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 

Abstract—Alzheimer's Disease (AD) accounts for 60-70% of all 

dementia cases, and clinical diagnosis at its early stage is extremely 

difficult. As several new drugs aiming to modify disease 

progression or alleviate symptoms are being developed, to assess 

their efficacy, novel robust biomarkers of brain function are 

urgently required. This study aims to explore a routine to gain 

such biomarkers using the quantitative analysis of 

Electroencephalography (QEEG). This paper proposes a 

supervised classification framework which uses EEG signals to 

classify healthy controls (HC) and AD participants. The 

framework consists of data augmentation, feature extraction, K-

Nearest Neighbour (KNN) classification, quantitative evaluation 

and topographic visualisation. Considering the human brain 

either as a stationary or a dynamical system, both frequency-based 

and time-frequency-based features were tested in 40 participants. 

Results: a) The proposed method can achieve up to 99% 

classification accuracy on short (4s) eyes open EEG epochs, with 

the KNN algorithm that has best performance when compared to 

alternative machine learning approaches; b) The features 

extracted using the wavelet transform produced better 

classification performance in comparison to the features based on 

FFT; c) In the spatial domain, the temporal and parietal areas 

offer the best distinction between healthy controls and AD. The 

proposed framework can effectively classify HC and AD 

participants with high accuracy, meanwhile offering identification 

and localisation of significant QEEG features.  These important 

findings and the proposed classification framework could be used 

for the development of a biomarker for the diagnosis and 

monitoring of disease progression in AD. 

Index Terms—Electroencephalogram, Alzheimer's Disease, 

Machine Learning, K-Nearest Neighbour, Signal Processing. 

I. INTRODUCTION 

lzheimer’s disease (AD) is the most common form of 

dementia characterised by a cognitive decline that for the 

very elderly has to be greater than that expected by the normal 

ageing process [1]. It is characterised by multiple cognitive 

deficits, including memory decline, thinking, behaviour and 

more importantly deficits in carrying out everyday tasks [2]. 

Early detection of AD is challenging because many of the 

symptoms overlap with those of normal ageing related decline. 
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Currently, there is no disease-modifying therapeutic 

intervention for dementia due to AD, but early detection would 

allow for better care and treatment planning for challenging 

behavioural and psychological symptoms [3]. Additionally, as 

several new treatments are undergoing evaluation in clinical 

trials, sensitive, non-invasive and reproducible biomarkers are 

urgently required to identify and recruit patients in the 

prodromal phase of the disease, to be implemented as objective 

outcomes measures and to monitor disease progression. In 

clinical practice, AD diagnosis is reached through a series of 

tests such as family history check, cognitive tests, along with 

other brain imaging and monitoring methods [4]. Methods such 

as Magnetic Resonance Imaging (MRI), Computed 

Tomography (CT), Positron Emission Tomography (PET), and, 

to a very lesser extent, Electroencephalogram (EEG) have been 

used to assist practitioners in the diagnostic process [4]. 

EEG consists of electrical signals collected from electrodes 

placed on the patient's scalp [5]. They represent the electrical 

activity of the brain at the time of recording; frequency and 

amplitude content vary according to the subject’s biological 
state (e.g. awake versus sleep), mental state, age, disease 

process etc. EEG has become an important non-invasive 

clinical tool that has helped increase our understanding of brain 

network complexity and for the identification of areas of 

dysfunction [5], [6].  

EEG studies in patients with AD have consistently shown 

abnormalities. Slowing of the posterior dominant rhythms and 

an increase in the slow wave activity is the most common 

feature on visual analysis of the recordings, [7] while there is a 

reduction in alpha and beta frequencies, although this latter 

characteristic is much more difficult to detect on empirical 

inspection of an EEG. Over recent decades, EEG spectral 

analysis provided the means for more objective estimation of 

the frequencies involved and to determine, to an extent, their 

spatial distribution. With this frequency domain approach, the 

power for different frequency bands from any EEG channels 

can be quantified. This quantitative analysis has confirmed the 
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aforementioned observations from visual empirical EEG 

interpretation [7]. More specifically, it is generally thought that 

the earliest changes in AD are an increase in theta and a 

decrease in beta activity [7]. The prevailing view is that EEG 

abnormalities are associated with cognitive deficits, and this 

electro-clinical correlation is important [7], [8]. However, 

despite all this previous spectral analysis work none of these 

techniques is widely adopted and none, to our knowledge, is 

considered as a validated biomarker for clinical use, mainly due 

to low sensitivity and specificity. On the other hand, 

quantitative electroencephalography (QEEG) is gaining 

recognition as a means of monitoring brain function [9]. It has 

the potential to analyse in time, frequency, and time-frequency 

domains the electrical traces created by the dynamic emergence 

of neuronal workspaces, though to underpin cognitive functions 

[6]. QEEG can monitor brain activity through translating 

electrophysiological measures, with variable parametric and 

non-parametric frequency and time domain methodologies, into 

meaningful continuous numerical variables that can be then 

used to identify brain network deficits and/or as a source of 

surrogate endpoints in research [10]. It offers an objective 

approach next to the very useful but non-specific behavioural 

and cognitive performance assessments, commonly used as 

clinical diagnostic tools and as outcome measures for 

pharmaceutical trials. As a plethora of variables can be 

produced with distinctive QEEG methods, interpretation and 

classification of the results can become particularly 

cumbersome.  Without the need for any model or test 

assumptions [11] the discipline of machine learning (ML) has 

found breeding ground in this field and numerous publications 

use this approach to demonstrate its potential to be implemented 

as an accurate method of identifying patients with AD, for the 

differential diagnosis from other forms of dementia and as a 

source of surrogate outcome measures in trials involving 

subjects in the prodromal phase of disease [10], [12]–[17]. 

