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Abstract 19 

 20 

Decisions must be implemented through actions, and actions are prone to error. As such, when 21 

an expected outcome is not obtained, an individual should not only be sensitive to whether the 22 

choice itself was suboptimal, but also whether the action required to indicate that choice was 23 

executed successfully. The intelligent assignment of credit to action execution versus action 24 

selection has clear ecological utility for the learner. To explore this scenario, we used a modified 25 

version of a classic reinforcement learning task in which feedback indicated if negative prediction 26 

errors were, or were not, associated with execution errors. Using fMRI, we asked if prediction 27 

error computations in the human striatum, a key substrate in reinforcement learning and decision 28 

making, are modulated when a failure in action execution results in the negative outcome. 29 

Participants were more tolerant of non-rewarded outcomes when these resulted from execution 30 

errors versus when execution was successful but the reward was withheld. Consistent with this 31 

behavior, a model-driven analysis of neural activity revealed an attenuation of the signal 32 

associated with negative reward prediction error in the striatum following execution failures. 33 

These results converge with other lines of evidence suggesting that prediction errors in the 34 

mesostriatal dopamine system integrate high-level information during the evaluation of 35 

instantaneous reward outcomes. 36 

  37 
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Introduction 38 

 When a desired outcome is not obtained during instrumental learning, the agent should 39 

be compelled to learn why. For instance, if an opposing player hits a home run, a baseball pitcher 40 

needs to properly assign credit for the negative outcome: The error could have been in the decision 41 

about the chosen action (e.g., throwing a curveball rather than a fastball) or the execution of that 42 

decision (e.g., letting the curveball break over the plate rather than away from the hitter, as 43 

planned). Here we ask if teaching signals in the striatum, a crucial region for reinforcement 44 

learning, are sensitive to this dissociation. 45 

 The striatum is hypothesized to receive reward prediction error (RPE) signals -- the 46 

difference between received and expected rewards -- from midbrain dopamine neurons (Barto, 47 

1995; Montague et al., 1996; Schultz et al., 1997). The most common description of an RPE is as a 48 

“model-free” error, computed relative to the scalar value of a particular action, which itself reflects 49 

a common-currency based on a running average of previous rewards contingent on that action 50 

(Langdon et al., 2017). However, recent work suggests that RPE signals in the striatum can also 51 

reflect “model-based” information (Daw et al., 2011), where the prediction error is based on an 52 

internal simulation of future states. Moreover, human striatal RPEs have been shown to be 53 

affected by a slew of cognitive factors, including attention (Leong et al., 2017), episodic memory 54 

(Bornstein et al., 2017; Wimmer et al., 2014), working memory (Collins et al., 2017), and 55 

hierarchical task structure (Ribas-Fernandes et al., 2011). These results indicate that the 56 

information carried in striatal RPEs may be more complex than a straightforward model-free 57 

computation, and can be influenced by various top-down processes. The influence of these 58 

additional top-down processes may serve the striatal-based learning system by identifying 59 

variables or features relevant to the task. 60 

To date, studies examining the neural correlates of decision making have used tasks in 61 

which participants indicate their choices with button presses or lever movements, conditions that 62 

generally exclude execution errors; as such, the outcome can be assigned to the decision itself 63 
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(e.g., choosing stimulus A over stimulus B), rather than its implementation (e.g., failing to 64 

properly acquire stimulus A). To introduce this latter negative outcome, we previously conducted 65 

behavioral studies in which we modified a classic 2-arm bandit task, requiring participants to 66 

indicate their choices by physically reaching to the chosen stimulus under conditions where the 67 

arm movement was obscured from direct vision (McDougle et al., 2016; Parvin et al., 2018). By 68 

manipulating the visual feedback available to the participant, we created a series of reward 69 

outcomes that matched those provided in a standard button-pressing control condition, but with 70 

two types of failed outcomes: “Execution failures” in the reaching task, and “selection errors” in 71 

the button press task. The results revealed a strong difference in behavior between the two 72 

conditions, manifest as a willingness to choose a stimulus that had a high reward payoff, but low 73 

execution success (i.e., participants showed diminished aversion to unrewarded “execution error” 74 

trials). By using reinforcement-learning models, we could account for this result as an attenuation 75 

in value updating following execution errors relative to selection errors; in other words, when 76 

reward was withheld due to a salient execution error, participants were unlikely to decrease the 77 

value of the stimulus that they had chosen.  78 

While this behavioral result is intuitive, the underlying neural processes are not clear. Will 79 

prediction errors in the striatum already be sensitive to the source of the error, or is the 80 

modulation of learning done through a separate top-down signal? To test this, we used fMRI to 81 

measure reward prediction errors in the striatum after both selection and execution errors. Based 82 

on our model, we hypothesized that negative prediction errors in the striatum may be weakened 83 

in the presence of salient execution failures, leading to diminished value updating. 84 

 85 

 86 

 87 

 88 

 89 
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Methods 90 

Participants 91 

 A total of 24 participants were tested.  The participants were fluent English speakers with 92 

normal or corrected-to-normal vision. They were all right-handed as confirmed by the Edinburgh 93 

Handedness Inventory (Oldfield, 1971). We excluded the data from four participants in the final 94 

analysis because of excessive head motion (a priori maximum movement threshold = 3 mm), 95 

leaving a final sample of 20 participants (11 female; age range: 18–42 years). Participants were 96 

paid $20 per hour for 2 h of participation, plus a monetary bonus based on task performance. 97 

The protocol was approved by the institutional review board at Princeton University and was 98 

performed in accordance with the declaration of Helsinki. 99 

  100 

Task and Apparatus 101 

 The experimental task was a modified version of a “multi-armed bandit” task commonly 102 

used in studies of reinforcement learning (Daw et al., 2006). On each trial, three stimuli were 103 

presented, and the participant was required to choose one (Figure 1A). The participant was 104 

instructed that each stimulus had some probability of yielding a reward and that they should try 105 

and earn as much money as possible. Critically, the participant was told that each trial was an 106 

independent lottery (i.e., that the outcome on trial t-1 did not influence the outcome on trial t), 107 

and that they had a fixed number of trials in the task over which to maximize their earnings.  108 

 In a departure from the button-press responses used in standard versions of bandit tasks, 109 

participants in the current study were required to indicate their decisions by making a wrist 110 

movement with the right hand toward the desired stimulus. The movement was performed by 111 

moving a wooden dowel (held like a pen) across an MRI-compatible drawing tablet. The tablet 112 

rested on the participant’s lap, supported by pillow wedges. The visual display was projected on a 113 

mirror attached to the MRI head coil, and the participant’s hand and the tablet were not visible to 114 

the participant. All stimuli were displayed on a black background. 115 
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 To initiate each trial, the participant moved their hand into a start area, which 116 

corresponded to the center of the tablet and the visual display. The start area was displayed as a 117 

hollow white circle (radius 0.75 cm) and a message, “Go to Start”, was displayed until the hand 118 

reached the start position. To assist the participant in finding the start position, a white feedback 119 

cursor (radius 0.25 cm) corresponding to the hand position was visible when the pen was within 120 

