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Abstract 
Single-cell technologies are powerful tools to evaluate cell characteristics. In particular, 
Atomic Force Microscopy (AFM) nanoindentation experiments have been widely used to 
study single cell mechanical properties. One important aspect related to single cell 
techniques is the need for sufficient statistical power to obtain reliable results. This aspect is 
often overlooked in AFM experiments were sample sizes are arbitrarily set.  

The aim of the present work was to propose a tool for sample size estimation in the context 
of AFM nanoindentation experiments of single cell. To this aim, a retrospective approach 
was used by acquiring a large dataset of experimental measurements on four bone cell 
types and by building saturation curves for increasing sample sizes with a bootstrap 
resampling method.  

It was observed that the coefficient of variation (CV%) decayed with a function of the form 
y = axb with similar parameters for all samples tested and that sample sizes of 21 and 83 
cells were needed for the specific cells and protocol employed if setting a maximum 
threshold on CV% of 10% or 5%, respectively. The developed tool is made available as an 
open-source repository and guidelines are provided for its use for AFM nanoindentation 
experimental design. 
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1. Introduction 
Single cell analysis technologies have recently enabled unprecedented access to specific 
biological features, with higher resolution than that provided with bulk analyses (Tsioris et al., 
2014). Single cells in a population show variable behaviours and characteristics: this 
heterogeneity has stochastic as well as deterministic sources and historically has often been 
overlooked when focusing on common mechanisms between cells (Pelkmans, 2012). Most 
information collected on cell processes was obtained averaging the characteristics of a cell 
population and generalising them to all cells (Chen et al., 2016). However, when the same 
characteristics were studied at the single cell level different patterns might have emerged, 
highlighting the fact that cell-to-cell heterogeneity often dictates relevant functions for 
homeostasis. 

Single cell technologies have been mostly used to measure nucleic acids, proteins, lipids 
and metabolites content (Chen et al., 2016) in the context of cancer biology and immune 
system response (Love, 2010; Navin, 2014; Papalexi and Satija, 2017; Tsioris et al., 2014; 
Wang et al., 2017). However, similar approaches can be employed to quantify 
characteristics of single cells at a higher dimensional scale, such as whole cell mechanical 
properties. Single cell mechanical properties have been tested with various methods, such 
as micro-aspiration, optical tweezers and atomic force microscopy (AFM) (Costa, 2004). 
Recently, the latter technique has been largely employed due to its ability to perform 
controlled nanoindentation of biological samples (Kuznetsova et al., 2007; Müller and 
Dufrêne, 2011). 

In the case of single cell AFM nanoindentation, different factors have been proposed to 
contribute to population heterogeneity. Cell cycle stage, differentiation status (Crisan and 
Dzierzak, 2016; Krieger and Simons, 2015; Satir, 2016), migration capability and adhesion to 
the substrate (Wills et al., 2017) all have a direct impact on the cell cytoskeleton and 
therefore on the cell mechanical properties. Moreover, the experimental set-up, the testing 
and culture conditions, and the post-processing of data might all introduce technical 
variability (Costa, 2004; Kuznetsova et al., 2007; Lekka, 2016; Luo et al., 2016). 

A factor that should be taken into account when designing single-cell experiments relates to 
the statistical power of the analysis (Chen et al., 2016; Wagner et al., 2016). Optimal trade-
offs in terms of the number of cells to be tested and the number of reads to be performed per 
cell should be set accordingly to the experiment and research question. A correct estimate of 
the required sample size relies on the diversity of the underlying population, the sensitivity 
required for the measure and the technical variability of the measure. Often an arbitrary 
number of cells is tested causing unreliability in the obtained results (Chen et al., 2016; 
Krzywinski and Altman, 2013).  