There are therefore, two dimensions to consider, on one end 

the QEEG analysis and the methods to extract features defined 

from EEG signals and the second, the selection of a ML 

technique appropriate to achieve an ideal cohort classification 

(e.g. dementia versus normal cognitive function) based on the 

aforementioned EEG metrics. There is yet to be an agreed 

consensus in the field as to which combination of signal 

processing methods, features selection, and ML techniques 

would consistently yield the best classification accuracy. Some 

popular linear features used are derivative parameters of: signal 

discrete wavelet transform [18], signal coherence [19], [20], 

and signal synchrony [21]. Derivatives of other non-linear 

features such as: spectral entropy, spectral roll-off, zero-

crossing rate, [22], [23] correlation dimension, and Lyapunov 

exponent [24] had also been used, while some studies had 

proposed novel feature extraction method themselves such as 

Integrated Pattern Monitoring [25] and multi-channel deep 

convolutional neural network which combine feature extraction 

with classification processes [26]. In terms of ML techniques, a 

multitude of well-established methods have been employed 

with supervised learning algorithms being the most widespread. 

Support Vector Machine (SVM) was the most widely used 

technique [18], [22], [25], [27]. However, simpler supervised 

learning algorithms such as Linear and Quadratic Discriminant 

Analysis (LDA, QDA) [28], [29], logistic regression [23], 

classification tree and random forest [18], [28] had also been 

used. In some studies, clustering algorithms such as Gaussian 

Mixture Model (GMM) [20] was used to perform unsupervised 

classification. 

A. In this work, we use a cohort of patients with AD and a 

group of healthy controls (HC) to assess the accuracy of various 

QEEG features and ML methods in distinguishing between 

these two diagnostic states and then develop a framework based 

on the highest performance technique. Although most studies 

in this field use eyes closed EEG epochs this paper shows that 

eyes open resting state EEG data (typically characterised by a 

desynchronised EEG in healthy asymptomatic controls) 

achieve significant classification accuracy. This paper 

additionally studies the impact of two different frequency 

domain analysis methods on the classification accuracy of a ML 

algorithm, a fast Fourier Transform (FFT) versus Wavelet 

Transforms, the latter also offer information on the dynamic 

behaviour of various frequency bands over time. It should be 

noted that the FFT approach considers the behaviour of the 

epoch as stationary while wavelet transform provides time-

solved frequency response which is more appropriate for a 

dynamical system (details in C. Mother Wavelet Selection, 

supplementary material). 

B. With regards to the software side of this work, one notable 

similarity among all previous research studies is that the data 

processing methodology can be separated into 4 distinct steps: 

signal pre-processing, application of feature extraction 

algorithm, application of ML algorithms, and result evaluation. 

For each new study, a new framework will have to be set up to 

handle the entire process. Presently, to the best of the authors’ 
knowledge, there are robust EEG processing frameworks such 

as EEGLAB, but none is geared towards using machine 

learning in the study of neurodegenerative diseases. A properly 

organised framework with its implementation, specifically 

designed to handle EEG applications in a ML context, would 

greatly facilitate the pace at which new research could be 

produced and translated into a clinically useful informative 

biomarker about state and severity that could also be used in 

clinical trials [10]. Thus, a novel dementia classification 

framework was developed in this study and applied to EEG 

recordings after comparing various ML algorithms (details in 

B. Classification Approaches, supplementary material). 

II. METHODOLOGY 

A. Case selection 

Participants were HC or patients diagnosed with AD who had 

detailed neuropsychology testing and structural and functional 

(fMRI) scans. All subjects were recruited from Sheffield 

Teaching Hospitals NHS Trust memory clinic, and HCs were 

enrolled through opportunity sampling and word of mouth over 

a period of a year (February 2015-16). Twenty HCs (10 younger 

than 70y old, 11 females, 10 older than 70y old with a mean age 

of 67y+/-SD of 12y) and 20 AD cases (10 female, 16 younger 

than 70y old and 4 older than 70y old, mean age 64y+/-SD of 
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8y) were collected. Further details to include education, 

neuropsychology examinations and structural MRI findings are 

described in great detail in previously published work [30].  The 

diagnosis of AD was made according to NINCDS-ADRDA 

criteria [31] and based on a consensus taking into account 

clinical history, neurological examination, neuropsychological 

scores and neuroradiological findings. All participants provided 

informed consent and this project was approved by the 

Yorkshire and the Humber (Leeds West) Research Ethics 

Committee (reference number 14/YH/1070).  

B. EEG recordings 

1) EEG acquisition 

We chose task free EEG that requires minimal cooperation 

as cognitive deficits in patients with AD render cognitive 

paradigms difficult to implement.  This article is based on 

secondary analyses carried out on the same dataset used in 

previous work [18]. 