4 cm of the start circle. As soon as the cursor entered the start circle, the start circle filled in with 121 

white and the cursor disappeared, and the three choice stimuli were displayed along with the text 122 

“Wait” displayed in red font. The three choice stimuli were cartoons of slot machines (0.6 cm by 123 

0.6 cm). They were presented at the same locations for all trials, with the three stimuli displayed 124 

along an invisible ring (radius 4.0 cm) at 30˚, 150˚, and 270˚ degrees relative to the origin.  If the 125 

hand exited the start circle during the “Wait” phase, the stimuli disappeared and the “Go to Start” 126 

phase was reinitialized.  127 

After an exponentially determined jitter (mean 1 s, truncated range = 1.5 s - 6 s), the “Wait” 128 

text was replaced with the message “GO!” in green font. Reaction time (RT) was computed as the 129 

interval between the appearance of the go signal and the moment when the participant’s hand left 130 

the area corresponding to the start circle. The participant had 2 s to begin the reach; if the RT was 131 

greater than 2 s, the trial was aborted and the message “Too Slow” appeared. Once initiated, a 132 

reach was considered complete when the radial amplitude of the movement reached 4 cm, the 133 

distance to the invisible ring.  This moment defined the movement time (MT) interval. If the MT 134 

exceeded 1 s, the trial was aborted and the message “Reach Faster” was displayed. 135 

The feedback cursor was turned off during the entirety of the reach. On trials in which the 136 

reach terminated within the required spatial boundaries (see below) and met the temporal 137 

criteria, reach feedback was provided by a small, hand-shaped cursor (dimensions: 0.35 cm X 138 

0.35 cm) that reappeared at the end of the reach, displayed along the invisible ring. The actual 139 

position of this feedback cursor was occasionally controlled by the experimenter (see below), 140 

although the participant was led to believe that it corresponded to their veridical hand position at 141 

.CC-BY-NC-ND 4.0 International licenseIt is made available under a 
(which was not peer-reviewed) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity.

The copyright holder for this preprint. http://dx.doi.org/10.1101/474361doi: bioRxiv preprint first posted online Nov. 20, 2018; 

http://dx.doi.org/10.1101/474361
http://creativecommons.org/licenses/by-nc-nd/4.0/


 7 of 35 

4 cm. To help maintain this belief, the trial was aborted if the reach was > ± 25˚ degrees away 142 

from any one of the three stimuli, and the message “Please Reach Closer” was displayed. The 143 

cursor feedback remained on the screen for 1.5 s, and the participant was instructed to maintain 144 

the final hand position during this period. In addition to the starting circle, slot machines, and, 145 

when appropriate, feedback cursor, the display screen also contained a scoreboard (dimensions: 146 

3.3 cm X 1.2 cm), presented at the top of the screen. The scoreboard showed a running tally of 147 

participant’s earnings in dollars. At the end of the feedback period, the entire display was cleared 148 

and replaced by a fixation cross presented at the center for an exponentially jittered inter-trial 149 

interval (mean 3 s, truncated range = 2 - 8 s). 150 

 Assuming the trial was successfully completed (reach initiated and completed in a timely 151 

manner and terminated within 25˚ of a slot machine), there were three possible trial outcomes 152 

(Figure 1). Two of these outcomes corresponded to trials in which the hand-shaped feedback 153 

cursor appeared fully enclosed within the chosen stimulus, indicating to the participant that they 154 

had been successful in querying the selected slot machine. On Rew+ trials (Figure 1A), the 155 

feedback cursor was accompanied by the appearance of a small money-bag cartoon above the 156 

  

Figure 1: Task Design. Participants selected one of three slot machines on each trial by reaching to one of 
them using a digital tablet in the fMRI scanner. Three trial outcomes were possible: On Rew+ trials (A), the 
cursor hit the target and a reward was received; on Rew- trials (B), the cursor also hit the target but no reward 
was received; on Miss trials (C), the cursor was shown landing outside the target and no reward was received. 
 

A B C 
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chosen stimulus and $0.10 would be added to the participant’s total. On Rew- trials (Figure 1B), 157 

the feedback cursor was accompanied by the same money-bag overlaid with a red “X” and no  158 

money was added to the participant’s total. The third outcome consisted of “Miss” trials, in which 159 

the feedback cursor appeared outside the chosen stimulus, indicating an execution error. No 160 

money bag was presented on these trials and the monetary total remained unchanged, as in Rew- 161 

trials. Participants were informed at the start of the experiment that, like Rew- trials, no reward 162 

would be earned on trials in which their reach failed to hit the chosen target. Importantly, the 163 

outcomes for each stimulus were predetermined according to an experimenter-defined schedule 164 

(see below), and were not directly related to the actual reach accuracy of the participant.   165 

 In summary, of the three possible outcomes, one yielded a positive reward and two yielded 166 

no reward. For the latter two outcomes, the feedback distinguished between trials in which the 167 

execution of the decision was signaled as accurate but the slot machine failed to provide a payout 168 

(Rew-), and trials in which execution was signaled as inaccurate (Miss). 169 

 Unbeknownst to the participants, outcome probabilities were fixed for each target:  For all 170 

three targets, the probability of obtaining a reward (Rew+) was 0.4.  Targets differed in their ratio 171 

of Rew- and Miss probabilities, with each of the three targets randomly assigned to one of the 172 

following ratios for these two outcomes: 0.5/0.1 (low miss), 0.3/0.3 (medium miss), and 0.1/0.5 173 

(high miss). In this manner, the targets varied in terms of how likely they were to result in 174 

execution errors (and, inversely, selection errors), but not in the probability of obtaining a reward. 175 

The positions of the stimuli assigned to the three Rew-/Miss probability ratios were 176 

counterbalanced across participants. Because of the fixed outcome probabilities, there is no 177 

optimal choice behavior in this task; that is, participants would earn the same total bonus (in the 178 

limit) regardless of their choices, consistent with our previous study (McDougle et al., 2016). Their 179 

behavioral strategy therefore reflected directly their attitude to the different kinds of errors. 180 

To maintain fixed probabilities for each target, we varied whether the cursor feedback was 181 

veridical on a trial-by-trial basis. Once a target was selected (i.e., the participant initiated a reach 182 
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towards the target), the outcome (i.e. Rew+, Rew-, or Miss) was determined based on the fixed 183 

probabilities. If the true movement outcome matched the probabilistically determined outcome 184 

— either because the participant hit the target on a Rew+ or Rew- trial, or missed the target on a 185 

Miss trial — the cursor position was veridical. However, if the true movement outcome did not 186 

match the probabilistically determined outcome, the cursor feedback was perturbed: If the 187 

movement had missed the target (>±3˚ from the center of the target) on Rew+ and Rew- trials, 188 

the cursor was depicted to land within the target. If the movement had hit the target on a Miss 189 

trial, then the cursor was depicted to land outside the target. The size of the displacement on Miss 190 

trials was drawn from a skewed normal distribution (mean 19 ± 2.3˚), which was truncated to not 191 

be less than 3˚ (the target hit threshold) or greater than 25˚ (the criterion required for a valid 192 

reach), thus yielding both a range of salient errors, but also keeping errors within the 193 

predetermined bounds (values were determined through pilot testing). The direction of the 194 

displacement from the target was randomized. Given the difficulty of the reaching task (i.e., no 195 

feedback during movement, a transformed mapping from tablet to screen, small visual targets, 196 

etc.) and the strict temporal (< 1 s) and spatial (within 25˚ of the target) movement constraints, 197 

we expected that participants would be unaware of the feedback manipulation (see Results).  198 

