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ABSTRACT

It is generally accepted that populations are useful for the global

exploration of multi-modal optimisation problems. Indeed, sev-

eral theoretical results are available showing such advantages over

single-trajectory search heuristics. In this paper we provide evi-

dence that evolving populations via crossover and mutation may

also bene�t the optimisation time for hillclimbing unimodal func-

tions. In particular, we prove bounds on the expected runtime of

the standard (µ+1) GA for OneMax that are lower than its unary

black box complexity and decrease in the leading constant with the

population size up to µ = O(
√
logn). Our analysis suggests that the

optimal mutation strategy is to �ip two bits most of the time. To

achieve the results we provide two interesting contributions to the

theory of randomised search heuristics: 1) A novel application of

dri� analysis which compares absorption times of di�erent Markov

chains without de�ning an explicit potential function. 2) �e inver-

sion of fundamental matrices to calculate the absorption times of

the Markov chains. �e la�er strategy was previously proposed in

the literature but to the best of our knowledge this is the �rst time

is has been used to show non-trivial bounds on expected runtimes.
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1 INTRODUCTION

Populations in evolutionary and genetic algorithms are considered

crucial for the e�ective global optimisation of multi-modal prob-

lems. For this to be the case, the population should be su�ciently

diverse such that it can explore multiple regions of the search space

at the same time [9]. Also, if the population has su�cient diversity,

then it considerably enhances the e�ectiveness of crossover for es-

caping from local optima. Indeed the �rst proof that crossover can

considerably improve the performance of GAs relied on either en-

forcing diversity by not allowing genotypic duplicates or by using

unrealistically small crossover rates for the Jump function [11]. It

has been shown several times that crossover is useful to GAs using
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the same, or similar, diversity enhancing mechanisms for a range of

optimisation problems including shortest path problems [7], vertex

cover [17], colouring problems inspired by the Ising model [21] and

computing input output sequences in �nite state machines [14].

�ese examples provide considerable evidence that, by enforc-

ing the necessary diversity, crossover makes GAs e�ective and

o�en superior to applying mutation alone. However, rarely it has

been proven that the diversity mechanisms are actually necessary

for GAs, or to what extent they are bene�cial to outperform their

mutation-only counterparts rather than being applied to simplify

the analysis. Recently, some light has been shed on the power of

standard genetic algorithms without diversity over the same algo-

rithms using mutation alone. Dang et al. showed that the plain

(µ+1) GA is at least a linear factor faster than its (µ+1) EA counter-

part at escaping the local optimum of Jump [3]. Su�on showed that

the same algorithm with crossover if run su�ciently many times is

a �xed parameter tractable algorithm for the closest string problem

while without crossover it is not [23]. Lengler provided an example

of a class of unimodal functions to highlight the robustness of the

crossover based version with respect to the mutation rate compared

to the mutation-only version i.e., the (µ+1) GA is e�cient for any

mutation rate c/n while the (µ+1) EA requires exponential time as

soon as approx. c > 2.13 [15]. In all three examples the population

size has to be large enough for the results to hold, thus providing

evidence of the importance of populations in combination with

crossover.

Recombination has also been shown to be very helpful at exploita-

tion if the necessary diversity is enforced through some mechanism.

In the (1+(λ, λ)) GA such diversity is achieved through large muta-

tion rates. �e algorithm can optimise the well-known OneMax

function in sublogarithmic time with static o�spring population

sizes λ [5], and in linear time with self-adaptive values of λ [4].

Although using a recombination operator, the algorithm is still

basically a single-trajectory one (i.e., there is no population). More

realistic steady-state GAs that actually create o�spring by recombin-

ing parents have also been analysed for OneMax. Sudholt showed

that (µ+λ) GAs are twice as fast as their mutation-only version (i.e.,

no recombination) for OneMax if diversity is enforced arti�cially

i.e., genotype duplicates are preferred for deletion [22]. He proved

a runtime of (e/2)n lnn +O(n) versus the en lnn +O(n) function
evaluations required by any standard bit mutation-only evolution-

ary algorithm for OneMax and any other linear function [25]. If

o�spring are identical to their parents it is not necessary to evaluate

the quality of their solution. When the unnecessary queries are

avoided, the expected runtime of the GA using arti�cial diversity

from [22] is bounded above by (1 + o(1))0.850953n lnn [19]. Hence,
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it is faster than any unary (i.e., mutation-only) unbiased 1 black-box

search heuristic [12]

On one hand, the enforced arti�ciality in the last two results

considerably simpli�es the analysis. On the other hand, the power

of evolving populations for e�ective optimisation cannot be ap-

preciated. Since the required diversity to make crossover e�ec-

tive is arti�cially enforced, the optimal population size is 2 and

larger populations provide no bene�ts. Corus and Oliveto showed

that the standard (µ+1) GA without diversity is still faster than

mutation-only ones by proving an upper bound on the runtime

of (3/4)en lnn + O(n) for any 3 < µ < o(logn/log logn) [2]. A

result of enforcing the diversity in [22] was that the best GA for the

problem only used a population of size 2. However, even though

this arti�ciality was removed in [2], a population of size 3 was

su�cient to get the best upper bound on the runtime achievable

with their analysis. Overall, their analysis does not indicate any

tangible bene�t towards using a population larger than µ = 3. �us,

rigorously showing that populations are bene�cial for GAs in the

exploitation phase has proved to be a non-trivial task.

In this paper we provide a more precise analysis of the behaviour

of the population of the (µ+1) GA for OneMax. We prove that the

standard (µ+1) GA is at least 60% faster than the same algorithm

using only mutation. We also prove that the GA is faster than any

unary unbiased black-box search heuristic if o�spring with identical

genotypes to their parents are not evaluated. More importantly, our

upper bounds on the expected runtime decrease with the population

size up to µ = o(
√
logn), thus providing for the �rst time a natural

example where populations evolved via recombination andmutation

optimise faster than unary unbiased heuristics.

2 PROBLEM DEFINITION AND OUR RESULTS

2.1 �e Genetic Algorithm

�e (µ+1) GA is a standard steady-state GA which samples a single

new solution at every generation [8, 20]. It keeps a population of

the µ best solutions sampled so far and at every iteration selects two

solutions from the current population uniformly at random with

replacement as the parents. �e recombination operator then picks

building blocks from the parents to create the o�spring solution.

For the case of pseudo-Boolean functions f : {0, 1}n → R, the most

frequently used recombination operator is uniform crossover which

picks the value of each bit position i ∈ [n] from one parent or the

other uniformly at random (i.e., from each parent with probability

1/2) [8]. �en, an unbiased unary variation operator, which is

called the mutation operator, is applied to the o�spring solution

before it is added to the population. �e most common mutation

operator is the standard bit-mutation which independently �ips

each bit of the o�spring solution with some probability c/n [25].

Finally, before moving to the next iteration, one of the solutions

with the worst �tness value is removed from the population. For

the case of maximisation the (µ+1) GA is de�ned in Algorithm 1.

�e runtime of Algorithm 1 is the number of function evaluations

until a solution which maximises the function f is sampled for the

�rst time. If every o�spring is evaluated, then the runtime is equal

to the value of the variable t in Alg. 1 when the optimal solution is

1�e probability of a bit being �ipped by an unbiased operator is the same for each
bit-position.