A modified 10/10 overlapping a 10/20 international system 

of electrode placement was adopted. An XLTEK 128-channel 

headbox (Optima Medical LTD) was used sampling at 2K Hz 

(analogue low pass filter at 600Hz) with an earlobe reference 

(jump cables were devised to combine the right and left earlobe 

electrodes while impedances where kept equal between sides). 

Resting state, 30 minutes, EEG recordings were acquired; 

including distinct eyes open (EO) and eyes closed (EC) 5-

minute epochs (all participants were encouraged to rest and not 

think about anything specific). If they showed signs of 

drowsiness, they were prompted. 

The data were categorised according to their age group, 

either below 70 or above 70. For each subject, the data were 

collected twice in 2 physiological states: EO and EC. To 

investigate further the effect of age on the results, another 2 

datasets were created by combining both age groups together 

but with different eye states. In these combined sets, equal 

number of subjects were selected from both age groups to 

prevent the combined group’s results from being skewed 

towards the below 70 categories due to the larger number of 

samples of the below 70. For each eye state, subjects from both 

age groups were selected randomly: 8 AD (4 from each group) 

and 20 HC (10 from each group). The 6 groups and their 

composition are summarised in Table I. 

 
2) EEG data selection and artefacts removal 

All EEGs were reviewed with time-locked video recordings 

on an XLTEK equipment (Optima Medical LTD) with bipolar 

derivations. The following bipolar channels were available: 

Fp2-F8, Fp1-F7, F8-F4, F7-F3, F4-C4, F3-C3, F4-FZ, FZ-CZ, 

F3-FZ, T4-C4, T3-C3, C4-CZ, C3-CZ, CZ-PZ, C4-P4, C3-P3, 

T4-T6, T3-T5, P4-PZ, P3-PZ, T6-O2, T5-O1, P4-O2, P3-O1, 

O2-O1. Both EO and EC artefact free epochs, each of 12 

seconds in duration, were selected for analysis. To avoid bias, 

the first 12-s EO/EC epochs were used from each of the 40 

participants. Spike 2 (version 8) software was used for data pre-

processing and export, where a time constant 𝜏 = 0.08s (high 

pass filter at 2 Hz) was applied to the data attenuating any delta 

or slower frequency artefacts, like those generated by eye 

blinking and movements. 

C. Classification Framework 

The proposed framework includes four steps: data 

augmentation, feature extraction, classification, and evaluation 

and visualisation. The framework was implemented in 

MATLAB2017 environment. The 4 steps were implemented in 

this framework as separate classes in the software.  

1) Data Augmentation 

In this study, the number of samples in all dataset is 

considered relatively small for ML applications. This issue is 

common among many studies which have less than 50 subjects 

in the dataset used [23]–[25], [27], [29], [32]. It is understood 

that data scarcity is a major issue in this field. Segmenting the 

data samples into smaller, but still informative, segments is a 

possible remedy for this issue and has been adopted in previous 

work [27], [32]. A data augmentation process is therefore 

proposed in this framework. It segments the signals into smaller 

data of equal length and gives the new data the same label as 

the original data. In this study, the EEG data is 12 seconds long. 

If the segment number is 2, each segment would be 6 seconds 

long, and the total number of samples would be increased from 

40 to 80, with the same AD to HC ratio. The software 

implementation has a built-in data segmentation functionality. 

The user would simply have to state the signal length and the 

desired number of segments. 

2) Feature Extraction 

Any numerical parameters can be defined as features in this 

framework, and they are key to determine classification 

performance. In this paper, features are defined according to 5 

frequency bands of interest: delta band (0-4 Hz), theta band (4-

8 Hz), alpha band (8-12 Hz), beta band (12-30 Hz), and gamma 

band (30-50 Hz). Since lower delta band (0-2 Hz) components 

had been filtered out in the previous process, delta band 

frequencies used in this study would be confined to the 2-4 Hz 

range only. Furthermore, it should be noted that before the 

features are extracted, the framework would pass all data 

through a 10th-order low pass Butterworth filter with a cut-off 

frequency at 50 Hz, to remove higher frequency components. 

This lowpass filtering was done because artefacts from muscle 

activity, which mainly consist of high frequencies up to 300 Hz, 

may contaminate the EEG signals. Without this step, it would 

be difficult to determine if the effect observed in the high-

frequency spectrum is of neural or muscle origin [33]. 

The feature extraction functionality is implemented as an 

abstract class interface where new features could be defined in 

a new derived class with its own properties. This allows new 

features to be implemented while still maintaining 

TABLE I 

THE NUMBER OF SUBJECTS OF SIX STUDIED GROUPS 

 AD HC 

Below 70 EO 16 10 

Above 70 EO 4 10 

Combined EO 8 20 

Below 70 EC 16 10 

Above 70 EC 4 10 

Combined EC 8 20 
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compatibility with the remaining framework. Two types of 

features were of interest in this study which are based on the 

frequency domain and time-frequency domain respectively.  

The FFT features (𝐹𝐹𝑖) used in this study were defined as the 

average magnitude of all FFT coefficients in a specific 

frequency band, which can be written as: 𝐹𝐹𝑖 =  ∑ |𝑋𝑘|𝑓𝑒𝑖𝑘=𝑓𝑠𝑖𝑓𝑒𝑖−𝑓𝑠𝑖  ,    (1) 

where 𝑓𝑠𝑖 is the starting frequency of the 𝑖𝑡ℎ band, 𝑓𝑒𝑖 is the 

ending frequency, and 𝑋𝑘 are the FFT coefficients. If the human 

brain behaviour is simplified as a stationary system, this feature 

represents the averaged frequency response at each band.   

