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Abstract: Understanding the energy demand of a city’s housing stock is an important focus for local 
and national administrations to identify strategies for reducing carbon emissions. Building energy 
simulation offers a promising approach to understand energy use and test plans to improve the 
efficiency of residential properties. As part of this, models of the urban stock must be created that 
accurately reflect its size, shape and composition. However, substantial effort is required in order 
to generate detailed urban scenes with the appropriate level of attribution suitable for spatially 
explicit simulation of large areas. Furthermore, the computational complexity of microsimulation 
of building energy necessitates consideration of approaches that reduce this processing overhead. 
We present a workflow to automatically generate 2.5D urban scenes for residential building energy 
simulation from UK mapping datasets. We describe modelling the geometry, the assignment of 
energy characteristics based upon a statistical model and adopt the CityGML EnergyADE schema 
which forms an important new and open standard for defining energy model information at the 
city-scale. We then demonstrate use of the resulting urban scenes for estimating heating demand 
using a spatially explicit building energy microsimulation tool, called CitySim+, and evaluate the 
effects of an off-the-shelf geometric simplification routine to reduce simulation computational 
complexity.  

Keywords: city modelling; energy simulation; CityGML; EnergyADE; generalisation  
 

1. Introduction 

Analysing energy use in buildings is vital for supporting reductions in greenhouse gas 
emissions. In the UK, it is estimated that residential buildings account for almost a third (29%) of 
overall energy use (see BEIS [1], Chart 1.04). Increasing the scale of analysis from individual buildings 
to urban stocks of buildings brings a number of benefits: (i) economies of scale in the specification of 
energy systems, (ii) energetic (e.g., radiative) interactions between buildings may be handled, so 
improving predictive accuracy and (iii) energy system interactions may be handled more completely 
(e.g., distributed generation coupled with storage in the form of electric car batteries). For these 
reasons, there is a growing interest in thoroughly simulating urban stocks of buildings and their 
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energetic interactions [2,3]. However this task entails both intensive computational demands and 
requires detailed representations of the urban fabric to understand energy demand.  

Housing stock models are typically abstracted representations of an area’s (e.g., neighbourhood, 
city, region or country) residential buildings that can be used to predict their energy use. This tends 
to involve statistical modelling of data arising from surveys of housing in conjunction with simple 
monthly energy balance calculations to produce their estimates of energy use and CO2 emissions, 
e.g., Sousa et al. [4]. The use of simulation in this context is a more recent development and is typically 
adopted at the neighbourhood or, sometimes, district scale due to its increased cost, both in terms of 
data preparation and in computation. Housing stock models enable researchers and policymakers to 
predict current and future energy trends across a range of potential energy scenarios [5].  

Urban Building Energy Models (UBEM) are one approach for estimating the demand for heating 
and electricity demand in cities [2,6–8]. UBEMs typically model the physical properties of individual 
buildings to understand their thermal performance. A UBEM will often employ building energy 
simulation tools such as EnergyPlus [6,9], originally developed to simulate single buildings, to model 
the energy use of a specific building archetype (e.g., a detached, 2-storey house constructed between 
1945 and 1970) which can then be extrapolated to the actual building stock. Microsimulation may also 
be used to estimate the energy usage of groupings of buildings, explicitly simulating the radiative 
interactions between these buildings (handling occlusions to sun and sky and the reflections from 
these occlusions, whether they be due to buildings or variations in topography) [10]. Simulation-
based approaches to energy demand estimation facilitate additional benefits through integration 
with other simulators, for example, that incorporate occupant’s behaviour [11] or district heating 
networks [12]. 

Both housing stock models and UBEMs require data on the geometric and energy characteristics 
of the urban environment. UBEMs utilising microsimulation-based methods need accurate 
representations at the individual building level to model their volume, shading effects and inter-
reflections between surfaces. 3D city models can be used for this purpose [13]. However, there is a 
substantial computational cost associated with applying microsimulation to urban scenes [14]; a cost 
that is deemed worthwhile, owing to the significant impacts of radiative interactions between 
buildings on their energy demands [15]. One might instinctively conclude that this computational 
cost could be managed through hardware accelerations, for example, by parallelising spatially-
explicit microsimulations to exploit distributed or cloud-computing. However, this is not a trivial 
task due to the interactions (e.g., shortwave and longwave) between the geometric surfaces 
representing the urban fabric. Geometric simplification is, therefore, a valuable strategy in reducing 
urban scene complexity and the associated overheads.  

1.1. The CityGML Standard and Energy Modelling 

Improved adoption of data standards is an important challenge for advancing the field of urban 
energy systems modelling [16]. The importance of 3D city models in many applications has prompted 
development of the CityGML standard [17]. CityGML is an open semantic data model designed for 
representing 3D urban information across a wide range of uses and enabling interoperability between 
systems that support it. The relevance of 3D modelling to building energy analyses has led to 
CityGML playing an important role in supporting these objectives [7,13,18–21]. For example, solar 
irradiance may be estimated using surface geometry extracted from CityGML [19], but additional 
modelling is required for heating demand estimation. For example, Energy Atlas Berlin used 
geometry extracted from CityGML and statistical data to estimate energy demands [22]. The SimStadt 
energy simulation platform utilised CityGML models to investigate the sensitivity of energy 
estimates to changes in input variables [7]. Whereas, the SUNSHINE platform also described using 
CityGML for assessing and visualising energy performance [20]. Murshed et al. [23] describe 
CityBEM, which calculates heating and cooling needs according to an ISO standard method and 
CityGML data. Whilst useful in their own right, Energy Atlas, SimStadt, SUNSHINE and CityBEM 
employ simple monthly energy balance equations to estimate the approximate annual energy 
demands for heating and cooling. As such, these methods, which are constrained in their usefulness 
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as design aids, do not require sophisticated models of solar radiation exchange. By extension, they 
also do not require detailed representations of urban spatial structure, and the scope of the energy-
related attributes required by these models is also undemanding in comparison with explicit 
microsimulation which is our focus here. 

