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Abstract 

Autoinflammatory syndromes are a group of disorders characterised by recurring episodes 

of inflammation as a result of specific defects in the innate immune system. Patients with 

autoinflammatory disease present with recurrent outbreaks of chronic systemic inflammation that 

are mediated by innate immune cells, for the most part. A number of these diseases arise from 

defects in the tumour necrosis factor (TNF) receptor signalling pathway leading to elevated levels of 

inflammatory cytokines. Elucidation of the molecular mechanisms of these recently defined 

autoinflammatory diseases has led to a greater understanding of the mechanisms of action of key 

molecules involved in TNFR signalling, particularly those involved in ubiquitination, as found in 

haploinsufficiency of A20 (HA20), otulipenia/otulin-related autoinflammatory syndrome (ORAS) and 

linear ubiquitin chain assembly complex (LUBAC) deficiency. In this review we also address other 

TNFR signalling disorders such as (TNF) receptorʹassociated periodic syndrome (TRAPS), RELA 

haploinsufficiency, RIPK1-associated immunodeficiency and autoinflammation, X-linked ectodermal 

dysplasia and immunodeficiency (X-EDA-ID) and we review the most recent advances surrounding 

these diseases and therapeutic approaches currently used to target these diseases. Finally, we 

explore therapeutic advances in TNF-related immune based therapies and explore new approaches 

to target disease-specific modulation of autoinflammatory diseases. 
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Introduction: molecular control of TNFR1-mediated signalling 

TNFR Signalling 

TNF is a potent inflammatory cytokine which signals via two distinct receptors, TNF receptor 

1 (TNFR1) and TNFR2, and mediates a number of physiological functions essential for immune 

regulation, cell proliferation, survival and death. TNF is expressed as a trimeric type II 

transmembrane protein (mTNF) which can be cleaved by TNF-converting enzyme (TACE, or 

ADAM17) to give rise to a soluble extracellular TNF (sTNF) (1,2). Both mTNF and sTNF exert their 

physiological functions by binding to either TNFR1 or TNFR2, on target cells. Following activation by 

TNF, TNFR1 recruits both receptor-interacting serine/threonine protein kinase 1 (RIPK1) and TNF-

receptor-associated death domain (TRADD) to the cytoplasmic death domain (DD) of the receptor 

(3) whereas TNFR2 does not have a death domain and, instead, signals through recruitment of TNFR-

associated factor 2 (TRAF2) protein (4,5). Both TNFR1 and TNFR2 signalling pathways can lead to 

activation of the classical nuclear factor-B (NF-B) signalling pathway leading to cell survival and 

cell proliferation, whereas TNFR1 can also lead to the initiation of cell death pathways leading to 

apoptosis or necroptosis, depending on the metabolic state of the cell (6).  

 

Ubiquitination in TNF-signalling 

Post-translational ubiquitination in TNF signalling plays a major role in regulating immune 

cell fate and directs the formation of distinct signalling complexes following activation of TNFR1, 

namely complex I, IIa, IIb and IIc, all of which contain the core proteins TNFR1, TRADD and RIPK1 

(7,8). Ubiquitin (Ub) chains are highly conserved and assembled in response to activation before 

being covalently attached to target proteins via E3 Ub-ligase enzymes, to reinforce protein stability 

and activation or enable protein degradation (For detailed reviews see (9,10)). Ubiquitination is a 

reversible process whereby Ub chains can be hydrolysed by a class of enzymes known as 

deubiquitinases (DUBs) (11). Several DUBs, including A20, OTULIN, cylindromatosis (CYLD) and 
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Cezanne, function as negative regulators of NF-B signalling (12). Dysregulation in ubiquitin 

proteasome signalling (UPS) has been reported in a number of autoinflammatory disorders, 

including linear ubiquitin chain assembly complex (LUBAC) deficiency (13,14), haploinsufficiency of 

A20 (HA20) (15), and otulipenia/otulin-related autoinflammatory syndrome (ORAS) (15,16) and 

these will be discussed in detail in this review. 

 

TNFR signalling via complex I 

Complex I is composed of TRADD (3), RIPK1 (17), TRAF2/5 (18), cellular inhibitor of apoptosis 

protein 1 (cIAP1) or cIAP2 and LUBAC (19). LUBAC is composed of three proteins, heme-oxidised 

IRP2 ubiquitin ligase 1 (HOIL-1), shank-associated RH domain-interacting protein (SHARPIN) and 

HOIL-1 interacting protein (HOIP) (reviewed in (7)). Initially, cIAP1/2 and TRAF2/5 attach K63-linked 

Ub chains to RIPK1 (20,21) which subsequently leads to LUBAC-mediated attachment of M1-linked 

chains to RIPK1 (19,22). This assembly leads to the recruitment of two signalling complexes, with 

transforming growth factor (TGF)-activated kinase (TAK) 1 complex (consisting of TAK1 and TAK-

binding protein 2/3 (TAB2/3)) K63-linked chains, and the inhibitor of B (IB) (IKK) complex 

(consisting of IKK, IKK and NF-B-essential modulator (NEMO)), via M1-linked chains (19,22-24).  