The Continuous Wavelet Transform (CWT) features (𝑊𝐹𝑖) 
used in this study were defined as the average magnitude of all 

CWT coefficients, obtained using a selected mother wavelet, in 

that particular frequency band over the entire signal length, 

which can be written as: 𝑊𝐹𝑖 =  ∑ ∑ |𝑌𝑗,𝑘|𝑓𝑒𝑖𝑘=𝑓𝑠𝑖𝑡𝑒𝑗=𝑡𝑠(𝑡𝑒−𝑡𝑠)(𝑓𝑒𝑖−𝑓𝑠𝑖)  ,   (2) 

where 𝑓𝑠𝑖 is the starting frequency of the 𝑖𝑡ℎ band, 𝑓𝑒𝑖 is the 

ending frequency, 𝑡𝑠 is the starting time, 𝑡𝑒 is the ending time, 

and 𝑌𝑗,𝑘 are the wavelet transform coefficients based on the 

selected mother wavelet. If the human brain is considered as a 

non-stationary or dynamic system, where the behaviour is time 

dependent, these features can better represent the frequency 

response at each band. This study employed various mother 

wavelet and concluded that the bump mother wavelet produces 

the best performance (details in C. Mother Wavelet Selection, 

supplementary material). 

Both FFT and CWT features were extracted and assessed in 

terms of the performance on classifying AD patients from HC 

participants and gain new insights into how the location of 

channels and frequency bands correlate to AD classification 

accuracy. Such studies are important to understand better the 

spatial and frequency distribution of brain network deficits in 

AD. The studies conducted to assess their performance are as 

follows: 

Individual Channel analysis: The objective of this study is to 

inspect how well the selected features extracted from each 

individual EEG channel can be used to train an AD vs HC 

classifier. In this study, each of the 23 channels is used to train 

the classification model separately. Since each channel 

represents a spatial area on the scalp, the result of this study 

would suggest how indicative each channel is when it comes to 

AD diagnosis. 

Individual Frequency Band analysis: The objective of this 

study is to inspect how well a single frequency band can be used 

to classify AD and HC subjects. Analogous to the previous 

study, each channel is used to train the model individually; 

however, instead of using all frequency bands, only 1 frequency 

band was used as the feature. The results would reveal which 

frequency band at which channel would be indicative of AD. 

3) Classification 

The framework implemented the K-Nearest Neighbour 

(KNN) classification method with 10-fold cross-validation as 

the default method in the Classification class. The class is 

implemented with an interface enforcing compatibility with the 

Feature class. Other ML classification algorithms can also be 

used by changing the classification function within the class. 

The training process is conducted repeatedly on the same data 

with a certain number of iterations (50 as the default value). The 

performance of the 50 models trained in this process is then 

evaluated and averaged. This is done due to the random nature 

of how ML models are trained with the cross-validation 

process. Averaging results over several iterations would lower 

the fluctuation and provide a better measure of how well the 

method performed, in general. 

4) Evaluation and Visualisation 

Cross-validation is employed in this paper to evaluate the 

classification performance. The data were initially divided into 

N folders, and 𝑁 − 1 folders are then selected for the training 

and the remaining folder is for the testing. This step is repeated 

for 𝑁 times until each folder has been used for the testing, and 

the accuracy is finally averaged. Cross-validation combines 

measures of fitness in prediction to derive a more accurate 

estimate of model prediction performance [34]. In this paper, 

10-fold cross-validation was used. 

To evaluate the performance of the classification model 

trained in the previous process, the following parameters are 

calculated and evaluated: 

 Loss (L) 𝐿 = 𝐹𝑃+𝐹𝑁𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁    (3) 

 

 Accuracy (Acc) 𝐴𝑐𝑐 = 1 − 𝐿𝑜𝑠𝑠    (4) 

 

 Sensitivity (Sens) 𝑆𝑒𝑛𝑠 = 𝑇𝑃𝑇𝑃+𝐹𝑁    (5) 

 

 Specificity (Spec) 𝑆𝑝𝑒𝑐 = 𝑇𝑁𝑇𝑁+𝐹𝑃    (6) 

where True Positive (TP): number of AD sample classified 

correctly by the algorithm as AD; False Positive (FP): number 

of HC sample classified incorrectly by the algorithm as AD; 

True Negative (TN): number of HC sample classified correctly 

by the algorithm as HC; False Negative (FN): number of AD 

sample classified incorrectly by the algorithm as HC. 

In this framework, a visualisation method was developed 

based on an eegplot function developed by Ikaro Silva [35]. The 

visualisation method is used to create a topographic scalp map 

by interpolating values from each electrode position. In this 

framework, the values plotted are normalised first. This is 

because of the different nature of the frequency magnitude in 

different frequency bands, and normalising these values would 

provide a more user-friendly plot in terms of relative 

magnitudes. This paper develops a customised implementation 

of eegplot by incorporating this study's electrode positions into 

the method so that the coordinates will not have to be manually 

selected every time when the method is called. For the provided 

dataset, the channel locations have been pre-coded and are 

represented by the black dots in the topographic plot result, as 

shown in Fig. 1. Each channel's location and name can be seen 

when overlaid with the electrode diagram. 
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III. RESULTS  

To select the optimal parameters of each step, a sensitivity 

analysis was conducted and the details are shown in the 

Supplementary Material. The results below were produced 

using the following parameters: three segments per sample in 

data augmentation, KNN (K=2) for classification, bump mother 

wavelet for CWT.    

