µHz (see Section 3.3). For uniform rotation, frequency

spacings are related to the rotation frequency �/m = −� f /(1

− ckl), where ckl depends on the structure of the star and is nor-

mally less than unity. Values given by Charpinet et al. (2002) range

between 0 and 0.2 for p modes of interest. For � f = 2.6 µHz,

δm = 1, and assuming the same l for f 11 and f 12, the resulting

� corresponds to a rotation period (Prot) between 3.6 d (ckl =
0.2) and 4.5 d (ckl = 0) with a mean value around 4.2 d (ckl =
0.05).

C© 2005 RAS, MNRAS 362, 66–78
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76 C. S. Jeffery et al.

Figure 9. The amplitude in white light of the dominant modes at 7.089 mHz

(filled circles) and 6.826 mHz (crosses) in the 2004 combined data set for

each night (JD 245 3238).

Figure 10. The phase (in units of 2π radians) in white light of the dominant

modes at 7.089 mHz (filled circles) and 6.826 mHz (crosses) in the 2004

combined data set for each night (JD 245 3238). Most error bars are smaller

than the plot symbols.

Is this value correct? Brassard et al. (2001) and Charpinet et al.

(2005a) deduce Prot nearer to 29.9 h from the mean frequency spac-

ing at 9.36 µHz. Why were these spacings not found in our data?

It is instructive that the spacing of our f 5,6,7 multiplet (13.5 µHz)

is exactly half the spacing of the multiplet at 5.90 mHz reported by

Brassard et al. (2001). Moreover, it is roughly 2 µHz greater than

the 11.57-µHz cycle d−1 alias. Similarly, the 9.36-µHz spacing of

Charpinet et al. (2005a) is ∼2 µHz smaller than this alias. It there-

fore seems possible that, given the window function of both previous

sets of observations, the true rotation period is nearer to 5 d. Indeed,

the window function for the current data is only marginally better,

and the true spacing can only be resolved for the principal peaks.

Cuypers (1987) writes that ‘Loumos & Deeming (1978) con-

cluded that frequencies with � f < 1/T are never found separated

in the periodogram. When 1/T < � f < 1.5/T , the frequencies

are separated, but the periodogram maxima do not necessary oc-

cur at the real frequencies. If 1.5/T < � f < 2.5/T , the devia-

tions from the real frequencies become of the order of the errors on

the frequencies. As soon as � f > 2.5/T the differences between

the peak frequencies and the real frequencies become negligible,

because the first negative sidelobe of the sinc function no longer

Figure 11. Amplitude ratios a x ′/a g′ are shown for the three largest ampli-

tude modes in PG 0014+067 (solid lines) together with theoretical values

for a model with M = 0.5 M⊙, T eff = 32 000 K, log g = 5.8, f = 5.4 mHz

and for l = 0, . . . , 4 (from Ramachandran et al. 2004). The error bars repre-

sent 95 per cent confidence limits.

interferes with the main peak of the other sinc function.’ For the

data presented by Charpinet et al. (2005a), 1/T = 2.82 µHz so that

the accuracy they assumed for their listed frequencies is overly opti-

mistic. For our ULTRACAM data alone, 1/T = 2.263 µHz. Technically

1/T = 2.180 µHz for the full data set, but the longer baseline is pro-

vided by only 0.5 h of FTN data. Thus, � f = 2.6 µHz is on the

cusp of detectability in our data, and the maxima do not necessarily

occur at the correct frequencies. Nevertheless, there seems to be

good evidence for frequency splitting at a level much smaller than

that seen previously. Again, the WET data will be instructive here,

given that their total time base will be about twice that of our data.

5 C O N C L U S I O N

The contributions made by previous observers of PG 0014+067

(Brassard et al. 2001; Charpinet et al. 2005a) have had a major im-

pact because excellent data have been combined with a thorough

frequency analysis and the results have been compared in detail

with a superb set of theoretical models. It is also true that stellar

parameters deduced from pulsation periods are remarkably robust,

because the periods of low-k and low-l modes so strongly constrain

the stellar radius. Therefore, new studies seem unlikely to modify

these early results in any significant way. In any case, the present
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Figure 12. A g–Teff diagram showing the locations of PG 0014+067 and

both other sdBs observed with ULTRACAM (open circles with error bars;

Heber, Reid & Werner 2000b; Edelmann et al. 2003; Charpinet et al. 2005a)

compared with evolutionary tracks for extreme horizontal branch stars hav-

ing a core mass 0.4758 M⊙ (squares) or 0.4690 M⊙ (triangles) and envelope

masses 0.0001, 0.0002, 0.0007, 0.0012 and 0.0022 M⊙ (left to right) (from

Charpinet et al. 2002).

authors are not in a position to make a more detailed asteroseis-

mological study. Their observations were obtained principally to

identify the strongest oscillation modes using the colour–amplitude

ratio method.

The combination of the WHT and ULTRACAM has proven itself to

be ideally matched to the measurement of multicolour light curves

for the short-period pulsating sdB stars, or EC 14026 variables.

Limited only by the time allocated on the telescope, which has

a corresponding impact on frequency resolution, the light curve of

PG 0014+067 has been decomposed to give frequencies, amplitudes

and phases for a total of 19 individual frequencies with a high degree

of confidence (>4σ ).

On this occasion, the magnitude of the target and the amplitude of

the pulsations have combined to defeat any unequivocal identifica-

tion of non-radial modes using the amplitude–ratio method. We do

find that the two strongest modes cannot be modes of l = 3 or l = 4

and must be one of l = 0, 1, 2. The frequency resolution (which

varies as 1/T) imposed by the temporal window has also partially

limited a complete decomposition of the light curve.

Assuming the close frequency spacing of 2.6 µHz to be due to the

same l, and rigid rotation, we find a rotational period of ∼4 d, about

three times longer than previously obtained. Frequency splitting

detected in other multiplets by previous authors is confirmed by us,

but the measured values may be aliases of the true values. With

improved frequency resolution, this rotational splitting should be

measured with improved confidence.

It is appropriate to suggest what else further studies should aim

to achieve. First of all, the matching of observed and theoreti-

cally predicted frequencies must consider non-radial modes with

l = 0, . . . , 4. The omission of l = 4 modes in earlier work overly

restricts the parameter space in which an optimum solution may be

found. If l = 3 modes are detected, then l = 4 modes are also likely

to be visible. Moreover, we believe it is necessary to consider a fam-

ily of acceptable models when making seismic inferences. Indeed,

rather than restricting the solution to a single overall best model

based on a χ 2-type argument, it is necessary to compare the de-

tailed structure of different models that lead to almost equally good

fits in order to decide whether or not seismic sounding of the interior

is useful for the improvement of the input physics of the models.

The observational results presented here, combined with those of

twice their frequency resolution expected from the WET campaign,

will hopefully lead to new efforts to model the internal structure of

PG 0014+067 under various assumptions and to test these using the

tools of asteroseismology.
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