On its own, CityGML provides a detailed data model for representing urban scenes. However, 
it does not aim to completely support all use cases for 3D city models. In the case of energy modelling, 
for example, there are many parameters related to the building composition (e.g., material, optical 
and thermophysical properties), heating and electrical systems and its occupants that cannot be 
represented in pure CityGML. To address this, the standard can be augmented using Application 
Domain Extensions (ADE) to provide additional attributes for domain specific tasks. EnergyADE is 
an ADE for CityGML that provides a data model for encoding details on the energy-related 
characteristics of buildings, to support UBEM and related applications, as described in Agugiaro et 
al. [24]. 

1.2. Research Gap 

Despite the increasing proliferation of 3D city models, they are not yet widely utilised in energy-
related applications using the CityGML EnergyADE. Significant resources are required to develop 
these models to a suitably high standard with regard to both geometric and semantic information. 
3D city representations are increasingly being planned for production at the national level ([15,16]), 
however, in the UK, they are not yet readily available. Furthermore, quality issues can often arise 
when using preexisting 3D models [23,25], preventing their straightforward adoption and 
necessitating complex repair procedures [26]. Meanwhile, creation of detailed and accurate 3D urban 
geometry can require a dedicated photogrammetry or Light Detection and Ranging (LIDAR) survey 
and subsequent digital mapping by an expert. In the UK, however, high-quality (i.e., geometrically 
detailed and topologically correct) 2D map data with comprehensive coverage of building outlines, 
and their associated height, is available from the National Mapping Agency, Ordnance Survey 
(OSGB). Furthermore, a nationwide sample of the energy related characteristics of residential 
buildings, the English Housing Survey (EHS), is available and includes details on the construction, 
materials and other parameters that are vital for assessing housing energy performance.  

In this article, we describe a workflow to generate large 2.5D housing stock models from UK 
topographic mapping and housing survey data for the purposes of creating a dynamic, spatially 
explicit building energy simulation. We adopt CityGML and its EnergyADE extension to represent 
our urban scenes and demonstrate their use in a building energy microsimulation tool, called 
CitySim+. Furthermore, we recognise that such models may be too detailed to undertake energy 
microsimulation within reasonable processing times [14]. As a consequence, we investigate the effect 
of employing an off-the-shelf generalisation tool, found in ArcGIS, that will scale to generating large 
urban scenes at the city and lower (i.e., neighbourhood, district) spatial scales.  

We describe  
- an automated workflow for generating 2.5D CityGML EnergyADE housing stock models 

from map and housing survey data for the purposes of dynamic microsimulation of 
residential building energy; 

- a statistical model for the assignment of per-building energy related CityGML EnergyADE 
features; and 

- an evaluation of the effect of a 2D geometric simplification routine on dynamic 
microsimulation of energy use, using the developed workflow. 

2. Workflow 

2.1. Overview 

Figure 1 illustrates our overall workflow for producing and simulating urban scenes using 
CityGML and EnergyADE data models. CityGML is a data model devoted to the 3D representation 
of urban areas and developed as an interoperability standard by Open Geospatial Consortium 
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schema [27]. The standard includes classes covering both the built-environment and natural features. 
A hierarchy of level of detail (LoD) defines the fidelity of a CityGML model, ranging from 2D 
footprint polygons to complex 3D representations of external and internal structures. The CityGML 
data model is described using Unified Modelling Language (UML) classes to define the urban 
features and their relations. We use version 2 of the CityGML standard for which XML schemas of 
the classes are available for software integration and development. For the EnergyADE features, we 
adopted version 0.6 (https://www.sig3d.org/citygml/2.0/energy/0.6.0/FeatureCatalogue/). For the 
technical implementation of assigning values to data model properties and creation of geometric 
features, we used FME from Safe Software. For simplifying the building footprint geometry we used 
ESRI ArcGIS. 

We adopted CitySim+ as our building energy microsimulation tool. As a successor of CitySim 
[10], CitySim+ is a building energy simulation tool which models collections of buildings, and their 
mutual interactions, in a spatially resolved manner. CitySim+ adopts a microsimulation approach to 
simulate individual buildings while resolving for the energy-related consequences of their 
surroundings; in particular, the impacts on radiative (visible, shortwave and longwave) processes. 
CitySim+ is developed using the object-oriented language C++, using a recent standardised version 
of the language (namely C++ 11). CitySim+ introduces new features (mainly related to scalability and 
distributed simulation) and incorporates a standards-based data layer (based on 
CityGML/EnergyADE). The design of the new data layer follows object-oriented design principles to 
facilitate efficient parsing and processing of the input scene model. 

 
Figure 1. Overview of the proposed workflow. The outline of the process “Footprint simplification” 
is dashed as it is an optional procedure. 

2.2. Building Footprints and Heights 

Building geometries are derived from the OS MasterMap Topography layer. The OS MasterMap 
uses OS TOIDs, which define a unique identifier for features, and the Topography Layer defines a 
“Building” attribute which can be used to select the 2D polygon footprint of the dwelling. The OSMM 
“Building” definition includes structures such as sheds, garages and other outbuildings. As these 
assets are typically unheated, we automatically remove them through integration of the OSMM data 
with the national databases of addresses, AddressBase Plus (ABP). Although this could remove 
structures that shadow properties, this is not common in residential scenarios, which are the focus of 
this paper. We follow the implementation of Beck et al. [28], which identifies the buildings which are 
addressable. This is achieved through use of both a spatial and table database join. A building is 
defined as addressable if either (a) the matching OS TOID is present in ABP or (b) one or more address 
points are found within the OSMM polygon. 
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The Ordnance Survey has recently released a building heights database which provides various 
elevation values corresponding to the building footprint. This dataset, known as the Building Height 
Attribute (BHA), contains three values measured relative to the datum including ground elevation, 
height to the roof eaves and the maximum height of the building. In addition, relative height to the 
eaves (relh2) and relative maximum height (relhmax)—as measured from the ground—are also 
included. 

