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Abstract

This paper presents an approximation method for performing efficient reliability analysis
with complex computer models. The computational cost of industrial-scale models causes
problems when performing sampling-based reliability analysis. This is due to the fact that
the failure modes of the system typically occupy a small region of the performance space
and thus require relatively large sample sizes to accurately estimate their characteristics.
The sequential sampling method proposed in this article, combines Gaussian process-based
optimisation and subset simulation. Gaussian process emulators construct a statistical ap-
proximation to the output of the original code, which is both affordable to use and has its
own measure of predictive uncertainty. Subset simulation is used as an integral part of the
algorithm to efficiently populate those regions of the surrogate which are likely to lead to
the performance function exceeding a predefined critical threshold. The emulator itself is
used to inform decisions about efficiently using the original code to augment its predictions.
The iterative nature of the method ensures that an arbitrarily accurate approximation of
the failure region is developed at a reasonable computational cost. The presented method
is applied to an industrial model of a biodiesel filter.

Keywords: Reliability analysis, Gaussian process emulation, Subset simulation, Bayesian
optimisation, Filter model.

1. Introduction

1.1. Problem statement

Reliability analysis, in the most general sense, is concerned with the calculation of a prob-
ability of failure, pF via the identification of the failure domain, F = {x : η(x) > y∗} for a
performance function η(·). This function contains all the available information for a complex

∗Corresponding author. Tel. +44(0)747 461 42 87
Email address: p.hristov@liv.ac.uk (P.O. Hristov)

Preprint published by Elsevier in Applied Mathematical Modelling 71 (2019) 138–151 
https:/ /doi.org/10.1016/ j.apm.2019.02.014    (krzysztof@kubiak.co.uk)



engineering system (e.g. stresses, loads). The probability of failure can thus be computed,
in principle, by solving

pF =

∫

F

π(x)dx (1)

where π(x) is the joint probability distribution for x. The modeling of x as a random
variable is justified given the complexity of modern, realistic engineering systems. Without
loss of generality, the performance function η(·) is considered to be a mapping from its input
space X ⊂ R

d, to a scalar on the real line, y ∈ R. In typical engineering applications
the explicit form of this mapping is not known and it is considered to be a black-box.
Black-box models are ubiquitous in engineering in the form of e.g. finite element solvers,
computational fluid dynamics tools, climate models among others. A common feature is
their computational intensity. For a typical system, the failure region F is significantly
smaller than the input domain and is considered a rare event. The most straightforward
method to evaluate the multidimensional integral in Eq. (1) is direct Monte Carlo (DMC)
sampling. The DMC estimator, p̂F is unbiased and independent of the number of input
dimensions, d, but requires a large number of samples to ensure that F is well populated
to allow a reasonably accurate estimation of its properties. This drawback, coupled with
a computationally expensive model renders a DMC-based reliability analysis infeasible. A
method, which improves on DMC and is widely used in engineering reliability analysis is
subset simulation (SuS) [1]. Despite the significant savings SuS brings over DMC, it can
still be quite expensive when evaluating the simulator directly.

In order to address the computational cost of the simulator, one can build a less expensive
approximation to the code output. Such an approximation is widely known as a metamodel

or emulator. There exists a large number of metamodelling paradigms as outlined in e.g.

Ch. 2 of [2] and Ch. 5 of [3]. A well-established approach is Gaussian process emulation
(GPE), which builds a statistical approximation to the output of the code. Once the GPE
is built, it provides a predictive distribution for the output of the code which can be used
as an inexpensive substitute for the simulator, for the purposes of reliability analysis. One
problem with using the surrogate directly is that it is typically trained on some space-filling
sampling plan which aims at exploring the input domain of the simulator with as few points
as possible. These sampling plans are based on Monte Carlo methods and usually select
points in high probability regions. This is tantamount to saying that the surrogate that
needs to be used to predict and analyse rare events is built on frequent events.

1.2. Literature review

A number of different frameworks have been proposed to reduce the cost of computations for
reliability analysis. The literature survey presented here focuses on approaches which aim to
improve the efficiency of reliability analysis via the use of a surrogate model. Methods using
Gaussian process emulators are examined in more detail. Many methods rely on sequential
sampling for the gradual improvement of the surrogate in the vicinity of the failure domain.
This idea is heavily influenced by the field of surrogate-based optimisation (SBO), where an
initial surrogate for a function is built from an experimental design and is used to search for
optima. The interested reader is referred to [4–7] for more information.
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A link between optimisation and reliability analysis is provided by Li and Au, [8], where
parallels between the two are exploited. Some authors, such as Ranjan et al. [9] and Picheny
et al. [10] suggest that the emulator should only be refined in regions of interest. An opposing
view is given by Zhu and Du, [11] where the authors focus on the global accuracy of the
surrogate. The approach proposed in the current article agrees with and extends the former
idea.