Algorithm 1: (µ+1) GA [8, 20]

1 P1 ← µ individuals, uniformly at random from {0, 1}n ;
2 t ← µ;

3 repeat

4 Select x ,y ∈ Pt uniformly at random with replacement ;

5 z ← uniform crossover(x ,y);
6 z ←mutate(z);
7 Pt+1 ← Pt ∪ {z};
8 Remove the element with lowest �tness from Pt+1,

breaking ties at random;

9 t ← t + 1;

10 until optimum is found;
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Figure 1: �e leading constant from the second statement

of �eorem 3.1 versus the population size. �e best leading

constant achievable by any unary unbiased algorithm is 1.

sampled. However, if the �tness of o�spring which are identical to

their parents are not evaluated, then the runtime is smaller than t .

We will �rst analyze the former scheme and then adapt the result

to the la�er.

2.2 �e Optimisation Problem

Given a secret bitstring z ∈ {0, 1}n , OneMaxz (x) := {i ∈ [n]|zi =
xi } returns the number of bits on which a candidate solution

x ∈ {0, 1}n matches z [25]. �e optimisation time (synonymously,

runtime) is de�ned by the number of queries to the function re-

quired by an algorithm to minimise the Hamming distance between

the candidate solution and the hidden bitstring z.

2.3 Our Results

In this paper we prove the following results.

Informal. �e expected runtime for the (µ+1) GA (with unbiased

mutations and population size µ = o(
√
logn) to optimise theOneMax

function is

(1) E[T ] ≤ (1+o(1))n lnn ·γ1(µ,p0,p1,p2), if o�spring identical
to their parents are not evaluated for their quality is known

and p0, p1, and p2 are respectively the probabilities that zero,

one or two bits are �ipped, [�eorem 3.1, Section 3]
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Figure 2: �e leading constant from the �rst statement of

Corollary 3.2 versus the population size. �e best mutation-

only variant has a the leading constant of e ≈ 2.71.

(2) E[T ] ≤ (1+o(1))n lnn ·γ2(µ, c), if the quality of all o�spring
is evaluated and using standard bit mutation with rate c/n,
c ∈ Θ(1), [Corollary 3.2, Section 3]

where γ1 and γ2 are decreasing functions of the population size µ.

�e above two statements are very general as they provide upper

bounds on the expected runtime of the (µ+1) GA for each value of

the population size up to µ = o(
√
logn) and any unbiased mutation

operator. �e leading constants γ1 and γ2 in Statements 1 and 2 are

plo�ed respectively in Fig. 1 and 2 for di�erent population sizes

using the p0, p1, p2 and c values which minimise the upper bounds.

�e result is signi�cant particularly for the following three reasons

(in order of increasing importance).

(1) �e �rst statement shows how the genetic algorithm outper-

forms any unbiased mutation-only heuristic since the best expected

runtime achievable by any algorithm belonging to such class is at

least n lnn − cn ± o(n) [6]. Given that the best expected runtime

achievable with any search heuristic using only standard bit mu-

tation is (1 + o(1))en lnn [25], the second statement shows how

by adding recombination a speed-up of 60% is achieved for the

OneMax problem for any population size up to µ = o(
√
logn).

(2) Very few results are available proving constants in the lead-

ing terms of the expected runtime for randomised algorithms due

to the considerable technical di�culties in deriving them. Excep-

tions exist such as the analyses of [25] and [6] without which our

comparative results would not have been achievable. While such

precise results are gaining increasing importance in the theoretical

computer science community, the available ones are related to more

simple algorithms. �is is the �rst time similar results are achieved

concerning a much more complicated to analyse standard genetic

algorithm using realistic population sizes and recombination.

(3) �e preciseness of the analysis allows for the �rst time an

appreciation of the surprising importance of the population for op-

timising unimodal functions 2 as our upper bounds on the expected

runtime decrease as the population size increases. In particular as

the problem size increases, so does the optimal size of the popu-

lation (the best known runtime available for the (µ+1) GA was of

(1 + o(1))3/4en lnn independent of the population size as long as it

2Populations are traditionally thought to be useful for solving multi-modal problems.

is greater than µ = 3 i.e., there were no evident advantages in using

a larger population [2]). �is result is in contrast to all previous

analyses of simpli�ed evolutionary algorithms for unimodal func-

tions where the algorithmic simpli�cations, made for the purpose

of making the analysis more accessible, caused the use of popula-

tions to be either ine�ective or detrimental [19, 22, 24]. Our upper

bound of µ = o(
√
logn) is very close to the at most logarithmic

population sizes typically recommended for monotone functions to

avoid detrimental runtimes [1, 24]. We conjecture that the optimal

population size is Θ(logn1−ϵ ) for any constant ϵ > 0, which cannot

be proven with our mathematical methods for technical reasons.

2.4 Proof Strategy

Our aim is to provide a precise analysis of the expected runtime

of the (µ+1) GA for optimising OneMax with arbitrary problem

size n. Deriving the exact transition probabilities of the algorithm

from all possible con�gurations to all others of its population is

prohibitive. We will instead devise a set of n Markov chains, one

for each improvement the algorithm has to pessimistically make

to reach the global optimum, which will be easier to analyse. �en

we will prove that the Markov chains are slower to reach their

absorbing state than the (µ+1) GA is in �nding the corresponding

improvement.

In essence, our proof strategy consists of: (1) to identify suitable

Markov chains, (2) to prove that the absorbing times of the Markov

chains are larger than the expected improving times of the actual

algorithm and (3) to bound the absorbing times of each Markov

chain.

In particular, concerning point (2) we will �rst de�ne a poten-

tial function which monotonically increases with the number of

copies of the genotype with most duplicates in the population and

then bound the expected change in the potential function at every

iteration (i.e., the dri� ) from below. Using the maximum value

of the potential function and the minimum dri�, we will bound

the expected time until the potential function value drops to its

minimum value for the �rst time. �is part of the analyses is a novel

application of dri� analysis techniques [13]. In particular, rather

than using an explicit distance function as traditionally occurs, we

de�ne the potential function to be equal to the conditional expected

absorption time of the corresponding states of each Markov chain.

Concerning point (3) of our proof strategy, we will calculate

the absorbing times of the Markov chainsM j by identifying their

fundamental matrices. �is requires the inversion of tridiagonal

matrices. Similar matrix manipulation strategies to bound the run-

time of evolutionary algorithms have been previously suggested in

the literature [10, 18]. However, all previous applications showed

that the approach could only be applied to prove results that could

be trivially achieved via simpler standard methods. To the best of

our knowledge, this is the �rst time that the power of this long

abandoned approach has �nally been shown by proving non-trivial

bounds on the expected runtime.

3 MAIN RESULT STATEMENT

Our main result is the following theorem. �e transition proba-

bilities pi,k for (i,k) ∈ [m]2 andm := ⌈µ/2⌉ are de�ned in De�ni-

tion 4.1 (Section 4.1) and are depicted in Figure 3.



