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Abstract

This paper presents the development of a generic gait synthesis for the humanoid

robot COMAN. Based on the essential Gait Pattern Generator, the proposed synthesis

offers enhanced versatilities of bipedal locomotion for different tasks and also provides the

data storage and communication mechanisms among different modules. As an outcome,

we are able to augment new abilities for COMAN by integrating new control modules

and software tools at a cost of a very few modifications. Moreover, the integrated foot

placement optimization in the Gait Pattern Generator optimizes the referential gait pa-

rameters in order to comply with the natural dynamics and kinematics of the robot, which

improves the robustness of the implementation on real robots. We have also presented

a practical approach to generate pelvis motion from CoM references using a simplified

three-point-mass model, as well as a straightforward and effective state estimation using

the sensory feedback. Three types of real experiments were studied in an increasing com-

plexity to demonstrate the effectiveness and successful implementation of the proposed

gait synthesis on a real humanoid.

Keywords: humanoid robots, bipedal locomotion, gait synthesis, dynamic walking.

1 Introduction

Humanoid robots have been gaining an increasing attention in the recent years due to their

improved technological readiness and the potential to have real outdoor applications. With

the anthropomorphic morphology, humanoids possess a great potential of completing the tasks

undertaken by humans [1]–[3], such as using human-oriented tools, driving vehicles, traversing

unstructured terrains where the wheeled robots cannot go, operating in hazardous environment,

rescue/repair in disaster responses, and the like. In short, humanoid robots or their variants,

as a question of time, earn good motivations under the context of our aging society, and can be

deployed as general machines with a fairly large spectrum of skills. The scenarios of exploring
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Figure 1: COMAN’s demonstration as a general machine with versatile skills for solving complex

tasks in real world scenarios: (a) fast dynamic walking; (b) obstacle negotiation; (c) valve

turning; (d) door opening.

humanoid robots as an universal machine are illustrated in Fig. 1 from some research works,

such as stepping over a large obstacle [4], that were studied on the COMAN robot [5].

To achieve the completion of tasks in real world, a physical mobility is the fundamental ba-

sis. Therefore, a reliable and robust locomotion skill shall be addressed first. Hence, researchers

have made tremendous efforts in the past to improve bipedal walking for humanoids. A widely

implemented class of gait pattern generations are developed based on the Zero Moment Point

(ZMP) [6], such as HUBO [7], ASIMO [8], HRP [9] and the Atlas [10]. The generated gait

patterns are then combined with feedback controllers to stabilize the motion of the robot by

tracking the planned references at very time instant [11], applying compliance control [12], [13],

or reactively replanning the references [14]–[16]. For this class of control, we have a number of

options of classical and modern linear controllers to improve the performance and realize dif-

ferent functionalities [17]–[19]. Pratt et al. [20] have presented a capturability-based framework

for balance and walking control of legged robots. Englsberger et al. [21] have successfully im-

plemented the Divergent Component of Motion for realizing the dynamic bipedal gaits. Some

other robots, such as MABEL [22] and ATRIAS [23], have adopted a different approach where

nonlinear control plays an important role and the finite state machine approach is commonly

used. This alternative solution often offers an interesting feature in terms of agility and energy

efficiency. However, in turn, its nonlinear feature makes the stability analysis very difficult,

and the implementation of 3D walking is rather rare to date.

Research efforts are made on the humanoid robots for improving their adaptivity in human

daily environment. This trend is been accelerating after the disaster happened at Fukushima

Daiichi nuclear power plant in 2011. The DARPA Robotics Challenge (DRC) was heavily

influenced by the events at Fukushima, thus it imposed a big challenge for the locomotion by

requiring every robot to operate in outdoor environment without a safety harness. Complex

tasks such as stair-climbing, vehicle egress, rough terrain traversal etc. demand advanced

locomotion ability. It is critical that every team concentrates in not only developing algorithms
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for specific tasks [24], [25], but also integrating different controllers [26]–[29].

During the preparation of the WALK-MAN team for the DRC finals, we were motivated

by the tasks requirements, and learned the importance of having a generic locomotion module

that can be easily adapted to tasks without too much modifications of an existing framework,

which could significantly facilitate system integration. Therefore, in this paper, we present an

overview of our gait synthesis which is developed and validated on the COMAN platform that

targets on the advanced locomotion skills for humanoid robots. The inherent expendable struc-

ture of the proposed synthesis offers enhanced versatilities for the locomotion under different

purposes by introducing plug-in modules, and also provides the data storage and communi-

cation mechanisms among different modules. As an outcome, we are able to augment new

abilities for COMAN by integrating new control modules and software tools at a cost of very

few modifications.