Most methods for efficient reliability analysis and optimisation follow a framework com-
posed of an initial sampling strategy, a rule for selecting new points and a stopping criterion.
To that effect, different initial sampling strategies are presented in [12–16]. The approach
proposed in this paper uses Latin hypercube sampling (LHS) by McKay et al. [17], which
is widely used in surrogate modelling. The details of the initial sampling plan are discussed
in Section 3.1. Many approaches to selecting improvement points based on some kind of
a utility function, pre-generate a given number of candidate samples from the entire input
space (e.g. [18]) and add the point that maximizes that function to the training plan for
the next iteration of the algorithm. This could prove to be suboptimal because at the time
of generation nothing about the limit state was known and thus there is no guarantee the
information these samples provide about the failure domain will be adequate. Furthermore,
the majority of methods select one point at a time, which, given the dynamical nature of
sequential sampling could either miss important regions of the domain, or slow down con-
vergence. Different strategies to selecting improvement points are presented in [10, 18–29].

The last major part of all adaptive algorithms is the stopping condition. This ranges from
the use of reliability indices [20, 22] through error in the estimation of the failure probability
[11, 18, 27, 28, 30] and forms of measure of the discrepancy between the emulator predictions
and code observations [10, 19, 23, 29] to thresholds on the learning function [9, 26, 31].
Problems with some of these stopping conditions include the fact that they are based on
relative error between iterations of the same algorithm, or that they depend on the form of
the learning function.

The aim of this work is to provide an improved efficient algorithm for reliability analysis
with computationally expensive computer codes. The method contributes:

• A new way to select candidate points, accounting for the presence of disjoint failure
domains, while minimizing the number of samples selected from regions far away from
the failure domain.

• A stopping condition which relies implicitly on the similarity between the surrogate
and the model in the failure domain.

The paper is organised as follows: Section 2 provides an overview of subset simulation
and Gaussian process emulation. Section 3 introduces the proposed method and provides a
brief comparison between it and existing algorithms; Section 4 demonstrates the performance
of the algorithm. Relevant conclusions are drawn in Section 5.
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2. Methodology overview

This section provides an overview of the theory behind subset simulation (SuS) and Gaussian
process emulation (GPE).

2.1. Subset simulation

A very important problem in engineering is the estimation of the probability of failure of a
system, pF , given in Eq. (1). In the context of numerical simulations failure can be defined
as the scenario where a response variable (output) of the model, exceeds some threshold of
acceptable system behaviour. The output, y is related to the input variables, x ∈ X ⊂ R

d,
via some mapping provided by the simulator y = η(x). Thus, the failure domain, as defined
in the beginning contains the values of x which cause the system response, y to exceed a
critical value y∗

F = {x : η(x) > y∗} (2)

Estimating pF is associated with sampling from F . Usually, for a well-designed system the
true value of pF is very small, that is, F is a rare event. Also, a typical model has a high
dimensional input space and often the failure domain of that space is disjoint, so sampling
from it poses a significant challenge. SuS [1] expresses the failure event as contained in a
nested sequence of less-rare events.

F ⊂ Fm ⊂ Fm−1 ⊂ . . . ⊂ F1 (3)

where F1 is a relatively frequent event. Given that sequence, it can be shown that the prob-
ability of the rare event F can be expressed as a product of larger conditional probabilities:

pF ≡ P(F ) = P(F1) · P(F2|F1) · . . . · P(F |Fm) (4)

Beginning from the unconditional level F0, the algorithm “probes” the input space X via
direct Monte Carlo sampling. Then, based on the values of y by the simulator, it constructs
the first intermediate failure threshold, y∗1 < y∗, defining an intermediate or relaxed failure
domain, F1. SuS then populates F1 with Ns samples, using an MCMC algorithm. The
generation and population of intermediate, equiprobable levels (P(Fi|Fi−1) = p0) continues
until a predefined number of samples lie in the true failure domain F . At the end of
the algorithm an estimate of the complementary CDF (CCDF) of the response function is
generated as shown in Ch. 5 of [32].

2.2. Gaussian process emulation

Using complex scientific models to perform analyses relying on a large number of code
evaluations may prove to be infeasible. When such models are used for reliability analysis,
subset simulation (SuS) offers a way to significantly reduce the number of calls to the
simulator, as compared to direct Monte Carlo (DMC). Despite this fact, SuS remains a
time-consuming method to use directly with the code, since it utilises MCMC sampling.

To reduce the cost of the model, a Gaussian process emulator (GPE) is constructed for its
output. Gaussian processes (GP) are a generalization of the Gaussian distribution from the
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space of vectors to the space of functions. Gaussian processes are completely defined by their
mean and covariance functions and possess many desirable properties, including tractability
of computation. Gaussian process emulators are a class of non-parametric surrogate models,
which places a Gaussian process prior over functions, expressing the belief that any finite
collection of simulator outputs is jointly-distributed as a multivariate Gaussian see Sec 2.2
of [33].