2.3. Building Footprint Geometry Simplification 

Building footprint shape can include substantial geometric details manifesting as small 
protrusions or indentations in the polygon. In the context of energy simulation, these small geometric 
details increase the number of surfaces, leading to a computational penalty, as CitySim’s radiation 
model is sensitive to the number of surfaces. To address this, we seek to reduce the number of edges 
in the footprint geometry while maintaining its overall area, edge orientation and topology (e.g., 
adjacency and intersection relations with other footprints). Broadly, this is a polygon simplification 
problem commonly found within the topic of cartographic generalisation. The widely implemented 
Douglas–Peucker algorithm, originally developed as a line simplification technique for removing 
vertices according to a given tolerance, can be applied to polygons while maintaining topology. 
However, the footprint shape and orientations, known to be an influential parameter on energy 
prediction [29], can change. Furthermore, the area is not explicitly maintained, which can lead to 
dramatic changes in the estimated envelope volume. Adopting a manual quality control procedure 
can mitigate this (as Davila et al. [6] do), however this is far from ideal when applied to large areas.  

The ArcGIS Simplify Buildings was identified as an effective 2D footprint generalisation 
approach, which manipulates edges rather than vertices (and therefore retains rectilinear shape) and 
maintains footprint area. However, the topology of a footprint is not considered as part of the 
algorithm. This can lead to cases where buildings that should have a shared edge as part of their 
geometry (e.g., interior walls found between terraced and semidetached houses) become separated 
after application of the algorithm. This can lead to gaps depending on the original generalisation 
tolerance applied. For example, we found gaps of 1–2m could be introduced when using 
generalisation tolerances of 1m or 2m. This change in the built form of the property has important 
implications for energy modelling, as the thermal performance is unlikely to remain representative 
due to the implied change in boundary conditions. 

To account for this, we adopted an automatic spatial adjustment of building footprints to resolve 
the topological issues introduced by the ArcGIS Simplify Building generalisation tool. This 
adjustment snaps together polygons that were previously adjacent through iteratively shifting 
footprints to align with their nearest neighbour. We assign a block_id attribute, which defines 
buildings as part of a group according to the touching spatial predicate, before applying the 
generalisation. Then, after generalisation, for each set of buildings grouped according their block_id, 
we dissolve any shared edges to the identify features which have become separated (i.e., if the 
number of features after the dissolve is greater than one, then some features have become separated). 
For groups with separated features, we loop while d>0: step (1), computing the distance d and angle 
a of the nearest neighbour to the base feature and, step (2), applying a rigid body transformation 
(shift) to the neighbour feature based on the parameters of d and a. After the loop is complete, we 
snap any vertices that are within 0.1m of an adjacent building’s footprint to close any very small gaps. 
Overall, the computation time of the generalisation and automatic snapping is small (in testing found 
to be approximately 2 or 3 minutes for scenes of ~3000 buildings) with minimal effort incurred due 
to it being an automatic process. 

2.4. CityGML Geometry Modelling 

Table 1 illustrates the data sources and their use in constructing CityGML features. The 2D 
geometry of the building footprints are used as GroundSurfaces according to the ground height, and 
are also extruded to create WallSurfaces according to the relh2 value. In cases where the buildings 
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were touching, the relh2, relhmax, and ground height of each polygon were averaged across the 
adjacent polygons. 

Table 1. Building geometry source data and its mapping to properties of the CityGML schema. BHA 
= Building Height Attribute. EHS = English Housing Survey. OSMM = Ordnance Survey MasterMap. 

Source UML class CityGML property Description 

OSMM Building lod1MultiSurface 
Cuboid multisurface based on height extrusion to 

relhmax 
OSMM and 

BHA 
Building RoofSurface 

Roof boundary surface copied from footprint 
geometry and assigned a height of relh2 

OSMM and 
BHA 

Building WallSurface 
Vertically extruded boundary surfaces to a height 
of relh2 

OSMM and 
BHA 

Building GroundSurface Building footprint assigned at a height of abshmin 

Both the composition and volume of the roof of a residential building play a role in determining 
its energy performance. Neither the roof type (i.e., whether it is flat, pitched or hipped, for example) 
nor is its corresponding 3D geometry available as standard data products within the UK. Although 
LIDAR data are available within the UK, their coverage is not comprehensive and methods for 
automated extraction of the roof geometry are not yet at a state of sufficient maturity to automatically 
generate closed 3D volumetric models that are suitable for simulation, without also adding a 
significant number of surfaces or manual editing into the pipeline. Instead, we estimate the 
contribution of the roof space by using a flat roof for the geometry encoded in the EnergyADE 
ThermalZone and ThermalBoundary extruded to eavesHeight (where eavesHeight is dependent on 
whether a converted or room in roof [RIR] is present, see Table 2 for further details). This approach 
means that the duration of the energy simulation is kept relatively low, as the number of surfaces 
used for calculation of surface irradiance and heat transfer are many times fewer than when complex 
roof geometry is adopted. It should be noted that, as a fully 3D software application, simulations in 
CitySim+ can be undertaken with complex 3D roof shapes where available (and preliminary testing 
with procedurally generated hipped roof geometry shapes was undertaken); however, such an 
approach is unlikely to scale to large, urban scenes. 