The rest of this paper is organized as follows. Section 2 briefly introduces the components

of the proposed gait synthesis. Section 3 presents the modules of Gait Pattern Generator,

such as the optimization of foot placement and step time, the center of mass (CoM) and

foot trajectories generation, as well as the three-mass model used for analytically generating

the pelvis motion from the CoM/feet trajectories. Section 4 elaborates the main concepts of

Interactive Data Server and explains two most frequently used services. Section 5 demonstrates

the effectiveness of the proposed gait synthesis from three different locomotion tasks. We

summarize and conclude our study in Section 6.

2 Overview of the Gait Synthesis

As shown in Fig. 2, the proposed gait synthesis mainly consists of four parts: the essential Gait

Pattern Generator, High Level Controllers, Walking Plug-in Modules, Interactive Data Server

(IDS ). The COMAN is the testbed for hardware implementation and validation.

The Gait Pattern Generator takes the sequence of desired foot placements as inputs and

generates reference trajectories to perform dynamic walking. It firstly solves a nonlinear con-

strained optimization problem to adjust the foothold location and time in order to warrant

both kinematic and dynamic feasibilities, then generates ZMP references including gait initi-

ation and termination phases. The horizontal CoM references are therefore produced using a

predictive control scheme, combined with the body orientation and vertical CoM motion in the

case of non-straight/non-flat walking. The references of CoM will then pass into a simplified

dynamics filter in order to obtain the pelvis motion. By solving the inverse kinematics given

the pelvis and feet references, the joint angles of lower body are obtained and then sent to the

robot. Details of this controller will be explained in Section 3.

The High Level Controllers are the modules that provide global settings, environmental

information or autonomous decisions that considered as the higher hierarchy in the whole

control framework, compared to the Gait Pattern Generator and Walking Plug-in Modules.

For example, user commands, perception, navigation etc. are within this scope, especially the
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Figure 2: The gait synthesis for the humanoid COMAN.

footstep planner, which generates a sequence of desired foot placements, is a higher level on

top of the Gait Pattern Generator.

The Walking Plug-in Modules play complementary roles in addition to the Gait Pattern

Generator. They either generate modifications to the references in order to reduce the errors

between the desired and real behaviors, such as stabilizer or body attitude controller, or provide

additional controllers to the default framework to complete specific tasks, such as obstacle

overstepping module.

The IDS is an interchange of data and services, all the data, such as parameters, refer-

ences, sensory feedback etc., related to the above parts are stored, processed in the IDS and

communicated between different controllers. Moreover, various internal services of the IDS,

such as sensor fusion, CoM estimation, foot contact detection, coordinates transformation etc.,

provide further information to the controllers. Details will be explained in Section 4. The

COMAN robot as a real platform provides real-time sensory feedback to the gait synthesis and

receives joint level commands (joint angle or torque) to perform versatile tasks such as walking,

overstepping, door opening etc.

3 Gait Pattern Generation

Gait pattern generation for humanoid robots is challenging, as a feasible motion needs to be

chosen from numerous realizable solutions within the robots’ kinematics and dynamics. In this

section, the framework of Gait Pattern Generator is presented. It firstly optimizes the desired

footsteps and step time, and then generates trajectories of swing foot and pelvis based on the
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optimized footsteps. These references are then sent to inverse kinematics module to obtain

joint space references.

3.1 Foot Placement Optimization

Normally, a humanoid is expected to achieve a desired motion state at a desired position. For

instance, during DRC tasks, the robot needs to traverse cinder blocks via a sequence of footsteps

found by the High Level Controllers. However, considering the available workspace defined by

the kinematics of the robot, these footsteps do not always need to be strictly constrained to

realize the desired motion. Moreover, it shall be noted that these manually appointed gait

parameters could conform with the natural dynamics of the robot. Therefore, Foot Placement

Optimization module is proposed to make a trade-off between the designed gait and the natural

dynamics of the robot.

The humanoid robot can be simplified as a 3D linear inverted pendulum model (LIPM)

[30], which consists of the CoM of the robot and a mass-less leg connecting the CoM and the

supporting point. The equations of motion of the LIPM are formulated as follows,

X
(n)
f = A(n)X

(n)
i +B(n)D(n), (1)
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(n)
i ] is the CoM initial states at the nth step, D(n) = [d
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horizontal position of foot placements, C(n) ≡ cosh
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(n)
step

Tc
, S(n) ≡ sinh

t
(n)
step

Tc
, t

(n)
step is the step time

at nth step, and Tc =
√

zc
g
is the time constant of the system, zc represents the constant CoM

height which is 0.448 m for COMAN during walking.