GECCO ’19, July 13–17, 2019, Prague, Czech Republic Dogan Corus and Pietro S. Oliveto

Theorem 3.1. �e expected runtime for the (µ+1) GA with µ =

o(
√
logn) using an unbiased mutation operatormutate(x) that �ips

i bits with probability pi with p0 ∈ Ω(1) and p1 ∈ Ω(1) to optimise

the OneMax function is:

(1) E[T ] ≤ (1 + o(1))n lnn 1

p1+p2
2(1−ξ2)µ
(µ+1)

if the quality of each

o�spring is evaluated,

(2) E[T ] ≤ (1+o(1))n lnn (1−p0)
p1+p2

2(1−ξ2)µ
(µ+1)

if the quality of o�spring

identical to their parents is not evaluated for their quality is

known; and

ξi =
pi−1,i−2

pi−1,m + pi−1,i−2 + pi−1,i (1 − ξi+1)
, ξm =

pm−1,m−2
pm−1,m + pm−1,m−2

.

�e recombination operator of the GA is e�ective only if individ-

uals with di�erent genotypes are picked as parents (i.e., recombina-

tion cannot produce any improvements if two identical individuals

are recombined). However, more o�en than not, the population of

the (µ+1) GA consists only of copies of a single individual. When

diversity is created via mutation (i.e., a new genotype is added to the

population), it either quickly leads to an improvement or it quickly

disappears. �e bound on the runtime re�ects this behaviour as it

is simply a waiting time until one of two event happens; either the

current individual is mutated to a be�er one or diversity emerges

and leads to an improvement before it is lost.

�e ξ2 term in the runtime is the conditional probability that

once diversity is created by mutation, it will be lost before reaching

the next �tness level (an improvement). Naturally, (1 − ξ2) is the
probability that a successful crossover will occur before losing diver-

sity. �e (1 − ξ2) factor increases with the population size µ, which

implies that larger populations have a higher capacity to main-

tain diversity long enough to be exploited by the recombination

operator.

Note that se�ing pi := 0 for all i > 2 minimises the upper

bound on the expected runtime in the second statement of �e-

orem 3.1 and reduces the bound to: E[T ] ≤ (1 + o(1))n lnn(p1 +
p2)/

(
p1 + p2

2µ(1−ξ2)
µ+1

)
. Now, we can see the critical role that ξ ∗(µ) =

(1 − ξ2)µ/(µ + 1) plays in the expected runtime. For any popula-

tion size which yields ξ ∗(µ) ≤ 1/2, �ipping only one bit per mu-

tation becomes advantageous. �e best upper bound achievable

from the above expression is then (1 + o(1))n lnn by assigning

an arbitrarily small constant to p0 and p1 = 1 − p0. As long as

p0 = Ω(1), when an improvement occurs, the superior genotype

takes over the population quickly relative to the time between

improvements. Since there are only one-bit �ips, the crossover op-

erator becomes virtually useless (i.e., crossover requires a Hamming

distance of 2 between parents to create an improving o�spring)

and the resulting algorithm is a stochastic local search algorithm

with a population. However, when ξ ∗(µ) > 1/2 se�ing p2 as large
as possible provides the best upper bound. �e transition for ξ ∗(µ)
happens between population sizes of 4 and 5. For populations

larger than 5, by se�ing p1 := ϵ/2 and p0 =: ϵ/2 to an arbitrarily

small constant ϵ and se�ing p2 = 1 − ϵ , we get the upper bound
E[T ] ≤ (1+ o(1))(1+ ϵ)n lnn (µ + 1) /(2µ (1 − ξ2)), which is plo�ed

for di�erent population sizes in Figure 1.

A direct corollary to the main result is the upper bound for

the classical (µ+1) GA commonly used in evolutionary compu-

tation which applies standard bit mutation with mutation rate

c/n for which p0 = (1 − o(1))/ec , p1 = (1 − o(1))c/ec and p2 =

(1 − o(1))c2/(2ec ).

Corollary 3.2. Let ξ2 be as de�ned in �eorem 3.1. �e expected

runtime for the (µ+1) GA with µ = o(
√
logn) using standard bit-

mutation with mutation rate c/n, c = Θ(1) to optimise the OneMax

function is:

(1) E[T ] ≤ (1 + o(1))n lnn ec

c+
c2µ
(µ+1) (1−ξ2)

if the quality of each

o�spring is evaluated,

(2) E[T ] ≤ (1+o(1))n lnn (1−e−c )ec

c+
c2µ
(µ+1) (1−ξ2)

if the quality of o�spring

identical to their parents is not evaluated for their quality is

known;

By calculating ξ ∗(µ) := (1− ξ2)µ/(µ + 1) for �xed values of µ we

can determine values of c (i.e., mutation rate) which minimise the

leading constant of the runtime bound in Corollary 3.2. In Figure 2

we plot the leading constants in the �rst statement, minimised by

picking the appropriate c values for µ ranging from 5 to 50. All the

values presented improve upon the upper bound on the runtime

of 1.96n lnn given in [2] for any µ ≥ 3 and µ = o(logn/log logn).
All the upper bounds are less than 1.7n lnn and clearly decrease

with the population size, signifying an at least 60% increase in

speed compared to the en lnn (1 − o (1)) lower bound for the same

algorithm without the recombination operator.

Considering the leading constants in the second statement of

Corollary 3.2, for all population sizes larger than 5, the upper bound

for the optimal mutation rate is smaller than the theoretical lower

bound on the runtime of unary unbiased black-box algorithms. For

population sizes of 3 and 4, ξ ∗ = 1/3 and the expression to be

minimised is (1 − e−c )ec/(c + c2/3). For c > 0, this expression has

no minimum and is always larger than one. �us, at least with our

technique, a population of size 5 or larger is necessary to prove that

the (µ+1) GA outperforms stochastic local search and any other

unary unbiased optimisation heuristic.

4 ANALYSIS

Our main aim is to provide an upper bound on the expected runtime

(E[T ]) of the (µ+1) GA de�ned in Algorithm 1 to maximise the

OneMax function. W.l.o.g. we will assume that the target string

z of the OneMaxz function to be identi�ed is the bitstring of all

1-bits since all the operators in the (µ+1) GA are invariant to the

bit-value (have no bias towards 0s or 1s). We will provide upper

bounds on the expected value E[T j ], where T j is the time until an

individual with at least j + 1 1-bits is sampled for the �rst time

given that the initial population consists of individuals with j 1-bits

(i.e., the population is at level j). �en, by summing up the values

of E[T j ] and the expected times for the whole population to reach

j + 1 1-bits for j ∈ {1 . . . , ,n − 1} we achieve a valid upper bound

on the runtime of the (µ+1) GA. Similarly to the analysis in [2], we

will pessimistically assume that the algorithm is initialised with all

individuals having just 0-bits, and that throughout the optimisation

process at most one extra 1-bit is discovered at a time.
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Figure 3: �e topology of Markov ChainM j .
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We will devise a Markov chainM j for each j ∈ {0, . . . ,n − 1} for
which we can analyse the expected absorbing time E[T j

i ] starting
from state S

j
i . We will then prove that it is in expectation slower

in reaching its absorbing state than the (µ+1) GA is in �nding an

improvement given an initial population at level j . In particular, we

will de�ne a non-negative potential function on the domain of all

possible con�gurations of a population at level j or above. For any

con�guration at level j , we will refer to the genotype with the most

copies in the population as the majority genotype and de�ne the

diversity of a population as the number of non-majority individuals

in the population. Our potential function will be monotonically

decreasingwith the diversity. Moreover, wewill assign the potential

function a value of zero for all populations with at least one solution

which has more than j 1-bits. �en, we will bound the expected

change in the potential function at every iteration (i.e., the dri�)

from below. Using the maximum value of the potential function

and the minimum dri�, we will derive a bound on the expected

time until an improvement is found starting from a population at

level j with no diversity (i.e., all the solutions in the population

are identical). While this upper bound will not provide an explicit

runtime as a function of the problem size, it will allow us to conclude

that the E[T j
0 ] ≥ E[T j ]. �us, all that remains will be to bound the

expected absorbing time ofM j initialised at state S
j
0. We will obtain

this bound by identifying the fundamental matrix of M j . A�er

establishing that the inverse of the fundamental matrix is a strongly

diagonally dominant tridiagonal matrix, we will make use of existing

tools in the literature for inverting such matrices and complete our

proof.