A. Overall Classification Accuracy 

The average classification results for both features can be 

seen in Table II. It is noticeable that, for all groups of datasets, 

the classification algorithm achieved high average 

classification accuracy (>78% for FFT and >80% for CWT). 

For the below 70 groups, in particular, it shows reasonably high 

sensitivity (>89% for FFT and >90% for CWT) and specificity 

(>81% for FFT and >83% for CWT) values compared to other 

datasets. However, for the above 70 groups, the sensitivity 

values dropped significantly (>64% for FFT and >67% for 

CWT) while the specificity values remained comparable (>84% 

for FFT and >85% for CWT) to those of the below 70 groups. 

This trend can still be seen when both age groups were 

combined while keeping their EO/EC states separated. The 

average accuracy and sensitivity values dropped when  

 
compared to the below 70 datasets while remained higher than 

the above 70 sets alone. It is suspected that the data from the 

above 70 groups are causing this drop while data from the 

below 70 groups are cushioning the magnitude of this drop in 

the combined sets. 

 
Fig. 3. Scalp topographic plot of normalised classification accuracy obtained 

from using individual channel using CWT features. 

 
 

Fig. 1. Topographic plot result overlaid with EEG channel location diagram. 

Black dots correspond to the electrode locations for dataset used in this study. 

TABLE II 

THE AVERAGE CLASSIFICATION ACCURACY, SENSITIVITY, AND SPECIFICITY 

AMONG ALL CHANNELS IN EACH DATA SET. (IN %, MEAN(SD)) 

Dataset 
Accuracy Sensitivity Specificity 

FFT CWT FFT CWT FFT CWT 

Below 70 EO 
85.94 

(4.34) 

87.61 

(4.84) 

89.08 

(3.82) 

90.90 

(4.52) 

81.48 

(6.30) 

83.04 

(6.49) 

Above 70 EO 
83.09 

(6.85) 

85.68 

(5.98) 

72.33 

(12.59) 

77.68 

(12.29) 

86.89 

(5.70) 

89.00 

(4.68) 

Combined EO 
82.30 

(4.11) 

83.32 

(3.96) 

70.75 

(6.99) 

72.57 

(7.85) 

86.59 

(4.03) 

87.52 

(3.16) 

Below 70 EC 
88.73 

(6.46) 

90.26 

(5.45) 

91.91 

(4.69) 

93.00 

(4.40) 

84.35 

(8.89) 

86.43 

(7.57) 

Above 70 EC 
78.66 

(5.60) 

80.30 

(4.52) 

64.86 

(11.71) 

67.73 

(9.26) 

84.01 

(3.71) 

85.10 

(3.60) 

Combined EC 
82.23 

(4.50) 

83.41 

(4.40) 

73.30 

(8.71) 

73.80 

(8.70) 

86.78 

(3.32) 

86.89 

(3.42) 

 
Fig. 2. Scalp topographic plot of normalised classification accuracy obtained 

from using individual channel using FFT features. 
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B. Classification Accuracy for Each Channel 

The resulting classification accuracy for each channel and 

dataset were plotted in a topographic map in the evaluation 

process. These results can be seen in Fig. 2 for FFT features and 

Fig. 3 for CWT features, where the classification accuracy (in 

percentage) for each dataset was plotted. The colour bar on the 

right provides a reference guide to the values in the plots. 

Darker red zones illustrated area whose features produced high 

classification accuracy, while lighter areas’ features produced 
relatively lower accuracy. The classification accuracy values 

for each channel as well as its average for each feature type 

(FFT or CWT) for all datasets are also plotted in Fig. 4 to 

provide further overview on the topographically plotted results. 

From Fig. 2 and 3, it can be noticed in all groups that the 

temporal (T-channels), parietal (P-channels), and occipital (O-

channels) areas produced relatively high classification 

accuracy.  

It can also be seen across all age groups that the classification 

accuracy changes highly in the frontal area (F-channels) when 

comparing between EO and EC states. This change is the most 

prominent in the frontal area of the above 70 groups where the 

frontal area with high classification accuracy can be observed 

in the EO state, but not in the EC state. 

C. Channels with High Classification Accuracy 

The performance of each channel is evaluated, and the top 

five channels with the highest accuracy for each group are 

shown in Table III. For all below 70 groups, the top 5 channels 

have achieved very high classification accuracy at around 90% 

and higher for both FFT and CWT features. This is in line with 

the overall average result for both groups presented earlier.  

Even though the overall accuracy of the above 70 groups is low, 

when each channel's performance was considered separately, 

very high accuracy (>85% for FFT and >84% for CWT) was 

achieved. The fact that these channels in the above 70 EO 

groups have high accuracy in contrast to its overall values 

would suggest that the overall drop in accuracy was heavily 

contributed by other channels. While the accuracy was high 

(>89% for FFT and >92% for CWT) in the above 70 EO dataset, 

the accuracy dropped significantly (dropped to >85% for FFT 

and 84% for CWT) when the eye state was changed to EC. 