In GP emulation, the following form for the model structure is widely used [34]

η(x) = h(x)Tβ + Z(x) (5)

In Eq. (5) a regression term, h(x)Tβ which encapsulates any prior knowledge about the
simulator is added to the GP. The function h(·) ∈ R

q can be any known expression of
its inputs [35]. The GP, Z(x) has zero mean and covariance σ2c(x,x′;ψ), where σ2 is a
scale parameter and ψ is a vector of parameters specifying the behaviour of the correlation
function c(·, ·;ψ). In contrast to h(·), c(·, ·;ψ) must be a positive semi-definite function
(see Sec 2.2 of [33]). There is a wide choice of correlation functions, but in this paper the
exponentiated square function is used

c(x,x′;ψ) =
d
∏

j=1

exp

(

−
|xj − x

′

j|
2

2ψj

)

(6)

LetD = {xi, yi = η(xi)}
n
i=1 be a collection of inputs and corresponding simulator outputs.

Then, conditioning Eq. (5) on D and using the properties of Gaussian processes results in a
posterior distribution for the output of the computer code

η(·)|D,β, σ2,ψ ∼ GP(M(·), V (·, ·)) (7)

where M(·) and V (·, ·) are the mean and covariance functions of the GP, respectively. A
Bayesian treatment of Eq. (7) will result in placing a prior on each of the parameters and
deriving their posterior, conditioned on D. Typically, the maximum a posteriori estimate is
taken as an estimate for β and σ2 as

β̂ =
(

HTC−1H
)

−1
HTC−1y (8)

σ̂2 =
yT

(

C−1 −C−1H
(

HTC−1H
)

−1
HTC−1

)

y

n− q − 2
(9)

where H = [h(x1), . . . , h(xn)]
T and

C =











c(x1,x1;ψ) · · · c(x1,xn;ψ)
...

. . .

c(xn,x1;ψ) · · · c(xn,xn;ψ)











(10)
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Replacing the original parameters in Eq. (7) with their estimates in Eq. (8) and Eq. (9),
yields the posterior predictive distribution of η(x∗) at any unobserved point x∗, as

η(x∗)|D,ψ ∼ m(x∗) + s(x∗,x∗)tn−q (11)

where tn−q denotes the standard t-distribution with n− q degrees of freedom, m(x∗) is the
posterior predictive mean of the model

m(x∗) = h(x∗)T β̂ + t(x∗)TC−1(y −Hβ̂) (12)

and s(x∗,x∗) is the square root of the posterior predictive variance

s2(x∗,x∗) =σ̂2
[

c(x∗,x∗; ψ̂)− t(x∗)TC−1t(x∗)

+
(

h(x∗)T − t(x∗)TC−1H
) (

HTC−1H
)

−1
(13)

×
(

h(x∗)T − t(x∗)TC−1H
)T

]

In Eq. (12) and Eq. (13), t(x∗) ∈ R
n is such that t(x∗) = (c(x∗,x1;ψ), . . . , c(x

∗,xn;ψ))
T .Finally,

estimating ψ is usually done via maximizing the likelihood of the data with respect to these
parameters as suggested in Sec. 2.4 of [2].

The process of going from Eq. (7) to Eq. (11) is referred to as training of the emulator [36].
It entails the repeated inversion of C to optimize over ψ. It is a well-known fact that matrix
inversion scales with the number of training points as O(n3). However, once constructed,
the emulator can be evaluated efficiently as neither Eq. (12), nor Eq. (13) involves sampling
the simulator. Furthermore, every call to the GPE provides a prediction and an associated
uncertainty measure, which is central to the method proposed in the next section.

3. Proposed approach

This section introduces the proposed method for efficient reliability analysis. The method
is a novel combination between Gaussian process emulation and subset simulation, and
as such is termed Gaussian process subset simulation (GPSS). Substituting the simulator
for the GPE significantly decreases the computational cost of reliability analysis. However
directly replacing the simulator with the GPE may lead to important parts of the failure
region being missed or to failing to find such a region at all. This section outlines the novel
ways in which GPSS addresses these issues. A pseudocode is provided as Algorithm 1.

3.1. Initialization

In order to be reliably used, the emulator needs to be of sufficient quality around the
estimated failure regions. This is not usually the case with GPE approximations built using
data from high probability regions (according to the input PDF). For the physical model it
is assumed that the critical failure threshold, y∗ is known (given a priori) and sensible (i.e.
there is a set of values of x for which η(x) > y∗). The proposed algorithm starts by building
a GPE based on a set of data points, selected according to a space-filling strategy, LHS in
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this case. The initial number of samples in the present work is chosen to be 10d, where d
is the number of input dimensions, after [37]. The GPE can be validated to check if there
are any large discrepancies between the emulator and simulator as in [35]. This is done to
ensure that the initial approximation is of a reasonable overall quality.
It is likely that the original threshold is not attained on the first iteration since the GPE
learns about the simulator output from samples that do not constitute a rare event. This is
to say