The polyubiquitin chains present on NEMO and RIPK1 are bound by the TAK1 complex; this 

is essential as it phosphorylates and stimulates the catalytic IKK subunit to phosphorylate and 

degrade IʃBɲ thereby activating NF- which, in turn, promotes the transcription of target genes 

required for cell survival and proliferation (20,25,26). The TAK1 complex also phosphorylates 

mitogen-activated kinases (MAPK), p38 MAPK and c-Jun N-terminal kinase (JNK) in a signalling 

cascade which leads to transcription of AP1 target genes (Figure 1) (20,23). The various types and 

concentration of polyubiquitin chains attached to RIPK1 have been shown to modulate the activity 

of recruited proteins which signal via complex I; although RIPK1 attachment to NEMO is 

preferentially mediated by M1-linked chains, NEMO can also bind via K63- and K11-linked chains. 
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This differential offers up several possibilities for fine-tuning ubiquitin dependent signalling 

mediated by TNF and also for IL-1 mediated activation of NF-B via the IL-1 receptor (IL-1R) (for 

detailed review see (7)).  A recent study shows that ubiquitination also ƌĞŐƵůĂƚĞƐ ‘IPKϭ͛Ɛ ĐǇƚŽƚŽǆŝĐ 

potential, not only through activation of the NK-B pathway but also by directly supressing RIPK1 

kinase activity, via ubiquitin-dependent inactivation (27). 

 

IL-1 Receptor signalling 

NF-B activation is modulated via a complex cross-talk of several signalling pathways with 

shared components for activating and inhibiting this pathway. The pro-inflammatory cytokine, IL-1 

(along with IL-1 and IL-1 receptor antagonsist, IL-1Ra) binds to the IL-1R leading to the downstream 

activation of NF-B (28,29). Following ligand binding, the IL-1R complex leads to the recruitment of 

the E3-ligase TNF receptor associated factor (TRAF6) and the ubiquitin E2 ligase complex which 

conjugates K63-linked chains to interleukin-1 receptorʹactivated protein kinase (IRAK1) (30,31). This 

ubiquitination process allows for binding and activation of TAK1 and IKK through phosphorylation 

in a similar manner to TNFR signalling pathway (32). Interestingly, the DUB, A20 also regulates the 

ubiquitin status of TRAF6 and therefore regulates activation of this pathway (33). 

TNFR signalling via complex IIa, IIb, IIc 

Termination of TNF-induced NF-B activation requires breakdown of the Ub network of 

complex I. As immune responses must be tightly controlled to avoid chronic inflammation, DUBs are 

present to regulate this process and target cells for regulated apoptosis, where appropriate. For the 

formation of complex IIa, DUBs remove K63 and M1-linked chains from RIPK1 allowing it to 

dissociate from membrane bound complex I and interact with TRADD and FAS-associated death 

domain (FADD) and pro-caspase-8, and the cellular FLICE-like inhibitory protein long (cFLIPL) (34). 

Alternatively, complex IIb formation occurs when RIPK1 is not ubiquitinated due to degradation of 
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cIAPs. As a result, RIPK1 dissociates from complex I to interact with RIPK3, pro-caspase-8 and FLIPL 

(6,35).  

Apoptosis is executed on generation of active caspase-8 by both complex IIa and complex 

IIb. At the same time, deubiquitinated RIPK1 and RIPK3 must be cleaved by pro-caspase-8-FLIPL-

heterodimer or active caspase 8 to prevent cells from undergoing necroptosis (6,35,36). If RIPK1 and 

RIPK3 are not cleaved, they form complex IIc which activates mixed lineage kinase domain-like 

protein (MLKL), and induces necroptosis by disrupting the integrity of the plasma membrane (3,37). 

This, in turn, leads to the release of damage associated molecular patterns (DAMPs), which can lead 

to a prolonged immune response, as may occur with trauma and severe infections (38). 

 

Autoinflammatory diseases with dysregulated TNF signalling 

Aberrant TNFR signalling, through uncontrolled production or function of TNF, has been 

linked to a number of inflammatory diseases, including rheumatoid arthritis (RA), ankylosing 

spondylitis (AS), juvenile idiopathic arthritis (JIA), psoriasis, psoriatic arthritis (PsA) and inflammatory 

bowel disease (IBD). In this review we discuss autoinflammatory diseases which arise from 

mutations in genes encoding components of the TNF signalling pathway. 