Different AFM experimental protocols and data analysis techniques have been used to test 
single cell mechanical properties leading to difficulties when comparing different results. In 
particular, the number of cells tested and the number of measurement repeats per cells were 
found to be highly variable (e.g. Bacabac et al., 2008; Bongiorno et al., 2014; Docheva et al., 
2008; Muthukumaran et al., 2012; Sugawara et al., 2008; Takai et al., 2005) and to the best 
of our knowledge, no sample size analysis was performed in the context of AFM 
nanoindentation experiments. 

The objective of the present work was therefore to propose a tool for sample size analysis of 
AFM nanoindentation experiments. To this aim, a retrospective estimation approach was 
chosen, i.e. a great number of experimental datasets were obtained and the cumulative 
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average stiffness was plotted as a function of the cumulative number of single cells resulting 
in a saturation curve (Chen et al., 2016). This tool was tested by using large datasets of AFM 
nanoindentation measurements, acquired and analysed ad hoc for this study. The impact of 
repeated measurements per cell was evaluated. Guidelines to use this tool for future 
experimental designs are proposed.  

 

2. Materials and Methods 
2.1 Cells 
Three cell lines representing four bone cell types were used for this study, namely MC3T3 
pre-osteoblast (Kodama et al., 1981), IDG-SW3 osteoblast and osteocyte (Woo et al., 2011), 
and MLO-A5 pre-osteocyte cells (Kato et al., 2001). MLO-A5 cells were kindly donated by 
Prof. Lynda Bonewald (University of Missouri, Kansas City, MO, USA). IDG-SW3 cells can 
represent separate stages of differentiation from late osteoblast to late osteocyte thanks to a 
temperature sensitive mutant protein controlled by interferon-Ȗ (INF-Ȗ) (Wittkowske et al., 
2016; Woo et al., 2011). The undifferentiated osteoblast-like and differentiated osteocyte-like 
stages can be optically distinguished thanks to green fluorescent protein (GFP) tagged 
dentin matrix acidic phosphoprotein 1 (Dmp1), i.e. cells express green fluorescence when 
differentiated.  

MC3T3 and MLO-A5 cells were cultured at 37°C in Minimum Essential Alpha Eagle medium 
(ĮMEM, Lonza Group Ltd., Basel, Switzerland) supplemented with 10% foetal bovine serum 
(FBS, Labtech International Ltd., Heathfield, UK), 100 units/ml penicillin, 100 µg/ml 
streptomycin and 2 mM glutamine (PSG, Sigma-Aldrich Company Ltd., Gillingham, UK). 
Osteoblast-like IDG-SW3 cells were cultured at γγ°C in ĮMEM supplemented with 
nucleosides and 2 mM UltraGlutamine I, 10% FBS, 50 units/ml INF-Ȗ (Fisher Scientific) and 
a solution of 100 units/ml penicillin and 100 ȝg/ml streptomycin (PS, Sigma). To induce 
osteogenic differentiation, IDG-SW3 cells were cultured at 37°C in differentiation medium, 
constituted of ĮMEM supplemented with nucleosides and β mM UltraGlutamine I, 10% FBS, 
1% PS, 5mM ȕ-glycerophosphate (Sigma) and 50 ȝg/ml L-ascorbic acid 2-
phosphatesesquimagnesium salt hydrate (ascorbic acid, Sigma). Cells were monitored 
under fluorescent microscopy for the onset of GFP signal, representing the marker for 
differentiation. After 10-12 days in culture in differentiation medium, IDG-SW3 cells 
expressed a detectable GFP signal and were classified as osteocyte-like. 

Prior to AFM experiments, cells were seeded onto tissue culture treated plastic dishes 
(D = 10 mm) at low seeding density to obtain spatially separated cells during testing. For 
osteocyte-like IDG-SW3 cells, each cell GFP signal was verified prior to testing as it was 
observed that the GFP signal would fade after some time in culture at low density. 