4.1 Markov Chain De�nition

In this subsection we will present the Markov chains which we

will use to model the behaviour of the (µ+1) GA. Each Markov

chain M j has m := ⌈µ/2⌉ transient states (S j0, S
j
1, . . . , S

j
m−1) and

one absorbing state (S
j
m ) with the topology depicted in Figure 3.

�e states S
j
i represent the amount of diversity in the population.

Hence, eg., S
j
1 refers to a population where all the individuals have

j 1-bits and all but one of them share the same genotype, while

S
j
m−1 refers to a population where at most m − 1 = ⌈µ/2⌉ + 1

individuals are identical. Compared to the analysis presented in

[2] that used Markov chains of only three states (i.e., no diversity,

diversity, increase in 1-bits),M j allows to control the diversity in

the population more precisely, thus to show that larger populations

are bene�cial to the optimisation process.

De�nition 4.1. LetMj be a Markov chain withm := ⌈µ/2⌉ tran-
sient states (S

j
0, S

j
1, . . . , S

j
m−1) and one absorbing state (S

j
m ) with

transition probabilities pi,k from state S
j
i to state S

j

k
as follows:

p0,1 :=
µ

(µ + 1)
2j(n − j)p2

n2
, p0,m :=

(n − j)p1
n

,

pi,m := 2
i

µ

µ − i
µ

p0

4
if i > 0,

p1,2 := p0

((
1

µ

)2 µ − 1
µ + 1

+ 2
1

µ

µ − 1
µ

1

4

µ − 1
µ + 1

)
,

p1,0 := p0

((
µ − 1
µ

)2
+ 2

1

µ

µ − 1
µ

1

4

)
1

µ + 1
,

pi,i+1 := p0

((
i

µ

)2
min

(
µ − i
µ + 1

, 1/4
)
+ 2

i

µ

µ − i
µ

1

4

µ − i
µ + 1

)

ifm − 1 > i > 1,

pi,i−1 := p0

((
µ − i
µ

)2
+ 2

i

µ

µ − i
µ

1

4
+

(
i

µ

)2 1

16

)
i

µ + 1

ifm > i > 1,

pm,m := 1, p0,0 := 1 − p0,1 − p0,m ,
pm−1,m−1 := 1 − pm−1,m−2 − pm−1,m ,

pi,i := 1 − pi,i−1 − pi,i+1 − pi,m if 0 < i < m − 1,
pi, j := 0 otherwise .

Now, wewill point out the important characteristics of these tran-

sition probabilities. �e transition probabilities, pi,k , are set to be

equal to provable bounds on the probabilities of the (µ+1) GA with

a population consisting of solutions with j bits of gaining/losing

diversity (pi,i+1/pi,i−1) and sampling a solution with more than j

1-bits (pi,m ). In particular, upper bounds are used for the transition

probabilities pi,k where i < k and lower bounds are used for the

transition probabilities pi,k where i > k . Note that greater diversity

corresponds to a higher probability of two distinct individuals with

j 1-bits being selected as parents and improved via recombination

(i.e., pi,m monotonically increases with i and recombination is in-

e�ective if i = 0 and the improvement probability p0,m is simply

the probability of increasing the number of 1-bits by mutation only.

�us, p0,m = Θ(j/n) while pi,m = Θ(i(µ − i)/µ2) when i > 0. �e

�rst forward transition probability p0,1 denotes the probability of

the mutation operator of creating a di�erent individual with j 1-bits

and the selection operator removing one of the majority individuals

from the population. �e other transition probabilities, pi,i+1 and

pi,i−1 bound the probability that a copy of the minority solution or

the majority solution is added to the population and that a member

of the other species (minority/majority) is removed in the subse-

quent selection phase. All transition probabilities except p0,1 and

p0,m are independent of j and referred to in the theorem statements

without specifying j.

4.2 Validity of the Markov Chain Model

In this subsection we will present how we establish that M j is a

pessimistic representation of Algorithm 1 initialised with a popula-

tion of µ identical individuals at level j. In particular, we will show
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that E[T j
0 ], the expected absorbing time starting from state S

j
0 is

larger than E[T j ]. �is result is formalised in the following lemma.

Lemma 4.2. Let E[T ] be the expected runtime until the (µ+1) GA

with µ = o(logn/log logn) optimises the OneMax function and

E[T j
i ] (or E[Ti ]wherever j is obvious) is the expected absorbing time of

M j starting from state S
j
i . �en, E[T ] ≤ o(n logn)+(1+o(1))∑n−1

j=0 E[T j
0 ].

We will use dri� analysis [13], a frequently used tool in the

runtime analysis of evolutionary algorithms, to prove the above

result. We will start by de�ning a potential function over the state

space of Alg. 1 that maps states to the expected absorbing times

ofM j . �e minimum of the potential function will correspond to

the state of Algorithm 1 which has sampled a solution with more

than j 1-bits and we will explicitly prove that the maximum of the

potential function is E[T j
0 ]. �en, we will show that the dri�, i.e.,

the expected decrease in the potential function value in a single

time unit (from time t to t + 1), is at least one. Using the maximum

value of the potential function and the minimum dri�, we will

bound the runtime of the algorithm by the absorbing time of the

Markov chain.

We will de�ne our potential function over the domain of all pos-

sible population diversities at level j . We will refer to the genotype

with the most copies in the population as the majority genotype

and recall that the diversity, Dt ∈ {0, . . . , µ − 1}, of a population
Pt is de�ned as the number of non-majority individuals in the

population.

De�nition 4.3. �e potential function value for level j, дj (or д

wherever j is obvious), is de�ned as follows:

дj (Dt ) = дjt =


E[TDt

] 0 ≤ Dt < ⌈µ/2⌉ − 1
E[T ⌈µ/2⌉−1] ⌈µ/2⌉ − 1 ≤ Dt < µ − 1
0 ∃x ∈ Pt s .t . OneMax(x) > j

where E[T j
i ] (denoted as E[Ti ]wherever j is obvious) is the expected

absorbing time of the Markov chainM j starting from state S
j
i .

�e absorbing state of the Markov chain corresponds to a popula-

tion with at least one individual with more than j 1-bits, thus having

potential function value (and expected absorbing time) equal to

zero. �e state S
j
0 corresponds to a population with no diversity.

�e following lemma formalises that the expected absorbing time

gets larger as the initial states get further away from ⌈µ/2⌉ −1. �is

property implies that the expected absorbing time from state S
j
0

constitutes an upper bound for the potential function дj .

