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Abstract 49 

Drylands contain 25% of the world’s soil organic carbon (SOC), which is controlled by many 50 

factors, both abiotic and biotic. Thus, understanding how these factors control SOC 51 

concentration can help to design more sustainable land-use practices in drylands aiming to foster 52 

and preserver SOC storage, something particularly important to fight ongoing global warming. 53 

We use two independent, large-scale databases with contrasting geographic coverage (236 sites 54 

in global drylands and 185 sites in Patagonia, Argentina) to evaluate the relative importance of 55 

abiotic (precipitation, temperature and soil texture) and biotic (primary productivity) factors as 56 

drivers of SOC concentration in drylands at global and regional scales. We found that biotic and 57 

abiotic factors had similar effects on SOC concentration across regional and global scales: 58 

maximum temperature and the sand content had negative effects, while precipitation and plant 59 

productivity exerted positive effects. Our findings provide empirical evidence that increases in 60 

temperature and reductions in rainfall, as forecasted by climatic models in many drylands 61 

worldwide, promote declines in SOC both directly and indirectly via the reduction of plant 62 

productivity. This has important implications for the conservation of drylands under climate 63 

change; land management should seek to enhance plant productivity as a tool to offset the 64 

negative impact of climate change on SOC storage and on associated ecosystem services. 65 
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Introduction  72 

Arid, semi-arid and dry-subhumid ecosystems (drylands hereafter) cover about 45% of Earth’s 73 

land surface (Prăvălie 2016) and provide habitat and ecosystem services to 38% of the global 74 

population, yet they are highly sensitive to climate change and desertification (MEA 2005, 75 

Reynolds and others 2007, Maestre and others 2012a). Climatic models for the second half of 76 

this century forecast average warming between 3.2 °C and 3.7 °C, widespread increases in 77 

aridity and changes in rainfall amounts and patterns in drylands worldwide (Christensen and 78 

others 2007, Huang and others 2016, Lin and others 2015). These changes will expand the global 79 

area occupied by drylands by up to 23% by 2100 (Huang and others 2016), and will have 80 

profound effects on multiple aspects of the structure and functioning of their ecosystems. These 81 

include reductions in aboveground net primary productivity and plant cover (Anadón and others 82 

2014, Gherardi and Sala 2015), which will lead to reduced soil organic carbon (SOC) 83 

sequestration and content (Jenkinson and others 1991, Schimel and others 1994, Kirschbaum 84 

1995). The world’s dryland soils contain about 385 Pg of SOC in the top 1 m (Jobbágy and 85 

Jackson 2000, Safriel and Adeel 2005), which is about one quarter of total world’s SOC (Batjes 86 

1996, Jobbágy and Jackson 2000). This represents 35 times more carbon than that added into 87 

the atmosphere through anthropogenic activities, estimated at 11.2 Pg C/y in 2015 (Le Quéré and 88 

others 2016). According to Li and others (2015), SOC storage in drylands is highly sensitive to 89 

climate changes, as even small variations in rainfall and temperature can lead to increased soil 90 

respiration and CO2 efflux (Vicca and others 2014). This could have an impact on the global 91 

atmospheric C budget because soil CO2 efflux, on a global scale, is an order of magnitude larger 92 

than the amount of CO2 released from burning fossil fuels and land-use change combined (Luo 93 

and Zhou 2006).  In addition to storage of C as a vital ecosystem service, SOC influences the 94 



physical, chemical and biological properties of the soil, and contributes to processes such as the 95 

biogeochemical cycling of several nutrients (McGill and Cole 1981) and the formation and 96 

stabilization of soil aggregates (Tisdall and Oades 1982). Therefore, SOC has been proposed as a 97 

main indicator of soil quality in drylands (Manley and others 1995, Herrick and Wander 1997), 98 

and is routinely used when monitoring land degradation and desertification processes in these 99 

areas (FAO 2011, Oliva and others 2011).  100 

Given the potential feedbacks to climate of reductions in SOC associated with climate 101 

change (Schlesinger and Andrews 2000), the extent of drylands worldwide and the important 102 

role they play in the global C cycle, it is crucial to improve our understanding of the relative 103 

importance of biotic and abiotic factors affecting SOC concentration in these ecosystems. It is 104 

also critical that the world’s dryland soils are managed efficiently and sustainably to mitigate 105 

against the potentially negative effects of changing climate (Lal 2004, Deb and others 2015). 106 

