

This is a repository copy of *Photoinduced non-adiabatic energy transfer pathways in dendrimer building blocks*.

White Rose Research Online URL for this paper: http://eprints.whiterose.ac.uk/144537/

Version: Supplemental Material

Article:

Freixas, VM, Ondarse-Alvarez, D, Tretiak, S et al. (3 more authors) (2019) Photoinduced non-adiabatic energy transfer pathways in dendrimer building blocks. Journal of Chemical Physics, 150 (12). 150. ISSN 0021-9606

https://doi.org/10.1063/1.5086680

Reuse

Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of the full text version. This is indicated by the licence information on the White Rose Research Online record for the item.

Takedown

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

eprints@whiterose.ac.uk https://eprints.whiterose.ac.uk/

Supporting information for Photoinduced non-adiabatic energy transfer quantum pathways in dendrimer building blocks

V. M. Freixas^a, D. Ondarse-Alvarez^a, S. Tretiak^b, D. Makhov^{c,d}, D. Shalashilin^c and S. Fernandez-Alberti^a.

^aDepartamento de Ciencia y Tecnologia, Universidad Nacional de Quilmes/CONICET, B1876BXD Bernal, Argentina.

^bTheoretical Division, Center for Nonlinear Studies (CNLS), and Center for Integrated Nanotechnologies (CINT), Los Alamos National Laboratory, Los Alamos, NM 87545, USA.

°School of Chemistry, University of Leeds, Leeds LS2 9JT, UK.

^dSchool of Mathematics, University of Bristol, Bristol BS8 1TW, UK

Figure S1. Distribution of the transition density fraction of each excited state localized on the three chromophore units evaluated for the ensemble of the initial 234PPE ground state conformational sampling.

Figure S2. Distribution of the transition density fraction of each excited state localized on the three chromophore units evaluated for the ensemble of the initial 243PPE ground state conformational sampling.

Figure S3. Distribution of the transition density fraction of each excited state localized on the three chromophore units evaluated for the ensemble of the initial 324PPE ground state conformational sampling.