Lemma 4.4. Let E[T j
i ] be the expected absorbing time of Markov

chainM j conditional on its initial state being S
j
i . �en, ∀j ∈ {0, . . . ,n−

1}, E[T j
i ] ≥ E[T j

i−1] for all 1 ≤ i ≤ ⌈µ/2⌉ and дjt ≤ E[T j
0 ] ∀t > 0.

Now that the potential function is bounded from above, we will

bound the dri� E[дt − дt+1)|Dt = i]. Due to the law of total expec-

tation, the expected absorbing time, E[Ti ] satis�es
∑
j pi, j (E[Tj ] −

E[Ti ]) = 1 for any absorbing Markov chain at state i . Since E[Ti ]
and E[Tj ] are the respective potentials of the states Si and Sj , the
le� hand side of the equation closely resembles the dri�. Since the

probabilities for M j are pessimistically set to underestimate the

dri�, the above equation allows us to formally prove the following:

Lemma 4.5. For a population at level j, E[дjt − д
j
t+1 |Dt = i] ≥

1 − o(1) for all t > 0

Proof. We will now show that ∆t (i) := E[дt −дt+1 |Dt = i], the
expectation of the di�erence between the potential function values

of population Pt and Pt+1, is larger than one for all i .

When there is no diversity in the population (i.e., Dt = 0) the

only way to increase the diversity is to introduce it during a muta-

tion operation. A non-majority individual is obtained when one of

the n− j 0-bits and one of the j 1-bits are �ipped while no other bits
are touched. �en one of the majority individuals must be removed

from the population during the selection phase.�is event has prob-

ability at least p2 · 2 · (n−j)n
j
n

µ
µ+1 = p0,1. Another way to change the

potential function value is to create an improved individual with

the mutation operator. In order to improve a solution it is su�cient

to pick one of n − j 1-bits and �ip no other bits. �is event has

the probability at least p1 · (n−j)n = p0,m .�us, we can conclude

that when Dt = 0, the dri� is at least p0,m (T0) + p0,1(T0 −T1). We

can observe through the law of total expectation for the state S
j
0 of

Markov chainM j that this expression for the dri� when Dt = 0 is

larger than one.

For Dt > 0, we will condition the dri� on whether the picked

parents are both majority individuals E1, are both minority indi-

viduals with the same genotype E2, are a pair that consists of one
majority and one minority individual E3, or they are both minority

individuals with di�erent genotypes E4.
Let E∗ be the event that the population Pt consists of two geno-

types with Hamming distance two. �en,

P{E1 |E∗} = P{E1 |E∗} =
(
µ − i
µ

)2

P{E2 |E∗} = P{E2 |E∗} + P{E4 |E∗} =
(
i

µ

)2

P{E3 |E∗} = P{E3 |E∗} = 2
i

µ

µ − i
µ

; P{E4 |E∗} = 0 (1)

Note that when there are more than two genotypes in the popu-

lation, the event of picking any two non-majority individuals is

divided into two separate cases of picking identical minority indi-

viduals and picking two di�erent minority individuals. Obviously,

the sum of the probabilities of these two cases is equal to the proba-

bility of picking two minority individuals when there are only two

genotypes (one majority and one minority) in the population.

Restricting ourselves to ∆
i>0
t , the dri� conditional on i > 0, the

law of total expectation states:

∆
i>0
t = P{E∗}

4∑
i=1

(
P{Ei |E∗}

(
∆
i>0
t |Ei , E∗

))
+

+(1 − P{E∗})
4∑
i=1

(
P{Ei |E∗}

(
∆
i>0
t |Ei , E∗

))
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We can rearrange the above expression using the probabilities from

Eq 1

∆
i>0
t ≥

(
µ − i
µ

)2 (
∆
i>0
t |E1

)
+

(
i

µ

)2
min

((
∆
i>0
t |E2

)
,

(
∆
i>0
t |E4

))

+2
µ − i
µ

i

µ

(
∆
i>0
t |E3

)
We will now write the law of total expectation for state i for our

Markov chainM j :

1 = pi,i+1(E[Ti ] − E[Ti+1]) + pi,i−1(E[Ti ] − E[Ti−1]) + pi,mE[Ti ]
We will then substitute the probabilities in the law of total ex-

pectation with the values from De�nition 4.1,

1 = p0

((
i

µ

)2
min

(
µ − i
µ + 1

, 1/4
)
+ 2

i

µ

µ − i
µ

1

4

µ − i
µ + 1

)
(E[Ti ] − E[Ti+1])

+ p0

((
µ − i
µ

)2
+ 2

i

µ

µ − i
µ

1

4
+

(
i

µ

)2 1

16

)
i

µ + 1
(E[Ti ] − E[Ti−1])

+

(
2
i

µ

µ − i
µ

1

4ec

)
E[Ti ]

Finally, we will rearrange the above expression into the terms

with the probabilities of events Ei as multiplicative factors

1 =

(
µ − i
µ

)2
p0

i

µ + 1
(E[Ti ] − E[Ti−1])

+

(
i

µ

)2
p0

(
min

(
µ − i
µ + 1

, 1/4
)
(E[Ti ] − E[Ti+1])

+

1

16

i

µ + 1
(E[Ti ] − E[Ti−1])

)

+ 2
i

µ

µ − i
µ

p0

(
1

4

µ − i
µ + 1

(E[Ti ] − E[Ti+1])

+

1

4

i

µ + 1
(E[Ti ] − E[Ti−1]) +

E[Ti ]
4

)
(2)

We will refer to the �rst, second and third line of the Eq 2 as the

E1, E2 and E3 term respectively. We will show that for each term,

the conditional dri� is larger than the term without the multiplica-

tive factor.

When two majority individuals are selected as parents (E1),
we pessimistically assume that improving to the next level and

increasing the diversity has zero probability. Losing the diver-

sity requires that no bits are �ipped during mutation and that a

minority individual will be removed from the population. �e

probability that no bits are �ipped is p0. �us we can show that:

∆
i>0
t |E1 ≥ p0

(
E[Ti ] − E[Ti−1]

) i
µ+1 .

�is bound is obviously the same as the E1 term of Eq 2 without

the parent selection probability.

When two minority individuals are selected as parents(E2 or E4),
if they are identical (E2) then it is su�cient that the mutation does

not �ip any bits which occurs with probabilityp0 and that amajority

individual is removed from the population (with probability (µ −
i)/µ). �us, the probability of increasing the diversity isp0×(µ−i)/µ
and the probability of creating a majority individual is O(1/n) since
it is necessary to �ip at least one particular bit position: ∆i>0t |E2 ≥
p0

µ−i
µ (E[Ti ] − E[Ti+1])

However, if the two minority individuals have a Hamming dis-

tance of 2d ≥ 2 (i.e., E4), then in order to create another minority

individual at the end of the crossover operation it is necessary that

the crossover picks exactly d 1-bits and d 0-bits among 2d bit posi-

tions where they di�er. �ere are
(2d
d

)
di�erent ways that this can

happen and the probability that any particular outcome of crossover

is realised is 2−2d . One of those outcomes though, might be the

majority individual and if that is the case the diversity can decrease

a�erwards. However, while the Hamming distance between the

minority individuals can be 2d = 2, obtaining a majority individ-

ual by recombining two minority individuals requires at least four

speci�c bit positions to be picked correctly during crossover and

thus does not occur with probability greater than 1/16. On the

other hand, when two di�erent minority individuals are selected

as parents, there is at least a
1−(2dd )2−2d

2 ≥ 1/4 probability that the

crossover will result in an individuals with more 1-bits and then

with probability p0 the mutation will not �ip any bits.