There has been significant progress in understanding controls on regional patterns of SOC, which 107 

have been derived mostly from correlative analyses across natural environmental gradients 108 

focusing on bivariate relationships between variables such as SOC and primary productivity and 109 

climatic features (Parton and others 1987, Oades 1988, Burke and others 1989, Wu and others 110 

2003, He and others 2014). These studies have revealed that a large proportion of the variation in 111 

SOC can be accounted by its relationship with abiotic factors such as precipitation, temperature 112 

and soil texture. However, abiotic factors covary with biotic attributes such as species richness or 113 

aboveground net primary productivity (ANPP; Ma and others 2010, Gaitán and others 2014), and 114 

it is often difficult to disentangle their independent effects. As SOC storage is largely controlled 115 

by the balance of C inputs from plant production and outputs through mineralization (Jenny 116 

1941), biotic attributes such as ANPP are key factors controlling SOC concentration (Jobbágy 117 



and Jackson 2000). Despite the growing recognition of biotic attributes as a major driver of 118 

ecosystem functioning in drylands (Maestre and others 2012b, Jin and others 2015, Delgado-119 

Baquerizo and others 2016), there are few studies that attempt to evaluate how biotic factors 120 

modulate the effects of climate on SOC concentration and dynamics (see for example Luo and 121 

others 2017 for cropping systems from Australia). Abiotic and biotic factors work together to 122 

control SOC concentration and dynamics; therefore, correlative bivariate analyses focusing on 123 

single effects of these factors to predict SOC would lead to some interpretation errors as the 124 

observed effect of a particular factor may be due to the combined consequences of its direct and 125 

indirect (modulated by another factor) effects on SOC (Luo and others 2017). In addition, there 126 

is some evidence showing that the main factors controlling SOC concentration are different 127 

between regions (Dai and Huang 2006, Evans and others 2011, Wang and others 2013) or are 128 

scale-dependent (Quin and others 2016).  To produce more reliable future predictions about SOC 129 

concentration and dynamics in drylands under climate change there is a need to elucidate how 130 

abiotic and biotic drivers work together to directly and/or indirectly regulate SOC (Luo and 131 

others 2017), and to test the scale dependency of these drivers. We aimed to do so by evaluating 132 

the relative importance of abiotic (precipitation, temperature and soil texture) and biotic (ANPP) 133 

factors as drivers of SOC concentration in drylands at the regional and global scales. To do this, 134 

we utilised data from two large scale and unique surveys, a global study including 236 drylands 135 

from all continents except Antarctica (“Global” hereafter; Maestre and others 2012b; Ochoa-136 

Hueso and others 2018) and a regional network of long-term monitoring drylands including 185 137 

sites in Argentinian Patagonia (“Patagonia” hereafter; Gaitán and others 2014). Our central 138 

hypothesis is that biotic and abiotic factors play a different role in regulating SOC concentration 139 

in drylands at regional and global scales. 140 



Methods  141 

Study sites and field data collection 142 

Global. We used data from a global network of 236 dryland sites located in 19 countries from all 143 

continents except Antarctica (Ochoa-Hueso and others 2018, Fig. 1). All the sites were surveyed 144 

between February 2006 and November 2013 according to a standardized sampling protocol (see 145 

