
This is a repository copy of Flexible Fiber Surfaces: A Reeb-Free Approach.

White Rose Research Online URL for this paper:
https://eprints.whiterose.ac.uk/144583/

Version: Accepted Version

Book Section:

Sakurai, D, Ono, K, Carr, H orcid.org/0000-0001-6739-0283 et al. (2 more authors) (2020) 
Flexible Fiber Surfaces: A Reeb-Free Approach. In: Topological Methods in Data Analysis 
and Visualization V. Mathematics and Visualization book series . Springer International 
Publishing . ISBN 978-3-030-43035-1 

https://doi.org/10.1007/978-3-030-43036-8_12

© Springer Nature Switzerland AG 2020. This is an author accepted version of a paper 
published in Sakurai D., Ono K., Carr H., Nonaka J., Kawanabe T. (2020) Flexible Fiber 
Surfaces: A Reeb-Free Approach. In: Carr H., Fujishiro I., Sadlo F., Takahashi S. (eds) 
Topological Methods in Data Analysis and Visualization V. TopoInVis 2017. Mathematics 
and Visualization. Springer, Cham. Uploaded in accordance with the publisher's self-
archiving policy.

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse 

See Attached 

Takedown 

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by 
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request. 



Flexible Fiber Surfaces: A Reeb-Free Approach

Daisuke Sakurai, Kenji Ono, Hamish Carr, Jorji Nonaka, and Tomohiro Kawanabe

Abstract The fiber surface generalizes the popular isosurface to multi-fields, so

that pre-images can be visualized as surfaces. As with the isosurface, however, the

fiber surface suffers from visual occlusion. We propose to avoid such occlusion by

restricting the components to only the relevant ones with a new component-wise

flexing algorithm. The approach, flexible fiber surface, generalizes the manipulation

idea found in the flexible isosurface for the fiber surface. The flexible isosurface

in the original form, however, relies on the contour tree. For the fiber surface, this

corresponds to the Reeb space, which is challenging for both the computation and

user interaction. We thus take a Reeb-free approach, in which one does not compute

the Reeb space. Under this constraint, we generalize a few selected interactions in

the flexible isosurface and discuss the implication of the restriction.

1 Introduction

An isosurface is defined as the inverse image f−1(s) of some scalar value s in the

scalar field f : M(n)→R, where M(n) is an n-manifold. Though visualizing isosur-

faces [20] is a routine task for scalar field analysis, it is often required to understand

correlations between multiple quantities (e.g. temperature and pressure). In fact,

Daisuke Sakurai

Zuse Institue Berlin, Germany, e-mail: d.sakurai@computer.org

Kenji Ono

Research Institute for Information Technology, Kyushu University, Fukuoka, Japan;

RIKEN Center for Computational Science, Kobe, Japan

Hamish Carr

School of Computing, University of Leeds, Leeds, UK

Jorji Nonaka · Tomohiro Kawanabe

RIKEN Center for Computational Science, Kobe, Japan

1



2 Daisuke Sakurai, Kenji Ono, Hamish Carr, Jorji Nonaka, and Tomohiro Kawanabe

Fig. 1 Our flexible fiber surface generalizes the flexible isosurface to multi-fields without pre-

computing the topology of pre-images. The domain is shown on the left and the range on the right.

scalar data analysis itself can be assisted by multi-field analysis when considering

the gradient magnitude as the second field [17].

For 3-D multi-fields of the form f : M(3)→ R
m, the range is extended to data

tuples (x1, ..,xm) ∈ R
m. In particular, the fiber surface [5] generalizes the isosurface

for f : M(3)→R
2, which is useful for extracting pre-images in the domain as a sur-

face mesh. The fiber surface is the pre-image f−1(P) of a control polygon P, which

is a polyline composed by l linear segments each having the endpoints (xi,yi) and

(xi+1,yi+1) (1 ≤ i ≤ l + 1; i, l ∈ N). Each vertex (xi,yi) is called a control point.