F1 = {x : m1(x) > y∗} = ∅ (14)

where Fℓ is the failure domain according to the ℓth emulator (ℓ = 1 above), with predictive
mean mℓ(·) given by Eq. (12). Since the emulator is an efficient approximation of the code,
in theory one can search the input space exhaustively. However, the size of a Monte Carlo
sample required to get a reliable estimate of the features of the failure domain is usually
large, leading to an inefficient use of the GPE. To ensure high efficiency, it is proposed to use
SuS to sample from the posterior predictive distribution of the emulator, which leads to a
quick and reliable convergence, especially in high dimensions. As outlined in Section 2.1, SuS
converges when a predefined number of data points lie in the failure domain. If it is indeed
the case that F1 = ∅, the algorithm will be unable to converge due to all candidate samples
being rejected. To resolve this, GPSS provides an alternative “failure level”, ỹ∗1 such that
P (m1(x) > ỹ∗1) > 0. This approach gives rise to an intermediate emulator “failure” domain
with respect to ỹ∗1, denoted as F̃1. The number of samples, Ns for the algorithm can be set
high enough to ensure that even truly rare subregions of F̃1 are populated. Note, that this
is now associated with a minimal increase in computation time, since the GPE is evaluated
instead of the true function.

3.2. Level generation

The above discussion raises the question of how to calculate ỹ∗ℓ such that SuS converges,
whilst simultaneously exploring potentially interesting regions of the input space. This
section provides a comparison between three distinct rules giving GPSS different behaviour.
The rules are presented in Table 1 along with relevant observations. A plot of each level
used for the Goldstein-Price function (presented in Section 4.1) is shown in Figure 1. Each
level-generating rule is only a function of simulator observations which carry no uncertainty.
In Table 1, yi are the n training responses and I(yi) is an indicator function returning 1
if yi > ỹ∗(ℓ−1) and 0 otherwise. This is not to be confused with IF in Algorithm 1, which
is the failure indicator function. It is noted that in the absence of prior knowledge about
the function, Rule 3 provides the most balanced performance to GPSS. This is because it
ensures that the current threshold will lie above the previous one, whilst safeguarding against
setting it too high and discarding important regions. Rule 3 is used for the remainder of this
article. However, the analyst could give preference to either quicker convergence or longer
exploration by selecting other rules.

3.3. Sample selection

Let XF̃ℓ
= {X ∈ F̃ℓ} be the set of points, produced by SuS, whose predicted response lies

above the current failure level ỹ∗ℓ . Among all of these samples some additional points at
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Table 1: Failure level generation rules.

Rule Expression Remarks

1 ỹ∗ℓ = max(yi)+min(yi)
2

∣

∣

∣

∣

ℓ

Longer exploration for
highly non-linear out-
puts.

2
ỹ∗1 =

∑
N

i=1
yi

N

ỹ∗ℓ = 1
N+1

[

∑N

i=1 yiI(yi) + ỹ∗(ℓ−1)

]

Information from new
samples is given more
weight for faster con-
vergence.

3
ỹ∗1 =

∑
N

i=1
yi

N

ỹ∗ℓ = 1
2

[

∑
N

i=1
yiI(yi)

N
+ ỹ∗(ℓ−1)

]

Previous level is given
more weight to control
progress speed.

0 5 10 15 20 25

0 10 20 30 40 50 60 70 80 90 100
7

8

9

10

11

12

13

14

Figure 1: Comparison between alternative failure levels for the Goldstein-Price function.
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which to run the model have to be selected before fitting the next emulator prediction. The
posterior predictive variance of the emulator is proposed as an indicator of the local quality
of the approximation, such that points whose predictive distribution indicates they are close
enough to an existing training sample are not considered for repeated simulator evaluation.
That is

Xcand =
{

XF̃ℓ
: s

(

XF̃ℓ
,XF̃ℓ

)

≥ ε
}

(15)

where Xcand is the candidate population to be considered for code evaluation.
The constant ε in Eq. (15), is a small threshold on the standard deviation below which

predictions from the GPE are considered accurate. This criterion is based on the use of a
stationary correlation function, such as the one in Eq. (6), where the predictive variance
depends only on the distance between test and training points. The value of ε is selected
as follows. Let the value of y∗ be specified as a number with k decimal places. Then,
subtracting a number, O

(

10−k−1
)

from y∗ will not change it to the desired precision. Thus,
predictions which lie in F according to mℓ(·) will remain there according to their predictive
distribution as long as s(·, ·) ≤ ε1.

Let Xadd denote the points to be added to the training sample for the next GPE, such
that

Xadd = argmax
Xcand

E
[

I
(

Xcand

)]

ℓ
(16)

where E
[

I(·)
]

ℓ
is the ℓth expected improvement function (EI) [38].