Maestre and others 2012b for details). At each site, four parallel 30 m transects, spaced 8 m apart 146 

oriented downslope, were established. The cover of perennial vegetation was measured in each 147 

transect using the line-intercept method (Tongway and Hindley 2004). Using a stratified 148 

sampling design, we sampled the top 7.5 cm of the soil from up to three different microsites per 149 

site, depending on the dominant growth forms present. These microsites always included a 150 

location with bare soil (i.e. devoid of vascular plants), as well as microsites under woody (trees 151 

or shrubs) and/or under grassy patches. Five samples were collected from each microsite, 152 

yielding between 10 and 15 samples per site. After field collection, soil samples were taken to 153 

the laboratory, where they were air-dried, sieved (with 2 mm mesh) and stored awaiting 154 

laboratory analyses. Soil organic carbon was determined by colorimetry after oxidation with a 155 

mixture of potassium dichromate and sulfuric acid (Anderson and Ingramm 1993). Soil texture 156 

was quantified using a modified version of the pipette method (Kettler and others 2001). This is 157 

a simple and rapid quantitative method in which particles are dispersed using 3% 158 

hexametaphosphate ((NaPO3)n), and then a combination of sieving and sedimentation are used 159 

to determine the grain size distribution. The data obtained with this approach and with the pipette 160 

method are highly correlated (Kettler et al., 2001). 161 

 162 



Patagonia. We used a subset of 185 sites from the > 300 sites comprising the MARAS (Spanish 163 

acronym for “Environmental Monitoring for Arid and Semi-Arid Regions”) network (Gaitán and 164 

others 2014) for which we were able to obtain soil data (Fig. 1). All the sites were surveyed 165 

between February 2007 and February 2013. At each site, three parallel 50 m transects, spaced 6.5 166 

m apart orientated downslope, were established. The cover of perennial vegetation was measured 167 

in one of these transects using the line-intercept method (Tongway and Hindley 2004). Soil 168 

samples (0-10 cm) were collected and stored using the same procedure described above. Soil 169 

organic carbon and texture were determined by the Walkley-Black (Nelson and Sommers 1996) 170 

and pipette (Gee and Or 2002) methods, respectively. 171 

Productivity and climate 172 

We used mean annual NDVI (NDVImean hereafter) as a surrogate of ANPP in both datasets. 173 

Several studies have shown that mean NDVI is a good estimator of ANPP (Tucker and others 174 

1983, Prince 1991, Paruelo and others 1997). We used Google Earth Engine 175 

(https://earthengine.google.com) and extracted the mean value of NDVI for each site for the 176 

period 1st May 2007 to 30th April 2012 from the collection LANDSAT/LT05/C01/T1_SR. This 177 

collection is the atmospherically corrected surface reflectance dataset from the Landsat 5 ETM 178 

sensor (pixel size of 30 × 30 m). Data on mean annual precipitation (MAP) and mean 179 

temperature maxima (Tmax) for each site were obtained using the Worldclim global database 180 

(http://www.worldclim.org/, Hijmans and others 2005). 181 

Data analysis 182 

Soil data obtained in bare soil and vegetated patches were scaled up to obtain site-level estimates 183 

following this equation: 184 

Soilsite = Soilbare × %BSC × 100-1 + Soilwoody × %WC × 100-1 + Soilgrass × %GC × 100-1 185 

https://earthengine.google.com/
http://www.worldclim.org/


where, Soilsite, Soilbare, Soilwoody, Soilgrass are the content of a given soil variable (SOC, clay, silt 186 

or sand, in %) for the whole site, bare soil patches, woody vegetation patches and grass 187 

vegetation patches, respectively. %BSC, %WC, %GC are the percentages of cover of bare soil, 188 

woody vegetation and grass vegetation at a given site, respectively. Sand content was negatively 189 

correlated with both clay and silt contents (Spearman ȡsand-silt = -0.966 and -0.956; Spearman 190 