∆
i>0
t |E4 ≥ p0

[ ((
2d

d

)
− 1

)
2−2d

µ − i
µ + 1

(E[Ti ] − E[Ti+1])+

+

(
min

(
1

16
, 2−2d

)
+ O(1/n)

)
i

µ + 1
(E[Ti ] − E[Ti−1]) +

1

4
E[Ti ]

]

≥ (1 − o(1)) · p0
[
min

(
1

16
, 2−2d

)
i

µ + 1
(E[Ti ] − E[Ti−1]) +

E[Ti ]
4

]

Note that the E2 term of Eq 2 multiplied with a factor of (1 −
o(1)) is smaller than both conditional dri�s multiplied with the

parent selection probability (i/µ)2. Finally, we will consider the
dri� conditional on event E3, the case when one minority and

one majority individual are selected as parents. We will further

divide this event into two subcases. In the �rst case the Hamming

distance 2d between the minority and the majority individual is

exactly two (d = 1). �en, the probabilities that crossover creates a

copy of the minority individual, a copy of the majority individual

or a new individual with more 1-bits are all equal to 1/4. �us, the

conditional dri� is (∆i>0t |E3,d = 1)

≥p0
4

(
i

µ + 1
(E[Ti ] − E[Ti−1]) +

µ − i
µ + 1

(E[Ti ] − E[Ti+1]) + E[Ti ]
)
.

However, when d > 1, the dri� is more similar to the case of E3
where the probabilities of creating copies of either the minority of

the majority diminish with larger d while larger d increases the

probability of creating an improved individual. More precisely, the

dri� is
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(∆i>0t |E3,d > 1) ≥ p0

[ ((
2d

d

)
− 1

)
2−2d

µ − i
µ + 1

(E[Ti ] − E[Ti+1])

+

(
2−2d + O(1/n)

) i

µ + 1
(E[Ti ] − E[Ti−1]) + (

1 −
(2d
d

)
2−2d

2
)E[Ti ]

]

≥ p0

( (
2−2d + O(1/n)

) i

µ + 1
(E[Ti ] − E[Ti−1])

+ (
1 −

(2d
d

)
2−2d

2
)E[Ti ]

)

≥ p0

((
1

16
+ O(1/n)

)
i

µ + 1
(E[Ti ] − E[Ti−1]) +

15

32
E[Ti ]

)

≥ (1 − o(1)) · p0
(
1

16

i

µ + 1
(E[Ti ] − E[Ti−1]) +

15

32
E[Ti ]

)

Since (E[Ti ] − E[Ti−1]) is negative and E[Ti ] > E[Ti ] − E[Ti+1],
(∆t |E3,d > 1) ≥ (∆t |E3,d = 1). Now, �nally we can observe that

(∆t |E3,d = 1) multiplied with 2i(µ − i)/µ2 is larger than the E3
term in Eq 2 multiplied with a factor of (1 − o(1)).

We have now shown piece by piece that the conditional dri�s are

larger than the corresponding terms in the right hand side of Eq 2

up to small order terms, and thus established that ∆t ≥ (1 − o(1))
for all t > 0. Since we have previously shown that д

j
t ≤ T

j
0 , we can

now apply �eorem 6.1 to obtain E[T j ] ≤ (1 + o(1))E[T j
0 ].

Once an individual with j + 1 1-bits is sampled for the �rst time

it takes O(µ log µ) iterations before the whole population consists

of individuals with at least j + 1 1-bits [2, 22]. If the population

size is in the order of o(logn/log logn), then the total number of

iterations where there are individuals with di�erent �tness values in

the population is in the order of o(n logn). Since j ∈ {0, 1, . . . ,n−1},
we can establish that E[T ] ≤ o(n logn)+∑n−1

j=0 E[T j ] ≤ o(n logn)+
(1 + o(1))∑n−1

j=0 E[T j
0 ]. �

With the potential function bounded from above by Lemma 4.4

and the dri� bounded from below by Lemma 4.5, we can use the

additive dri� theorem3 from [13] to bound E[T j ] by E[T j
0 ]. By

summing over all levels, we get the bound stated in Lemma 4.2 on

the expected runtime of Algorithm 1.

4.3 Markov Chain Absorption Time Analysis

In the previous subsection we stated in Lemma 4.2 that we can

bound the absorbing times of the Markov chainsM j to derive an

upper bound on the runtime of Algorithm 1. In this subsection we

use mathematical tools developed for the analysis of Markov chains

to provide such bounds on the absorbing times.

�e absorbing time of a Markov chain starting from any initial

state i can be derived by identifying its fundamental matrix. Let the

matrix Q denote the transition probabilities between the transient

states of the Markov chain M j . �e fundamental matrix of M j

is de�ned as N := (I − Q)−1 where I is the identity matrix. �e

most important characteristic of the fundamental matrix is that

when it is multiplied by a column vector of ones, the product is

a vector holding E[T j
i ], the expected absorbing times conditional

3�e additive dri� theorem is provided in the appendix as �eorem 6.1 for reviewer
convenience

on the initial state i of the Markov chain. Since, Lemma 4.2 only

involves T
j
0 , we are only interested in the entries of the �rst row

of N = [nik ]. However, inverting the matrix I −Q is not always a

straightforward task. Fortunately, I −Q = [aik ] has characteristics
that allow bounds on the entries of its inverse. Its entries are related

to the transition probabilities ofM j as follows:

a11 = 1 − p0,0 = p0,1 + p0,m (3)

amm = 1 − pm−1,m−1 = pm−1,m−2 + pm−1,m (4)

aii = 1 − pi−1,i−1 = pi−1,i−2 + pi−1,i + pi−1,m
∀i ∈ {2, ...,m − 1} (5)

aik = −pi−1,k−1 ∀i,k ∈ {1, . . . ,m} ∧ i , k (6)

Observe that I −Q is a tridiagonal matrix, in the sense that all

non-zero elements of I −Q are either on the diagonal or adjacent

to it. Moreover, the diagonal entries aii of I − Q are in the form

1−pi−1,i−1, which is equal to the sum of all transition probabilities

out of state i − 1. Since the other entries on row i are transition

probabilities from state i − 1 to adjacent states, we can see that

|aii | >
∑
i,k aik . �e matrices where |aii | >

∑
i,k aik holds are

called strongly diagonally dominant (SDD). Since I − Q is SDD,

according to Lemma 2.14 in [16], it holds for the fundamental matrix

N for all i , k that, |ni,k | ≤ |nk,k | ≤
(
|ak,k |

(
1 −

∑
l,j |al,k |
|ak,k |

))−1
≤(

|ak,k | −
∑
l,j |al,k |

)−1
.