 
 

Fig. 4. CWT and FFT accuracy comparison for all channels in different datasets. 

TABLE III 

THE TOP 5 CHANNELS AND ITS CLASSIFICATION ACCURACY FOR EACH 

DATASET. (IN %, *ACC DENOTES ACCURACY) 

Below 70 EO Below 70 EC 

FFT CWT FFT CWT 

Channel Acc Channel Acc Channel Acc Channel Acc 

‘P4-PZ’ 93.49 'C4-P4' 95.26 ‘T3-T5’ 97.69 'P3-O1' 99.23 

‘T4-C4’ 93.15 'O1-O2' 95.26 ‘P3-O1’ 96.00 'T4-C4' 98.15 

‘T4-T6’ 92.54 'P3-O1' 92.90 ‘T6-O2’ 94.28 'C4-P4' 96.67 

‘T6-O2’ 89.59 'T4-T6' 92.87 ‘P3-PZ’ 94.15 'P3-PZ' 96.02 

‘P3-PZ’ 89.33 'T3-T5' 92.21 ‘T4-C4’ 93.51 'T3-T5' 96.00 

Above 70 EO Above 70 EC 

FFT CWT FFT CWT 

Channel Acc Channel Acc Channel Acc Channel Acc 

‘P3-PZ’ 94.86 'T4-T6' 94.67 ‘P3-PZ’ 88.24 'P3-PZ' 88.67 

‘F8-F4’ 94.81 'P4-PZ' 93.57 ‘T3-T5’ 87.71 'FZ-CZ' 86.14 

‘P4-PZ’ 90.71 'P3-PZ' 93.00 ‘P3-O1’ 86.29 'O1-O2' 85.57 

‘C4-CZ’ 90.19 'F8-F4' 92.90 ‘FZ-CZ’ 85.43 'P3-O1' 85.52 

‘T4-C4’ 89.86 'F3-C3' 92.81 ‘T5-O1’ 85.33 'T5-O1' 84.62 

Combined EO Combined EC 

FFT CWT FFT CWT 

Channel Acc Channel Acc Channel Acc Channel Acc 

‘P3-PZ’ 89.79 'O1-O2' 91.10 ‘T5-O1’ 93.48 'P3-O1' 89.86 

‘O1-O2’ 89.76 'P4-PZ' 89.00 ‘T3-T5’ 90.33 'T3-T5' 89.29 

‘T3-C3’ 88.02 'T4-C4' 88.86 ‘P3-PZ’ 88.38 'P3-PZ' 88.83 

‘P4-PZ’ 87.33 'C4-P4' 88.55 ‘P3-O1’ 87.88 'T5-O1' 88.50 

‘C4-CZ’ 87.10 'C3-CZ' 86.88 ‘F4-C4’ 87.19 'C4-P4' 88.45 
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 When each channel’s accuracy was averaged over all 
datasets, the top 5 channels with the highest average accuracy 

is summarised in Table IV. From previous observations in 

Table II, it was noted that, overall, CWT features produce a 

higher average classification accuracy. Upon closer inspection 

of Table IV, however, the average accuracy of the top channels 

for CWT features are slightly lower than FFT features. 

Furthermore, it can be observed from Table III and IV that, 

in general, the highest performing channels are mostly 

concentrated in the temporal (T-channels) and parietal (P-

channels) areas of the scalp, and to a lesser degree, the central 

(C-channels) and occipital (O-channels) areas in line with 

earlier observations based on Fig. 2 and 3. This is an 

encouraging result because these areas are the least affected by 

ocular artefacts commonly contaminating with artefact anterior, 

frontal EEG recordings (F-channels). Thus, it can be inferred 

that the resulting high accuracy was minimally affected by 

ocular artefacts. Moreover, these areas are also well known to 

be affected in AD, a statement which these observations would 

further support [36]. 

D. Classification Accuracy for Each Frequency Band 

The average classification accuracy for all channels when the 

average magnitudes of each frequency band were used to train 

the classification model are listed in Table V. Overall when 

only a single frequency band was used as features, the resulting 

accuracy was very low compared to using 5 bands together as 

features. For both FFT and CWT features, average accuracy 

values for single frequency features would hover around 50% 

to 70% as opposed to 70% to 90% for all 5 features. 

Closer inspection of Table V would reveal that, for both FFT 

and CWT features, delta and theta bands have consistently 

produced relatively high average accuracy with FFT features 

producing slightly higher average accuracy than CWT features. 

It is also worth noting that, relative to other datasets in the same 

study, the average accuracy obtained for the above 70 age group 

for every frequency band in this study is higher, this contrasts 

with the data shown in Table II where the below 70 group 

demonstrates higher average accuracy. 

In Fig. 5 and 6, the average magnitude of the 5 frequency 

bands and their resulting classification accuracy were selected 

for further visualisation and analysis. The magnitude of FFT 

and CWT coefficients in each specific band was averaged and 

plotted separately for HC and AD participants in Fig. 5 and 6 

for FFT and CWT features respectively. Another topographic 

plot of the accuracy obtained from models trained using that 

corresponding band is also placed below to facilitate the 

interpretability of the results. 