 

Tumour Necrosis Factor Receptor Associated Periodic Syndrome (TRAPS) 

Tumour necrosis factor (TNF) receptorʹassociated periodic syndrome (TRAPS) is a rare 

autosomal dominant multisystem genetic disorder caused by mutations in the TNFRSF1A (tumour 

necrosis factor receptor superfamily member 1A) gene, which encodes TNFR1 (39), which result in 

an autoinflammatory phenotype. Several pathogenic mechanisms operate synergistically in TRAPS 

pathogenesis, including non-canonical unfolded protein response (UPR), mitochondrial reactive 
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oxygen species (mtROS), and impaired autophagy. It is likely that some mechanisms are mutation 

and cellʹtype specific, thereby explaining some of the clinical heterogeneity of TRAPS and the 

manifold underlying pathological processes (reviewed in (40)).  

Upregulation of UPR response genes has been reported in TRAPS patients (41), with 

activation of the endoplasmic reticulum (ER)-associated endonuclease, inositol-requiring enzyme 1 

(IRE-1), which is one of the three ER stress sensors, resulting in hyper-responsiveness to 

lipopolysaccharide (LPS) with release of pro-inflammatory cytokines, IL-ϭɴ͕ TNF ĂŶĚ IL-6. This 

enhanced inflammatory cytokine production is mediated by sustained phosphorylation of JNK and 

p38 MAPK, and maintained by mtROS from dysfunctional mitochondria (42). Furthermore, mtROS 

may inactivate MAPK phosphatases and perpetuate MAPK activation (43) in cells from these 

patients. A number of recent studies have suggested other mechanisms to explain LPS hyper-

responsiveness, whereby activated IRE1, exerts its endonuclease function to target a number of 

mRNA and miR species, thereby constraining protein production and resolving ER stress (44). Two 

miRNA species in particular, miR155 and miR146a, are specific targets of IRE1 and these two miRNA 

species have been identified as regulators of cellular response to LPS (45).  

 Selective therapies targeting the TNF signalling pathway were the first biologics to be used in 

TRAPS. Despite its biological plausibility in a disease involving constitutive TNF signalling the TNF 

blocker, etanercept proved to have limited efficacy in treating these patients. The initial clinical 

response to TNF blockade was followed by gradual loss of clinical efficacy in subsequent months and 

year(s), suggesting that these patients develop tachyphylaxis to anti-TNF therapy by acquiring 

alternative poorly understood pathways of TNFR1 signalling.  

Over the years IL-1 blocking agents have become the preferred therapy in TRAPS with a 

number of case reports of sustained response to anakinra (46). The first results of a trial of 

canakinumab in familial mediterranean fever (FMF), mevalonate kinase deficiency (MKD) and TRAPS 

were reported in 2016 (47) and the follow-up publication was in 2018 (48). The 2018 paper reported 
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that significantly more patients receiving canakinumab had a complete response than the placebo 

group at week 16, and the risk of developing potentially fatal amyloidosis has been substantially 

reduced by the use IL-1 blockade in these patients.  

 

A20 haploinsufficiency (HA20) 

The tumour necrosis factor alpha induced protein 3 (TNFAIP3) gene encodes for the A20 

protein which is a potent anti-inflammatory signalling molecule involved in negative regulation of 

TNF-NF-B signalling. Genetic ablation of A20 in mice leads to multi-organ inflammation, cachexia, 

and perinatal death (49), whereas cell specific deletions of A20 in B cells/ T cells and/or epithelial 

cells give rise to a spectrum of disease phenotypes which closely resemble human autoimmune 

diseases (50).  

In 2016, Zhou and colleagues described a new autoinflammatory disease caused by 

dominantly inherited loss of function mutations in the TNFAIP3 gene, leading to A20 

haploinsufficiency, designated as HA20 (15). They identified mutations in six unrelated families with 

early-onset systemic inflammation resembling the polygenic disorders, Behçet͛Ɛ disease (BD) and 

systemic lupus erythematosus (SLE). Classically, people with HA20 present with childhood-onset 

episodic fevers, recurrent oral, genital and/or gastrointestinal ulcers, ocular inflammation and 

arthralgia/arthritis (15,51). Since the initial discovery, a number of additional HA20 cases have been 

documented (51-56). The occurrence of an autoimmune phenotype in some patients is not 

surprising given that several autoimmune conditions have been associated with TNFAIP3 gene 

polymorphisms, such as RA, JIA, psoriasis, SLE, IBD, type 1 diabetes (T1D) and coronary artery 

disease (57-64). It is thought that HA20 might synergise with other genetic factors, such as HLA-B27, 

which is a known susceptibility locus PsA, AS and reactive arthritis (65), and also that autoimmunity 

may develop as a complication of HA20, due to increased differentiation of TH17 cells (53). In a 

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/in
tim

m
/a

d
v
a
n
c
e
-a

rtic
le

-a
b
s
tra

c
t/d

o
i/1

0
.1

0
9
3
/in

tim
m

/d
x
z
0
2
4
/5

3
6
9
8
9
5
 b

y
 g

u
e
s
t o

n
 0

6
 M

a
rc

h
 2

0
1
9



 

 

recent study, large deletions on chromosome 6 comprising 50 genes, including TNFAIP3, were 

identified in patients with systemic inflammation, psychomotor and growth delay (66) providing 

further support for anti-inflammatory therapy as a treatment option for these patients.  