The user can specify the fiber surface by drawing the control polygon in the 2D

range. The control point shall be dragged to see how the shape of the fiber surface

changes. This allows fiber surfaces to be simple to compute, compact in size, and

quantitative as isosurfaces in scalar fields. Since the fiber of a point in an R
2 range is

a 1-D structure almost everywhere in the 3-D domain, the fiber surfaces are indeed

surfaces in general. We call a connected component of a fiber surface a fiber sur-

face component. (A component refers to a fiber surface component unless specified

otherwise.) However, interacting with the components remains still a challenging

task. As with the isosurface, the fiber surface suffers from overlaps and may have

too many features for the user to comprehend. In case of the isosurface, one has

been able to utilize the flexible isosurface [8] to distinguish the components, hide ir-

relevant ones such as noise or uninteresting phenomena, and even vary the isovalue

per component. Such interactions were shown to be useful for visualizing different

objects in a CT scan dataset separately, for example.

We thus adapt the component-wise manipulation of the isovalue, as found in the

flexible isosurface for multi-fields, as the flexible fiber surface (Fig. 1). Where an

isosurface component is contracted as a point in the contour tree [7], a component

of a fiber f−1(p) of some value p = (x,y) is contracted as a point in the Reeb space

[13]. Hence, each component of a fiber surface f−1(P) finds its contraction in the

Reeb space as a connected component.

We generalize the flexible isosurface, or to be more precise, its concept of

component-wise manipulation. Our flexible isosurface interface, as implemented

[8], pre-computes the contour tree in order to obtain the seed of isosurface compo-

nents and the connectivity of these components across different isovalues. While the



Flexible Fiber Surfaces: A Reeb-Free Approach 3

contour tree is generalized into the Reeb space for multi-fields, in this work we avoid

computating the Reeb space (we call such an approach to be Reeb-free), and for the

following reasons. Firstly, the scalability of analysis is limited by the scale at which

the Reeb space can be computed. Secondly, the current standard implementation

[28, 29] of the Reeb space computation requires the user to subdivide the domain

to a sufficiently fine resolution such that at least one tetrahedron is completely con-

tained in each 3-sheet (which is challenging to achieve). Finally, the Reeb space is

hard to be shown to, and to be utilized by, the user when the Reeb space is compli-

cated [25], which is usual in real-world data. Interactions relying on the contour tree

are not generalized in our approach (3 and 6) as we avoid obtaining the Reeb space.

Our contributions include (i) varying the input control polygon per fiber surface

component, (ii) freeing the operations of the flexible fiber surface from precomput-

ing the Reeb space. For contribution (i), we devise a new flexing algorithm. Contri-

bution (ii) means that the flexible iso-surface also becomes Reeb-free as a special

case. Our algorithm works for any 3-D tetrahedral grid, regardless of the homology

of the domain. Our key idea is to follow the pre-image on-demand.

The remainder of this article is organized as follows. We introduce the related

work in Section 2, and generalize the semantics of the original flexible isosurface to

our Reeb-free flexible fiber surface in Section 3. We then revisit the existing algo-

rithms of extracting a fiber surface in Section 4 with their implication to our compu-

tation. Section 4 explains how our algorithm identifies the connected components of

fiber surfaces extracted with the algorithm by Klacansky et al., and further deform

the fiber surface. Section 5 demonstrates the outcomes of our proof-of-concept im-

plementation. Section 6 discusses the indication of generalizing flexible-isosurface

to multi-fields in a Reeb-free manner including the limitations. Finally, Section 7

gives the conclusion and future work.

2 Related Work

The flexible fiber surface extends topological operations that are defined for isosur-

face. We thus introduce relevant work in the topological analysis for scalar fields

and multi-fields.

2.1 Work in Scalar Field Analysis

Isosurface An isosurface can be visualized effectively with marching cubes [20].

Its basic idea is to rotate pre-defined cubes with triangular patches inside to recon-

struct the isosurface. Since the original marching cubes algorithm had ambiguities

of its topology, topological algorithms often tessellate the cubes into tetrahedra and

apply marching tetrahedra [3]. In contrast to the marching cubes, the continua-



4 Daisuke Sakurai, Kenji Ono, Hamish Carr, Jorji Nonaka, and Tomohiro Kawanabe

tion method [31, 14] starts from seeds and proceeds to adjacent cells. This enables

component-wise tracking of a pre-image, on which our algorithm is based.