2.2 AFM cantilever preparation 
Spherical tipped cantilevers were produced following a similar protocol as described 
elsewhere (Li et al., 2016). Tip-less cantilevers (Windsor Scientific Ltd, Slough, UK) with a 
nominal spring constant of 0.2 N/m were customised by glueing a silica bead (D = 6±0.2 µm, 
Bangs Laboratories Inc., Fishers, IN) at the tip extremity. The cantilever spring constant 
calibration was performed in liquid prior to bead attachment with the AFM built-in software by 
thermal noise method. The average spring constant measured by thermal calibration prior to 
bead attachment was 0.26 N/m. 

2.3 AFM set-up 
A NanoWizard 3 AFM (JPK Instruments AG, Berlin, Germany) coupled to an Eclipse Ti-S 
optical inverted microscope (Nikon UK Ltd., Kingston Upon Thames, UK) was used for all 
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the experiments. The cells were washed in phosphate buffer solution (PBS, Sigma) and 
fresh medium was added. Samples were positioned on the heated sample holder to allow for 
testing at 37°C (33°C for osteoblast-like IDG-SW3 cells). The cantilever sensitivity was 
calibrated on the bare tissue culture plate before each experiment.  

The cantilever was centred over the cell nucleus and a grid of five points spaced 3 µm within 
each other was set (Takai et al., 2005). Force spectroscopy measurements were obtained 
on the 5-point grid three times to collect a total of 15 data on the nuclear region. The same 
procedure was performed at the cell periphery. The relative set point and the approach 
velocity were set to 10 nN and 4 µm/s respectively. A total of 178 MC3T3 cells were 
indented over 3 separate experiments, 192 osteoblast-like IDG-SW3 cells were indented 
over 4 separate experiments (nuclear region only), 180 MLO-A5 cells were indented over 3 
separate experiments, and 160 osteocyte-like IDG-SW3 cells were indented over 4 separate 
experiments. 

2.4 AFM post-processing 
The obtained data files were exported as text files from the JPK Data Processing software. 
All the subsequent post-processing was performed in MATLAB (The MathWorks, Natick, 
MA) with custom-written semi-automated algorithms to allow for careful tailoring of the 
analysis steps. Each force spectroscopy extend curve was analysed separately to fit the 
contact point and to obtain the effective modulus as a measure of cell stiffness. The effective 
modulus of a given cell was obtained by averaging the values obtained for each indentation 
on that cell hypothesising spatial homogeneity over the tested region (nucleus or periphery), 
thanks to the global information obtained by using spherical probes which reduced the 
impact of local inhomogeneity at the nanoscale (Puricelli et al., 2015).  

The ratio of variance method proposed in (Gavara, 2016) was used to determine the contact 
point, i.e. the point in the force spectroscopy curve at which the probe first comes into 
contact with the cell. Each force spectroscopy curve was visually checked to verify the 
algorithm correct functioning: curves displaying no baseline were discarded. Pre-processed 
data are made available on Figshare at the following DOI: 10.15131/shef.data.5632777. 

The cell effective modulus E* was obtained by Hertz model fitting on the extend force 
spectroscopy curve. The Hertz model formulation for a spherical indenter over a half space 
(Hertz, 1881; Kuznetsova et al., 2007) was used, with F force on the indenter, i indentation 
depth and R radius of the indenter (Eq. 1, Figure 1):  ܨሺ݅ሻ ൌ ͳͻ ଵଶ  ݅ ଷଶ Ǥ ܴ כܧ  ͓ሺͳሻ  