 A20 is a 790-residue ubiquitin editing enzyme which contains an ovarian tumour (OTU) 

domain in the amino-terminal followed by seven zinc-finger (ZnF) domains (67). The majority of 

HA20-associated mutations are located within the OTU domain, leading to truncated mutant 

proteins of different length domains (15,53,56). Defective removal of K63-linked Ub from the 

adaptor proteins, after stimulation with TNF, was observed in HEK cells expressing mutant A20, and 

this finding has been corroborated in patient-derived cells, whereby defective A20 leads to increased 

ƉŚŽƐƉŚŽƌǇůĂƚŝŽŶ ŽĨ IKKɲͬIKKɴ with enhanced IBɲ degradation alongside increased NF-Bʹmediated 

proinflammatory cytokine release (15). Interestingly, TNF stimulated PBMCs and serum samples of 

patients with active disease have high levels of a range of proinflammatory cytokines, irrespective of 

mutation type and position, suggesting the presence of constitutive activation of both NF-B and 

NLRP3 inflammasome pathways (15,53,58); in murine models, A20/Tnfaip3 was shown to 

downregulate the NLRP3 inflammasome (68,69).  

This inflammatory state has led to successful treatment of patients with cytokine inhibitors, 

such as anti-TNF (infliximab), anti-IL-1 (anakinra) and anti-IL-6 (tocilizumab), which have all shown 

efficacy in controlling systemic inflammation in patients with HA20 (51). It is likely that a number of 

other HA20 cases will emerge due to revised diagnoses with successful therapeutic interventions, as 

with a patient recently diagnosed with Adult-OŶƐĞƚ “ƚŝůů͛Ɛ DŝƐĞĂƐĞ ;AOSD), in whom a novel 

heterozygous variant in TNFAIP3 was found and successfully treated with anti-IL-6 therapy, 

tocilizumab (70).  
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OTULIN (also called gumby), is a highly conserved deubiquitinase enzyme, regulating the 

ubiquitination status of signalling pathway proteins via the hydrolysation of M1-linked Ub chains, 

resulting in specific protein deubiquitination. Novel homoallelic mutations in the FAM105B gene that 

encodes OTULIN were found in three unrelated patients of Pakistani and Turkish origin, and the 

name otulipenia was adopted to indicate a decreased expression of mutant proteins (71). 

Simultaneously, another group described the same Pakistani family and named the disease as otulin-

related autoinflammatory syndrome (ORAS). These patients present with neonatal-onset systemic 

inflammation, joint swellings, prolonged fevers, diarrhoea, sterile neutrophilia, growth deficiency 

and lipodystrophy (16,71). OTULIN regulates inflammatory signals via deubiquitination of M1-linked 

Ub chains formed on LUBAC complex targets, such as NEMO, RIPK1, TNFR1, nucleotide-binding 

oligomerization domain-containing protein 2 (NOD-2) and apoptosis-associated speck-like protein 

containing a CARD (ASC), which regulate of the NF-B and MAPK pathways (71-73). Similar to HA20, 

disease-associated mutations also reside in the OTU domain of OTULIN and are predicted to affect 

binding of OTULIN to linear Ub chains, thereby preventing the deubiquitination of target substrates. 

Although A20 and OTULIN have roles in attenuating ubiquitination in common signalling 

pathways, patients with otulipenia have a more severe phenotype as a result of two factors; (i) 

otulin has a unique non-redundant function in regulating the linear Ub pathway and (ii) patients 

have a more profound protein deficiency (71). Similar to HA20, patient-derived primary cells 

(monocytes, dendritic and T cells) secrete TNF, IL-6, IL-12, IL-18, IL-1 and IFN cytokines upon 

stimulation with LPS, TNF or IL-1. Infliximab proved to be highly effective in reducing these 

inflammatory markers, as well as erythrocyte sedimentation rate (ESR) and C-reactive protein (CRP) 

in one patient with OTULIN deficiency; however, neither etanercept or anakinra were effective in 

reducing active disease symptoms (71). Mice models with OTULIN knock out mutations exhibit a 

similar phenotype, with severe TNF-associated inflammation due to overactivation of NF-B in 

myeloid cells, but also downregulation of the LUBAC complex in lymphoid cells (16). OTULIN has also 

been shown to be a key regulator of the canonical Wnt signalling pathway, thereby playing an 

Otulipenia/OTULIN-related autoinflammatory syndrome (ORAS) 
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important role in craniofacial and neuronal development, as well as angiogenesis (74). A recent 

study proposed that LUBAC activity is promoted by OTULIN, rather than being counteracted, thus 

preventing LUBACs auto-ubiquitination (75). Furthermore, mice that express inactive OTULIN 

present with features associated with deficient LUBAC activity and die at mid-gestation as a result of 

TNFR1-mediated cell death (76).  