Topological Analysis The Reeb graph [24] is a quotient space defined by contract-

ing each of the connected components of isosurfaces to a point. For simple domains,

their Reeb graph is guaranteed to be a tree – hence it has the special name contour

tree. Reeb graphs and contour trees are useful for displaying the global configuration

of the connected components of isosurfaces [2], simplifying the data [10, 8], index-

ing isosurfaces [16], extracting the topological changes in an isosurface [22, 26]

and designing transfer functions [26, 30]. The standard algorithm for the contour

tree [7] uses as input the isosurface topology along the edges of the simplicial mesh.

On the other hand, van Kreveld et al. [19] tracked the pre-image explicitly, which

is in fact the approach of our pre-image tracking as well. More generally, the Reeb

graph must be computed [23] instead.

Parallelization of these algorithms has been, and is still, a challenge [22, 11]

especially for distributed systems [9]. The dependency to pre-computed topology

thus restricts the scalability of component-wise manipulations we aim to achieve.

The manipulation, however, is in fact independent of the pre-computation as we

show with our Reeb-free approach.

Interface One of the attributes of the contour tree is its ability to provide seeds

for continuation. This forms the basis for the flexible isosurface [8]. This assumes

that features are represented with connected components of isosurfaces, and lets the

users analyze them while avoiding irrelevant surface components.

The original flexible isosurface interface (Fig. 1) consists of two views, one for

the domain and another for the range. The interface shows the connected compo-

nents in the domain. The components are assigned distinct colors so that the user

can visually identify the connected components. These colors are simultaneously

projected in the range view as color labels in order to indicate the component’s iso-

value. The user can see the pre-computed contour tree optionally in the 2D view on

the right. This view shows the 1D range with an auxiliary dimension so that one can

see the tree structure. In fact, labels are overlayed at the contraction points in the tree

to indicate the position of the components. Though the contour tree was mandatory

in this particular work, this was not necessary for data exploration as the user still

could explore the global context by seeing the cumulative distribution.

We summarize several characteristic operations of the flexible isosurface below:

• Initialization: the user can initialize a flexible isosurface, i.e. show the entire pre-

image or the largest contour segmentations [21].

• Selection: the user selects the components of interest in order to apply further

operations. The user clicks on the components or on their labels mapped to the

contour tree. Components can also be deselected with the mouse.

• Evolution: the user varies the isovalue for a subset of visible components by

dragging the corresponding projection in the contour tree or all at once by ma-

nipulating the isovalue slider.

• Deletion: the user can delete selected components. Those are components such

as artifacts and objects irrelevant to the analysis.



Flexible Fiber Surfaces: A Reeb-Free Approach 5

• Addition: the user adds a hidden surface component to the domain by clicking

on its point contraction in the contour tree.

• Simplification: if the abundance of surface components makes navigating in the

contour tree difficult, the user can simplify (i.e. hide) or unsimplify (show) the

isosurface by thresholding surface statistics. This is achieved by cutting away or

putting back the arcs of the contour tree, respectively.

2.2 Work in Multi-Fields Analysis

In multi-fields, the isosurface in scalar fields we have seen above generalizes as the

fiber surface.

Fiber Surface Carr et al. [5] approximated the fiber surface as the isosurface of

a scalar field, where the scalar value was the distance to the control polygon in

the range. Later, Klacansky et al. [18] proposed an algorithm to compute the fiber

surface without this approximation. We use the latter algorithm when extracting the

fiber surface.

Topological Analysis Edelsbrunner et al. [13] generalized the Reeb graph to multi-

fields as the Reeb space by contracting each connected component of the fiber f−1

to a point. The connectivity of connected components was not computed in their al-

gorithm. This was later achieved by quantizing the range [4] into rectangular regions

and connecting their pre-image in the domain. This approach found application to

visualizing nuclear scission [12] and fiber topology [25].

Eventually, Tierny and Carr [28] computed the Reeb space without the quantiza-

tion. The algorithm partitions the domain with singular fibers, at which topological

events (such as mergers, splits, birth and death of the pre-image) happen. They es-

timate the steps of the algorithm to be O(n j× nT ). n j is the number of tetrahedral

edges E; nT is the number of tetrahedra. Though some optimization is possible [28],

the fact remains that irrelevant topological events in the data may heavily increase

the running time. As with the topological analysis for scalar fields, this can restrict

the scalability of the analysis. Our Reeb-free computation, on the other hand scales

linearly with the size of the feature that is actually of interest to the user. Last but not

least, Pareto optimality gives an alternative generalization of scalar topology [15].