ȡsand-clay = -0.562 and -0.825; in the Global and Patagonia datasets, respectively; P < 0.001 in all 191 

cases). Thus, we selected sand content for further analyses, as this variable is known to play a 192 

key role in controlling water availability, community structure and biogeochemical processes in 193 

drylands (Mills and others 2009). 194 

We used Structural Equation Modelling (SEM, Grace 2006) to evaluate the relative 195 

importance and direct/indirect effects of climatic variables and NDVImean as drivers of 196 

variations in SOC concentration. The first step in SEM requires establishing an a priori model 197 

based on the known effects and relationships among the drivers of SOC (Appendix I). We tested 198 

the fit of this model to our data using the Chi-square test (Ȥ2; the model has a good fit when Ȥ2  199 

≤2 and P is high [typically >0.05]), the root mean square error of approximation (RMSEA; the 200 

model has a good fit when RMSEA is  ≤0.05]) and the Normed Fit Index (NIF; the model has a 201 

good fit when NIF is  >0.90). Path coefficients estimates were obtained using the maximum 202 

likelihood estimation technique; they are equivalent to standardized partial regression 203 

coefficients, and are interpreted as relative effects of one variable upon another (Grace 2006).  204 

To account for potential effects caused by the spatial structure of the data, we tested the 205 

spatial autocorrelation in our data by conducting a semi-variogram analysis of the residuals of 206 

the SEM models. As can be shown in these semi-variograms (Appendix II), we did not find any 207 

relationship between the semivariance explained and the distance between sites. This result 208 



indicates the absence of spatial autocorrelation in the residuals and, therefore, suggests that 209 

spatial autocorrelation is not an issue in our datasets.  210 

All analyses were done independently for the Global and Patagonia datasets using AMOS 211 

18.0 (SPSS Inc. Chicago, IL, USA) for SEM analyses and GS+ Version 9 (Gamma Software 212 

Design) for autocorrelation analyses. The data reported in this article have been deposited in 213 

figshare (Gaitán and others 2018). 214 

 215 

Results 216 

The two datasets span a broad range of climatic, soil and NDVImean conditions, although the 217 

range of variation was greater in the Global than in the Patagonia datasets (Table 1). The 218 

bivariate analysis showed a positive relationship between MAP and NDVImean with SOC, and a 219 

negative relationship between SOC and sand content in both the Patagonia and Global datasets. 220 

In contrast, maximum temperature had a negative relationship with SOC in Patagonia that was 221 

not found in the Global dataset (Fig. 1). Our a priori SEM model was consistent with our data in 222 

both cases, as indicated by the goodness-of-fit statistics (Fig. 2). The model explained ~60% and 223 

~75% of the variation in SOC in the Global and Patagonia datasets, respectively. Additionally, 224 

our SEM models explained ~45% and ~25% of the variation found in NDVImean in the Global 225 

and Patagonia datasets, respectively. 226 

In both datasets, maximum temperature and sand content had negative effects on SOC, 227 

while ANPP and precipitation had a positive effect on this variable (Fig. 3c). The most important 228 

factor controlling SOC was sand content and NDVImean in the Global and Patagonia datasets, 229 

respectively (Fig. 3c). In both datasets, the negative total effect of sand content was mainly direct 230 

(about 90%), and the rest was indirect and mediated by its negative relationship with plant 231 



productivity. By contrast, only 10-20% of the positive total effect of precipitation was direct; the 232 

rest was indirect and mediated by its positive relationship with plant productivity. In Patagonia, 233 

the total negative effect of maximum temperature on SOC was half direct and half indirect 234 

(mediated by the negative relationship between temperature and plant productivity); while in the 235 

Global dataset maximum temperature had a negative effect on SOC which was 100% direct (Fig. 236 

2a,b and Fig. 3a,b,c). 237 

 238 

Discussion 239 

In this study we applied a SEM approach and an a priori model based on sound theory and 240 

previous findings from two large-scale and unique observational datasets collected at regional 241 

and global scales in drylands. By doing so, we could separate the direct and indirect (via plant 242 

productivity) effects of climate and soil texture on SOC concentration. These drivers explained a 243 

high portion of the variability in SOC concentration (75% in Patagonia and 60% in Global) 244 

and, contrary to our hypothesis, had very similar effects on SOC at regional and global scales: 245 

maximum temperature and the content of sand had negative effects on SOC, while precipitation 246 

and plant productivity exerted positive effects on this variable. Our findings provide new insights 247 

about how climate, soil texture and plant productivity control SOC in drylands. 248 