 The experimental task was programmed in MATLAB (MathWorks), using the 199 

Psychophysics Toolbox (Daw et al. 2006; Brainard, 1997) . Participants were familiarized with the 200 

task during the structural scan and performed 30 practice trials for which they were not financially 201 

rewarded. Participants received a post-experiment questionnaire at the end of the task to query 202 

their awareness of perturbed feedback. 203 

 204 

Behavioral analysis 205 

 Trials were excluded from the analysis if the reach was initiated too slowly (RT > 2 s; 0.4 206 

± 0.7% of trials), completed too slowly (MT > 1 s; 2.4 ± 4.5% of trials), or terminated out of bounds 207 

(Reach terminated > 25° from a target; 1.2 ± 2.0% of trials). For the remaining data, we first 208 
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evaluated the participants’ choice biases: For each target, the choice bias was computed by 209 

dividing the number of times the participant chose that target by the total number of choice trials. 210 

Second, we looked at switching biases. These were computed as the probability that the 211 

participant switched to a different target on trial t given the outcome of trial t-1 (Rew+, Rew-, or 212 

Miss). An additional switching analysis was conducted based on only the reward outcome of trial 213 

t-1 (i.e., rewarded versus non-rewarded trials) by collapsing Rew- and Miss trials together. One-214 

sample t-tests were used to evaluate if differences in choice and switching biases deviated 215 

significantly from each other. 216 

  To further evaluate potential predictors of switching, a logistic regression was conducted 217 

using choice switching on trial t as the outcome variable (1 for switch, 0 for stay). Seven predictors 218 

were entered into the regression: 1) The reward outcome of trial t-1 (1 for reward, 0 for no reward), 219 

2) the movement execution outcome of trial t-1 (1 for a hit, 0 for a miss), 3) the Rew- to Miss trial 220 

probability ratio of the chosen target on trial t, 4) the absolute cursor error magnitude on trial t-1 221 

(distance from feedback cursor to target), 5) the veridicality of the feedback on trial t-1 (1 for 222 

veridical feedback, 0 for perturbed feedback), 6) the interaction of absolute error magnitude X 223 

the veridicality of the feedback on trial t-1, and 7) the current trial number. The multiple logistic 224 

regression was computed using the MATLAB function glmfit, with a logit link function. All 225 

regressors were normalized for display purposes. One-sample t-tests were used to test for 226 

significant regression weights across the sample. For two participants, full “separation” was 227 

observed with the reward regressor (e.g., they never switched after a Rew+ trial, or always 228 

switched after failing to receive a reward); these participants were excluded from the regression 229 

analysis, although they were included in all other analyses. 230 

 We also analyzed how movement feedback altered reaching behavior, in order to test 231 

whether participants were actively attempting to correct execution errors. In particular, we were 232 

interested in whether participants were sensitive to the non-veridical feedback provided on trials 233 

in which the feedback position of the cursor was perturbed. To assess this, we focused on trial 234 
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pairs in which consecutive reaches were to the same target and the first trial of the pair was 235 

accurate (< ± 3˚ from target’s center), but the cursor feedback was displayed fully outside of the 236 

target, indicating a Miss (the analysis was conducted this way to limit simple effects of regression 237 

to the mean reaching angle). A linear regression was performed with the observed signed cursor 238 

error on the first trial of the pair as the predictor variable and the signed change in reach direction 239 

on the second trial as the outcome variable. One-sample t-tests were used to test for significant 240 

regression weights. 241 

 242 

Modeling analysis of choice behavior 243 

A reinforcement-learning analysis was conducted to model participants’ choice data on a 244 

trial-by-trial basis and generate reward prediction error (RPE) time-courses for later fMRI 245 

analyses. We tested a series of temporal difference (TD) reinforcement-learning models (Sutton 246 

and Barto, 1998), all of which shared the same basic form:  247 

 248 

(1)     įt = rt - Qt(a) 249 

(2)     Qt+1(a) = Qt(a) + ǆ įt  250 

 251 

where the value (Q) of a given choice (a) on trial t is updated according to the reward prediction 252 

error (RPE) į on that trial (the difference between the expected value Q and received reward r), 253 

with a learning rate or step-size parameter ǆ. All models also included a decay parameter Ǆ 254 

(Collins et al., 2014), which governed the decay of the three Q-values toward their initial value 255 

(assumed to be 1/the number of actions, or 1/3) on every trial: 256 

 257 

(3)     Q = Q + Ǆ(1/3 - Q) 258 

 259 
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The decay parameter was important for model fitting, likely due to both the lack of any optimal 260 

slot machine and the stationary reward probabilities – many participants switched their choices 261 

often. Models without the decay parameter performed significantly worse than those with this 262 

parameter (data not shown).  263 

Our previous results showed that participants discount Miss trials, suggesting a tendency 264 

to stay with a given choice following perceived execution errors (McDougle et al., 2016; Parvin et 265 

al., 2018) more often than they do following a choice error (Rew- trials). However, it is not known 266 

if this tendency is driven purely by RPE computations, or arises from a different source. To model 267 

two possible routes to “Miss discounting,” we included a persistence parameter, ĭ, in the softmax 268 

computation of the probability of each choice (P), 269 

 270 

(4)     ܲሺܽሻ ൌ ೞೞ̴̴ೝೡሺכ̴̴ೝೡሻశഁೂሺೌሻσ  ೞೞ̴̴ೝೡሺכ̴̴ೝೡሻశഁೂሺೕሻయೕసభ  271 

 272 

where “miss_prev” and “choice_prev” are indicator vectors, indicating, respectively, whether the 273 

previous trial was a Miss (1 for Miss, 0 for Rew+/Rew-) and which action was chosen, and ǃ is the 274 

inverse temperature parameter. If ĭ is positive, the learner is more likely to repeat the same 275 

choice after a Miss trial as a “bonus” of ĭ is given to that option; if ĭ is negative, the learner is 276 

more likely to switch after a Miss due to a “penalty” of ĭ. This parameter represents a bias factor 277 

distinct from RPE-driven value updating (Bornstein et al., 2017) as the bonus (or penalty) is fixed 278 

regardless of the value of the chosen option. 279 

 We modeled reinforcement learning based on trial outcomes as follows: In the 280 

Standard(2ǆ) model, distinct learning rates, ǆ, were included to account for updating following 281 

negative RPEs (unrewarded trials) and positive RPEs (rewarded trials), 282 

 283 

ሺͷሻ     ܳ௧ାଵሺܽሻ ൌ  ൜ܳ௧ሺܽሻ  ௧ߜோ௪ାߟ  ǡ                              if ܴ݁ݓ  ௧ߜோ௪ାǡெ௦௦ߟ ௧ሺܽሻ ܳݐ ݈ܽ݅ݎݐ ݊  ǡ      if ܴ݁ݓ െ  284 ݐ ݈ܽ݅ݎݐ ݊ ݏݏ݅ܯ ݎ 
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 285 