3 Generalizing the Semantics

Our flexible fiber surface generalizes the iso-surface evolution to multi-fields. The

advantages and disadvantages of our generalization will be discussed in Section 6.



6 Daisuke Sakurai, Kenji Ono, Hamish Carr, Jorji Nonaka, and Tomohiro Kawanabe

3.1 Generalizing the Interface

Fig. 1 shows our fiber surfacing interface on the right. In the interface, the domain

view on the left shows the fiber surface as the flexible isosurface interface does for

the isosurface. In contrast, our range view on the right replaces the topological in-

formation with a scatterplot to navigate the user in the range. The prototype focuses

on proving the concept.

3.2 Generalizing the Component-Wise Operations

Initialization When the user initializes the fiber surface of a control polygon, the

domain view shows the user all the surface components to understand their distri-

bution in the domain.

Selection and Deselection (De)selection can be achieved in the domain view. In

contrast, the component-wise selection and deselection cannot be done in the range,

since all the components of a fiber surface overlap in the view.

Evolution The user reshapes the control polygon for selected group of components

by dragging the control points.

Deletion Selected components can be removed from the domain view.

Addition and Simplification As we free the flexible fiber surface from the Reeb

space, these operations become infeasible. Indeed, addition requires displaying the

components to the user, which is the Reeb space itself. Simplification, too, requires

access to the global topology.

4 The Algorithm

We assume a tetrahedral grid and the barycentric interpolation. First we extract the

fiber surface using the algorithm by Klacansky et al. [18]. In each segment of the

control polygon, this algorithm first extracts a base fiber surface, which is the pre-

image of the line that covers the segment (see Fig. 2). The surface is the set of

triangular patches obtained by applying the marching tetrahedra to the scalar field

defined as the signed distance to the line. The pre-image of the complement of the

segment is then clipped, i.e. cut away.

Next, we identify components, and the user selects interesting ones. The user

shall then move the control point to specify the target control polygon. During the

process, the flexing algorithm proposed in this article tracks the movement of the

fiber surface components individually by tracking the active tetrahedra. (They cover

the surface components being deformed (Alg. 1).)



Flexible Fiber Surfaces: A Reeb-Free Approach 7

Fig. 2 Fiber surface extrac-

tion [18]. The white / grey

/ black color indicates the

position in the covering line.

A base fiber surface patch is

clipped at the pre-image (blue

& red) of control points.
Control Points

Range Domain

Base Patch Clipped

Segment

Covering Line

Control Polygon

Fig. 3 Intra-segment con-

nections and inter-segment

connections (both in red)

between clipped patches in-

duced by the control polygons

in the range.

Range DomainRangeDomain

Intra-Segment Inter-Segment

4.1 Identifying the Connected Components

Once the surface has been approximated, we can check its connectivity with the

union-find algorithm [27]. The elements of union-find are the points in the mesh, and

we connect the pairs of such points if they lie in adjacent patches. In the traditional

marching tetrahedra, a point shared by adjacent mesh triangles resides in the same

tetrahedral edge. Identifying the points is solved by identifying the edge [3] since

no two different points reside in a single edge. However, a vertex may not lie in the

edge for our fiber surface computation since the patches are clipped (Fig. 2).

A naive approach is to glue the triangular patch corner points when they have

close coordinate values. However, a fiber surface can have intersecting patches, and

thus two points in disconnected patches can share close coordinates. We instead find

the connection between a base fiber’s patches and clipped patch corners separately.

4.1.1 Patch Corners in Base Fiber Surface

To compute the location of corners in the base fiber surface is to extract the isosur-

face of the signed distance to a control polygon segment. The connectivity between

the points can be obtained by recording the point ID at the tetrahedral edge. As

a tetrahedral edge intersects with a base fiber surface only once at most, we keep

record of the point IDs for each control polygon segment separately. By using these

point IDs as the elements of the union-find data structure, we connect the patch

corners in a base fiber surface as long as they are actually connected to each other.