According to (1), the final state of CoM X
(n)
f is determined by the references of the foot

placements D(n) and the step time t
(n)
step as shown in Fig. 3(a). However, these references

are usually unnatural for the robot to achieve, and very often have conflicts with the natural

dynamics of the point mass model. Therefore, an optimization problem considering the LIPM

dynamics is formulated to reach a compromise at each step. The cost function is constructed

as

min
U (n)

∥

∥

∥
Q(X

(n)
f −X

(n)
ref )

∥

∥

∥

2

+ ω
∥

∥D(n)
−D∗(n−1)

∥

∥

2
(2)

s.t. D(n) ∈ Sr ∩ Sa ,

tlb ≤ t
(n)
step ≤ tub ,
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Figure 3: The concept of foot placement optimization. (a) How the change of COP affects the

CoM state in the end of a step. (b) An example of foot placement optimization: black circles

are the original foot placement references, red stars are the optimized positions constrained

inside the black square boundaries.

while also satisfying the equality constraints (1). U (n) = [D(n) ; t
(n)
step] is defined as the target

variables of this optimization problem and U ∗(n) = [D∗(n) ; t
∗(n)
step ] is the solution at nth step,

X
(n)
ref is the reference final state of CoM, Q and ω are the weights for different objectives, Sr

and Sa represent the rectangular searching area and kinematic reachable area respectively, tlb

and tub are the lower and upper boundaries of the step time.

The optimization formulation (2) is a typical nonlinear constrained quadratic problem. The

general method of sequential quadratic programming is used to obtain the local optimal solution

U ∗(n). The first part of the objective function in (2) tries to realize the CoM states approaching

the reference states X
(n)
ref calculated by the high level defined footsteps reference D

(n)
ref and step

time reference t
(n)
ref using (1). The second part of the objective function tries to minimize the

distance between the next footstep and the support foot in order to avoid reaching the limits

of the leg’s workspace.

Constraints Sr and Sa are updated at each step. As shown in Fig. 4, in order to prevent

large deviations from the reference footstep, Sr is set as a 10× 10 cm rectangular around D
(n)
ref

to ensure safe walking without stepping into undesired areas. The reachable kinematic space

Sa, the area enclosed by the kinematic limit boundary, is calculated considering the joint limits.

The kinematic limit, which is similar to the possible landing area in [31], is enclosed by two

parts: a straight line at half of hip width away from the stance foot for avoiding crossing legs;

the circular curve centered at the stance foot formed by the kinematic limit of the swing leg’s

workspace. The radius of 0.4 m is used for COMAN in this paper.

As shown in Fig. 3(b), the reference foot placements were designed to perform omni-

directional walking, and the reference step time was 0.8 s. The robot firstly walked forward

(0th ∼ 2nd), and turned left with several sidesteps (3rd ∼ 10th), then turned back (11th ∼ 12th)
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Figure 4: The illustration of nonlinear kinematic constraints in the optimization.

and finally stopped at 13th step. Solving (2), the reference foot placements (black cycles) were

adjusted to new locations (red stars), and the duration of each step was optimized as well.

The ZMP references could be generated by consecutively connecting these optimized foot

placements. In addition, it is also necessary to design the ZMP references for gait initia-

tion/termination. For further implementation on the robot, 20% of the step time is chosen for

the double support phase, which is referenced from human gait analysis [32]. After the ZMP ref-

erences are generated, a variety of predictive controllers, such as Preview Control [17] or Model

Predictive Control [18], can be used to generate horizontal CoM references rCoM
ref . The swing

foot trajectory reference rfoot
ref is generated by a template pattern using the target parameters

to suit different tasks [4].

3.2 Pelvis Motion Generation

Although, the walking pattern generation method explained so far is horizontal walking centric,

the same method can also be used for walking in 3D terrains with small additional control

of vertical motion regulation. The CoM motions along z direction and in x-y plane can be

decoupled under the assumption of LIPM which restricts the vertical CoM acceleration as zero.

The vertical CoM motion can be generated independently by connecting the discrete points

which have a constant CoM height with respect to the local footstep. The body rotation R
body
ref

is generated by a cubic spline curve continuously changing from step to step. This is similar to

the body/leg-simultaneous method in [33]. Herein, the CoM motion is extended to 3D space

with the position reference rCoM
ref and orientation reference R

body
ref .