Expected improvement is a strategy that balances exploitation of the emulator mean and
exploration of the design space and is given in functional form by

E[I(x)]ℓ =
∣

∣ (y∗ −mℓ(x))
∣

∣Φ

(

y∗ −mℓ(x)

sℓ(x,x)

)

+ sℓ(x,x)φ

(

y∗ −mℓ(x)

sℓ(x,x)

)

(17)

where the subscript ℓ denotes information regarding the ℓth emulator and the symbols Φ(·)
and φ(·) denote the cumulative, and probability distribution functions of a standard Gaus-
sian random variable, respectively.

Expected improvement can be run on each point in Xcand and the one that maximizes
it will be added to the training plan for the next level GPE. Adding a single point or a
fixed number of points to the training sample is widespread in the reliability literature (e.g.
[18, 28, 30]). However, applying expected improvement directly to Xcand poses a risk of
neglecting subregions in the intermediate emulator failure domain. Unless F̃ℓ is not disjoint,
the presence of separate modes needs to be accounted for. GPSS achieves this by first
identifying the structure of F̃ℓ, detecting any modes and calculating EI on the samples in
each mode. A clustering algorithm is used to discover the separate failure sub-domains.
GPSS utilizes the density-based algorithm DBSCAN [39]. This algorithm does not need the
number of clusters to be specified a priori. It is noted that clustering has been used for
parallelisation [26] and as a sample strategy [20, 40] in related work, but not as a means
of discovering multiple modes in the topology of F̃ℓ. Ultimately, the design plan for the

1See Section 4 for examples
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emulator at the next level is composed of the current design plus the new points, formally
Dℓ+1 = Dℓ ∪ {Xadd, η(Xadd)}, where Xadd is given in Eq. (16).

3.4. Stopping condition

In order to stop the iterative refinement of the emulator, the following rule is proposed.
Consider running SuS with the true function. By design SuS will stop generating new levels
once at least Nsp0 samples from the last level lie in the failure domain, F . It follows that
a necessary and sufficient criterion for the accuracy of the emulator in F is the ability of
SuS to generate the same number of samples, denoted XFℓ

whose predictive distribution
indicates that they indeed belong to Fℓ, that is

NFℓ
≥ Nsp0

NFℓ
=

∑

IF (s (XFℓ
,XFℓ

) < ε) (18)

If this condition is satisfied, there will be no distinction between emulated and simulated
samples.

It is important to note that the main aim of GPSS is to provide a way for the emulator
to reliably discover the failure domain, with the use of minimal simulation resources. This
is in contrast to increasing the efficiency of the GPE itself, which is not addressed here. Due
to the importance of reliability analysis a number of methods exploiting Gaussian process
emulators to reduce its cost have been developed in recent years. A short comparison is
provided in Table A.1. Refer to Section 1 for an explanation of potential problems.

4. Numerical experiments

In this section, the performance of GPSS is demonstrated with three numerical problems.
The function in Section 4.1 features a rare event for an efficiency test. The problem in
Section 4.2 tests the ability of GPSS to deal with disjoint failure domains and Section 4.3
presents an example of GPSS being applied to an industrial-scale, expensive computer code.

4.1. Goldstein-Price function

The Goldstein-Price function is given by Eq. (19). The natural logarithm of the function is
taken to reduce the range of the output values. The critical level, y∗ = 13.821 was chosen
to yield a small failure probability of pF = 5.04 × 10−5. The corresponding ε = 0.0005, as
13.821− 0.0005 = 13.8205, which rounded to the original precision of y∗, still equals 13.821.

η(x) = [1 + (x1 + x2 + 1)2(19− 14x1 + 3x21 + 14x2 + 6x1x2 + 3x22)] (19)

× [30 + (2x1 − 3x2)
2(18− 32x1 + 12x21 + 48x2 − 36x1x2 + 27x2)]

x1,2 ∈ [0, 1]

The initial GPE was trained with n = 20 LHS points with x2 in [0, 0.7]. Figure 2 shows
a selection of GPSS steps from ℓ = 1 to completion. Each sub-figure shows the current
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Algorithm 1 GPSS

1: Generate a space-filling plan, X ∈ R
n×d and form D1 = {Xi, yi = η(Xi)} for i = 1 . . . n

2: Train a GPE η1(x)|D1, ψ̂ ∼ m1(x) + s1(x,x)tn−q and validate it.
3: Assign values to all parameters for GPSS - (p0, Ns, y

∗).
4: Calculate ε.
5: ℓ← 1
6: NFℓ

← 0
7: while NFℓ

< p0Ns do

8: if ℓ = 1 then

9: ỹ∗ℓ = 1
n

∑n

i=1 yi
10: else

11: ỹ∗ℓ = 1
2

[

1
n

∑n

i=1 yiI(yi) + ỹ∗(ℓ−1)

]

12: end if

13: if ỹ∗ℓ > y∗ then

14: ỹ∗ℓ = y∗

15: end if

16: F̃ℓ = {Xi : mℓ(Xi) > ỹ∗ℓ }, ∀i

17: Populate F̃ℓ using SuS → XF̃ℓ

18: Form a candidate sample Xcand =
{

XF̃ℓ
: s

(

XF̃ℓ
,XF̃ℓ

)