2.5. Statistical Modelling of Building Energy Parameters 

The workflow described thus far generates details of the CityGML model. Spatial parameters 
that relate to the EnergyADE are derived or copied from this model. However, further nonspatial 
parameters are required to make the model fully compliant with EnergyADE and for CitySim+ to 
perform energy simulations. These include data on energy conversion systems, construction 
materials, infiltration rates, occupancy levels, and occupants’ behaviours. Table 2 describes the 
EnergyADE classes and properties and the corresponding source of data for populating their values. 

Table 2. Energy parameter source data and its mapping to properties of the EnergyADE schema. BHA 
= Building Height Attribute. EHS = English Housing Survey. EFUS = Energy Follow-Up Survey. 
OSMM = Ordnance Survey MasterMap. BRE = Building Research Establishment. 

EnergyADE 
UML class Source EnergyADE element  EnergyADE property Description 

Energy System 
EHS/EFUS/ 

InSmart 
EnergyConversionSystem 

InstalledNominalPower 
Power output (W) of the energy 

system 
nominalEfficiency Efficiency of the energy system 

condensation 

Boolean representing whether 
any gas boiler present is of a 

condensing type. N/A for other 
systems 
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Building Physics 
 

EHS (attic) 

_AbstractBuilding 

atticType 

Enumerated type defining 
whether the roof space is 

unconditioned, conditioned or 
not present 

BHA (relh2) eavesHeight 
If Room in roof = TRUE 

eavesHeight = relhmax-relh2/2 
Else eavesHeight = relh2 

BHA 
(relhmax) 

ridgeHeight 
Direct mapping of relhMax to 

ridgeHeight 

OS 

Thermal Zone 
 
 

grossVolume 
Volume (m3) calculated from the 
footprint geometry extruded to 

relhmax 

BRE infiltrationRate 
Rate of air change due to 

leakage of the thermal zone 
Assumed 

false  
isCooled 

Boolean. True if there is an 
energy system for cooling 

Assumed 
true 

isHeated 
Boolean. True if there is an 
energy system for heating 

OS 

ThermalBoundary thermalBoundaryType 

Type of wall from the 
enumeration of boundary types 
(e.g., OuterWall or SharedWall) 

derived from 2D building 
footprint topology  

 surfaceGeometry 

Ground surface copied from 
CityGML GroundSurface, wall 
and roof surfaces extruded to 

eavesHeight  

BRE 

ThermalComponent 

construction 

Description of the building 
element (e.g., wall, roof, floor) 

including the thermal properties 
of each layer from which it is 

constructed 
Assumed as 

0.75 
area 

The fraction of the overall area 
of the element that is unglazed  

OS isGroundCoupled 

Boolean. True if the building 
element touches the ground. 
Determined from the surface 

geometry 

OS isSunExposed 

Boolean. True if the building 
element is part of the external 

envelope, i.e., is exposed to 
sunlight. Determined from the 

surface geometry 

Material 
BRE 

materials 
database 

Construction uValue The U-value of material 

OpticalProperties transmittance 
The fraction of solar energy that 

is transmitted through the 
material 

SolidMaterial 

conductivity 
The thermal conductivity of the 

material in W/mK 
density The material’s density in kg/m3 

specificHeat 
Specific heat capacity of the 

material in J/kgK 

LayerComponent thickness 
The thickness in mm of the 

material 

TimeSeriesandSc
hedule 

Heating 
patterns 

papers and 
EFUS 

heatingSchedule-> 
DualValueSchedule 

usageValue 
The set-point temperature in °C 
when the heating system is in 

use 

idleValue 
The set-point temperature in °C 
of the heating system when not 

in use (set back temperature) 
coolingSchedule-> 

DualValueSchedule 
usageValue 

The set-point temperature in °C 
when the cooling system is in us 
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idleValue 
The set-point temperature in °C 
of the cooling system when the 

not in use 

In order to assign these parameters, a statistical model of the housing stock including the 
probability of a given parameter’s value is required. In this instance, the EHS—a national survey of 
English housing—forms the primary source of data. This was supplemented, where necessary, using 
a local housing survey carried out under a previous project, InSmart [30], and standard data sources 
on UK buildings provided by the Building Research Establishment (BRE) and the Energy Savings 
Trust [31]. We adopt the EHS as it represents the largest and most current survey of UK housing. 
Filtering the data (using the arnatx variable, available in the Special License version of the EHS data) 
enables exclusion of all nonurban dwellings. EHS is used in preference to the local InSmart survey 
due to its much larger sample (10,000 urban properties vs. 600 properties). The small sample size in 
the InSmart survey was found to under/oversample some archetypes due to their prevalence within 
the city boundary.  

Housing archetypes, based on built form and construction period, are defined in order to assure 
that the nonspatial energy parameters were assigned appropriately. The combination of building age 
and form as the basis for building archetypes is well documented in the literature [32–35], and was 
adopted in this work. Correlations between age/form and the parameters to be modelled were also 
verified in the EHS data, using a chi-squared test. A strong correlation (chi-squared p-value < 0.05 
(95% C.I.)) was found between the archetype value and each of the EHS parameters listed in Table 3. 

Built forms used to define the archetypes were detached, semidetached, end-terrace, mid-
terrace, and flats. Construction periods were selected to map onto the EHS’s six age band definition 
represented by the EHS variable dwage6x [36]. This age band definition also mapped easily onto age 
classification work already performed for the city of Nottingham as part of the InSmart project [30]. 
The six age bands and five built forms were combined to generate 30 residential archetypes. 