For the inverse kinematics [16], the required inputs are the positions and orientations of

the robot pelvis and feet. The reference orientation R
body
ref can be considered the same as the

orientation of the pelvis Rpelvis
ref , but the CoM position reference rCoM

ref usually does not coincide

with the pelvis position r
pelvis
ref due to the mass distribution of the robot, as shown in Fig. 5.

Therefore, the pelvis motions need to resolved from the CoM references.

Similar to [8], the humanoid robot is approximately modeled as three point masses located

at the center of upper body mub, left foot mlf and right foot mrf , respectively. The mass of
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Figure 5: Three-mass model used for pelvis motion generation.

Figure 6: The pelvis reference (red solid line) generated by the dynamics filter module using

the CoM reference (blue dash line).

one leg is separated into two parts, 77% to mub and 23% to its foot part mass. Therefore, mub

contains the whole upper body mass and 77% of leg masses, mlf contains the left foot mass and

23% of left leg mass, mrf is the same as mlf . Choosing the world frame ΣW as the reference

frame, the relation between the three point masses model and the CoM is formulated as follows,

mub(r
pelvis
ref +R

pelvis
ref roffset) +mlfr

footl
ref +mrfr

footr
ref = mtotr

CoM

ref , (3)

where roffset is the local offset position vector from pelvis to mub, mtot = mub + mlf + mrf

is the total weight of the robot, rfootl
ref and rfootr

ref are the references of left foot and right foot

trajectory, respectively. Therefore, the output of dynamics filter, the pelvis reference r
pelvis
ref ,

could be calculated subsequently.

As shown in Fig. 6, the pelvis motion plotted in red solid line is obtained using (3).

Comparing the references of pelvis and CoM, we can see the difference between them due to
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the distributed masses in feet, as shown in the subplot of Fig. 6. Herein, the inputs of the

inverse kinematics module, rpelvis
ref , Rpelvis

ref , rfootl
ref , Rfootl

ref , rfootr
ref and Rfootr

ref in world frame ΣW ,

are all obtained for generating joint angles to realize dynamic locomotion tasks.

4 Interactive Data Server

To control walking of a humanoid robot, various data such as sensory feedback, robot states,

contact conditions etc., needs to be communicated between controllers. The IDS is an inter-

change of data and services of processed sensory feedback, including a database for storing

information and a set of services, which process the raw data and deal with the requests from

different controllers.

4.1 Database

The database contains the information communicated between modules. The data can be

mainly classified into four categories. The first is the sensory raw data from sensors mounted

on the robot such as encoders, torque sensors and IMU etc.. The second is the processed

data provided by IDS services, such as foot contact conditions and CoM estimations etc.. The

third is the intermediate data provided by plug-in modules, such as CoM and ZMP references

provided by the gait generator module, the CoM modification from the stabilizer module [12],

and the backlash and gravity compensation provided by the compensation module [4] etc.. The

last category is the user input parameters such as desired gait parameters, controllers gains,

robot dimensions etc..

4.2 Services

There are various types of sensors such as motor encoder, joint torque sensor, ankle force/torque

sensor, and inertial measurement unit (IMU) etc., the IDS provides services of basic signal

conditioning and sensor fusion. Two frequently used services are briefly introduced below.

4.2.1 Foot Contact Condition

The humanoid robot’s foot contact conditions are classified as In Air, Right Foot Single Support

(RFSS ), Double Support (DS ) and Left Foot Single Support (LFSS ), which are determined by

the contact status of left and right foot, respectively.

For each foot, if the vertical component of the Ground Reaction Force (GRF), which is sensed

by force/torque sensor mounted in the ankle, is greater than a defined threshold continuously

for a certain period of time, then this foot is considered to have firm contact with the ground.

Vice versa, if the vertical component of the GRF is constantly less than the threshold for

a certain period, this foot is considered to have no contact with the ground. The contact

condition remains unchanged in other situations. A good trade-off is achieved between the
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Figure 7: The illustration for CoM estimation service.

delay and signal noise in the decision of foot contact status, we found 20 ms as an appropriate

time window for the contact estimation in this study.