The data were fitted up to an equal indentation depth for all the curves in a sample, which 
was set by considering the last indentation value for which more than 90% of force 
spectroscopy data were available. This varied between 200-800 nm depending on cell type 
and testing location. The extreme case of an indentation of 800 nm was found for the MLO-
A5 cells tested on the nucleus region and was further investigated by measuring the average 
cell thickness of adherent MLO-A5 cells. This was tested with QI AFM mode on a 10-cell 
sample during preliminary studies under similar culture conditions and resulted equal to 2.46 
(0.30) m. Therefore, a maximum indentation of 800 nm could affect ~33% of the cell 
thickness. Previous work on Chinese hamster ovary cells showed that indentations of up to 
50% of the cell thickness did not display a substrate contribution (Zhao et al., 2006), and the 
analysis was therefore performed by using this maximum indentation value. The coefficient 
of determination (R2) was obtained as an indicator of the goodness of fit of the Hertz model 
to the data. 
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Figure 1 – Force spectroscopy fitting. Example (MLO-A5 cell, nucleus) of force spectroscopy curve fitting to 
obtain the effective modulus E*, with the pre-processed extend data represented in black and the Hertz model 
fitting in red (dashed line). The equation of the Hertz model for a spherical indenter over a half space is reported. 

2.5 Sample size analysis 
A retrospective estimation approach was employed to quantify the number of cells to be 
tested in order to achieve a reliable measurement of the population average stiffness. To this 
aim, an algorithm was designed to compute the convergence effective modulus for each 
sample size, as schematised in Figure 2. For each sample size N up to the number of cells 
tested in each sample, N cells are randomly chosen (draw D) from the list with a bootstrap 
approach (with replacement) and their instant average modulus ED is calculated. The 
average modulus ED for the D-th draw is used to calculate a cumulative modulus by using all 
the previous draws and computing a cumulative average µN and standard deviation ıN. 
Draws are continued until convergence of µN and ıN is reached. The convergence threshold 
is set to the percentage error of µN and ıN for subsequent draws being lower than 1% for 50 
subsequent draws.  

By applying this algorithm to the data, the convergence effective modulus average EN and 
standard deviation ıEN for each sample size were computed. These values were used to 
calculate the coefficient of variation (CV% = 100 * ıEN / EN) used to plot saturation curves. 

A similar procedure was applied to two subsets of data for one cell type in order to evaluate 
how the saturation curve would change if fewer measurements were taken for each cell. The 
first subset consisted of three measurements per cell (central grid point, tested in three 
subsequent series); the second subset was made of one measurement per cell (central grid 
point, first series). 

The sample size calculator and the coding to obtain the effective modulus from the AFM 
force-spectroscopy data are available at the following GitHub repository: 
INSIGNEO/AFM_Youngs_modulus_fit. 
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Figure 2 – Effective modulus at convergence, schematic of the algorithm. A representation of the algorithm 
to find the effective modulus at convergence for each sample size is shown on the left. Example plots for N=10 
are shown on the right, for the instant average modulus ED, the cumulative modulus average µN and standard 
deviation ıN for subsequent draws. In this example, 8193 draws were necessary to reach convergence to a 
cumulative modulus of 2.90 (0.31) kPa. 

 
3. Results 
3.1 Effective modulus distributions 
A total of 2033 and 2453 indentations across 175 and 177 different MC3T3 cells were 
analysed for the nucleus and periphery, respectively; a total of 1778 indentations across 190 
different IDG-SW3 osteoblast-like cells were analysed for the nucleus; a total of 2137 and 
2556 indentations across 168 and 180 different MLO-A5 cells were analysed for the nucleus 
and periphery, respectively; a total of 1214 and 645 indentations across 144 and 79 different 
IDG-SW3 osteocyte-like cells were analysed for the nucleus and periphery, respectively. The 
Hertz model fitting quality was generally high (R2 = 0.96 (0.05)). 

By hypothesising each cell to have spatially homogeneous stiffness properties described by 
the average value of all measurements, the average and dispersion values for the cell 
population were calculated by using the average value from single cells (not normal 
distribution of cell effective modulus values across the population). Histograms of the single 
cell average effective modulus values normalised for the total number of cells were 
calculated for each cell line, for the nucleus and periphery (Figure 3). Average and 
dispersion values are reported in Table 1. 

The periphery effective modulus values were larger than the nuclear ones for all cell lines. 
MC3T3 and MLO-A5 cells showed lower and less disperse stiffness in both the nucleus and 
peripheral regions. In contrast, the osteoblast- and osteocyte-like IDG-SW3 cells showed 
wide dispersion ranges and higher values. 