Our results are consistent with previous studies that have shown, in climatically similar 249 

regions, relationships between SOC and its environmental controls are similar, independent of 250 

the evolutionary history of the region (Paruelo and others 1998). The amount of SOC results 251 

from the balance of C inputs from primary productivity and the return of C to the atmosphere 252 

through mineralization of organic matter (Jenny 1941). Water availability largely controls 253 

ecosystem processes in drylands, affecting carbon fixation and decomposition (Whitford 2002). 254 



We found a positive relationship between mean annual precipitation and NDVImean (a surrogate 255 

of aboveground net primary productivity), as found in previous studies across regional and 256 

global scales (Sala and others 1988, Paruelo and others 1999, Bai and others 2008). 257 

Mineralization of organic matter also increases with increasing soil moisture in drylands 258 

(Amundson and others 1989, Raich and Schlesinger 1992, Conant and others 2000); however, 259 

we did not find significant relationships between mean annual precipitation and SOC in either 260 

the Global or the Patagonia datasets. This is probably due to the fact that mineralization responds 261 

to precipitation pulses at fine temporal scales (hours or days) that are not captured by annual 262 

precipitation (Schwinning and Sala, 2004). We found a positive effect of precipitation on SOC, 263 

which was mainly indirect (mediated by NDVImean), this result agrees with findings from 264 

previous studies conducted across regional natural environmental gradients showing a positive 265 

relationship between precipitation and SOC (e.g. Parton and others 1987, Burke and others 1989, 266 

He and others 2014). 267 

The direct negative effect of maximum temperature on SOC observed in both datasets is 268 

supported by other studies showing soil organic matter contents decrease with increasing 269 

temperature (He and others 2014) as a result of increased mineralization rates (McDaniel and 270 

Munn 1985, Raich and Schlesinger 1992, Kirchbaum 1995). Additionally, temperature increases 271 

are associated with higher incident solar radiation and C output through photo-degradation 272 

(Austin and Vivanco 2006, Almagro and others 2015). In Patagonia, we found that about 50% of 273 

the total negative effect of temperature on SOC was indirect via its effect on plant productivity. 274 

We found a negative relationship between maximum temperature and NDVImean in Patagonia, 275 

which was not found when analysing the data from the Global dataset. This could be due to the 276 

soil evaporation and vegetation drought stress increase as temperature increases (Epstein and 277 



others 1996) in Patagonia as we found a positive relationship between maximum temperature 278 

and aridity (calculated as: 1-evapotranspiration/precipitation; Pearson r = 0.54, P < 0.001). In 279 

contrast, in Global, the maximum temperature does not seem to affect the aridity conditions since 280 

these variables were uncorrelated (Pearson r = -0.07, P = 0.27). 281 

We found a negative total effect of soil sand content on SOC, which agrees with previous 282 

regional studies conducted in drylands (Parton and others 1997, Burke and others 1989, 283 

Buschiazzo and others 1991, He and others 2014). A large proportion (85%) of this total effect 284 

was direct and likely caused by the reduction in clay content as the sand fraction increases. Clay 285 

has been shown to actively protect organic matter from decomposition by adsorption and 286 

aggregation, slowing turnover and increasing SOC residence times (Paul 1984, Schimel and 287 

others 1985). About 15% of the total effect of sand content was indirect and mediated by its 288 

negative relationship with NDVImean. These effects are likely related to those of texture  on soil 289 

water availability; increasing sand content decreases the water holding capacity of soils (Rawls 290 

and others 2003, Saxton and Rawls 2006), which can have a negative effect on plant productivity 291 

in water-limited ecosystems (Huenneke and Schlesinger 2006). In addition, coarse-textured soils 292 

have a greater water infiltration capacity than fine-textured soils (Saxton and others 1986). This 293 

could favour the loss of SOC due to leaching below the root zone but this was not evaluated in 294 

this study. SOC storage at depth is an important component of total soil C stocks; for example, 295 

the percentage of SOC in the 20 to 100 cm (relative to the first meter) averaged 67% for deserts 296 