where ǆRew+ and ǆMiss/Rew- are the learning rates for updates following Rew+ or Miss/Rew- trials, 286 

respectively. Allowing positive and negative RPEs to update Q values at different rates has been 287 

shown to provide better fits to human behavior compared to models in which a single learning 288 

rate is applied after all trials (Gershman, 2015; Niv et al., 2012). We also included a second variant 289 

of this model, the Standard(no-ĭ) model, that was identical to the Standard(2ǆ) model but did 290 

not include the ĭ parameter.  291 

 Two other models were included, based on our previous study in which negative outcomes 292 

could result from execution or selection errors (McDougle et al., 2016). One model, the Gating 293 

model, was similar to the Standard(2ǆ) model, except that it had unique learning rates for each 294 

of the three possible trial outcomes (ǆRew+, ǆRew-, and ǆMiss). Thus, the Gating model allows for 295 

values to be updated at a different rate following execution errors (Miss) or selection errors (Rew-296 

). Last, the Probability model separately tracked the probability of successful execution (E) for 297 

each target and the likelihood (V) of receiving a reward if execution was successful: 298 

 299 

(7)     Et+1(a)= Et(a) + ǆprob įt, prob  300 

(8)     ௧ܸାଵሺܽሻ ൌ  ൜ ௧ܸሺܽሻ  ௧ǡ௬ߜ௬ߟ  ǡ           if ܴ݁ݓ  ݓܴ݁ ݎ െ ݐ ݈ܽ݅ݎݐ ݊ ݏݏ݅ܯ ௧ܸሺܽሻǡ                                                                         ifݐ ݈ܽ݅ݎݐ ݊  301 

(9)     Qt+1(a) = Et+1(a)Vt+1(a) 302 

 303 

where įt, prob and įt, payoff represent, respectively, prediction errors for whether the current action 304 

was successfully executed (where r = 1 on Rew+/Rew- trials and r = 0 on Miss trials), and if a 305 

reward was received given that execution was successful. 306 

 Using the MATLAB function fmincon, all models were fit to each participant’s observed 307 

choices outcomes by finding the parameters that maximize the log posterior probability of the 308 

choice data given the model. To simulate action selection, Q-values in all models were converted 309 
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to choice probabilities using a softmax logistic function (equation 4). All learning rate parameters 310 

(ǆ) were constrained to be between -1 and 1. Negative values were permitted given that we did not 311 

have an a priori reason to assume ǆMiss would be positive, and thus opted to be consistent across 312 

all learning-rate parameters and models. The persistence parameter (ĭ) was constrained to be 313 

between -5 and 5, and the decay parameter (Ǆ) was constrained to be between 0 and 1. The 314 

temperature parameter (ǃ) was constrained to be between 0 and 100, and a Gamma(2,3) prior 315 

distribution was used to discourage extreme values (Leong et al., 2017). Q-values for each target 316 

were initialized to 1/3.  317 

The fitting procedure was conducted 100 times for each model using different randomized 318 

starting parameter values to avoid local minima during optimization, and the resulting best fit 319 

was used in further analyses. Model fits were evaluated using both the Bayesian information 320 

criterion (BIC; Schwarz, 1978) and Akaike information criteria (AIC; Akaike, 1974). 321 

 After model fitting and model comparison, we performed simulate-and-recover 322 

experiments on each of the four models to assess model confusability (Wilson et al., 2013). 323 

Choices were simulated for each model using the best-fit parameters of each of the 20 324 

participants, yielding 20 simulations per model. Simulated data were then fit with each model 325 

(using 20 randomized vectors of starting parameters for each fit to avoid local minima) to test 326 

whether the correct models were recovered. Confusion matrices were created comparing 327 

differences in both individual and summed Aikake weights (Wagenmakers and Farrell, 2004), as 328 

well as the percent of simulations fit best by each model. 329 

 330 

fMRI data acquisition 331 

 Whole-brain imaging was conducted on a 3T Siemens PRISMA scanner, using a 64-332 

channel head coil. MRI-optimized pillows were placed about the participant’s head to minimize 333 

head motion. At the start of the scanning session, structural images were collected using a high-334 

resolution T1-weighted MPRAGE pulse sequence (1 × 1 × 1 mm voxel size). During task 335 
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performance, functional images were collected using a gradient echo T2*-weighted EPI sequence 336 

with BOLD contrast (TR = 2000 ms, TE = 28 ms, flip angle = 90˚, 3 × 3 × 3 mm voxel size; 36 337 

interleaved axial slices). Moreover, a field map was acquired to improve registration and limit 338 

image distortion from field inhomogeneities (for one participant a field map was not collected). 339 

Functional data were collected in a single run that lasted approximately 40 min. For one 340 

participant, the run was split into two parts due to a brief failure of the drawing tablet. Because of 341 

the self-paced nature of the reaching task (i.e., variable time taken to return to the start position 342 

for each trial, reach, etc.), the actual time of the run, and thus number of total TRs, varied across 343 

participants. The run was terminated once the participant had completed all 300 trials of the task.  344 

 345 

fMRI data analysis 346 

 Preprocessing and data analysis were performed using FSL v. 5.98 (FMRIB) and SPM12. 347 

Given the movement demands of the task and length of the scanning run, multiple steps were 348 

taken to assess and minimize movement artifacts. After manual skull-stripping using FSL’s brain 349 

extraction tool (BET), we performed standard preprocessing, registering the functional images to 350 

MNI coordinate space using a rigid-body affine transformation (FLIRT) applying the field map 351 

correction, spatially smoothing the functional data with a Gaussian kernel (8 mm FWHM), and 352 

attaining six column-wise realignment parameters derived from standard motion correction 353 

(MCFLIRT). To identify and remove components identified as head-motion artifacts, we then 354 

applied the independent components motion-correction algorithm ICA-AROMA (Pruim et al., 355 

2015) to the functional data. As a final preprocessing step, we temporally filtered the data with a 356 

100 s high-pass filter. Based on visual inspection of the data, four participants were excluded from 357 

further analyses, before preprocessing, due to excessive (> 3 mm pitch, roll, or yaw) head motion. 358 

 Four GLMs were performed. For the first three GLMs, we imposed a family-wise error 359 

cluster-corrected threshold of p < 0.05 (FSL FLAME 1), with a cluster-forming threshold of p < 360 
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0.001. Task-based regressors were convolved with the canonical hemodynamic response function 361 

(double Gamma), and the six motion parameters were included as regressors of no interest.  362 

The first GLM was designed to functionally define ROIs that were sensitive to reward. Trial 363 

outcome regressors for the three trial types (Rew+, Rew-, Miss) were modeled as delta functions 364 

concurrent with visual presentation of the trial outcome. Task regressors of no interest included 365 

boxcar functions that spanned both the wait period and reach period. The contrast Rew+ > (Rew- 366 

and Miss) was performed to functionally identify reward-sensitive ROIs. Resulting ROIs were 367 

visualized, extracted, and binarized using the xjview package for SPM 368 

(http://www.alivelearn.net/xjview). Beta weights were extracted from the resulting ROIs using 369 