4.2.2 Stae Estimation of the CoM

One of the major services is to compute the current CoM state of the robot, namely the position

and velocity. Fig. 7 illustrates geometric relation of the robot CoM position in World frame

ΣW . Only joint encoders, IMU and foot force/torque sensors feedback are needed for this

service. A local frame located at the center of pelvis link is defined as ΣH , which is then used

as the base frame for updating the position and orientation of all links using the joint encoders

readings. Therefore, two rotation matrices HRl
F and HRr

F from left and right Foot frames to

Hip frame, and two position vectors Hrl
foot and

Hrr
foot from the origin of ΣH to the left and right

foot can be updated accordingly. The CoM position in ΣH is calculated by

HrCoM

est =

∑

mi
Hri

∑

mi

, (4)

where mi is the mass of ith link and Hri is the position vector of ith link’s CoM in ΣH .

Updating the CoM states in the world frame ΣW is made under an assumption that the

support foot is always firmly contacted with the ground without any slippage. Therefore, the

CoM position in ΣW , WrCoM
est , can be simply described as

WrCoM

est = Wr
footsup
est + WR

IMU

H (HrCoM

est −
Hr

footsup
est ), (5)

where WR
IMU

H is the rotation matrix from ΣH to ΣW which is calculated by the feedback of IMU

mounted on the pelvis, r
footsup
est denotes the vector pointing to the support foot which is left or

right foot depending on the foot contact condition. More accurate CoM state estimation in ΣW
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can be achieved by using the Kalman filter based on the acceleration measurement and visual

localization.

However, the support foot is changing discretely during bipedal walking which would in-

troduce discontinuities into CoM estimation, thus deteriorate the quality of calculated CoM.

Here, a simple approach is proposed to eliminate this defect by smooth transition between two

CoM estimations from both feet, the resulted WrCoM
est utilizes the weight of vertical GRF of each

foot as
WrCoM

est =
f l
z

Wr
CoMl

est + f r
z

WrCoMr

est

f l
z + f r

z

, (6)

where Wr
CoMl

est and WrCoMr

est are the CoM in ΣW calculated by (5) using left and right leg kinematic

chain, respectively, f l
z and f r

z are the vertical GRF sensed by force/torque sensors mounted on

the each foot.

The second assumption is that the foot contact condition has no In Air phase during

walking, meaning that the foot contact condition only changes between single and double

support cyclically. This assumption presumes the robot would not bounce off the ground

during foot landing impact. Therefore, the continuity of the vertical GRF guarantees continuous

update of the CoM estimate.

The global position of each foot in ΣW is updated only during its swing phase by

{

Wr
footl
est = Wrfootr

est + WR
IMU

H (Hrfootl
est − Hrfootr

est ), RFSS
Wrfootr

est = Wr
footl
est + WR

IMU

H (Hrfootr
est − Hr

footl
est ), LFSS

(7)

using the service presented in Section 4.2.1. The origin of ΣW is defined as the geometry center

of the support polygon when the foot contact condition is in double support DS in the very

beginning, the initial positions of each foot, Wr
footl
est and Wrfootr

est , are calculated afterwards.

5 Experiments

This section presents three experiments of locomotion tasks carried out on COMAN in an in-

creasing complexity order. The first experiment validated the proposed Gait Pattern Generator

could generate feasible references for dynamic walking. However, due to the discrepancies be-

tween the theoretical model and the imperfect real world, the Gait Pattern Generator needs

additional Walking Plug-in Modules such as a stabilizer [12] to bridge the gap of between the

ideal model and the real system. Their synthesis demonstrates the effectiveness while CO-

MAN performing omni-directional walking in the second experiment. The last experiment is a

decent example to demonstrate the work flow of the gait synthesis in completing an obstacle

negotiation task.

5.1 Straight Walking

In the first experiment, three straight walking tests were performed with the gait parameters

as follows: step time 0.9 s, lift height 0.05 m, double support ration 20% and step length from
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Start 1st 2nd 3rd 4th 5th 6th 7th Stop

Figure 8: Snapshots of walking forward with step length 0.2 m and stabilizer module on.

0.1 m, 0.15 m to 0.2 m respectively. Each test was repeated by 5 trials.

Table 1: Success rate of the straight walking experiment.

Plug-in Module
Step Length

Total
0.1 m 0.15 m 0.2m

None 5/5 4/5 0/5 9/15

Stabilizer 5/5 5/5 5/5 15/15

Table 1 shows the success rate of these three tests. The successful tests were the ones where

the COMAN robot completed the whole gait in a stable manner by taking at least 7 steps. It

can be found that the first two tests were performed well with only the references generated by

the Gait Pattern Generator without the stabilizer. However, when the step length increased to

0.2 m, COMAN fell down due to the tracking deterioration caused by the discrepancies between

the simplified model and the real robot, e.g. foot-ground impacts in particular. Therefore, one

of the Walking Plug-in Modules, the stabilizer [12], was activated for long step length walking.