4.1.2 Patch Corners Due to Clipping

As we can see in Fig. 3, two connected patches can belong to the same segment

(intra-segment connection) or two neighboring ones (inter-segment connection).



8 Daisuke Sakurai, Kenji Ono, Hamish Carr, Jorji Nonaka, and Tomohiro Kawanabe

Fig. 4 When the user drags

a control point, the segments

sweep the range, starting

from the source position and

ending at the target position.

Our algorithm walks through

the active tetrahedra, which

contain the pre-image of a

moving segment.

Range

Segment Sweep
Source Segment

Target Segment

Sweep Border

Finding Intra-Segment Connections Fig. 3 shows that an intra-segment connec-

tion can have a connection of corner points inside a single tetrahedron and across

two tetrahedra adjacent to each other. To connect the points in the former manner,

our algorithm joins two points with the union-find if they are from the same base

fiber surface and inside the same tetrahedron. In addition, two points that are from

the same base fiber surface and clipped by the identical control point are given the

same point ID when they touch each other at a tetrahedral face. To do so, we record

the point ID at the face for each control point separately just as we did for base fiber

surfaces in Section 4.1.1. Notice that clipped patch corners are given a unique ID

only when touching a tetrahedral face.

Finding Inter-Segment Connections Two clipped patches which are pre-image of

different but adjacent segments belong to the same connected component as long as

they are inside the same tetrahedron and were clipped due to the same control point.

We loop through the segments, clip the patches, and connect every neighboring

pairs. If the control polygon is closed, i.e. (x1,y1) = (xl+1,yl+1), we clip the first

segment’s patches but defer connecting them until the end of the loop.

4.2 Following the Connected Components

While the user drags a control point, the control polygon sweeps the range. As illus-

trated in Fig. 4, this starts from the source segments and ends at the target segments.

We model the control point to move along the sweep border, which is a line segment

connecting the start and target positions. We follow the surface components being

continuously deformed in the domain. If we observe a moving component from in-

side a tetrahedron, the component starts its motion from the original location and

moves towards its destination. As the sweep proceeds, the pre-image penetrates into

adjacent tetrahedra, and moves out from our example tetrahedron if the destination

is outside.

We detail this procedure in Alg. 1. We start by gathering the active tetrahedra,

i.e. the tetrahedra holding the user-selected fiber surface patches. We pair each tetra-

hedron with the segments that define the component, and put all such pairs in a

queue. If a tetrahedron overlaps with multiple segments, every segment gets its own

pair.



Flexible Fiber Surfaces: A Reeb-Free Approach 9

Algorithm 1 Follow the deformation of surface components

Input: Source control polygon Ps, target control polygon Pt , Pairs (segment, active tetrahedron)

tetss of Ps

Output: Pairs (segment, active tetrahedron) tetst of Pt

1: queue← tetss

2: while queue is not empty do

3: pop (seg, tet) from queue

4: if (seg, tet) is visited then

5: continue

6: end if

7: mark (seg, tet) as visited

8: if seg is not dragged then

9: continue

10: end if

11: if (seg, tet) has base fiber surface of target segment then

12: put (seg, tet) in tetst

13: end if

14: for tetrahedron teta adjacent to tet do

15: if (seg, teta) is not visited and shared f ace(tet, teta) intersects segment sweep in range

then

16: put (seg, teta) in queue

17: end if

18: end for

19: for segment segn neighboring seg do

20: if control point between seg and segn moved and (segn, tet) is not visited and tet inter-

sects sweep border in range then

21: put (segn, tet) in queue

22: end if

23: end for

24: end while

We pop a pair (seg, tet) from queue and operate on it (lines 3–13). In order to

avoid processing the same pair twice, we mark the pair as visited. This visit flag is

implemented as an array of tetrahedron IDs for each segment. If the points of tet

have both positive and negative distance to the seg, tet may intersect with a surface

component of seg. The pair then joins the output pairs Pt .

As we have checked the evolution inside tet for seg, we push adjacent tetrahedra

teta’s in queue for visiting it later as long as the component continues teta (lines

14–18). This continuation happens when tet and teta’s touching face intersects seg

in the range.