Each cell was repeatedly indented 15 times in five 3 µm-spaced locations over the nucleus 
and 15 times in five 3 µm-spaced locations over the periphery. This could result in a time-
dependent viscoelastic response of the cell which could potentially start to rearrange its actin 
cytoskeleton (Lekka, 2016). To investigate the occurrence of this phenomenon, the effective 
modulus distributions for different indenting locations within the test grid (i.e. the 
measurements obtained for the five points of each grid) and for different series of 
indentations (i.e. the measurements obtained for the three indentation series) were 
compared and no difference was found (Kruskal-Wallis non-parametric test, significance set 
at p < .01, data not shown), also justifying the hypothesis of spatial homogeneity within 
tested regions. It should be noted that these results are valid for the specific loading rate 
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used in this protocol, as higher loading rates could lead to higher measured effective moduli 
(Zhao et al., 2006). 

 

Figure 3 – Effective moduli for bone cells. Histograms of single cell average effective moduli for all tested cell 
lines (MC3T3 cells in blue, IDG-SW3 osteoblast-like cells in orange, MLO-A5 cells in yellow and IDG-SW3 
osteocyte-like cells in green), normalised for the total number of cells. Histograms for the nuclear area have 
shaded fill, histograms for the peripheral area have no fill. 

Table 1 – Effective moduli for bone cells. Median (inter-quartile range) of the effective moduli [kPa] for all 
tested cells on the nuclear and peripheral regions 

Cell type Effective modulus [kPa] 
 Nucleus Periphery  
MC3T3 3.19 (2.16) 8.21 (6.88) 
IDG-SW3 osteoblast-like 12.33 (8.91) - 
MLO-A5 2.81 (1.50) 6.93 (4.66) 
IDG-SW3 osteocyte-like 11.87 (7.24) 14.33 (11.90) 

 

3.2 Sample size analysis: how many cells? 
All the calculations reported so far were performed on the data relative to all available cells. 
However, smaller samples might be sufficient to reliably estimate the mechanical 
characteristics of each cell type. The algorithm described for the retrospective power 
estimate was therefore applied to all samples, divided by cell type and region of testing 
(nucleus, periphery). This allowed the building of saturation curves for the coefficient of 
variation (CV%) for increasing sample sizes. 

An example for the MLO-A5 cells tested on the nuclear region is shown in Figure 4. The 
convergence effective modulus EN tends to a constant value and the standard deviation 
decreases for increasing sample sizes N. This is mirrored in the CV%, which decays toward 
zero for increasing sample sizes. All the tested cell types for both the nuclear and peripheral 
regions showed similar trends (Figure 5, left and central panels), therefore a common fitting 
was performed with a non-linear least squares method with an equation of the form y = axb 
(Figure 5, right panel). 
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Good fitting quality was achieved (R2 = 0.96), with the following parameters (95% confidence 
bounds): a = 46.0 (45.5, 46.6) and b = -0.50 (-0.51, -0.50). It was possible to calculate the 
number of cells needed to achieve a given maximum CV% by using the fitted curve (Figure 5, 
right panel): 21 cells would suffice if setting a threshold for a maximum CV% of 10%, 83 cells 
for 5%.  

 

Figure 4 – Evaluation of sample size, effective modulus at convergence. Top panel: error bar plot of the 
convergence effective modulus EN for increasing sample size N. Bottom panel: coefficient of variation (CV%) 
saturation curve for increasing samples sizes. Both plots are for the MLO-A5 cells tested on the nuclear region. 