The 100% success rate shows that, the plug-in did well as the complementary role that helped

the robot to eliminate the disturbances coming from the environmental and modeling errors.

Fig. 8 shows one successful trail of COMAN robot walking forward with step length of 0.2 m.

The feasibility of the proposed gait synthesis was validated through simple gait in the previ-

ous experiment, further tests were conducted in the following experiments in more complicated

scenarios.

5.2 Omni-directional Walking

The omni-directional walking was carried out as the second validation scenario in order to

demonstrate the proposed gait synthesis’s performance in more general walking case. The gait

started with double support on the ground, and the feet during walking were designed to be

level to the ground. The nominal step time was 0.9 s, and the foot lift height was 0.04 m. The

robot performed totally 14 steps, the step length changed alternately between 0.1 m and 0.05

m from step to step, and the step width was 0.05 m. The robot kept turning 5 degrees per

step to the left during the first 7 steps, and then 5 degrees per step to the right during the last
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Figure 9: The results of the omni-directional walking experiment. Black circles denote the foot

placement references, red stars denote the optimized foot placements with the black square

boundaries. The CoM reference (black dash line) is generated by the optimized foot placements.

The blue solid line is the real CoM trajectory estimated by the IDS service.

7 steps. Therefore, the gait used for this experiment combined walking forward, side stepping

and turning, which covered most walking primitives on flat ground.

The COMAN robot successfully completed the full gait pattern with the plug-in stabilizer

activated. Fig. 9 shows the foot placement references by black circles, and the optimized ones

by red stars. The CoM reference generated based on optimized foot placements is depicted

in black dashed line and the estimated COM trajectory is shown by the blue solid line. The

difference between the two was partly because of the limited accuracy of the CoM estimation

from IDS, and also partly because the foot indeed slipped slightly from step to step. Therefore,

as number of steps increased, the drift between the ideal and real spatial trajectories of the

CoM became unavoidable.

5.3 Stepping Over A Large Obstacle

The last experiment was dedicated to a specific capability of humanoids: stepping over a large

obstacle. The obstacle was a block with dimensions of 0.1 m height by 0.05 m width. The

collision check module inside the plug-in module [4] decides the gait to walk over the obstacle

with the step length of 0.24 m, the lift height of 0.12 m, and the step time of 1.5 s (20% double

support phase), and considers the foot size (0.14×0.09 m) of COMAN and its kinematic limits,

as well as the 0.01 m safe margin around the obstacle. The Gait Pattern Generator therefore

generates the joint angle references using the desired footsteps together with the additional

modifications provided by the plug-in modules, such as pelvis rotation, hip abduction, backlash

and gravity compensation [4].
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Figure 10: Snapshots of successful stepping over a large obstacle.

Thanks to the proposed gait synthesis, COMAN was capable of stepping over the obstacle

which was almost 20% of its leg length. Fig. 10 shows the front view of COMAN whilst

stepping over this large obstacle.

6 Conclusion

In this paper, we present the overview and validation of the proposed gait control synthesis

developed for the humanoid COMAN. It aims at enhancing locomotion skill of humanoids by

integrating a Gait Pattern Generator, High Level Controllers, Walking Plug-in Modules and a

centered Interactive Data Server. By implementing the proposed gait synthesis on COMAN,

successful demonstrations of various locomotion tasks were performed in an increasing complex-

ity. The first straight walking experiment shown that the basic locomotion capability of the

proposed gait synthesis was realized on the humanoid COMAN, and by simply activating the

stabilizer, the locomotion quality was significantly improved. The effectiveness of the integra-

tion was then further validated by an omni-directional waking experiment. The performance of

both the foot placements optimization and the state estimation were successfully demonstrated

as well. The capability of overstepping large obstacle using the same gait synthesis was also

proved by the physical experiment.

For the future work, on the one hand, different Walking Plug-in Modules could be developed

to improve the humanoid robots’ adaptability in walking or other specific locomotion tasks,

such as reactive stepping, dancing, balancing using whole body contacts etc.. On the other

hand, introducing state-in-art technologies into High Level Controllers for improving the robot’s

perceptual ability and better autonomy could also be an interesting research direction to make

humanoid robots as reliable human companions.
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