 

LUBAC deficiency (HOIP/HOIL) 

 Several autoinflammatory disorders are associated with mutations in various components of 

LUBAC, such as HOIP and HOIL. It was first shown that Hoip
-/- 

mice die during embryogenesis, due to 

aberrant TNFR1 driven cell death; furthermore, mice can be rescued from embryonic lethally by 

ablation of TNFR1 (76). Peltzer et al. demonstrated that HOIL-1 is a fundamental component of 

LUBAC and this subunit is required for healthy embryonic development (77). Hoil-1
-/-

 mice die during 

embryogenesis due disruptions in blood vessels formation. Interestingly, Tnfr1/Hoil-1 double-

knockout (DKO) mice did not prevent embryonic lethality, but just delayed it (77). The authors found 

that only combined loss of caspase-8 with MLKL resulted in viable Hoil-1-deficient mice, elucidating 

the protective role of HOIL-1 in the NF-ʃB signalling pathway (77). 

 HOIL-1 and HOIP deficiencies are recessively inherited diseases caused by mutations in the 

highly conserved PUB domain, resulting in truncated mutants which ultimately destabilise the entire 

LUBAC complex (13,14). Patients with mutations in HOIP or HOIL-1 present with similar clinical 

manifestations of systemic autoinflammation, recurrent infections, muscular amylopectinosis and 

periodic fevers (78). HOIL/HOIP deficient fibroblasts from patients, showed decreased NF-B 

activation in response to TNF and IL-1 administration; however, ƉĂƚŝĞŶƚƐ͛ ŵŽŶŽĐǇƚĞƐ ĚŝƐƉůĂǇĞĚ Ă 

selective response to IL-1 but not to TNF, suggesting cell-type specificity (13,14). It was also 

recently reported that LUBAC confers a protective role on keratinocytes, and that conditional 
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deletion of Hoip and Hoil-1 results in severe dermatitis and postnatal lethality, mainly induced by 

TNF, TNF-related apoptosis-inducing ligand (TRAIL) and CD95L (79). TNFR1 ablation did not prevent 

the development of dermatitis, but rather delayed it into adulthood, when triggered by RIPK1 

kinase-driven apoptosis (79). In contrast, a naturally occurring mutation that ablates SHARPIN 

expression in the cpdm strain of mice resulted in chronic proliferative dermatitis (80) which can be 

prevented by crossing the mice with Tnf
-/-

 or Tnfr
-/-

 mice, suggesting that this inflammatory condition 

is TNF dependent (81,82). In addition, it appears that complete ablation of SHARPIN in the cpdm 

mice can be rescued when crossed with a mouse expressing kinase-inactive RIPK1 or RIPK3-null mice 

which suggests that SHARPIN and M1-linked polyubiquitination are negative regulators of RIPK1-

dependent necroptosis signalling (7,81).  

These findings suggest a different mechanism by which dermatitis can occur, with potential 

implications for the treatment of autoinflammatory disorders. Although not yet reported in the 

clinic, SHARPIN mutations are likely to represent a similar problem to that encountered in HOIL and 

HOIP deficiencies. LUBAC deficiencies still represent an unexplored territory in the clinical field; 

however, the scientific contributions presented here advance our understanding of 

autoinflammation and the treatment of these rare conditions. Whereas TNF-inhibitory treatment 

only temporarily ameliorated pathology in one HOIL-deficient patient, the benefit to OTULIN-

deficient patients was far more substantial (14). It is possible that TNF inhibition, in combination 

with RIPK1, TRAIL or CD95L inhibitors would be a better therapeutic approach for patients with 

LUBAC deficiencies. 
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The transcription factor p65, also known as RelA, is a NF-B family member associated with 

NF-B heterodimer formation, alongside either p50 or p52 subunits, with consequent nuclear 

translocation and activation (83). The RelA subunit is encoded by the RELA gene, also known as p65 

or NFKB3, and the transcriptomic function of RelA is conserved in mammalian cells (84). RelA
-/-

 mice 

die during embryogenesis due to the toxic effects of TNF in hepatic cells (85). Interestingly, RelA
-/-

 

mice can be rescued from embryonic lethality by creating a RelA/TNF DKO mouse, showing the 

importance of RelA subunit in activating anti-apoptotic genes, and the susceptibility of RelA
-/-

 mice 

to the cytotoxic effects of TNF (86). TNF stimulation of RelA
-/- 

mouse macrophages and fibroblasts 

resulted in TNF-related apoptosis, mediated mainly by TNFR1, which was rescued by reintroduction 

of RelA into the system (85).  