 

Figure 5 – Evaluation of sample size, analytical fitting. Left panel: the CV% saturation curve for increasing 
sample sizes N are shown for all cell types and regions tested (MC3T3 cells in blue, IDG-SW3 osteoblast-like 
cells in orange, MLO-A5 cells in yellow and IDG-SW3 osteocyte-like cells in green; dot markers represent the 
nucleus (n), cross markers the periphery (p)). Central panel: the same data shown in the left panel is displayed in 
log-log scale. Right panel: a common fitting with a curve of the form y = ax

b
 (red line) was performed on the data 

(grey dots). The dotted lines show how many cells are needed if setting a threshold of 10% (21 cells) or 5% (83 
cells) on the CV%. 

3.3 Sample size analysis: how many measurements per cell? 
The cell type/region combination with narrower effective modulus distribution (i.e. MLO-A5 
cells in the nuclear region, Figure 3) was used for this analysis. The distributions of effective 
modulus for each cell obtained by using only one measurement (1 point tested once) or by 
averaging 3 (1 point tested thrice) or 15 measurements (5-point grid tested thrice) were 
compared (Figure 6, left panel). The values for the average and dispersion for each 
distribution are reported in Table 2. The distribution dispersion decreased with increasing 
number of measurements averaged per cell. 



10 

 

The data from the different distributions were then used to calculate the required sample 
size. The coefficient of variation CV% plotted against the sample size N can be found in 
Figure 6 (right panel). By averaging higher number of measurements per cell it was possible 
to obtain similar CV% with lower samples sizes. 

 

Figure 6 – Evaluation of sample size, number of measurements per cell. Left panel: Swam plot of effective 
modulus distributions for increasing number of measurements averaged per cell. The plot refers to the MLO-A5 
cell type and the nuclear region. The distribution spread decreased with increasing number of measurements per 
cell. Right panel: coefficient of variation CV% plotted against the sample size N for increasing number of 
measurements averaged per cell. Similar CV% were achieved with smaller sample sizes if increasing the number 
of measurements per cell (red arrow). 

Table 2 – Effective modulus for increasing number of measurements per cell. Median (inter-quartile range) 
of the effective moduli [kPa] for the MLO-A5 cells tested in the nuclear region obtained by using 1, 3 or 15 
measurements per cells 

Measurements per cell Effective modulus [kPa] 
1 2.84 (2.22) 
3 3.09 (2.05) 
15 2.81 (1.50) 

 
4. Discussion 
4.1 Effective modulus distributions 
MC3T3 and MLO-A5 cells showed lower and less disperse effective moduli for both the 
nucleus and peripheral regions (Figure 3, Table 1). In contrast, the osteoblast-like and 
osteocyte-like IDG-SW3 cells showed wide dispersion ranges and higher values. This could 
be related to the intrinsic characteristics of the cell lines, given that they were acquired from 
different sources and were not differentiated from a single origin (Sugawara et al., 2008).  

The distributions of effective moduli for the periphery were more dispersed than the ones for 
the nuclei. This was hypothesised to be linked to a less homogeneous structure of the cell 
outside the nucleus: while centring the measure over the nucleus provided consistency 
between cells, the peripheral measurements might have involved areas richer or poorer in 
specific intracellular components affecting the output stiffness. The periphery effective 
modulus showed higher values than the nuclear ones for all cell lines (Figure 3, Table 1). 
Similar trends were observed elsewhere for bone cells (Sugawara et al., 2008) and for other 
cell lines (e.g. epithelial cells (Berdyyeva et al., 2005; Sokolov et al., 2006), fibroblasts 
(Gavara and Chadwick, 2016), endothelial cells (Sato et al., 2000; Schaefer et al., 2014)). It 
has been proposed that peripheral regions stiffer than nuclear ones would be detected for 
cells with high levels of actomyosin (Gavara and Chadwick, 2016). 
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Most available stiffness measures for bone cells sit in the range of 0.5-15 kPa (Bacabac et 
al., 2008; Bongiorno et al., 2014; Docheva et al., 2008; Kelly et al., 2011; Muthukumaran et 
al., 2012; Sugawara et al., 2008; Takai et al., 2005; Titushkin and Cho, 2007; Yourek et al., 
2014), in the range of those calculated in the present work. A more detailed comparison is 
made difficult by the employment of different cells, different contact models, different probe 
shapes (i.e. higher stiffness modulus values are obtained with sharp cantilevers with respect 
to beaded cantilevers (Chiou et al., 2013)) and loading rates (i.e. cells apparent stiffness 
modulus increases with the loading rate (Zhao et al., 2006)). Moreover, many studies report 
stiffness data as mean value and standard error of the mean. To this aim, multiple effective 
modulus values are first grouped (e.g. by cell or by location) and a mean value is calculated; 
then a variability range analysis is performed on these mean values to calculate their 
standard error. This representation does not allow for direct analysis of the population 
heterogeneity, as the dispersion is calculated on the mean values and not on the original 
data. Moreover, the average population modulus values are likely to be not normally 
distributed (i.e. the distribution is positively skewed as the stiffness cannot take negative 
values) and therefore the representation through a mean and not a median would result in 
calculating higher stiffness values unless some statistical corrections to render normality 
were applied. 