FSL’s featquery function. To identify areas sensitive to visuomotor errors while controlling for 370 

reward, we also tested a second trial outcome contrast: Miss > Rew-. 371 

 A second GLM was used to measure reward prediction errors (RPEs). Three separate 372 

parametric RPE regressors, corresponding to RPEs for each outcome, were entered into the GLM 373 

to account for variance in trial-by-trial activity not captured by the three binary outcome 374 

regressors (which were also included in the model). Beta weights for each RPE regressor were 375 

extracted from the striatum ROI (i.e., the functional “reward” ROI obtained from the first GLM) 376 

using FSL’s featquery function. Nuisance regressors included the wait period, reach period, and 377 

the three outcome regressors. 378 

 The third GLM was designed to identify brain areas parametrically sensitive to motor 379 

execution error magnitude. The regressor of interest here was limited to Miss trials and included 380 

a single separate parametric absolute cursor error regressor, which tracked the magnitude of 381 

angular cursor errors on Miss trials. Nuisance regressors included the wait period, reach period, 382 

and the three outcome regressors. 383 

 The fourth GLM was an exploratory psychophysical interaction (PPI) analysis (Friston et 384 

al., 1997). In a PPI, a task-specific regressor and ROI time course regressor are included in the 385 

same model with the critical addition of a third regressor that models the interaction between the 386 
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other two regressors, capturing variance in activity not singularly attributable to either regressor 387 

alone. A mean time series from the striatum ROI was extracted using fslmaths, and added 388 

(unconvolved) to the model as an additional regressor. Interaction regressors between the 389 

striatum time course and the three individual outcome regressors were also included. Nuisance 390 

regressors included the wait period, reach period, and the three outcome regressors. We imposed 391 

a family-wise error cluster-corrected threshold of p < 0.05 (FSL FLAME 1), with a relaxed cluster-392 

forming threshold of p < 0.05 (see Results).  393 

All voxel locations are reported in MNI coordinates, and all results are displayed on the 394 

average MNI brain. 395 

 396 

Results 397 

 We developed a simple 3-arm “bandit task” in which, during fMRI scanning, the 398 

participant had to make a short reaching movement on a digital tablet to indicate their choice on 399 

each trial and to attempt to maximize monetary earnings (Figure 1). At the end of the movement, 400 

feedback was provided to indicate one of three outcomes, as follows: On Rew+ trials, the visual 401 

cursor landed in the selected stimulus and a money bag indicated that $.10 had been earned. On 402 

Rew- trials, the visual cursor landed in the selected stimulus but an X was superimposed over the 403 

money bag, indicating that no reward was earned. On Miss trials, the visual cursor was displayed 404 

outside the chosen stimulus (and no money was earned). The reward probability for each stimulus 405 

(“bandit”) was fixed at 0.4, but the probabilities of Rew- and Miss varied between the three stimuli 406 

(0.5/0.1, 0.3/0.3, 0.1/0.5 respectively; see Methods). Thus, we used a stationary multi-armed 407 

bandit task, as all probabilities were fixed. 408 

  409 

Choice Behavior 410 

 In previous studies using a similar task, participants showed a bias for stimuli in which 411 

unrewarded outcomes were associated with misses (execution errors) rather than expected 412 
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payoffs (selection errors), even when the expected value for the choices were held equal 413 

(McDougle et al., 2016; Parvin et al., 2018). We hypothesized that this bias reflected a process 414 

whereby execution failures lead to attenuated negative prediction errors, with the assumption that 415 

“credit” for the negative outcome under such situations was attributed to factors unrelated to the 416 

intrinsic value of the chosen action. 417 

In the current task, a similar bias could lead participants to prefer the high-Miss stimulus 418 

(0.5/0.1 ratio of Miss/Rew- outcome probabilities). However, the overall choice data showed only 419 

a weak bias across the three stimuli (Figure 2A, all ps > 0.15). We note that, unlike in our previous 420 

studies (McDougle et al., 2016; Parvin et al., 2018), the probability and magnitude of reward on 421 

each trial was identical for each stimulus. 422 

Critically, trial-by-trial switching behavior offers a more detailed way to look at choice 423 

biases (Figure 2B). Consistent with previous results, participants were more likely to switch to a 424 

different stimulus following Rew- trials compared to Miss trials (t19 = 5.08, p < 0.001). Moreover, 425 

they were more likely to switch after Rew- trials compared to Rew+ trials (t19 = 4.14, p < 0.001), 426 

and showed no difference in switching rate after Rew+ and Miss trials (t19 = 0.78, p = 0.45). 427 

Overall, participants were, on average, more likely to switch following a non-rewarded trial (Rew- 428 

or Miss) than a rewarded one (Rew+; t19 = 11.99, p < 0.001; Figure 2B inset), suggesting that they 429 

were generally sensitive to receiving a monetary reward, even though each lottery was identical 430 

for each slot machine. In sum, the switching behavior indicates that participants responded more 431 

negatively to Rew- outcomes compared to Miss outcomes, even though both yielded identical 432 

economic results. This finding is consistent with the hypothesis that cues suggesting a failure to 433 

properly implement a decision affect how value updates are computed. 434 

 A regression analysis was used to further probe switching behavior (Figure 2C). The first 435 

two regressors, reward and execution outcome, recapitulated the results shown in Figure 2B, 436 

where the reward outcome (reward vs. no reward) and the execution outcome (hitting the target 437 

vs. missing) both had a strong effect on switching behavior: Getting rewarded on trial t-1 438 
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negatively predicted switching on trial t (i.e., predicted staying over switching), reflecting the 439 

positive Rew+ trials (t-test for regression weight difference from 0: t17 = -2.38, p = 0.029;). In 440 

contrast, hitting the target on trial t-1 had a positive impact on the probability of switching on trial 441 

t, driven by the aversive Rew- trials (t17 = 2.42, p = 0.027;). Both effects were tempered by the 442 

Miss trials, which led to reduced switching (Figure 2B). Consistent with Figure 2A, the Rew-/Miss 443 

probability ratio of the selected target on trial t had only a marginal effect in the regression 444 

analysis (t17 = 2.01, p = 0.061).  445 

A 

C 

B 

D 

Figure 2: Behavior. (A) Participants’ biases to select stimuli with a different ratio of Rew- to Miss trials. (B) 
Average switch probabilities separated by the outcome on the previous trial. Inset: switch probabilities separated 
by rewarded trials (Rew+) versus unrewarded trials (Rew- and Miss, collapsed). (C) Logistic regression on switch 
behavior. (D) Logistic regression on change in reach angle as a function of signed cursor errors on the previous 
trial. This analysis is limited to trials in which participants’ reach on trial t-1 was accurate, but the cursor was 
perturbed away from the target (Miss trial). Inset: average regression weight. Error bars = 1 s.e.m.   
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Interestingly, the absolute magnitude of the cursor error on trial t-1 negatively predicted 446 

switching on trial t; that is, after relatively large errors, participants were more likely to repeat the 447 

same choice again (t17 = -3.62, p = 0.002). This effect did not appear to be driven by the veridicality 448 

of the error, as neither the regressor for the veridicality of feedback, nor the interaction between 449 

veridicality and error magnitude, predicted switching (t17 = 0.70, p = 0.49 and t17 = 0.02, p = 0.98, 450 

respectively). Lastly, switching behavior did not fluctuate over the duration of the experiment 451 