(Jobbágy and Jackson, 2000). In this study, we evaluated the concentration of shallow SOC (0 to 297 

10 cm in Patagonia and 0 to 7.5 cm in Global); therefore, the assessment of SOC in deeper soil 298 

layers could be a useful next step to have a more complete knowledge of the biotic and abiotic 299 

factors controlling total soil C stocks. 300 



Our models explained more than 60% of the variation in SOC data, a very high 301 

percentage when dealing with large-scale surveys like ours (Burke and others 1989, Yang and 302 

others 2008). Other factors not evaluated in this study and that can affect SOC may explain the 303 

percentage of unexplained variation observed. For example, grazing is an important factor 304 

affecting SOC in drylands (McSherry and Ritchie 2013). Moreover, in this study although we 305 

utilized average climate data for a 30 year period from 1970 to 2000 (Fick and Hijmans 2017), 306 

SOC formation processes can operate at longer time-scales. Indeed a recent study using our 307 

global dataset has highlighted the importance of past climates as drivers of current SOC contents 308 

(Delgado-Baquerizo and others 2017), so the climate of the past may be another source of 309 

variability not explained by our models. 310 

Several studies conducted along natural gradients have reported effects of precipitation, 311 

temperature, soil sand content and plant productivity on SOC similar to those in this study 312 

(Parton and others 1987, Burke and others 1989, Wu and others 2003, He and others 2014). 313 

However, very few studies have simultaneously assessed how multiple biotic and abiotic 314 

attributes affect SOC concentration and have quantitatively partitioned its direct and indirect 315 

effects (Maestre et al. 2016). Moving beyond bivariate analyses can enhance our mechanistic 316 

understanding of the factors controlling SOC because focusing on bivariate relationships can 317 

lead to misleading interpretation of some results when testing the effects of multiple independent 318 

variables that are not fully independent. This is exemplified with our bivariate analysis, which 319 

showed a non-significant relationship between the maximum temperature and SOC in the Global 320 

database; however, our SEM analysis revealed a direct negative effect of maximum temperature 321 

on SOC. The use of SEM is a powerful approach to study ecological processes and is being 322 

increasingly used in ecology to account for the potential effects of co-varying drivers of 323 

environmental variables and to separate their direct and indirect effects (e.g. Grace 2006, Grace 324 



and others 2010). Across broad natural gradients, multiple abiotic factors co-vary (e.g. De 325 

Frenne and others 2013, Guuroh et al. 2018), as was also found in our study (i.e., positive 326 

correlation between precipitation and maximum temperature,  and negative between precipitation 327 

and sand content in Global and positive correlation between maximum temperature and sand 328 

content in Patagonia). To account for the potential effects of co-varying drivers of SOC in our 329 

study, and to separate the independent effects of controlling factors on the variable of interest, 330 

we have included these correlations in our SEM. However, we acknowledge that establishing 331 

cause-effect relationships using observational data like ours is always difficult (Grace 2006). For 332 

example, we found a positive relationship between plant productivity and SOC, which we 333 

interpreted as being due to the input of organic matter to the soil. However, SOC influences 334 

several physical, chemical and biological properties of the soil (Herrick and Wander 1997), and 335 

could therefore affect plant productivity via different pathways. 336 

Our study suggests the existence of an important degree of convergence in how biotic and 337 

abiotic factors control SOC at both regional and global scales in drylands, which has important 338 

implications in the context of ongoing climate change. Our findings suggest that projected 339 

increases in temperature and aridity by the second half of this century (Huang and others 2016) 340 

will promote significant declines in SOC both directly and indirectly via the reduction of plant 341 

cover and primary productivity (Delgado-Baquerizo and others 2013, Brookshire and Weaver 342 