In both FFT and CWT cases, the magnitudes of the 

coefficients and its location on the scalp change significantly 

from HC to AD participants. The most significant changes are 

observed in the EC state for both age groups and show reduced 

magnitudes in the frontal area for delta, theta, and alpha bands 

for HC. Some changes in average magnitudes can be observed 

in the EO state, but this is not as pronounced as the EEG is 

typically desynchronised in this biological state.  

In a similar manner to Fig. 2 and 3, Fig. 5 and 6 also reveal 

that signals from channels in temporal, parietal, and occipital 

areas have high classification accuracy. However, the large 

changes in magnitude observed in Fig. 5 and 6 do not seem to 

translate into a higher classification accuracy for these 

channels. This can be appreciated in the magnitude plots where 

significant differences do not always correlate directly with the 

classification accuracy plots below them. It is possible that the 

fluctuations in magnitude which yield high accuracies for the 

temporal, parietal, and occipital areas are subtler but more 

consistent and patterned than the large changes observed in the 

frontal areas which might have been more irregular in nature. 

IV. DISCUSSION 

The novelty of this work lies in the development of a new 

and robust software framework which has proven to be 

effective in improving classification of EEG recording and 

flexible in selecting the feature extraction methods and ML 

approaches. Its robustness is demonstrated in how 2 feature 

TABLE IV 

THE TOP 5 CHANNELS BASED ON THE AVERAGE CLASSIFICATION ACCURACY 

OVER ALL DATASET. (IN %, MEAN(SD)) 

FFT CWT 

Channel Name Average Accuracy  Channel Name Average Accuracy 

‘P3-PZ’ 90.79 (2.87) ‘P3-PZ’ 89.75 (3.67) 

‘T3-T5’ 89.15 (4.08) ‘T3-T5’ 89.42 (4.21) 

‘T4-C4’ 86.47 (5.91) 'O1-O2' 89.25 (3.21) 

‘T4-T6’ 85.81 (5.63) ‘P4-PZ’ 89.21 (3.22) 

‘P4-PZ’ 85.30 (7.44) 'P3-O1' 88.66 (6.13) 

TABLE V 

THE AVERAGE CLASSIFICATION ACCURACY FOR EACH FREQUENCY BAND AND 

DATASET. (IN %, MEAN(SD)) 

 
 δ θ α β γ 

F
F

T
 

Below 70 EO 
57.62 

(8.40) 

62.87 

(4.81) 

58.04 

(5.43) 

63.16 

(7.85) 

60.42 

(7.46) 

Below 70 EC 
60.29 

(5.10) 

66.85 

(4.43) 

54.47 

(6.63) 

61.85 

(7.93) 

56.10 

(8.83) 

Above 70 EO 
66.64 

(6.50) 

75.28 

(9.04) 

66.69 

(7.63) 

68.48 

(7.99) 

72.40 

(7.91) 

Above 70 EC 
66.36 

(10.10) 

71.04 

(7.92) 

63.26 

(8.35) 

65.54 

(6.58) 

66.15 

(7.06) 

Combined EO 
67.12 

(4.77) 

69.12 

(6.87) 

62.07 

(4.89) 

64.22 

(5.70) 

65.50 

(6.26) 

Combined EC 
68.02 

(6.98) 

69.10 

(6.99) 

59.42 

(4.47) 

63.35 

(5.41) 

61.86 

(5.13) 

 Average 
64.34 

(3.92) 

69.04 

(3.78) 

64.43 

(3.91) 

60.66 

(2.13) 

63.74 

(5.11) 

C
W

T
 

Below 70 EO 
57.69 

(6.11) 

60.03 

(8.75) 

57.80 

(7.34) 

55.12 

(6.21) 

56.63 

(7.27) 

Below 70 EC 
58.64 

(6.05) 

59.42 

(7.36) 

52.12 

(7.20) 

54.40 

(6.82) 

52.17 

(6.31) 

Above 70 EO 
64.67 

(10.43) 

67.39 

(8.90) 

63.25 

(10.96) 

60.77 

(7.36) 

58.28 

(8.06) 

Above 70 EC 
61.90 

(10.37) 

69.15 

(8.20) 

64.18 

(7.31) 

59.11 

(7.52) 

56.34 

(9.00) 

Combined EO 
61.08 

(5.33) 

64.75 

(6.26) 

62.06 

(5.75) 

59.89 

(6.44) 

60.56 

(5.42) 

Combined EC 
63.82 

(5.12) 

63.30 

(6.74) 

59.00 

(5.96) 

58.49 

(5.81) 

58.23 

(6.62) 

 

Average 
61.30 

(2.53)  

64.01 

(3.55) 

59.74 

(4.08) 

57.96 

(2.38) 

57.03 

(2.57) 
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extractions, Fourier and Wavelet, were conducted using the 

framework. It has the potential to allow researchers to explore, 

not only various EEG features but also their ability to act as 

classifying parameters with minimal modification to the 

existing framework. As a matter of fact, with some 

modifications, its utility could be expanded to cover various 

brain disorders, other than dementia, and the potential to 

perform multi-class dataset classification could be implemented 

to separate between normal brain function and focal or 

generalised brain deficits underpinning various neurological 

disorders.   