Recently, Chou et al. elucidated the importance of biallelic expression of RelA in maintaining 

human mucosal integrity (87). The article reported a paediatric patient who presented at the age of 

3 with periodic episodes of abdominal pain, vomiting, fever, leucocytosis, and elevated inflammatory 

markers, without evidence of infection or autoantibodies (87). At the age of 5 the patient was 

treated with infliximab and methotrexate (MTX), and went into remission for two years; the disease 

flared after the patient gained weight, which resulted in lower infliximab levels (87). Moreover, the 

ƉĂƚŝĞŶƚƐ͛ ĨŝďƌŽďůĂƐƚƐ͕ ďƵƚ ŶŽƚ ůǇŵƉŚŽĐǇƚĞƐ͕ ƐŚŽǁĞĚ ŚŝŐŚĞƌ ůĞǀĞůƐ ŽĨ ĐǇƚŽƚŽǆŝĐŝƚǇ ĂĨƚĞƌ TNF 

administration, with low levels of IL-6 and anti-apoptotic proteins, suggesting that RelA 

haploinsufficiency mainly affects stromal cells (87). Finally, the authors elegantly demonstrated that 

RelA
+/- 

mice developed cutaneous ulceration after TNF exposure, and the RelA
+/-

 phenotype was not 

rescued by bone marrow transplantation from a WT mice donor (87). These results indicate that 

RelA haploinsufficiency arises from epithelial and stromal cell intrinsic defects affecting NF-B 

activation, resulting in ulceration of mucosal barriers due to cytotoxic effects of TNF. It is remarkable 

that this patient went into remission when receiving infliximab, highlighting the protective effects of 

the RelA subunit and the cytotoxic effects of TNF in stromal cells. 

RELA haploinsufficiency 
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RIPK1-associated immunodeficiency and autoinflammation 

RIPK1 kinase activity is a key determinant of whether a cell activates NF-B signalling or 

initiates cell death signalling pathways, apoptosis and necroptosis (88,89). Necroptosis and RIPK1 

have been implicated in a number of major human neurodegenerative diseases, including 

AůǌŚĞŝŵĞƌ͛Ɛ ĚŝƐĞĂƐĞ͕ ĂŵǇŽƚƌŽƉŚŝĐ ůĂƚĞƌĂů ƐĐůĞƌŽƐŝƐ͕ PĂƌŬŝŶƐŽŶ͛s disease, and multiple sclerosis (MS) 

(90). Under pathological conditions, upregulation of TNF can sensitise cells in the CNS to necroptosis 

mediated by RIPK1, with necroptosis promoting further neuroinflammation. Necrostatin-1 (Nec-1), 

an inhibitor of necroptosis has been shown to inhibit RIPK1 kinase activity and block complex II 

formation in response to TNF (91). Nec-1 and the improved analogue Nec-1s have been shown to 

effectively inhibit RIPK1 and also modulate necroptosis in various cellular and animal models of 

human disease (92,93). Other RIPK1 inhibitors, including GSK2982772, have been advanced into 

phase IIa clinical trials for the treatment of non-neurological diseases, including psoriasis, RA and 

ulcerative colitis (UC) (90). 

A recent study by Cuchet-Lourenco et al. describes four patients from three unrelated 

families with homozygous loss-of-function mutations in RIPK1 gene. These patients demonstrated 

immune deficiency, gut inflammation with variable onset and severity and also polyarthritis. In 

contrast to RIPK1-deficient mice, which die shortly after birth, these patients survived for 3 to 13 

years, indicating that, in humans, RIPK1 is not essential for survival (94), which is reminiscent of the 

findings that HOIP- and HOIL-1-deficiencies are lethal in mice but not in humans (76).  

In order to assess the function of TNFR1 signalling, patientƐ͛ skin fibroblasts were stimulated 

with TNF; both MAPK phosphorylation and pathway activation were impaired, with reduced 

cytokine production and increased phosphorylation of complex IIc necroptosis pathway 

components, RIPK3 and MLKL (94). Consistent with this result, inhibitors of necroptosis prevented 

cell death, while pan-caspase inhibitors of apoptosis had no effect. Interestingly, LPS-stimulated 
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patient monocytes showed reduced production of IL-6, TNF and IL-12, consistent with the fibroblast 

data, but with increased IL-1 levels. IL-1 production was also increased following 

phytohaemagglutinin (PHA) stimulation suggesting IL-1 production by T cells. Functional studies 

showed RIPK1 knockout THP-1
RIPK1-/-

 cells secreted reduced amounts of IL-6 and IL-10 with an 

increased amount of IL-1 which resembled the cytokine response of the patients. Additionally, 

necroptosis of THP-1
RIPK1-/-

 cells was accompanied with release of caspase-1 and IL-1 suggesting 

concomitant NLRP3 inflammasome activation (94). High pro-inflammatory IL-1 and low anti-

inflammatory IL-10 could therefore contribute to the IBD and arthritis in these patients and should 

thus be considered for treatment with IL-1 inhibitors. One of the patients who received a 

haematopoietic stem cell transplant (HSCT) resolved IBD and arthritis and reduced the frequency of 

infection suggesting an immune cell dysfunction rather than any other cell type (94). RIPK1 functions 

as a critical regulator of immunity and inflammation in both mice and humans; however, the 

mechanisms balancing inflammatory and cell death signalling require further investigation for the 

development of better treatments. 