≥ ε
}

19: Calculate NFℓ
=

∑

IF (s (XFℓ
,XFℓ

) < ε)

20: Group Xcand in k clusters {X
(1)
cand, . . . ,X

(k)
cand}

21: Xadd ← ∅

22: for j in 1 . . . k do

23: Xadd ← Xadd ∪ argmax
X

(j)
cand

E
[

I(X
(j)
cand)

]

ℓ

24: end for

25: Dℓ+1 ← Dℓ ∪ {Xadd, η(Xadd)}
26: ℓ = ℓ+ 1
27: Train a GPE ηℓ+1(x)|Dℓ+1, ψ̂ ∼ mℓ(x) + sℓ(x,x)tn−q

28: end while

intermediate threshold, ỹ∗ℓ in red and the boundary of the failure domain, F̃ℓ in black. The
region that the algorithm samples from at each iteration is shaded in grey. Notice that in all
stages the sampling domain chosen by SuS covers the general region of the failure domain.
In sub-figures ℓ = 6 through ℓ = 9 the algorithm samples in more than one location. This
is due to the fact that in these particular cases the mean of the emulator, β was estimated
such that predictions away from the training points had relatively high values. Once enough
information was obtained in these regions they were discarded as seen in ℓ = 11 onwards.
Finally, the last sub-figure contains an inset showing a magnification of the sampling and
failure regions. The estimated mean probability of failure, based on 1000 runs of SuS on the
improved GPE, was p̄F = 5.09× 10−5. The coefficient of variation and relative error based
on the same sample were δpF = 26.1% and ∆pF = 0.91%, respectively. A more complete idea
about the quality of the approximation can be obtained from Figure 3, showing a comparison
between the CCDF curves for SuS and GPSS. The results point to two important remarks.
Firstly, the importance of supplying simulator information to the GPE, instead of relying on
a one-iteration emulator is clearly demonstrated. Secondly, the existence of different level-
generation rules provides means of benchmarking results obtained with a particular set-up.
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Figure 2: Progression of GPSS using Rule 3 for the modified Goldstein-Price function. The titles in each
sub-figure denote the algorithm iteration. Red contours correspond to ỹ∗ℓ and black contours show F̃ℓ. New
data points from the shaded regions are plotted as diamonds. Inset in last tile: Failure domain (black) and
last GPSS level (red). The number of training samples in each tile is n = {20, 23, 30, 34, 39, 42, 44, 47, 54}.
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Figure 3: Complementary CDF of the modified Goldstein-Price function according to the GPE (green),
GPSS (red) and SuS (black). The blue circles show the intermediate levels of SuS. Each level was populated
with 3000 samples.

These rules can be used to tune the algorithm to the studied problem. The performance of
the algorithm was tested for smaller values of pF , by setting y∗ = 13.8308. The small increase
in critical level results in the probability of failure being reduced to pF = 2.29×10−7. GPSS
converged in 30 iterations, sampling the simulator a total of 55 times, with δpF = 36.9% and
∆pF = 1.75%. To demonstrate the overall efficiency of GPSS, a series of experiments with y∗

of varying orders of magnitude were conducted. These compared the number of evaluations
of the real function, ∆pF and δpF between GPSS and SuS. The results are summarized in
Table 2. The study also indicates the number of Monte Carlo samples required to achieve
the coefficient of variation at each pF . It can be seen that GPSS requires significantly
fewer samples than both SuS and MCS. A result expected from any surrogate model-based
algorithm. Importantly however, GPSS manages to match SuS in both relative error and
coefficient of variation, combining accuracy and efficiency.
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Table 2: Efficiency analysis for GPSS on the Goldstein-Price function.

GPSS SuS MCS

pF N ∆pF% δpF% N ∆pf% δpF% N

O (10−2) 64 0.29 5.2 6× 103 0.01 5.2 7.03× 103

O (10−3) 67 0.55 12.6 9× 103 0.66 13.2 1.24× 104

O (10−4) 54 1.39 20.6 12× 103 0.67 20.2 4.80× 104

O (10−5) 54 0.91 26.1 15× 103 3.69 27.2 2.91× 105

O (10−6) 61 0.36 30.7 18× 103 2.54 30.6 2.24× 106

O (10−7) 55 1.75 36.9 21× 103 2.62 37.3 3.21× 107

4.2. Gaussian mixture function

This function was created to test the robustness of GPSS to outputs with multimodal failure
domains. The function has the form:

η(x) =
102

2
[aφ(xA) + bφ(xB) + cφ(xC) + dφ(xD)] (20)

xA = 10 (x− 1/4)

xB = 10 (x− 3/4)

xC = [10 (x1 − 3/4) , 10 (x2 − 1/4)]

xD = [10 (x1 − 1/3) , 10 (x2 − 5/6)]

In Eq. (20) x = [x1, x2] ∈ [0, 1]2 and φ(·) is the standard Gaussian PDF. The failure
threshold was set as y∗ = 7.9, with an associated failure probability pF = 7.27× 10−3. The
corresponding ε = 0.05. The parameters in Eq. (20) are selected in way which results in a
failure domain with 3 disjoint sub-domains. The peak on the top left in the sub-plots on
Figure 4 is close to, but outside of F .