(“trial #” regressor; t17 = 0.26, p = 0.80). 452 

 453 

Effect of Feedback Perturbations  454 

Perturbed cursor feedback was often required to achieve the desired outcome probabilities 455 

for each stimulus. Overall, we had to perturb the cursor position on 58.4% of trials. Most of these 456 

(47.6% of trials) were “false hits,” where the feedback cursor was moved into the target region 457 

following an actual miss. 10.8% of trials were false misses, in which the cursor was displayed 458 

outside the target following an actual hit.   459 

We had designed the Miss-trial perturbations to balance the goal of keeping the 460 

participants unaware of the feedback perturbations, while also providing large, visually salient 461 

execution errors. The mean size of the perturbed Miss trial errors was 11.2˚ larger than veridical  462 

Miss trial errors (t19 = 35.19, p < 0.001), raising the possibility that participants could be made 463 

aware of the perturbations. The results from a post-experiment questionnaire were equivocal: 464 

When asked if the feedback was occasionally altered, the mean response on a 7-point scale was 465 

4.3, where 1 is “Very confident cursor location was fully controlled by me,” and 7 is “Very confident 466 

cursor location was partially controlled by me.” However, it is not clear if the question itself biased 467 

participant’s answers, so further analyses were conducted. 468 

As noted above, in terms of switching, the logistic regression analysis indicated that 469 

participants responded similarly to trials following veridical or perturbed cursor feedback (Figure 470 

2C, negligible weights for variables related to veridicality of the feedback). We next examined if 471 
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adjustments in reaching direction were responsive to non-veridical errors, as they would be 472 

expected to after veridical errors. To this end, we analyzed trial pairs in which the same stimulus 473 

was chosen on two consecutive trials where the first reach had been accurate but resulted in a 474 

false miss (mean number of pairs per participant = 18.4). If participants “believe” the perturbed 475 

feedback, the second movement should be shifted in the opposite direction of the preceding 476 

perturbation. We note that while we could perform the same analysis following veridical misses 477 

or perturbed hits, a shift would be expected simply from regression to the mean, whereas in this 478 

case, the hand would generally be shifting away from the mean. Consistent with this prediction, a 479 

regression analysis showed that heading direction did indeed shift by a fairly large amount in the 480 

opposite direction of the perturbation on the subsequent trial (t19 = -6.36, p < 0.001; Figure 2D). 481 

This could be interpreted as resulting from implicit sensorimotor adaptation, explicit adjustments 482 

in aiming, or both (Taylor et al., 2014). Taken together, both the regression and movement 483 

analyses, and to a lesser extent the questionnaire, indicate that manipulation of the cursor 484 

feedback did not have a significant impact on participants’ choice behavior (see Discussion).  485 

 486 

Modeling Results 487 

 We fit the participants’ trial-by-trial choice behavior with the four reinforcement learning 488 

models described in the Methods section (Figure 3). All models predicted trial-by-trial choice 489 

behavior better than chance (t-tests vs chance value of 0.33: all p's < 0.001; Figure 3C). To 490 

perform a formal model comparison that considered the number of free parameters in each 491 

model, we calculated both the Bayesian (BIC) and Akaike (AIC) information criteria values for fits 492 

of each model (both metrics yielded similar results). First, the Gating model provided the best fit 493 

compared to the other three models in terms of both BIC and AIC (all p's < 0.001, Figure 3A, B). 494 

Second, the Gating model had a higher average per-trial likelihood of predicting choices over the 495 

next best model (t19 = 4.61, p < 0.001; Figure 3C). Third, the Gating model provided the best fit 496 
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for 16 of the 20 of the participants (Figure 3D). Consistent with our previous results (McDougle 497 

et al., 2016), the modeling analysis indicates that in tasks that allow for execution failures, an 498 

update parameter (ǆ) devoted to such trials improves the model fit.  499 

We next examined the estimated parameter values for the Gating model. Parameter values 500 

were not normally distributed, and Wilcoxon sign-rank tests were thus used for statistical 501 

comparisons. The learning rates on Miss trials, ǆMiss, and Rew- trials, ǆRew-, were both greater than 502 

zero (p = 0.010 and p = 0.014, respectively). The learning rate on Rew+ trials, ǆRew+ was 503 

marginally greater than zero (p = 0.09). As predicted, the ǆMiss  parameter showed the lowest value 504 

(medians: ǆMiss = 0.07, ǆRew+ = 0.13, ǆRew- = 0.23). However, a sign-rank test revealed no 505 

significant difference between ǆMiss and ǆRew- (p = 0.18). Lastly, The persistence parameter (ĭ) 506 

Figure 3: Model Comparisons. (A) Bayesian information criterion (BIC) and (B) Akaike information 
criterion (AIC) comparisons of each model. (C) Average per-trial likelihoods of each model predicting the 
participant’s true choice. (D) Number of participants best-fit by each model (using AIC). (E-G) Confusion 
matrices from the simulate-and-fit analysis, with the ground-truth simulated model on the x-axis and the 
model used to fit the simulation on the y-axis. Color indicates(E) average individual Akaike weights (an 
approximation of the conditional probability of one model over the others), (F) the percent of simulations 
best-fit by each model (using raw AIC values), and (G) summed Akaike weights across the sample.  Error 
bars = 1 s.e.m.   
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was significantly greater than zero (p = 0.023). This observation suggests that choice persistence 507 

after Miss trials may be driven by a top-down influence on action values during the choice phase.   508 

Each model has several free parameters and they all share a similar form, raising a concern 509 

about model confusability. To address this, we simulated choice data with each model using its 510 

best-fit parameter values from each of the 20 participants, and then refit the simulations with 511 

each model (see Methods). If the models are reliably separable, each simulation should be best-512 

fit by the model originally used to generate that simulation. The two models that best fit the 513 

behavioral data, Gating and Standard(2ǆ), were modestly separable (Figure 3E, F), with 514 

respective average conditional probabilities of 0.59 versus 0.28 for fits to the Gating model 515 

simulations, and 0.26 versus 0.34 for fits to the Standard(2ǆ) model simulations. We note that 516 

these values are the mean of each fit’s Akaike weight, which is an approximation of the model’s 517 

conditional probability versus the others (Wagenmakers and Farrell, 2004). As expected, the two 518 

Standard models were generally confusable with one another (Figure 3E, bottom right quadrant). 519 

The proportion of simulated agents from each model best fit by those same models is shown in 520 