2015). While our findings should be interpreted with caution and not be directly projected into 343 

the future - climate change can promote changes in vegetation and soil processes that trigger 344 

non-linear responses in SOC (Burkett and others 2005) - they have important implications for the 345 

conservation and management of SOC in drylands under climate change. Because more than 346 

65% of drylands are used for grazing of domestic herbivores (Millennium Ecosystem 347 

Assessment 2005), actions aiming to maintain and enhance plant productivity can also offset the 348 



negative impacts of climate change on ecosystem services and functions associated with SOC 349 

storage. These actions include the appropriate management of the livestock carrying capacity, the 350 

use of rotational grazing systems and the use of different aspects of plant diversity (functional vs. 351 

taxonomical) to keep rangelands in a productive state or to restore degraded rangelands (García-352 

Palacios and others 2018, Guuroh et al. 2018). 353 
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Table 1. 626 

Variable Mean Standard 
deviation 

Minimum Maximum 

G P G P G P G P 

MAP (mm.yr-1) 425.40 232.80 238.80 110.30 66.00 138.00 1219.0 801.00 

Tmax (°C) 22.40 15.40 5.40 3.30 4.90 9.40 34.90 23.00 

SAND (%) 65.00 71.80 18.10 15.00 6.90 13.40 98.40 97.00 

NDVImean (unitless) 6.88 5.25 2.64 1.91 1.58 2.33 14.57 12.87 

SOC (%) 1.54 1.03 1.05 0.87 0.10 0.09 5.40 4.82 
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Table 1. Mean, standard deviation, minimum and maximum for mean annual precipitation 643 

(MAP), mean annual temperature maxima (Tmax), soil sand content (SAND), mean annual of 644 

the normalized difference vegetation index (NDVImean) and soil organic carbon (SOC) for 645 

Global (G) and Patagonia (P) datasets. N = 236 and 185 in Global and Patagonia datasets, 646 

respectively. 647 
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Figure 3. 692 
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Figure 1. Location of the sampling sites in the Global (black dots) and Patagonia (blue dots) 719 

datasets. Precipitation data from Worldclim global database (http://www.worldclim.org/, 720 

Hijmans and others 2005). 721 

 722 

Figure 2. Bivariate relationships between abiotic (mean annual precipitation -MAP-, mean 723 

maximum temperature -Tmax- and soil sand content -SAND-) and biotic (mean annual of the 724 

normalized difference vegetation index -NDVImean-) factors with topsoil organic carbon 725 

concentration (SOC) in the Global (red dots) and Patagonia (blue dots) datasets. 726 

 727 

Figure 3. Structural equation models for soil organic carbon (SOC) from the Global and 728 

Patagonia datasets. Single headed arrows indicate a hypothesized causal influence of one 729 

variable upon another. Double headed arrows indicate correlation without causal relationship. 730 

The numbers adjacent to arrows are path coefficients; they show the strengths of the effect. The 731 

widths of the arrows are proportional to the path coefficients. Full (dotted) arrows indicate 732 

positive (negative) relationships. Non-significant (P>0.05) paths were eliminated. The R2 next to 733 

response variables indicate the proportion of variance explained. Significance levels as follows: 734 

*P<0.05; **P<0.01; ***P<0.001. Abbreviations are as in Table 1. 735 

 736 

Figure 4. Standardized direct (a), indirect (b) and total effects (c) of soil sand content (SAND), 737 

mean annual temperature maxima (TMAX), mean annual precipitation (MAP), and mean annual 738 

of the normalized difference vegetation index (NDVImean) upon soil organic carbon in the 739 

Global (red bars) and Patagonia (blue bars) datasets. 740 

http://www.worldclim.org/