The GPE was initially trained with n = 20 LHS points. Figure 4 shows the process
of discovery of the failure domain. Each plot shows the contour values of the intermediate
levels ỹ∗ℓ as a red line. The level of y∗ is indicated with a black line, but is absent in the first
row of Figure 4 as it was not accessible at these stages of the GPE refinement. During most
of the process points were added in all three modes. However, from levels ℓ = 15 and ℓ = 16
to the end, the algorithm could not improve the approximations in the bottom left and top
right modes, and stopped sampling from them. This is reflected in the last four sub-figures of
Figure 4 where the new simulation runs, shown as diamonds, are only added to the bottom
right peak. This feature of GPSS is useful in the presence of highly disjoint failure domains,
where the local quality of the GPE can increase independently and resources will not be
wasted where they are not needed. The mean probability of failure, based on 100 runs of
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SuS was found to be p̄F = 7.31 × 10−3. The corresponding c.o.v. and relative error were
δpF = 14.1% and ∆pF = 0.55%, respectively. Figure 5 shows the CCDF curve for the failure
probability estimated with SuS, the one obtained via GPSS and the one calculated relying
on the unimproved GPE. It can be seen, that subset simulation was unable to find failure
points using the GPE alone. A study similar to the one performed for the Goldstein-Price
function is presented in Table 3. A slight increase in function evaluations with the increase
of the failure probability is observed. This behaviour is explained with the fact that larger
pF correspond to bigger portions of the input domain, which require more training points to
drive the s(·, ·) below ε. Nevertheless, the conclusion arrived at from Table 2 in that GPSS
provides a combination between speed and accuracy is confirmed

Table 3: Efficiency analysis for GPSS on the Gaussian mixture function.

GPSS SuS MCS

pF N ∆pF% δpF% N ∆pf% δpF% N

O (10−2) 98 0.52 5.8 6× 103 0.24 6.0 5.58× 103

O (10−3) 64 0.55 14.1 9× 103 1.59 14.5 6.87× 103

O (10−4) 55 2.49 22.9 12× 103 2.02 29.9 3.75× 104

O (10−5) 73 1.84 17.7 15× 103 4.81 32.4 6.28× 105

4.3. A lattice Boltzmann model of a filter

Cleanliness of fuel is an important aspect of its quality. Fuels can get polluted with a
variety of contaminants, including solid particles and water. Water is especially challenging
to separate from diesel fuels during daily use. This is due to the chemical nature of these
fuels. Designing reliable filters with high percentage of water separation is thus key to the
normal operation of engines using diesel products. Non-woven filters are known for their
suitability in cleaning fuel from water, dispersed in the medium in the form of microscopic
droplets. Successfully capturing droplets below 5µm in diameter, which frequently appear
in high-pressure fuel systems, is a challenging task [41].

In order to help in its design, a computer model of the filter is used, which allows the
systematic investigation of the filter’s performance. Lattice Boltzmann modelling (LBM)
is chosen as the simulation paradigm, due to its ability to represent multi-component flows
through the complex filter geometry [42].

A full filter model has a multitude of inputs ranging from filter and flow properties, to
parameters of the model itself. To simplify this case study, a small LB model of a single-fibre
filter is presented in this section. The modelling set-up comprises a 2D simulation of a water
droplet (red) submerged in fuel (dark blue) and impacting with a circular fibre (light blue),
and is shown in Figure 6. At time t = 2800 and t = 3000 in Figure 6 some of the water volume
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Figure 4: The performance of GPSS on the Gaussian mixture function using Rule 2 in Table 1. The titles
in each sub-figure signify the level of the algorithm. Red contours correspond to ỹ∗ℓ and black contours

show F̃ℓ. New data points are plotted as diamonds. The number of training samples in each tile is n =
{20, 22, 24, 44, 50, 59, 62, 63, 64}.
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Figure 5: Complementary CDF of the Gaussian mixture function according to the GPE (green), GPSS (red)
and SuS (black). The blue circles show the intermediate levels of SuS. Each level was populated with 3000
samples.

can be seen to “escape” from the fibre and go to the outlet of the domain, which represents
the downstream portion of the fuel line. The escape volume, denoted with Ve is of interest in
this simulation since its presence signifies that the filter has failed to accomplish its task. The
model has three input variables, namely droplet diameter, dd, fibre diameter, df and contact
angle between fibre and droplet, θc. Information about each input along with their ranges is
presented in Table 4. The LB model solves a series of linearised partial differential transport
equations at each lattice site in the simulation domain. Despite the use of parallel computing
techniques and low-level programming, LBM remains a computationally intensive computer
code in that, its running time makes it infeasible to perform the number of evaluations
required by either MCS or SuS indicated in Table 2 and Table 3.