In our particular case, the above inequality implies that |n1,k | ≤
1/pk−1,m . For any population with diversity, there is a probability

in the order of O(1/µ) to select one minority and one majority

individual and a constant probability that their o�spring will have

more 1-bits than the current level. Consideringm = O(µ), E[T j
0 ] =∑m

k=1
n1,k < n1,1 +

∑m
k=2

1
pk−1,m

≤ n1,1 + O(µ2). We note here

that the O(µ2) factor in the above expression creates the condition

µ = o(
√
logn) on the population size for our main results. We will

now bound the term n1,1 from above to establish our upper bound

using the following theorem:

Theorem 4.6 (Direct corollary to Corollary 3.2 in [16]). A

is anm ×m tridiagonal non-singular SDD matrix such that ai,k ≤ 0

for all i , k , A−1 = [ni,k ] exists and ni,k ≥ 0 for all i,k , then

n1,1 = 1/(a1,1 + a1,2ξ2), ξi = ai,i−1/(ai,i + ai,i+1ξi+1), and ξm =

am,m−1/am,m .

In order to use �eorem 4.6, we need to satisfy its conditions.

We can easily see that non-diagonal entries of the original matrix

I −Q are non-positive and use �eorem 3.15 in [16] to show that

N = (I −Q)−1 has no negative entries. �us, �eorem 4.6 yields:

Lemma 4.7. With an initial population of size µ = o(
√
logn) at

level j , the expected time E[T j ] until an individual with j + 1 1-bits is

sampled by the (µ+1) GA for the �rst time is bounded from above as

4For reviewer convenience, it is Lemma 6.2 in the Appendix.
5For reviewer convenience, it is �eorem 6.3 in the Appendix.
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follows:

E[T j
0 ] ≤

n

n − j
1

p1 +
2µp2
(µ+1)

j
n (1 − ξ2)

+ o(logn)

ξm =
pm−1,m−2

pm−1,m + pm−1,m−2

ξi =
pi−1,i−2

pi−1,m + pi−1,i−2 + pi−1,i (1 − ξi+1)
∀1 < i < m = ⌈µ/2⌉ .

where pi,k are the transition probabilities of the Markov chainM j .

�e above bound on E[T j
0 ], together with Lemma 4.2, yields

�eorem 3.1, our main result.

5 CONCLUSION

In this work, we have shown that the steady-state (µ+1) GA op-

timises OneMax faster than any unary unbiased search heuristic.

Providing precise asymptotic bounds on the expected runtime of

standard GAs without arti�cial mechanisms that simplify the anal-

ysis has been a long standing open problem. We have derived

bounds up to the leading term constants of the expected runtime.

To achieve this result we show that a simpli�ed Markov chain pes-

simistically represents the behaviour of the GA for OneMax. �is

insight about the algorithm/problem pair allows the derivation of

runtime bounds for a complex multi-dimensional stochastic process.

�e analysis shows that as the number of states in the Markov chain

(the population size) increases, so does the probability that diver-

sity in the population is kept. �us, larger populations increase the

probability that recombination �nds improved solutions quickly,

hence reduce the expected runtime.
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6 APPENDIX

6.1 Proof of Lemma 4.4

We will �rst show that E[T j ] ≤ (1+o(1))E[T j
0 ] . In order to achieve

this result, we will �rst establish that д
j
t ≤ E[T0] ∀t > 0 and then

that ∆t ≥ 1 − o(1)1 ∀t > 0. �ese two results will allow us to use

�eorem 6.1 and conclude that E[T j ] ≤ (1+o(1))E[T j
0 ]. For the rest

of the analysis of E[T j ], we will drop the superscript of E[T j
i ] and

д
j
t .

Proof. We are interested in max (E[T0],E[T1], . . . ,E[Tm ]) since
these are the values that the potential function д can have. Accord-

ing to the transition probabilities in De�nition 4.1, pi+1,m ≥ pi,m
for all i . Using this observation and the law of total expecta-

tion we can show that not only max (E[T0],E[T1], . . . ,E[Tm ]) =
E[T0] but also E[Ti−1] ≥ E[Ti ] for all i . First, we will prove that
E[Tm−2] ≥ E[Tm−1] by contradiction. �en, we will prove by

induction that E[Ti−1] ≥ E[Ti ] for all i . For this induction we

will use E[Tm−2] ≥ E[Tm−1] as our basic step and we will prove

by contradiction that if for all j > i E[Tj−1] ≥ E[Tj ] holds then
E[Ti−1] ≥ E[Ti ] must also hold.

If we use the law of total expectation for the absorbing time

starting from state 0 < i < m, we obtain:

E[Ti ] = pi,i+1(E[Ti+1] + 1) + pi,i−1(E[Ti−1] + 1)
+ pi,m+1 + (1 − pi,i+1 − pi,i−1 − pi,m )(E[Ti ] + 1)

�is equation can be rearranged as follows:

1 = pi,i+1(E[Ti ] − E[Ti+1]) + pi,i−1(E[Ti ] − E[Ti−1]) + pi,mE[Ti ]
For the special case of i =m, we have:

1 = pm−1,m (E[Tm−1]) + pm−1,m−2(E[Tm−1] − E[Tm−2])
If we introduce the allegedly contradictory assumption E[Tm−2] <
E[Tm−1], the above equation implies:

1 > pm−1,m (E[Tm−1]) =⇒
1

pm−2,m
≥ 1

pm−1,m
> E[Tm−1] > E[Tm−2]

=⇒ 1

pm−2,m
> E[Tm−2]

Given that 1
pi,m

> E[Ti ] and E[Ti+1] > E[Ti ] the law of total

expectation for i implies:

1 = pi,i+1(E[Ti ] − E[Ti+1]) + pi,i−1(E[Ti ] − E[Ti−1]) + pi,mE[Ti ]
1 < pi,i+1(E[Ti ] − E[Ti+1]) + pi,i−1(E[Ti ] − E[Ti−1]) + 1

0 < pi,i−1(E[Ti ] − E[Ti−1])

E[Ti−1] < E[Ti ] =⇒
1

pi−1,m
≥ 1

pi,m
> E[Ti ] > E[Ti−1]

�us the allegedly contradictory claim E[Tm−1] > E[Tm−2] induces
over i such that it implies E[T1] > E[T0] and 1/p0,m > E[T0]. We

can now write the total law of expectation for i = 0.

1 = p0,1(E[T0] − E[T1]) + p0,mE[T0]
1 < p0,1(E[T0] − E[T1]) + 1
0 < p0,1(E[T0] − E[T1])

0 > p0,1

�e last statement is a contradiction since a probability cannot be

negative. �is contradiction proves the initial claim E[Tm−2] ≥
E[Tm−1]

We will now follow a similar route to prove that E[Ti−1] ≥ E[Ti ]
for all i . Given that for all j > i E[Tj−1] ≥ E[Tj ] holds, we will show
that E[Ti > E[Ti−1] creates a contradiction. We start with the law

of total expectation for E[Ti :

1 = pi,i+1(E[Ti ] − E[Ti+1]) + pi,i−1(E[Ti ] − E[Ti−1]) + pi,mE[Ti ]

Our assumption “ ∀j > i E[Tj ] ≤ E[Tj−1]” implies that E[Ti ] −
E[Ti+1] ≥ 0, thus we obtain:

1 > pi,i−1(E[Ti ] − E[Ti−1]) + pi,mE[Ti ]

With our allegedly contradictory assumption E[Ti ] − E[Ti−1] > 0

we obtain:

1 > pi,mE[Ti ] =⇒
1

pi−1,m
≥ 1

pi,m
> E[Ti ] > E[Ti−1]