 

X-linked ectodermal dysplasia and immunodeficiency (X-EDA-ID) 

 Mutations in the IKBKG/NEMO gene, encoding NEMO, cause X-linked recessive ectodermal 

dysplasia and immunodeficiency (EDA-ID), which is characterised by abnormal development of 

ectodermal tissues alongside immune deficiency, low antibody levels and natural killer cell 

dysfunction (95). Defects in IKBKG/NEMO cause defective NF-B activation and impaired pro-

inflammatory responses. Around 20% of individuals with EDA-ID have disorders involving abnormal 

inflammation including IBD and SLE, and while the clinical aspects of immune deficiency are well 

characterised, the inflammatory responses are less clear.  In these patients, enterocolitis is 

prominent and epithelial cell shedding is present (96). In patients who received allogenic bone 

marrow transplants the immunodeficiency was corrected but the colitis remained, and exacerbated 
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in some cases (97-99). This successful immune restoration suggests that different factors may be 

driving the colitis and immunodeficiency in these patients.  

The importance of NEMO in intestinal epithelia barrier function has been demonstrated in 

an epithelium-specific IKBKG-deficient mouse whereby the mice develop spontaneous colitis, despite 

having a normal immune system, which is prevented when TNF production is abolished (100). These 

findings suggest that when the epithelial barrier is disrupted, and the normal innate immune 

response to this exacerbates inflammation and sustains the colitis. This suggests that NF-B 

signalling in epithelial cells is required to prevent excessive epithelial cell apoptosis and to maintain 

the epithelial barrier to protect against colitis in human subjects (97). TNF blockade would therefore 

be a promising target, as suggested by the case of an 11 year old boy with X-EDA-ID with severe 

colitis, to whom infliximab was administered, with dramatic improvement of symptoms. Following 

one year͛Ɛ infliximab treatment, mucosal inflammation had almost disappeared and the number of T 

cells carrying the reverted gene was also reduced (99).  

 

TNF therapeutic alternatives 

Anti-TNF therapeutics have revolutionised treatment for a number of inflammatory diseases 

with dysregulated TNF levels. At present, 25 drugs which inhibit or modulate the effects of TNF, are 

approved clinically by the Food and Drug Administration (FDA) and European Medicines Agency 

(EMA) for the treatment of RA, AS, psoriasis, PsA, JIA, CD and UC (101). Although many patients 

benefit from treatment with anti-TNF drugs, a number of patients do not respond well to the 

therapy (102) and it is of some concern that prolonged use of anti-TNF biologics has also been 

shown to increase the prevalence of neurological diseases, such as MS, with several reports showing 

increased CNS demyelination as a possible contribution to disease onset (103). Research suggests 
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that early identification in addition to considering clinical, genetic and immuno-pharmacological 

variables are all important in assessing whether a patient responds well to therapy (104).  

Lessons learnt from anti-TNF therapeutics in these approved diseases have helped to inform 

therapeutic strategies to resolve TNFR/TNF signalling defects in the autoinflammatory diseases 

discussed in this review (Figure 1). For example, patients with diagnoses of HA20 and RELA 

haploinsufficiency, respectively, have been successfully treated with a combination of infliximab and 

MTX (51,87). MTX is an immunosuppressive agent which was initially used to improve clinical 

outcomes of patients with IBS and CD who had developed anti-drug antibodies (ADA) when 

administered anti-TNF biologics (infliximab, adalimumab or golimumab) (105,106).  

Anti-TNF therapeutics have advanced significantly since the discovery of infliximab with 

improvements in antibody specificity, as well as the development of nanoantibodies (107), alongside 

the next generation of cheaper anti-TNF ƌĞĂŐĞŶƚƐ ŬŶŽǁŶ ĂƐ ͞ďŝŽƐŝŵŝůĂƌƐ͟ (108,109); all of these have 

provided some promising results for the treatment of chronic inflammatory diseases, such as RA and 

UC (110). Selective targeting of TNFR1 or TRNF2 is another therapeutic strategy which is being 

explored for the treatment of RA, as specific targeting of TNFR1 will block pro-inflammatory effects 

while preserving expansion and activation of Tregs and also maintain protective effects of the TNFR2 

signalling (111,112).  

An alternative approach is to target proteins which form part of the intercellular signalling 

pathways of TNFR. Selectively blocking p38 MAPK directly resulted in a poor clinical response with 

toxicity (113,114); however, a recent study explored the use of an 11-mer TNF peptide (TNF70-80) to 

modulate p38 MAPK indirectly. TNF70-80 binds to TNFR1 and signals through TRAF2 and p38 MAPK, 

which in turn primes neutrophils to initiate a respiratory burst (115). Mukaro et al. generated 

peptides from the TNFR1 sequence which blocked the binding of TNF70-80 and prevented p38 

MAPK activation and subsequent inflammatory response in models of immunity and infection. 