4.2 Sample size analysis 
We proposed a retrospective approach (Chen et al., 2016) to quantify the required sample 
size for AFM nanoindentation testing on cells. Large samples of four bone cell types and two 
separate regions (nucleus and periphery) were tested and analysed separately to build 
saturation curves for the coefficient of variation CV% for increasing sample sizes. The value 
of effective modulus at convergence was calculated for each sample size by using a 
bootstrap resampling approach. 

Despite the fact that the distributions of effective moduli were different for different cell lines 
and regions (Figure 3, Table 1), the calculated CV% trend for increasing sample sizes was 
similar in all cases (Figure 5), suggesting a similar heterogeneity degree for all samples. This 
allowed fitting of the CV% with a common curve of the form y = axb, which could be used to 
estimate a priori the sample size needed for future experiments with the same cell types. 

The proposed fitting parameters are, in fact, specific for the present protocol and cell types 
and generalisation to different experimental setting or target cells should be avoided. A 
sensible approach would require using the present tool on a preliminary dataset in order to 
estimate the correct fitting parameters, following these steps: 

1. Test a small number of cells (e.g. 10) of a given cell type and with a protocol of 
choice. 

2. Post-process the data to obtain a stiffness measure for each cell. 
3. Calculate the CV% for increasing sample sizes (N = 1,β,…,10) with the presently 

proposed tool. 
4. Fit a curve of the form y = axb to the data to obtain the fitting parameters a and b.  
5. Use the fitted curve to estimate the number of cells required to achieve a target 

maximum CV% (e.g. 5% or 10%). 

The analysis related to the optimisation of the required number of measurements per cell 
showed that averaging more measurements per cell gave less disperse effective modulus 
distributions (Figure 6, Table 2). The use of multiple measurements helped, in fact, 
smoothing out some heterogeneity likely ascribable to technical and not biological variation 
(Chen et al., 2016; Wagner et al., 2016). It should be noted that the median value calculated 
for the distributions using a different number of measurements per cell are different, 
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highlighting the need for suitable data representation to fully capture the sample 
characteristics. The median value is in fact not sufficient and a distribution representation 
should be preferred.  

Required sample sizes of 21 or 83 cells were computed for the employed cells and protocol 
if setting a threshold for a maximum CV% of 10% or 5%, respectively. Despite the fact that 
AFM nanoindentation is not a high throughput technique being time- and user-intensive 
(Costa, 2004), these sample sizes are reasonable for an experienced user to acquire within 
a limited number of experiments. Moreover, they are much smaller than the ones suggested 
for other single-cell techniques, such as phenotyping, which can require minimum sample 
sizes of about 300 cells (Phillip et al., 2017). 