Table 3 shows the set of energy parameters used and the EHS, or alternate, attribute used to 
model them. Note that in the case of apartment buildings either 

 A single value is applied to the entire building (e.g., wall/roof/floor type and 
insulation) 

 An average value is assigned to the building, based on the results calculated for each 
individual residential property within the building (HSP, infiltration, heating system 
and household composition) 

 The sum of values for each individual unit within the building is used (occupancy 
level) 

 The parameter is not applicable (e.g., room in roof) 

Table 3. Nonspatial energy parameters, their source, properties and level of attribution. 

Energy Parameter Data Source Data Value Attribution 
level 

Wall Type EHS (Wallcavy) Solid, Cavity, Other Block 
Wall Insulation EHS (Wallinsy) TRUE/FALSE 1 Building 

Roof type EHS (typercov) 
Mixed, natural, slate, clay, concrete, 

asphalt, felt, glass/metal 
Block 

Floor Type BRE 
Suspended timber, stone, concrete slab, 

insulated concrete 
Archetype 

Loft Insulation EHS (Loftu4) None, <100mm, 100–150mm, >150mm Building 
Heating set-point EFUS/Lomas et al.  Integer value in the range of 15 to 25 °C Building 
Infiltration rate Jones et al. [37]/BRE Real value in the range of 0 to 2ach 2 Building 

Heating system EHS (Heat7x) 
Boiler, Storage radiator, warm air, roof 

heater, communal, other 
Household 

Room in roof EHS (attic) TRUE/FALSE Building 
Glazing type EHS (typewin) Mixed, wood, sash, PVC, metal 3 Building 
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Glazing ratios InSmart % front, back and side facades Archetype 

Household 
composition 

EHS (hhcompx)/Census 
(KS105EW) 

Couple (<60), Couple (>60), Family, 
Lone Parent, Single (<60), Single (>60), 

Other multiperson 4 
Household 

Occupancy level EHS (hhsizex) 
1-11 persons (determined from 

hhcompx) 
Household 

1 Thickness of wall insulation is not included in EHS. Thus, where wall insulation is present, insulation 
thickness for cavity walls is determined by the width of the cavity, while for solid walls it is assumed 
that 300mm of external insulation has been applied. 
2 ach = air changes / hour. 
3 Each material option can be either single or double-glazed (except sash which is single glazed only) 
leading to eight window variations in total. 
4 Household types listed are for EHS data. Census definition of household composition differs from 
those shown. 

The field “Attribution level” in Table 3 refers to the aggregation level at which the parameter is 
assigned. Attributes assigned at the building level have a value for each building in the model, i.e., 
each building will have its own value for wall insulation, heating set-point and infiltration rate. 
Attributes assigned at the archetype level will have a common value applied all buildings of that type 
for that attribute, i.e., all buildings of a given form/age have the same floor type definition and glazing 
ratio. Roof and wall type are assigned at the block level. In this case, all buildings in the same block 
of buildings will have these values set the same. This avoids the possibility of terraced and 
semidetached buildings that are connected to each other having different wall and/or roof types. 

Once suitable variables have been identified for the parameters, cumulative distribution 
functions (CDFs) were defined for each of the EHS-based variables, as illustrated in Figure 2, which 
shows the distribution of glazing type across selected residential archetypes. Double-glazed PVC 
windows (dbl-pvc) are clearly the dominant window type. Figure 3 shows the distribution of loft 
insulation levels. In this instance, the distribution across categories is more even than for glazing 
types, but still shows over 50% of properties having the highest level of insulation (with the exception 
of the pre-1915 properties). 

 
Figure 2. Our Cumulative Distribution Functions (CDFs) of glazing types for example archetypes. 
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Figure 3. Our Cumulative Distribution Functions (CDFs) of loft insulation for example archetypes. 

Two of the significant parameters not present in the EHS are heating set-points (HSPs) and 
infiltration rates. A number of surveys of internal temperature or HSP temperature in the UK housing 
stock have been carried out in recent years [30,38,39]. These were used to identify typical HSPs, which 
were then assigned across all archetypes. It is likely that HSP values would be correlated with 
household composition, income and housing archetype, but for the purposes of this work, HSP 
values were assigned independently. HSP values were assigned a normal distribution using a mean 
of 20.5 °C and a standard deviation of 2.5, based on the work of Huebner et al. [40], capped at 20±5 
°C.  

Infiltration rates are more difficult to define due to the complexity and accuracy of in-situ testing 
methods [37]. However, previous surveys carried out by the BRE provide some typical values based 
on built form and construction period [41]. Combining the BRE survey data with more recent 
modelling of UK infiltration rates [37], enabled a per building infiltration rate to be estimated using 
mean and standard deviations assigned to each archetype. For the purposes of this work, it was 
assumed that the infiltration rates are normally distributed.  

In addition to assigning appropriate values to these nonspatial parameters, it is also necessary 
to define the EnergyADE feature types and the attribute values associated with them. A database of 
construction elements, energy systems and time schedules was defined in order to map from the 
parameter settings to a valid EnergyADE representation. An example of an EnergyADE feature 
definition for a solid masonry wall consisting of an external brick layer and an internal brick layer 
with an attached layer of plasterboard is shown as a UML object diagram in Figure 4, with the 
associated EnergyADE definition shown below. 