Interestingly, the TNFR peptide does not prevent the binding of TNF to TNFR1 and other signalling 
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molecules it normally activates, but, instead, selectively inhibits p38 MAPK activation and function 

(115). By improving drug targeting, in this way, the rate of potential side-effects of other anti-TNF 

biologics will decrease, but specificity will increase and this will also serve as a valuable tool for 

elucidating mechanisms of disease pathogenesis in vivo.  

An interesting investigative approach has been developed for TRAPS, whereby new 

technologies, ƐƵĐŚ ĂƐ ͚ƌĞǀĞƌƐĞ-ƉŚĂƐĞ͛ ƉƌŽƚĞŝŶ ŵŝĐƌŽĂƌƌĂǇ ;‘PPA), can be used to detect and quantify 

intracellular signalling molecules associated with a particular disease phenotype (116). Using cell line 

models depicting TRAPS, as well as PBMC lysates from C33Y-TRAPS patients relative to controls, the 

RPPA approach was combined with the screening of existing pharmacologically active compounds to 

identify key compounds which modulate the TRAPS signalome. The fluoroquinolone antibiotic, 

lomefloxacin, as well as others from the same class of compounds was found to have the most 

significant effects on pro-inflammatory pathways in TRAPS (116). This approach would be useful for 

other autoinflammatory diseases to identify cellular pathways in the disease state as well as 

candidates for drug repurposing. 

 

Conclusions 

The discovery of autoinflammatory diseases, such as LUBAC deficiency and HA20, has aided 

our understanding of the regulatory components of TNF signalling, and, in particular, highlighted the 

importance of ubiquitination in modulating RIPK1-mediated cell death. Current drugs are not 

disease specific, and aim to target the secondary mediators of inflammation rather than the primary 

processes that drive disease. This can lead to unexpected outcomes, as observed with TRAPS, 

whereby anti-TNF biologics resulted in a dramatic initial response, but with gradual loss of clinical 

efficacy over time in a number of patients. In this situation, epigenetics may play a role in disease 

modulation during biologics-mediated TNF blockade in these patients, a phenomenon which is yet to 

be explored. Although our understanding of TNFR signalling has dramatically improved over the last 
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decade, developing disease specific therapeutics for the rarer autoinflammatory conditions will be 

challenging. 
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Figure Legend 

Figure 1: TNFR signalling defects, autoinflammatory diseases and therapeutics. TNF binding to 

TNFR1 leads to the recruitment of complex I (composed of TRADD, TRAF2/5, cIAP1/2 and RIPK1). 

cIAP1/2 and LUBAC complex add K63-Ub and M1-Ub chains respectively onto RIPK1. K63-Ub chains 

on RIPK1 recruit TAK1 complex (composed of TAK1, TAB2/3), and the M1-Ub chains recruit IKK 

ĐŽŵƉůĞǆ ;ĐŽŵƉŽƐĞĚ ŽĨ NEMO͕ IKKɲͬɴͿ͘ TAKϭ ĐŽŵƉůĞǆ ƉŚŽƐƉŚŽƌǇůĂƚĞƐ Ɖϯϴ MAPK ĂŶĚ JNK ĂŶĚ IKKɴ 

leading to the translocation of transcription factors, AP1 and NF-kB into the nucleus. A20, CLYD and 

OUTLIN negatively regulate NF-kB signalling to avoid chronic inflammation, by cleaving K63-Ub and 

M1-Ub chains from RIPK1 and the IKK complex and target cells for regulated apoptosis via complex 

IIa. Autoinflammatory diseases detailed in this review are a result of defects in different components 

of the TNFR signalling pathway. TRAPS mutations result in upregulated UPR leading to sustained 

MAPK phosphorylation and cytokine secretion. Treatment consists of anti-TNF or anti-IL-1; but 

recent investigations propose the antibiotic, lomefloxacin, as a potential alternative therapy. RIPK1 

deficiency results in reduced cytokine production but with increased necroptosis. Treatments 

include necroptosis and RIPK1 inhibitors, with suggestions that IL-1 inhibitors could be beneficial. 

Decreased expression of A20 (HA20) or OTULIN (ORAS) lead to activation of NF-kB pathway. 

Treatments include anti-TNF therapies, for ORAS, and both anti-TNF and anti-IL-1 for HA20. LUBAC 

deficiency is due to mutations in LUBAC components, HOIP/HOIL/SHARPIN lead to reduced K63-Ub, 

decreased NF-kB activation and increased RIPK1-mediated apoptosis which is currently treated with 

anti-TNF, but RIPK1 inhibitors could also be of benefit. X-EDA-ID and RELA haploinsufficiency both 

lead to defective NF- kB activation and are both treated with anti-TNF therapies. 

Anti-TNF: Infliximab, Etanercept; Anti-IL-1: anakinra, canakinumab; Anti-IL-6: tocilizumab 
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