Table 4: Inputs and their distributions for single-fibre LBM simulations.

Input Symbol Distribution

Droplet diameter (µm) dd U(48, 80)

Fibre diameter (µm) df U(20, 40)

Contact angle (deg) θc U(130, 180)
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Figure 6: A selection of steps from the single component multiphase model used for preliminary emulation.

A GP emulator for the model was trained with n = 50 LHS points from the simulator.
Another m = 50 LHS validation runs were also obtained. The GPE was validated according
to [35] and was determined to be a reasonably accurate representation of the model. After
validation, the test set X∗ was added to the training sample and the GPE was refitted,
keeping the values of the hyperparameters calculated with the original n = 50 samples.
The critical level for the analysis was set equal to the value of the maximum training point,
y∗ = 7452 lu. The natural logarithm of the code output was taken such that the transformed
threshold was y∗ = 8.916. The corresponding ε = 0.0005.

GPSS was run with p0 = 0.1 and Ns = 3000. Figure 7 shows the CCDF obtained using
only the GPE as compared to the one from GPSS. It could be seen that using the GPE alone
results in a overconfident estimate of the reliability of the system with p̄F = 8.42 × 10−4,
based on 100 runs of SuS. The same analysis run on GPSS returned p̄F = 5.71 × 10−3.
The coefficient of variation of two estimates was 15.6% and 10.5% for the GPE and GPSS
respectively. It should be noted that the small difference in pF estimated using only the GPE
and as opposed to GPSS is only due to the way the physical problem was set up. Defining
y∗ = max(y) to be the maximum of the training responses was a way to ensure that GPSS is
tasked with providing information about an input region, the emulator has not seen during
training. It could be reasoned, that the closeness between the two pF estimations is due
to a smooth response of the code above y∗, which was estimated with some accuracy by
the GPE at ℓ = 1. An interesting observation can be made on the features of the failure
domain F . The estimates from the GPE and GPSS differ not only quantitatively, but also
qualitatively. Figure 8 shows a comparison between the samples lying in F according to the
GPE and GPSS. The former completely misses the two regions in top and bottom left. The
region around df = 0.7, θc = 0.4 which SuS populates with failure points when using the
initial GPE can be ascribed to a local extrapolation issue, resolved by GPSS.

5. Conclusion

A surrogate-model-based method for reliability analysis, called GPSS was presented. The
algorithm combines standard practice tools, namely subset simulation and Gaussian process
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Figure 7: Complementary CDF of the LBM code using the GPE only (dash-dot) and GPSS (solid). The
black circles show the probability of exceeding y∗ estimated from the two surrogates.
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emulation into an efficient algorithm for reducing the cost of reliability analysis of complex
computer codes.

GPSS has two main improvements over existing algorithms. Firstly, a complete method-
ology for selecting points to augment the emulator was presented which leads allows uni-
and multi-modal failure domains to be analysed, whilst minimizing the need to obtain com-
putationally expensive simulator runs. GPSS automatically stops sampling subregions of
the failure domain for which the emulator is accurate enough.

Secondly, a stopping condition utilizing the full predictive capabilities of the Gaussian
process emulator was presented. It is based on the direct similarity between the model and
the emulator in the failure domain. The quality of the performance of the algorithm was
demonstrated by the means of two illustrative benchmark problems and a computational
fluid study of a filtration model. Results showed that GPSS provides estimators of the
probability of failure with errors comparable to subset simulation and direct Monte Carlo,
but at a fraction of the computational cost. Future research envisions the implementation of
different MCMC samplers that can potentially increase the efficiency of subset simulation.
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Appendix A. Some existing methods

Table A.1: Comparison of main features between GPSS and existing methods. Refer to Section 1 for an
explanation of potential problems.

Method DoE Learning Termination Remarks

GPSS LHS.

Multipoint-subset-
simulation
maximum expected
improvement.

Discrepancy
between GPE
and simulator in
F .

Algorithm
provided in this
paper.

AK-MCS
Random
sample.

Maximum expected
feasibility;
U-function.

Coefficient of
variation of pF .

One point added
per iteration from
a pre-generated
random sample.
See [18].

AK-SS LHS. U-function as in
[18].

Coefficient of
variation of pF .

pF calculated via
SuS. See [30].

AK-SSIS LHS.

Importance-
sampling-enhanced-
subset-simulation
U-function.

Coefficient of
variation of pF .

Reliability indices
feature in the
algorithm. See
[27].

LIF LHS. Least improvement
function.

Threshold on the
uncertainty
function.

Fixed population
of augmentation
points. See [28].

Dubourg Empty.
Slice sampling with
k-means for
multipoint selection.

Overall
improvement in
the reliability
indices.

SuS used to
perform
reliability studies.
See [20]
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