 
<energy:Construction gml:id="id_construction_wall_1"> 

<gml:name>double layer brick wall</gml:name> 



ISPRS Int. J. Geo-Inf. 2019, 8, 163 11 of 22 

 

<energy:uValue uom="W/(K*m^2)">2</energy:uValue> 
 <energy:opticalProperties> 
  <energy:reflectance>           

 <energy:fraction uom="ratio">0.3</energy:fraction> 
   <energy:surface>Outside</energy:surface> 
   <energy:wavelengthRange>Solar</energy:wavelengthRange> 
  </energy:reflectance> 
 </energy:opticalProperties> 
 <energy:Layer gml:id="id_layer_1"> 
  <energy:LayerComponent gml:id="idNew_lc_1"> 
  ... 
  <energy:thickness uom="mm">13</energy:thickness> 
  <energy:material> 
  <energy:SolidMaterial gml:id="id_material20"> 
  <energy:conductivity uom="W/m*K">0.25</energy:conductivity> 
  <energy:density uom="kg/m^3">900</energy:density> 
  <energy:specificHeat uom="J/(kg*K)">1000</energy:specificHeat> 
  </energy:SolidMaterial> 
  </energy:material> 
  </energy:LayerComponent> 
  <energy:LayerComponent gml:id="idNew_lc_2"> 
... 
  <energy:thickness uom="mm">120</energy:thickness> 
<energy:material> 
   <energy:SolidMaterial gml:id="id_material_2"> 
   <gml:description>Material created id_material_1 values</gml:description> 
   <energy:conductivity uom="W/m*K">0.84</energy:conductivity> 
   <energy:density uom="kg/m^3">1700</energy:density> 
   <energy:specificHeat uom="J/(kg*K)">800</energy:specificHeat> 
   </energy:SolidMaterial> 
  </energy:material> 
  </energy:LayerComponent> 
  <energy:LayerComponent gml:id="idNew_lc_3"> 
  … 

(this defined outer layer of brickwork. Exact replica of definition for previous layer 
component idNew_lc2) 

  ... 
  </energy:LayerComponent> 
 </energy:Layer> 

</energy:Construction>  

Figure 4. Energy ADE, UML and XML representation for a solid masonry wall. 

2.6. Energy Simulator Implementation 

When the scene is first loaded into CitySim+ for simulation, the buildings’ energy attributes were 
encoded according to the EnergyADE schema, as described in Section 2.5 above. CitySim was 
originally developed at LESO-PB at EPFL and is a successor to the Sustainable Urban Neighbourhood 
modelling tool (SUNtool) [42]. CitySim used a proprietary input data model based on the eXtensible 
Markup Language (XML) standard to describe the input scene and various energy conversion 
systems (i.e., the model’s elements had explicit structure but lacked well-defined semantics). Some 
older features in the input data model were redesigned using standardised features in CityGML and 
EnergyADE. For example, the use of the iDefault dataset offered by the CitySim Pro GUI application, 
which is a database of default attributes for buildings (e.g., describing constructional elements, 
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occupancy and energy systems), was partially designed using referenced elements xLinks to a 
dictionary of CityGML/EnergyADE elements. 

CitySim+ has a complexity of O(N2), where N is the total number of surfaces in the given scene, 
hence we require the use of High Performance Computing (HPC) for large scenes. This is due to the 
Simplified Radiosity Algorithm (SRA) [15], which predicts surface irradiance in our urban scene, 
accounting for occlusions for each receiving surface to the sun and sky, and the energy reflected by 
these occlusions. These latter surface-to-surface energy pathways are expressed for the whole scene 
by a sparse inter-reflection (IR) matrix. 

Running CitySim+ over High Performance Computing (HPC) 

In order to speed up the execution of CitySim+, we have run all simulations over the University 
of Nottingham HPC. The CitySim+ code was enhanced to utilise high-performance OpenMP and was 
compiled for use with the software configuration available on the HPC nodes. OpenMP is a set of 
compiler instructions (or hints in C++ compiler terms) and function calls which enable sections of the 
CitySim+ code to run in parallel over a shared memory parallel computing node (for simplicity we 
call it a multicore node). It manages a set of threads that occupy the different cores on the multicore 
node, with each thread representing a small unit of work that can occupy the central processing unit 
(CPU) to complete a task assigned by the parent process.  

As the scene size grows, computational resources, in terms of CPU time and memory, become a 
limiting factor. For example, a CitySim+ simulation consumes ~1.6 hours of total CPU time to 
simulate the hourly shortwave irradiance distribution over a scene comprised of ~800 buildings, or 
~5000 surfaces, in the case of complex roof models over the whole year. The total CPU time accounts 
for all the time the simulation process requested the CPUs (i.e., it appends all the time consumed by 
individual threads in a multithreaded program like CitySim+). To accelerate our computations, we 
perform simulations using nodes with General Purpose Graphic Processing Unit (GPGPU) support 
(called Enhanced nodes). The typical specification for these nodes is listed in Table 4. 

Table 4. Hardware specification for General Purpose Graphic Processing Unit (GPGPU) node. 

Variable Value 
No. of CPUs 2 
CPUs model Intel Sandybridge E5-2650 2.0GHz 
No. of cores 2 × 8 

Total memory 32GB 
No. GPGPUs 2 

GPGPU model Nvidia M2090 
Disk space 500GB 

3. Case Study Areas 

Two case study areas (each containing approximately 50 residential buildings) were chosen to 
illustrate the workflow to create energy-attributed models for simulation. The case studies are both 
located within the Sneinton district of the city of Nottingham, each exhibiting very different building 
types. These two case study areas were selected as they represent a broad diversity of building age 
and form and include a range of residential building types that are common within the city of 
Nottingham. Maps showing the building footprints and layout for the case study areas are shown in 
Figure 5. The buildings in case study area 1 include some complex geometrical footprints and contrast 
with the simpler building footprints present in case study 2. The difference in geometric complexity 
provides an effective comparison of the impact of geometric simplification on simulation 
performance and accuracy. All the buildings in both case studies are residential dwellings.  

Case study 1 (Finsbury) is a group of buildings built prior to 1915 and includes rows of two 
storey terraced buildings along with some larger 2- and 3-storey semidetached and detached 
buildings. These types of building are very common in the city (and the UK generally) and are usually 
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constructed using solid masonry walls. A map showing the building footprints and layout for the 
case study area is shown in Figure 5.  