Figure 3F. At the group level, summing AIC values over each full set of fits for each model (and 521 

computing Akaike weights on those sums) revealed rather strong model separability in all four 522 

cases (Figure 3G; we note, however, that summing tends to inflate differences in fit). Overall, this 523 

analysis suggests that the model fitting results should be interpreted with caution as each model 524 

is only subtly different. It is important to note that the primary reason modeling was conducted 525 

in the present study was to generate time courses of RPEs for the analysis of BOLD data. Indeed, 526 

the pattern of RPEs generated for each outcome (Rew+, Rew-, Miss) were very similar across 527 

models. 528 

 Previous studies have shown that movements toward high value choices are more vigorous 529 

(i.e., faster) compared to low value choices (Niv et al., 2007; Reppert et al., 2015; Seo et al., 2012). 530 

Given that we used reaching movements in the current study, we can ask if this phenomenon is 531 

observed in the current context, looking at the effect of model-derived Q-values on both reaction 532 
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time (RT) and movement time (MT) on each trial. Overall, reaction times were moderately fast (µ 533 

= 0.59 ± .13 s) and movement times were quite fast (µ = 0.13 ± .06 s). These values, as well as the 534 

modeled Q-values of selected choices (from the Gating model), were extracted for each 535 

participant, de-trended using linear regression (due to gradual trends in both the RT and Q-value 536 

time courses), and then z-scored. Linear regressions were performed to quantify the influence of 537 

Q-values on trial-by-trial MTs and RTs. Consistent with previous results on movement vigor and 538 

value, Q-values negatively predicted MT (regression beta values relative to 0: t19 = -3.28, p = 539 

0.004). In other words, higher-value choices were accompanied by faster movements (shorter 540 

movement times). No significant relationship was observed between RT and relative Q-values (t19 541 

= 0.38, p = 0.71). We speculate that this null result may be a function of the design of the task 542 

(Figure 2), which included an enforced wait period before movement. The MT result both agrees 543 

with previous research on vigor and value, and provides a case where our model describes 544 

behavioral data that were not part of the fitting procedure. 545 

 546 

Imaging  547 

 Figure 4A and Table 1 show the results of the whole-brain contrasts for reward processing 548 

(Rew+ > Rew- and Miss), and motor error processing (Miss > Rew). The reward contrast revealed 549 

four significant clusters spanning bilateral striatum, bilateral ventromedial prefrontal cortex 550 

(vmPFC), bilateral posterior cingulate (PCC), and a single cluster in left orbital frontal cortex 551 

(OFC). These ROIs are broadly consistent with areas commonly associated with reward (McClure 552 

et al., 2004; Schultz, 2015). For the motor error contrast, three broad clusters were revealed, 553 

including a single elongated cluster spanning bilateral premotor cortex (PMC), supplementary 554 

motor area (SMA), and the anterior division of the cingulate (ACC), as well as two distinct clusters 555 

in both the left and right inferior parietal lobule (IPL). This pattern is consistent with previous 556 

work on cortical responses to salient motor errors (Diedrichsen et al., 2005; Krakauer et al., 2004; 557 

Seidler et al., 2013). 558 
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Examination of feedback-locked betas on Rew- and Miss trials could identify gross 559 

differences in activity in these ROIs (Figure 4B), distinct from the more fine-grained parametric 560 

RPE modulations to be explored in the model-driven analysis (see below). Directly comparing the 561 

two negative outcome trial types revealed that average activity in the four ROIs was similar for 562 

Rew- and Miss trials, with no significant differences seen in the striatum (t19 = 0.88, p = 0.39), 563 

vmPFC (t19 = -0.24, p = 0.81), nor OFC (t19 =0.25, p = 0.81), and a marginal difference in the PCC 564 

(t19 = 1.95, p = 0.07).  565 

Figure 4: Trial Outcome Contrasts. (A) Results of whole-brain contrasts for Rew+ trials > Rew- and Miss trials 
(red/yellow), and Miss trials > Rew- trials (green). In the reward contrast (red/yellow), four significant clusters 
were revealed, in bilateral striatum, ventromedial prefrontal cortex (vmPFC), left orbital-frontal cortex (OFC), 
and posterior cingulate cortex (PCC). For the motor error contrast (green), three significant clusters were 
revealed, with a single cluster spanning bilateral premotor cortex, supplementary motor area (SMA), and the 
anterior division of the cingulate (ACC), as well as two distinct clusters in both the left and right inferior parietal 
lobule. (B): Beta weights extracted from each reward contrast ROI for the (orthogonal) Rew- and Miss trial 
outcomes. Error bars = 1 s.e.m. 

A 

B 
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In our second GLM, separate parametric RPE regressors for the three possible trial 566 

outcomes were constructed by convolving trial-by-trial RPE values derived from the Gating model 567 

with the canonical hemodynamic response function (HRF). Beta weights for the three regressors 568 

were then extracted from the striatum ROI delineated by the first GLM. As seen in Figure 5, 569 

striatal activity parametrically tracked trial-by-trial RPEs following Rew+ trials (t19 = 3.26, p = 570 

0.004) and Rew- trials (t19 = 2.76, p = 0.013).  571 

In contrast, striatal activity did not appear to encode RPEs following Miss trials (t19 = 0.20, 572 

p = 0.84). Critically, the strength of RPE coding was significantly greater on Rew- trials than on 573 

Miss trials (t19 = 2.52, p = 0.020), marginally greater on Rew+ trials than on Miss trials (t19 = 1.84, 574 

p = 0.082), and not significantly different between Rew+ and Rew- trials (t19 = -0.74, p = 0.47). 575 

Consistent with our hypothesis, these results suggest that striatal coding of RPEs is attenuated 576 

following execution failures. One consequence of this would be that choice value updating in the 577 

striatum would be effectively paused after miss trials, a strategy that could explain the observed 578 

behavioral biases (Figure 2B). 579 

Figure 5: Outcome RPE coding in the striatum: Average reward prediction error (RPE) beta weights 
within the striatum ROI for each trial outcome type. Error bars = 1 s.e.m. 
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A third GLM analysis was conducted to confirm that the magnitude of observed execution 580 

errors was processed in predicted motor-related areas. This is distinct from the first GLM, which 581 

captured the effect of the mere presence of execution errors (Figure 4A, green). The absolute error 582 

size on Miss trials was entered as a parametric regressor in a whole brain analysis. Consistent with 583 

previous research (Anguera et al., 2009; Grafton et al., 2008), error magnitude was correlated 584 

with the modulation of activity in anterior cingulate cortex, dorsal premotor cortex, dorsal 585 

cerebellum (lobule VI), and primary visual cortex (Table 1). No significant voxels in the striatum 586 

were identified in this analysis, even at a relaxed cluster-forming threshold (p < 0.05).  587 

 To investigate areas that may act in concert with the ventral striatum in our task, we 588 

performed an exploratory psychophysiological interaction (PPI) connectivity analysis. Our PPI 589 

analysis quantifies correlations in BOLD activity between the striatal ROI and other brain areas 590 

that are more pronounced during Miss trials relative to the other two trial outcomes. Given the 591 

exploratory nature of the analysis and the conservative nature of PPIs, we relaxed our cluster-592 

forming threshold to p < 0.05. The PPI revealed a significant functional interaction on Miss trials 593 