With regards to the studies conducted using this novel 

framework, we clearly distinguish between EO and EC EEG 

epochs and demonstrate different classification accuracies, 

significantly favouring the former state for the above 70 cohorts 

(95% for EO Vs 85% EC) and slightly the latter for participants 

below 70 years of age (99% for EC Vs 95% EO), shown in 

Table III. This raises the suspicion that due to age-related 

modifications in brain networks, the EO vs EC state appears to  

be more discriminating for those above the age of 70, but 

improves accuracy in all age groups.  

The low average sensitivity and accuracy in the above 70 

groups could lead to the inference that ageing causes a general 

increase in randomness in frequency components in people who 

are over 70y of age. This random change in frequency 

characteristics would cause the classifier to be unable to detect 

a regular cluster or pattern from using frequency features which 

would result in its failure to produce high sensitivity models for 

participants above the age of 70. 

Equally of note in this study is the effect imposed by EEG 

data segmentation on classification accuracy. This shows that 4 

second EEG mini-epochs offer the best trade-off between the 

number of samples on one hand (the 12-second epoch of each 

participant produces 3 mini-epochs) and the preservation of 

information that can be extrapolated from each EEG data 

segment on the other. When the length of the mini-epochs drops 

below 4 seconds, this translates into a gradual drop in 

performance (Fig. S1). Remarkably, EEG epochs of 4s each 

Fig. 5. Topographic plots displaying the average magnitude of FFT coefficients 

of selected frequency and their corresponding classification accuracy. 

 
Fig. 6. Topographic plots displaying the average magnitude of CWT 

coefficients of selected frequency and their corresponding classification 

accuracy. 
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(8000 data points at a sampling rate of 2KHz) produce a very 

high degree of classification accuracy above 90% (Fig. S1).  

The performance of different ML algorithms, including Fine 

Classification Tree, Fine KNN, and the Fine Linear SVM were 

independently tested for the FFT and CWT features. 

Consistently the KNN method showed the best overall 

classification accuracy (Fig. S2). This difference in 

performance between methods is even more apparent when the 

CWT features were used (Fig. S2).  

Despite their popularity in many studies, frequency and time-

frequency characteristics still need further investigation. This 

validation study used simple feature definition in small 

numbers and has yielded up to 99% accuracy. This has 

demonstrated that complex feature definitions in large numbers 

are not necessary to produce high classification accuracy. 

One main drawback of the validation studies is the fact that 

the features were defined based on average values of the Fourier 

and wavelet transform coefficients. These features provide a 

good overview of the frequency domain but do not give any 

temporal information. This means that the research particularly 

with the FFT approach largely disregards the time component 

of the features and treats the brain as a linear and static system. 

KNN itself is a non-parametric and non-linear classification 

method, and the study did not take advantage of its full 

potential. To capitalise on these characteristics fully, other 

features containing temporal information, such as those offered 

by wavelet-based cross-spectrum and bispectrum estimates and 

other parametric time domain methods like the Error reduction 

ratio causality test [37] should be considered as well in future 

work. Clearly larger cohorts of age-stratified patients with 

different forms of dementia and healthy controls need to be 

studied within the KNN algorithm, an ideally suited nonlinear 

ML method to be applied in this type of multi-class 

classification problem. 

V. CONCLUSION 

In this research, a novel dementia classification framework 

based on EEG data has been developed and implemented in 

MATLAB 2017 environment, to classify patients with 

Alzheimer's Disease from healthy control participants using 

signal processing and ML algorithms.  

The results have demonstrated that the framework's process 

can reach a classification accuracy of up to 97% for Fourier 

transform features and 99% for wavelet transform features for 

some channels (Table III). The framework's numerical and 

visual result has also shown that channels around the temporal, 

parietal, and occipital areas have consistently high 

classification accuracy for Alzheimer's Disease in keeping with 

previous studies [7]. This spatial distribution of the 

abnormalities is consistent in both eye states, hinting that this is 

independent of the subject's eye state (EO/EC). This finding is 

also reproduced in the age combined datasets, suggesting that 

the topology of the findings is additionally age independent and 

consistent with previous research criteria that identify the 

temporoparietal areas as typically involved in AD pathology 

[36].   

The results also have indicated that delta and theta band 

features produced the highest average classification accuracy. 

This is in keeping with previous observations that have 

identified slowing of the EEG in Alzheimer's Disease, with an 

increase of theta and delta power and good correlation between 

the degree of these EEG abnormalities and cognitive 

impairment [7]. Therefore, this shift of neuronal 

synchronisation over low frequency bands in this type of 

dementia appears to disrupt information processing in cortical 

networks, as it is associated to the cognitive dysfunction [7]. 

Further studies focusing on these two frequencies should be 

conducted in future work.  

In conclusion, the framework developed and its subsequent 

validation results have shown that this approach is robust and 

flexible and can be used in studies involving EEG data, signal 

processing techniques, and ML classification algorithms in 

dementia research. The validation studies have also provided 

new insights into how channels and frequency bands can be 

used to pinpoint specific areas and parameters which could be 

used to develop AD biomarkers. The developed framework 

shows a high classification accuracy with EEG epochs as short 

as 4 seconds each, highlighting the amount of hidden 

information embedded within routinely performed EEG 

recordings, that can be easily and readily obtained at low cost. 

This study contributes to the definition of a methodology that is 

highly efficient at identifying the presence of AD when the 

disease is in its moderate stage. This method paves the way 

towards its application during earlier disease stages (i.e., at the 

mild cognitive impairment stage). 
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