We have already shown above that 1/pi−1,m ≥ 1/pi,m > E[Ti ] >
E[Ti−1] can be induced over i and implies E[T1] > E[T0] and
1/p0,m > E[T0]. �en we can conclude that:

E[Ti ] ≥ E[Ti+1] ∀0 ≤ i ≤ ⌈µ/2⌉ − 1. (7)

�e above conclusion implies that E[T0] is the largest value that
our potential function can have and E[Ti ] −E[Ti+1] is non-negative
for all i . �

6.2 Proof of Lemma 4.2

Here, we will use the following additive dri� theorem from [13],

Theorem 6.1 (Theorem 3 in [13]). Let (Xt )t ∈N0
, be a stochastic

process, adapted to a �ltration (Ft )t ∈N0
, over some state space S ⊆

{0} ∪ [xmin ,xmax ], where xmin ≥ 0. Let д : {0} ∪ [xmin ,xmax ] →
R
≥0 be any function such that д(0) = 0, and 0 < д(x) < ∞ for

all x ∈ [xmin ,xmax ] \ {0}. Let Ta = min{t | Xt ≤ a} for a ∈
{0} ∪ [xmin ,xmax ]. If E[д(Xt ) − д(Xt+1) ; Xt ≥ xmin | Ft ] ≥ αu

for some αu > 0 then E[T0 | X0] ≤ д(X0)
αu

.

Proof of Lemma 4.2. Since ∆t ≥ (1−o(1)) from Lemma 4.5 and

д
j
t ≤ E[T j

0 ] from Lemma 4.4, we can apply �eorem 6.1 to obtain

E[T j ] ≤ (1 + o(1))E[T j
0 ]. Once an individual with j + 1 1-bits is

sampled for the �rst time it takes O(µ log µ) iterations before the
whole population consists of individuals with at least j+1 1-bits [2].

If the population size is in the order of o(logn/log logn), then the

total number of iterations where there are individuals with di�erent

�tness values in the population is in the order of o(n logn). Since
j ∈ {0, 1, . . . ,n − 1}, we can establish that

E[T ] ≤ o(n logn) +
n−1∑
j=0

E[T j ] ≤ o(n logn) + (1 + o(1))
n−1∑
j=0

E[T j
0 ].

�

6.3 Proof of Lemma 4.7

We made use of the following lemma to obtain .

E[T j
0 ] =

m∑
k=1

n1,k < n1,1 +

m∑
k=2

1

pk−1,m
≤ n1,1 + O(µ2). (8)
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Lemma 6.2 (Lemma 2.1 in [16]). Let A be a SDD matrix, then

A−1 = [nik ] exists and for any i , k ,

|nik | ≤ nkk

∑
i,k
|aik |

|aii |
≤ nkk ≤

1

|akk | −
∑
l,k
|akl |

In order to show that the entries of the fundamental matrix of

M j are all non-negative, we will employ the following result.

Theorem 6.3 (Theorem 3.1 in [16]). If A is a tridiagonal non-

singular SDD matrix and ai,i > 0 then A−1 = [ni,k ] exists and

• siдn(ni,i ) = 1

• siдn(ni,k ) = (−1)i+k
∏i

l=k+1
al,l−1, i > k

• siдn(ni,k ) = (−1)i+k
∏k

l=i
al,l+1, i < k

Since the diagonal entries of I − Q are strictly positive, ac-

cording to �eorem 6.3 the diagonal entries of N are also pos-

itive. �e non-diagonal entries of I − Q are all negative thus

the series multiplication from �eorem 6.3 for i > k reduces to

(−1)i+k+i−k = (−1)2i = 1. Similarly for the case i < k the multipli-

cation reduces to (−1)i+k+k−i = (−1)2k = 1.

Proof. Starting from Inequality 8 and applying �eorem 4.6 we

obtain:

E[T j
0 ] ≤ n1,1 + O(µ2) ≤

1

a1,1 + a1,2ξ2
+ O(µ2)

=

1

p0,m + p0,1(1 − ξ2)
+ O(µ2)

≤ 1

p0,m + p0,1(1 − ξ2)
+ O(µ2)

≤ 1
(n−j)p1

n +
µ
(µ+1)

2j(n−j)p2
n2 (1 − ξ2)

+ O(µ2)

=

n

n − j
1

p1 +
µ
(µ+1)

2jp2
n (1 − ξ2)

+ o(logn)

where we substitute p0,1 and p0,m with their values declared in

De�nition 4.1. �e de�nitions of ξi and ξm are obtained by simply

substituting the matrix entries in �eorem 4.6 with their respective

values from Equations 3 to 6. �

6.4 Proofs of main results

Proof of Theorem 3.1. Combining Lemma 4.2 and Lemma 4.7

we obtain:

E[T ] ≤ o(n logn) + (1 + o(1))
n−1∑
j=0

E[T j ]

≤ o(n logn) + (1 + o(1))
n−1∑
j=0

©­«
n

n − j
1

p1 +
µ
(µ+1)

2jp2
n (1 − ξ2)

ª®¬
(9)

We will now divide the sum into two smaller sums:
n∑
j=1

n

n − j
1

p1 +
µ
(µ+1)

2jp2
n (1 − ξ2)

=

n−n/
√
logn∑

j=1

n

n − j
1

p1 +
µ
(µ+1)

2jp2
n (1 − ξ2)

+

n∑
j=n−n/

√
logn+1

n

n − j
1

p1 +
µ
(µ+1)

2jp2
n (1 − ξ2)

≤ O(n
√
logn) + n

p1 +
2p2µ
(µ+1)

(
1 − 1√

logn

)
(1 − ξ2)

n∑
j=n−n/

√
logn+1

1

n − j

≤ O(n
√
logn) + n lnn

p1 +
2p2µ
(µ+1)

(
1 − 1√

logn

)
(1 − ξ2)

We conclude the proof by substituting the sum in Eq 9 with the

above expression.

E[T ] ≤ o(n logn) + (1 + o(1))
©­­­­«
O(n

√
logn) + n lnn

p1 +
2p2µ
(µ+1)

(
1 − 1√

logn

)
(1 − ξ2)

ª®®®®¬
≤ o(n logn) + (1 + o(1)) ©­«

O(n
√
logn) + (1 + o(1)) n lnn

p1 +
2p2µ
(µ+1) (1 − ξ2)

ª®¬
= (1 + o(1))n lnn 1

p1 +
2p2µ
(µ+1) (1 − ξ2)

�e expressions for ξi and ξm come from Lemma 4.7 and proves

the �rst statement.

For the second statement, we adapt the result for the variant of

(µ+1) GA which does not evaluate copies of either parents. When

there is no diversity in the population the o�spring is identical to

the parent with probability p0. �en, given that a �tness evaluation

occurs, the probability of improvement via mutation isp0,m/(1−p0)
and the probability that diversity is introduced is p0,1/(1 −p0). �e

proof is identical to the proof of �rst statement, except for using

probabilities p∗0,m = p0,m/(1 − p0) and p
∗
0,1 = p0,1/(1 − p0) instead

of p0,1 and p0,m from De�nition 4.1. Even if we pessimistically

assume that a function evaluation occurs at every iteration when

there is diversity in the population, we still get a (1 − p0) decrease
in the leading constant. �
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