Figure 6: PPI Analysis. Activity in left inferior frontal gyrus (IFG) and left putamen was correlated with 
activity in the striatum ROI on Miss trials. Significant correlations were not found for Rew+ and Rew- trials. 
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between the striatal ROI and an elongated cluster that consisted of, primarily, left inferior frontal 594 

gyrus (IFG) and left putamen (Figure 6).  595 

As a point of comparison, we performed similar PPI analyses for both Rew+ and Rew- 596 

trials, comparing striatal connectivity in each versus the other two trial outcomes. Here, no 597 

significant clusters were found between the striatal ROI time course and the rest of the brain. One 598 

interpretation could by that because Rew+ and Rew- trials denote two sides of the same coin 599 

(standard reinforcement learning), these effects were washed out as connectivity patterns may be 600 

similar. We note that although the FSL FLAME algorithm used in our analyses limits false positive 601 

rate relative to most other approaches (Eklund et al., 2016), the clusters displayed in Figure 6 602 

were not significant at more conservative statistical thresholds, and thus should be viewed with 603 

appropriate caution. 604 

  605 

  606 
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Discussion 607 

 The present results demonstrate that perceived movement execution errors influence 608 

reward prediction error (RPE) computations in the human striatum. When participants did not 609 

receive a reward but properly executed their decision, the striatum predictably represented the 610 

corresponding negative RPE, consistent with much previous experimental work. However, on 611 

trials where a no-reward outcome was framed as the result of an action execution failure, the 612 

striatum did not appear to generate a corresponding negative RPE (Figure 5). These results 613 

indicate that before critiquing the quality of a decision, the striatum may use knowledge 614 

concerning whether the decision was properly implemented in the first place. This contingency 615 

was reliably observed in participants’ choice behavior (Figure 2), and can be described by a 616 

reinforcement learning model where decision execution errors demand a unique learning rate 617 

parameter (Figure 3). 618 

 These findings fit into a broader reevaluation of the nature of RPEs in the mesostriatal 619 

dopamine system. Mounting evidence suggests that the striatum does not just signal a model-free 620 

prediction error, but is affected by high-level cognitive states, concerning, for instance, model-621 

based predictions of future rewards (Daw et al., 2011), sampling from episodic memory (Bornstein 622 

et al., 2017), top-down attention to relevant task dimensions (Leong et al., 2017), and the holding 623 

of stimulus-response relationships in working memory (Collins et al., 2017). We believe the 624 

present results add to this body of evidence, showing that contextual cues concerning the 625 

implementation of a decision affect if and how the represented value of that decision is updated 626 

by a prediction error. 627 

 We note that the putative “gating” phenomenon, the diminished encoding of a negative 628 

RPE in the striatum, was not categorical; indeed, participants displayed varying degrees of gating 629 

both behaviorally and neurally (Figure 2, Figure 5). One speculation could be that gating is a 630 

function of how optimistic a participant is that they could correct a motor error in the future. By 631 

this hypothesis, gating is useful only if one is confident in their execution ability, and are thus 632 
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likely to persist with a decision until successful execution will allow them to glean reward 633 

information about the selected stimulus. On the other hand, if one is not confident in their ability 634 

to execute a movement, a negative RPE might also be generated upon an execution error, steering 635 

them away from that choice and its associated action in the future.  636 

 This hypothesis could explain a curious result in a previous study (McDougle et al., 2016): 637 

We found that participants with degeneration of the cerebellum, which results in problems with 638 

both motor learning and motor execution, showed diminished “gating” behavior; that is, they 639 

avoided decisions that were difficult to execute, even at the cost of larger rewards. We had 640 

hypothesized that the cerebellum may be an important structure in a putative gating mechanism, 641 

perhaps communicating sensory prediction errors to the basal ganglia via established 642 

bidirectional connections (Bostan et al., 2013). However, significant cerebellar activity only 643 

survived statistical correction in our analysis of cursor error size (Table 1), and the results of our 644 

planned analyses on trial outcomes did not reveal significant interactions between the cerebellum 645 

and striatum arguing against a cerebellar-dependent gating process. Indeed, a recent behavioral 646 

follow-up to our previous results suggests that cerebellar error signals are likely not affecting 647 

choice behavior in this kind of task (Parvin et al., 2018); rather, participants’ likely use some form 648 

of internal model concerning the causal structure of the task to guide their decisions (Green et al., 649 

2010). It would be reasonable to assume that individuals with cerebellar degeneration may have 650 

a greater propensity to avoid choices associated with high execution errors given their reduced 651 

confidence in their ability to successfully control their movements.   652 

 Via reverse inference, the results of our connectivity analysis (Figure 6) suggest that the 653 

left inferior frontal gyrus (IFG) is one candidate region involved in the attenuation of RPEs 654 

following movement execution errors. Recent work suggests that the left IFG inhibits belief 655 

updating following certain negative outcomes (Moutsiana et al., 2015; Sharot et al., 2011, 2012), 656 

findings that are intriguingly similar to the results presented here. Others have highlighted a more 657 

general role for the left IFG in controlled retrieval processes that apply goal-relevant knowledge 658 
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in a top-down fashion (Badre and Wagner, 2007). We speculate that a perceived execution error 659 

could be interpreted as a specific case of a more generalized cue about the current “state” the 660 

participant is in, where the specific implication of this putatively negative outcome is to inhibit 661 

value updating. 662 

 Although we are interpreting the current results in the context of perceived motor 663 

execution errors, an alternative explanation is that participants did not fully believe the feedback 664 

they received because it was often perturbed (see Methods). Thus, participants may have 665 

estimated whether they truly “caused” an observed outcome, and the gating of striatal RPEs may 666 

reflect instances where participants feel the outcome was  manipulated. The power of each trial 667 

type by feedback veridicality/non-veridicality was too low across the group to test this hypothesis 668 

using a GLM on the imaging data (e.g., as few as 14 trials). However, we note that the most 669 

common perturbed-feedback trials involved situations in which the feedback was adjusted to hit 670 

the target (where the actual movement had missed the target), and, overall, Rew+ and Rew- trials 671 

showed robust RPE coding in the striatum (Figure 5). Moreover, the behavioral results suggest 672 

that error veridicality was not a strong predictor of participants’ choices (Figure 2C), nor 673 

movement kinematics (Figure 2D). Either way, future research should test the specificity of our 674 

results. For example, would the observed attenuation of RPEs happen if the lack of reward was 675 

clearly attributed to an external cause, for instance if the participant’s hand was knocked away by 676 

an external force? The results observed in the present study could reflect a unique role of 677 

intrinsically-sourced motor execution errors in RPE computations, or a more general effect of any 678 

arbitrary execution failure, whether internally or externally generated. 679 

 Research concerning the computational details of instrumental learning has progressed 680 

rapidly in recent years, and the nature of one fundamental computation in learning, reward 681 

prediction error, has been shown to be more complex than previously believed. Our results 682 

suggest that prediction errors update decisions in a manner that incorporates the successful 683 

implementation of those decisions, specifically, by ceasing to update value representations when 684 
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a salient execution failure occurs. These results may add to our understanding of how 685 

reinforcement learning proceeds in more naturalistic settings, where successful action execution 686 

is often not trivial. 687 

 688 

 689 

  690 
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