Finally, we pass tet to its neighbors segn’s (lines 19–23). If a control point be-

tween seg and segn does not move during a drag, the evolution of component is inde-

pendent of segn. We do not process such segn (line 20). Otherwise, we check whether

the component of (seg, tet) continues to segn (line 20). If so, we put (segn, tet) in

queue.

After we visited all the (seg, tet) pairs, we extract the fiber surface components

in them using the method by Klacakanski et al.



10 Daisuke Sakurai, Kenji Ono, Hamish Carr, Jorji Nonaka, and Tomohiro Kawanabe

Fig. 5 The duration of drag-

ging scale linearly with the

number of tetrahedra we pro-

cess. The examples share the

same control polygon: it is

defined as the diagonal line

from the point (0,0) to (1,1)
in the normalized range, and

is dragged towards (0.6,0.4)
to produce 10 samples evenly

along the trace.

Number of Tetrahedra maxmin

min

max

Time

5 Outcomes

We build a proof-of-concept interface with C++. We use VTK for the data structure

and Qt for the GUI. The interface lets us display a pre-computed scatterplot or con-

tinuous scatterplot [1]. We selected a few typical, simple, datasets to evaluate our

Reeb-free approach. We show that one can in fact achieve component-wise flexing

of fiber surfaces. Our serial implementation is run on a PC with Intel Xeon CPU

(3.20 GHz, 20 MB Cache) and 64 GB RAM. Each dragging completes in several

seconds.

5.1 The Analysis of the Algorithm

As expected, the computation time scales linearly with the number of active tetra-

hedra the algorithm, Alg. 1, visits (Fig. 5). This demonstrates the fact that the size

of the features the user is interested determines the response time. If the tetrahedra

are distributed evenly in the range, the number of tetrahedra being swept shall scale

linearly with the distance the dragged control point moves away. We can see this in

the plot as the near-constant distance between two neighboring points of each line.

5.2 A Simple Proof of Concept: the Tooth Dataset

The tooth dataset (Fig. 6) gives a simple proof of concept for our flexible fiber

surface. We subdivided each cube of the input regular grid into 6 tetrahedra with the

Freudenthal tessellation (see [6]), so that the tetrahedral faces are consistent across

neighboring cubes.



Flexible Fiber Surfaces: A Reeb-Free Approach 11

Fig. 6 Tooth dataset. The two

fields are CT value and its

gradient magnitude. (a) The

domain and (b) the range.

We start by drawing two

control polygons that contain

either only the crown or root.

We then move them into a

region that contains both.

The evolution of the crown

in white (or root in red) is

restricted to the crown (root). (a) (b)

We report that the features are simple to identify without the Reeb space since we

can identify the boundary of objects as hyperbolic curves [17], and their overlaps in

the range resolve in the high gradient regions.

5.3 Comparison with the Flexible Isosurface

We take some small head CT dataset with the resolution of 50×50×50 for compar-

ing our results with the flexible isosurface. In Fig. 7, we have visualized the dataset

with the flexible isosurface and with our Reeb-free interface. Due to the overlap of

features in the range, the interaction with the domain is essential for our Reeb-free

interface. The simplified contour tree is a significant advantage of the original flexi-

ble isosurface interface since it gives hints to an experienced user about the surface

component evolution.

6 Discussion

We now discuss the consequence of our generalization of flexible isosurface to

Reeb-free multi-field analysis.

Analysis of the Algorithm The number of steps required for tracking a compo-

nent is O(nT ), where nT is the number of tetrahedra to be visited in our method.

nT shall be close to the number of tetrahedra necessary to extract the fiber surface

partitioning the domain [25] with the Reeb space extraction [28]. Though our imple-

mentation is serial, the approach can apparently extend itself to distributed systems

by locally running Alg. 1 in each node with occasional communications between

different nodes. Though this requires further research, it should be more feasible

than computing the Reeb graph of such systems.

Evolution The evolution of fiber surface components lets us understand how mul-

tivariate values distribute, and especially how the features continue in the domain.



12 Daisuke Sakurai, Kenji Ono, Hamish Carr, Jorji Nonaka, and Tomohiro Kawanabe

(a) (b)

(c) (d)

Fig. 7 Comparing the original flexible isosurface (a) (b) and our Reeb-free flexible fiber surface

(c) (d) under severe overlaps of features in the range.