Case study 2 (Dale Farm) has buildings of mixed vintage: detached private houses built in the 
1970s and semidetached social housing built in the 1920s. All the buildings in Dale farm are two 
storeys.  

 
Figure 5. Case study area (Finsbury) 1 (left) and case study area (Dale Farm) 2 (right). 

In estimating the nonspatial attributes of the case study models, a number of assumptions were 
made: 

 All buildings were heating to the required heating set-point temperature from 07:00 
to 23:00 from 1st October until 1st May. A setback temperature of 5 °C was applied 
at all other times.  

 No cooling system was specified. 
 None of the buildings had a room present in the roof. 
 Household composition and occupancy levels were fixed for all buildings at two 

adults, present at all times.  
These assumptions were considered reasonable; recall the aim of this paper is not to simulate a 

realistic energy demand for the case studies, but to illustrate the described workflow and to examine 
the effects of geometric simplification on simulation performance and accuracy. 

4. Results 

Here we demonstrate application of our workflow for modelling urban scenes and its 
application for energy simulation for the two case study areas. Section 4.1 reports on the energy 
attribution modelling. Section 4.2 illustrates the estimates of building energy usage when employed 
for microsimulation, while Section 4.3 assesses the effect of geometric simplification on the 
computational and energy performance of the simulation. 

4.1. Statistical Model Energy Attribution Results 

The attribution method described in Section 2.5 was used to populate the nonspatial energy 
parameters for the housing stock of the city of Nottingham (~100,000 properties). A comparison of 
the average statistics for the two case study areas and the city housing stock is shown in Table 5. 
Average values for case study 2 are similar to those for the city housing stock. In comparison, case 
study 1 has very few buildings with insulated walls, a higher number of single glazed buildings (15% 
vs. 7%) and smaller than average thermal volumes (i.e., the volume of the building that requires 
heating). As expected, from the central limit theorem, the average HSP for the city of Nottingham is 
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20.5 °C. Figure 6 illustrates spatially resolved examples of the parameter attribution. As described, 
wall types are assigned to blocks of buildings rather than the individual buildings within each block. 

Table 5. Statistics for energy parameter attribution for two case study areas and the city. 

Parameter  Case study 1 Case study 2 
Nottingham 

City 

Average heating set-point temperature  20.3 °C 19.1 °C 20.5 °C 

Average infiltration rate (ach) 0.73 0.74 0.67 

Percentage of insulated walls 9% 52% 45% 

Median loft insulation level > 150mm > 150mm > 150mm 

Percentage of double-glazed buildings 85% 94% 93% 

Average thermal volume 292.5m3 309.7m3 335.9m3 

 
Figure 6. Wall type assignment for the Sneinton area of Nottingham with case study areas 

highlighted. 

4.2. Energy Simulation Results 

Running the simulations for each of the case study areas enables visualisation of the total annual 
heat demand for each building. We present the heat demand by volume, expressed as energy use 
intensity per m3. As expected, the older and more poorly insulated buildings in case study area 1 
have higher heat demands (Figure 7) than those in case study area 2 (Figure 8). Average heat demand 
in case study 1 is 7.76 MWh and total heat demand is 411 MWh, compared to an average of 7.54 MWh 
and total of 377 MWh for case study 2. This is in line with the OFGEM Typical Domestic Consumption 
Value (TDCV) for a low-user (https://www.ofgem.gov.uk/gas/retail-market/monitoring-data-and-
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statistics/typical-domestic-consumption-values), when assuming that 85% of gas use is attributed to 
space heating [43]. The buildings in both areas that have the highest heat demands are typically 
uninsulated houses with higher heating set-points and infiltration rates. 

 
Figure 7. Heat demand by volume (CitySim+ thermal model) results for case study 1. 

 

Figure 8. Heat demand by volume (CitySim+ thermal model) results for case study 2. 

4.3. Building Simplification Results 

Table 6 illustrates the effect of building footprint generalisation on the resulting model 
complexity according to thresholds of 1 and 3m. The reduction in the number of overall surfaces is 
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the most important aspect in decreasing simulation time. Notably there is an obvious difference in 
the simplification between the two study areas, with case study area 1 exhibiting 5 and 12 higher 
percentage point reductions in the number of simulated surfaces than case study area 2, at the 
respective generalisation thresholds. This is due to the relatively simple building shapes found in 
case study area 2, of which a proportion are already rectangular and thus cannot be simplified further.  

Table 6 also describes the overall change in heating demand from the base model at the different 
simplification levels, with Figure 9 and Figure 10 illustrating percentage change at the per-building 
level. At the 1-m-level, we see that the estimates remain relatively close to the baseline, for example 
in case study 2 the overall heat demand difference is within ~0.5%. At the 3-m-level, the geometry 
changes have a more notable effect. For example, considering the mid-terraces in Figure 9, the 
simplify algorithm tends to remove protruding parts the footprint that extend away from the main 
footprint shape leading to tighter packing of the footprints in the block—this appears to reduce the 
exposed wall area, decreasing the heating demand.  

Table 6. Building simplification results, reduction of vertices, surfaces, and the effect on heat demand 
for case study areas 1 and 2. 