4.3 Limitations of the present study and future directions 
The Hertz model was used to calculate the elastic modulus from AFM force spectroscopy 
curves. This model was originally developed for a soft indenter on a rigid surface and the 
calculations were based on the assumption that the deformation of the sample was much 
smaller than the radius of the spherical probe (Hertz, 1881). This assumption does not apply 
when considering soft samples such as cells and therefore other fitting models have been 
proposed. A number of studies in the literature (e.g. Berdyyeva et al., 2005; Guz et al., 2014; 
Lekka et al., 1999) used the model derived by Sneddon for the case of a rigid indenter on a 
deformable surface (Sneddon, 1965) which does not hold constraints on the sample 
deformation and can be applied for indenters of different shapes. However, in the case of 
spherical indenters with a radius larger than approximately 1-2 µm, the Hertz model well 
approximates the Sneddon model despite its rigid assumptions and is more convenient for 
presenting an analytical form (Puricelli et al., 2015). Future improvements of the presented 
method should include analytical correction factors, to take into account the effect of the 
limited sample thickness and the contribution of the rigid substrate (Dimitriadis et al., 2002; 
Garcia and Garcia, 2018). This would allow for more precise determination of the effective 
modulus, particularly in the case of the cell periphery which displayed limited thickness. 

Recently, a multicentre study aimed at standardising AFM procedures for soft biological 
samples suggested that the erroneous cantilever sensitivity determination was a major 
cause of discrepancies in the results between different labs, both for soft gels and cells 
(Schillers et al., 2017). A new standardised procedure was therefore proposed to calculate 
the correct deflection sensitivity from thermal fluctuations of the free cantilever with an 
independently determined value for the spring constant obtained with a vibrometer. This 
experimental error was however overlooked in the present work and therefore might have 
caused the results to not be fully repeatable. In future work, similar standardised 
methodologies should be incorporated as they would help to ascribe the correct degree of 
variability to cell physiological heterogeneity, further reducing the experimental inaccuracies. 
The sample size considerations discussed in the present work remain however valid and 
highlight the need for common procedures for AFM nanoindentation of biological samples. 

All the measurements performed in the present work for cell mechanical properties focused 
on the cell stiffness represented by the effective modulus and therefore on the elastic 
material characterisation. The viscoelastic characteristics of cells are however a key factor in 
the regulation of various cell processes (Abidine et al., 2013; Verdier, 2003). AFM has been 
used to characterise cell viscoelasticity by superimposing a low-amplitude sinusoidal 
oscillation on an initial cell indentation and by analysing the cell time-dependent response 
(Abidine et al., 2013; Alcaraz et al., 2003; Park et al., 2005; Raman et al., 2011). It could be 
of interest to evaluate the requirements for sample sizes if additional viscoelastic parameters 
would be taken into account. 
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The AFM nanoindentation data was limited to bone cells and the parameters obtained for the 
fitting curve of the sample size analysis should not be generalised to other cell types. It 
would be of interest, however, to test other cell types, both physiological and pathological, in 
order to verify how close the fitting parameters are to the present case. Given that the 
heterogeneity in terms of mechanical properties within a cell population is likely to be driven 
by similar biological phenomena (i.e. cell cycle, cell differentiation, migration, adhesion 
(Crisan and Dzierzak, 2016; Krieger and Simons, 2015; Satir, 2016; Wills et al., 2017)), it 
could be possible that global experimentally fitted parameters would work. This hypothesis 
requires however further verification and cannot be assumed valid a priori. 

 

5. Conclusions 
Single cell technologies represent a powerful tool to investigate cellular characteristics. 
However, the applicability of single cell analysis methods relies on the ability to measure 
enough entities so that the results are representative of a population or subpopulation of 
interest. For this reason, suitable power analyses should be performed in order to obtain 
reliable measurements of the metric of interest. 

AFM nanoindentation experiments have been extensively used to test single cell mechanical 
properties in physiological and pathological conditions. However, the number of cells tested 
or the number of measurements per cell varied greatly between different studies and often 
were arbitrarily set. Hence, the present work proposes a tool to estimate the sample size 
required to obtained reliable measurements of stiffness for a cell population.  
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