Simplification We did not simplify the topology of connected components al-

though this was available in the flexible isosurface concept by Carr et al. thanks

to the contour tree.

Global Exploration We show a scatterplot to provide the user with a global con-

text to the analysis. The cruciality of this lack depends on the dataset to be analyzed.

Datasets with similar objects tend to suffer because their image overlap in the range.

The scatterplot can be peeled [28] for an effective exploration, though such an oper-

ation assumes pre-computing the Reeb space. Even if the Reeb space were available,

navigating the user in the abundance of features is a challenge. This is because vi-

sualizing the Reeb space becomes rapidly challenging as it grows complex [25].



Flexible Fiber Surfaces: A Reeb-Free Approach 13

7 Conclusion and Future Work

We extended the flexible isosurface to multi-field without requiring Reeb space anal-

ysis. In particular, we generalized the semantics of component-wise pre-image evo-

lution to multi-fields. Our approach does not require computing the pre-image topol-

ogy explicitly. The algorithm identifies the connected components of fiber surfaces,

and sweeps the range to track them. The lack of global pre-image topology and

simplification is a downside of this approach (although rendering the Reeb space

is itself an unsolved challenge). Through experiments for rather simple datasets,

we demonstrated that the interaction in the domain does not necessarily require the

Reeb space.

We see a few future directions: the global navigation and simplification of data

that are affordable for non-experts of topological analysis; extension to different cell

types and interpolants.

Acknowledgement

We thank Julien Tierny at Sorbonne Universities UPMC for offering some of the

datasets [29].

This work was supported by the German Federal Ministry of Education and

Research (HD(CP)2 project, grant number 01LK1501C) and the Engineering and

Physical Sciences Research Council (EPSRC) project EP/J013072/1.

References

1. Bachthaler, S., Weiskopf, D.: Continuous scatterplots. IEEE Transactions on Visualization

and Computer Graphics 14(6), 1428–1435 (2008)
2. Bajaj, C.L., Pascucci, V., Schikore, D.R.: The contour spectrum. In: Proceedings of IEEE

Visualization ’97, pp. 167–173 (1997)
3. Bloomenthal, J.: Polygonization of implicit surfaces. Computer Aided Geometric Design 5(4),

341–355 (1988)
4. Carr, H., Duke, D.: Joint contour nets. IEEE Transactions on Visualization and Computer

Graphics 20(8), 1100–1113 (2014)
5. Carr, H., Geng, Z., Tierny, J., Chattopadhyay, A., Knoll, A.: Fiber surfaces: Generalizing iso-

surfaces to bivariate data. Computer Graphics Forum 34(3), 241–250 (2015)
6. Carr, H., Moller, T., Snoeyink, J.: Artifacts caused by simplicial subdivision. IEEE Transac-

tions on Visualization and Computer Graphics 12(2), 231–242 (2006)
7. Carr, H., Snoeyink, J., Axen, U.: Computing contour trees in all dimensions. Computational

Geometry 24(2), 75–94 (2003)
8. Carr, H., Snoeyink, J., van de Panne, M.: Flexible isosurfaces: Simplifying and displaying

scalar topology using the contour tree. Computational Geometry: Theory and Applications

43(1), 42–58 (2010)
9. Carr, H.A., Weber, G.H., Sewell, C.M., Ahrens, J.P.: Parallel peak pruning for scalable SMP

contour tree computation. In: Proceedings of 2016 IEEE 6th Symposium on Large Data Anal-

ysis and Visualization (LDAV), pp. 75–84 (2016)



14 Daisuke Sakurai, Kenji Ono, Hamish Carr, Jorji Nonaka, and Tomohiro Kawanabe

10. Chiang, Y.J., Lu, X.: Progressive simplification of tetrahedral meshes preserving all isosurface

topologies. Computer Graphics Forum 22(3), 493–504 (2003)

11. Doraiswamy, H., Natarajan, V.: Computing Reeb graphs as a union of contour trees. IEEE

Transactions on Visualization and Computer Graphics 19(2), 249–262 (2013)

12. Duke, D., Carr, H., Knoll, A., Schunck, N., Nam, H.A., Staszczak, A.: Visualizing nuclear

scission through a multifield extension of topological analysis. IEEE Transactions on Visual-

ization and Computer Graphics 18(12), 2033–2040 (2012)

13. Edelsbrunner, H., Harer, J., Patel, A.K.: Reeb spaces of piecewise linear mappings. In: Pro-

ceedings of the Twenty-fourth Annual Symposium on Computational Geometry, SCG ’08, pp.