  Base model 1m Simplified 3m Simplified 
 Finsbury—Case Study Area 1 
Number of 2D vertices  472 403 312 

Number of ThermalBoundary surfaces  525 456 365 
Reduction in surfaces (%)  n/a 13 30 
Total heat demand (MWh)  411.32 411.06 402.84 

Average heat demand (kWh)   7760.76 7755.86 7600.70 
Heat demand difference (%)  n/a -0.06 -2.00 

Total Simulation seq. time (mins)  88.09 79.0 54.46 
Simulation seq. time reduction (%)  n/a 10.31 38.17 

 Dale Farm—Case Study Area 2 
Number of 2D vertices  314 286 250 

Number of ThermalBoundary surfaces  364 336 300 
Reduction in surfaces (%)  n/a 8 18 
Total heat demand (MWh)  377.18 379.60 376.08 

Average heat demand (kWh)  7543.69 7591.97 7521.56 
Heat demand difference (%)  n/a +0.64 -0.29 

Total Simulation seq. time (mins)  83 68 57.17 
Simulation seq. time reduction (%)  n/a 18.39 31.22 
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Figure 9. Case study area 1: Raw unsimplified footprints (top) and percentage change in heat demand 
between base model and 1m simplification (middle) and 3m simplification (bottom). 
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Figure 10. Case study area 2: Raw unsimplified footprints (top) and percentage change in heat 
demand between base model and 1m simplification (middle) and 3m simplification (bottom). 

5. Discussion 
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We found that several assumptions were necessary in the development of this workflow and 
highlight several interesting avenues for further work. Our workflow is described for the UK context, 
where detailed footprint geometry, address and energy survey information is readily available to 
practitioners. However, the workflow would be applicable in other contexts (potentially with minor 
adaptation). For example, results from the simplification exercise in described this paper 
demonstrated that detailed footprint geometry is not necessarily required to produce reasonable 
energy estimates. Most EU countries would have data on housing stocks that could be used to 
populate the nonspatial energy parameters in EnergyADE (see for example the EU Building Stock 
Observatory). This could then be supplemented by data on local housing stock features where 
available. 

One key finding relates to the lack of geometric generalisation algorithms appropriate to the 
energy modelling context, i.e., that maintain rectilinearity in the building shape, footprint area (and 
thus envelope volume) and topology (i.e., adjacency relations between buildings). As such, we adopt 
and evaluate the generalisation of the 2D building footprints using an off-the-shelf GIS package 
(ArcGIS), with automated postprocessing to resolve invalidation of the adjacency relations and thus 
maintain appropriate shared wall geometry and attribution in the energy model. This reduces the 
number of surfaces in the resulting model, greatly reducing the computational complexity of the 
scene and the corresponding cost, with a relatively modest degradation in the heating demand 
estimate (2% underestimation at most).  

Applying a single generalisation threshold to urban scenes comprised of different building 
morphologies is a relatively crude approach. Investigation of the application of different thresholds 
according to built form or building archetype could be a valuable area for further work. There is 
likely an ideal threshold to apply at the footprint or block level. Going further, an ideal generalisation 
approach would aim to maintain exposed wall area (i.e., where heat loss is most drastic), footprint 
area or building volume, topology and tie-in knowledge of the wall construction (such as likelihood 
of cavity or solid wall presence). For example, negative effects of generalisation (deviations in the 
energy demand accuracy) are strongest when an external wall is uninsulated and these cases could 
be handled with less severe geometric changes. 

In terms of EnergyADE modelling, the geometric volume defined for simulation in this work is 
a single zone; however, the EnergyADE standard supports composition of multiple geometric zones 
within a building envelope. This could form part of future work. Furthermore, EnergyADE 
attribution of nonspatial parameters can be performed using national or local surveys of housing 
stocks where applicable. Where such data is not available or is lacking in key attributes, default values 
can be applied based on expert knowledge. Housing archetypes can be used to assign attributes to 
the urban housing stock. In the UK, the EHS is a good source of attribution data due to the size of the 
survey sample and the frequency of update. It does, however, produce homogenous results and 
cannot capture local differences in building construction methods and/or design. This limitation 
could be overcome by using the recently available Energy Performance Certificate dataset, as an 
alternative or supplement to the EHS data [41]. Supplementing the results with other local data or 
expert knowledge can also be used to mitigate this limitation. 

The use of a dynamic, spatially explicit energy simulation (CitySim+) to predict energy use offers 
a significant improvement over current approaches to energy modelling. In the UK context, energy 
performance of buildings is typically assessed using the BRE’s Standard Assessment Procedure (SAP) 
in its standard or reduced data (rdSAP) version [44]. This simplified model uses energy balance 
equations to predict residential energy use on a monthly or annual basis and does not provide the 
level of fidelity of a full dynamic energy simulation. See Kelly et al. [44] and Jenkins et al. [45] for a 
more detailed discussion of the limitations of SAP based energy predictions. 

6. Conclusion 

Efficiently creating urban housing stock models for energy simulation is a challenging task due 
to the range of information required to accurately represent the characteristics of each building in the 
scene, and the level of detail available in existing datasets. In addition, ensuring that such models can 
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be consumed by different simulator applications and that computational complexity can be managed, 
particularly for larger urban scenes, are important requirements in solving this challenge. This article 
demonstrates a workflow for the creation of residential scenes encoded using CityGML and 
EnergyADE schemas. Taking national mapping agency data as the basis for the geometric 
information, we describe constructing the relevant surface and volume features using attributes of 
building height and extrusion of 2D footprints. For the energy related features, we statistically 
modelled residential building characteristics based on a national housing survey sample and used 
this model to infer likely per-building values for attributes defined by EnergyADE schema. To 
understand how the computational overhead associated with dynamic simulation could be reduced, 
we integrated an off-the-shelf geometric simplification routine as part of the workflow. Our 
experiments show that reducing the number of surfaces with a strong generalisation tolerance led to, 
at most, a small underestimation (2%) in heating demand with a 30% reduction in the number of 
simulated surfaces. 

We have demonstrated the application of the workflow described in this paper for relatively 
small UK scenes. Work is underway to improve the ways in which these scenes can be handled, in 
conjunction with hardware acceleration technology, to facilitate larger, potentially city-scale, 
microsimulation.  
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