242–250. New York, NY, USA (2008)

14. Howic, C., Blake, E.: The mesh propagation algorithm for isosurface construction. Computer

Graphics Forum 13(3), 65–74 (1994)

15. Huettenberger, L., Heine, C., Carr, H., Scheuermann, G., Garth, C.: Towards multifield scalar

topology based on pareto optimality. Computer Graphics Forum 32(3pt3), 341 – 350 (2013)

16. Kettner, L., Rossignac, J., Snoeyink, J.: The Safari interface for visualizing time-dependent

volume data using isosurfaces and contour spectra. Computational Geometry 25(1), 97–116

(2003)

17. Kindlmann, G., Durkin, J.W.: Semi-automatic generation of transfer functions for direct vol-

ume rendering. In: Proceedings of the 1998 IEEE Symposium on Volume Visualization, VVS

’98, pp. 79–86. New York, NY, USA (1998)

18. Klacansky, P., Tierny, J., Carr, H., Geng, Z.: Fast and exact fiber surfaces for tetrahedral

meshes. IEEE Transactions on Visualization and Computer Graphics 23(7), 1782–1795 (2017)

19. van Kreveld, M., van Oostrum, R., Bajaj, C., Pascucci, V., Schikore, D.: Contour trees and

small seed sets for isosurface traversal. In: Proceedings of the Thirteenth Annual Symposium

on Computational Geometry, SCG ’97, pp. 212–220. New York, NY, USA (1997)

20. Lorensen, W.E., Cline, H.E.: Marching cubes: A high resolution 3D surface construction al-

gorithm. ACM SIGGRAPH Computer Graphics 21(4), 163–169 (1987)

21. Manders, E.M.M., Hoebe, R., Strackee, J., Vossepoel, A.M., Aten, J.A.: Largest contour seg-

mentation: A tool for the localization of spots in confocal images. Cytometry 23(1), 15–21

(1996)

22. Pascucci, V., Cole-McLaughlin, K.: Parallel computation of the topology of level sets. Algo-

rithmica 38(1), 249–268 (2003)

23. Pascucci, V., Scorzelli, G., Bremer, P.T., Mascarenhas, A.: Robust on-line computation of

Reeb graphs: Simplicity and speed. ACM Transactions on Graphics 26(3), 58 (2007)

24. Reeb, G.: Sur les points singuliers d’une forme de Pfaff complètement intégrable ou d’une

fonction numérique. Comptes Rendus l’Acadèmie des Sciences de Paris 222, 847–849 (1946)

25. Sakurai, D., Saeki, O., Carr, H., Wu, H.Y., Yamamoto, T., Duke, D., Takahashi, S.: Interactive

visualization for singular fibers of functions f : R3→R
2. IEEE Transactions on Visualization

and Computer Graphics 22(1), 945–954 (2016)

26. Takahashi, S., Takeshima, Y., Fujishiro, I.: Topological volume skeletonization and its appli-

cation to transfer function design. Graphical Models 66(1), 24–49 (2004)

27. Tarjan, R.E.: Efficiency of a good but not linear set union algorithm. Journal of the ACM

22(2), 215–225 (1975)

28. Tierny, J., Carr, H.: Jacobi fiber surfaces for bivariate Reeb space computation. IEEE Trans-

actions on Visualization and Computer Graphics 23(1), 960–969 (2017)

29. Tierny, J., Favelier, G., Levine, J.A., Gueunet, C., Michaux, M.: The Topology ToolKit. Tech.

rep., CNRS/UPMC, https://topology-tool-kit.github.io/

30. Weber, G.H., Dillard, S.E., Carr, H., Pascucci, V., Hamann, B.: Topology-controlled volume

rendering. IEEE Transactions on Visualization and Computer Graphics 13(2), 330–341 (2007)

31. Wyvill, B., McPheeters, C., Wyvill, G.: Animating soft objects. The Visual Computer 2(4),

235–242 (1986)


